xref: /freebsd/sys/dev/iwi/if_iwi.c (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2004, 2005
5  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
6  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
7  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 /*-
34  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/proc.h>
52 #include <sys/mount.h>
53 #include <sys/namei.h>
54 #include <sys/linker.h>
55 #include <sys/firmware.h>
56 #include <sys/taskqueue.h>
57 
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <net/bpf.h>
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 
74 #include <net80211/ieee80211_var.h>
75 #include <net80211/ieee80211_radiotap.h>
76 #include <net80211/ieee80211_input.h>
77 #include <net80211/ieee80211_regdomain.h>
78 
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip.h>
83 #include <netinet/if_ether.h>
84 
85 #include <dev/iwi/if_iwireg.h>
86 #include <dev/iwi/if_iwivar.h>
87 #include <dev/iwi/if_iwi_ioctl.h>
88 
89 #define IWI_DEBUG
90 #ifdef IWI_DEBUG
91 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
92 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
93 int iwi_debug = 0;
94 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
95 
96 static const char *iwi_fw_states[] = {
97 	"IDLE", 		/* IWI_FW_IDLE */
98 	"LOADING",		/* IWI_FW_LOADING */
99 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
100 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
101 	"SCANNING",		/* IWI_FW_SCANNING */
102 };
103 #else
104 #define DPRINTF(x)
105 #define DPRINTFN(n, x)
106 #endif
107 
108 MODULE_DEPEND(iwi, pci,  1, 1, 1);
109 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
110 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
111 
112 enum {
113 	IWI_LED_TX,
114 	IWI_LED_RX,
115 	IWI_LED_POLL,
116 };
117 
118 struct iwi_ident {
119 	uint16_t	vendor;
120 	uint16_t	device;
121 	const char	*name;
122 };
123 
124 static const struct iwi_ident iwi_ident_table[] = {
125 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
126 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
127 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
128 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
129 
130 	{ 0, 0, NULL }
131 };
132 
133 static const uint8_t def_chan_5ghz_band1[] =
134 	{ 36, 40, 44, 48, 52, 56, 60, 64 };
135 static const uint8_t def_chan_5ghz_band2[] =
136 	{ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 };
137 static const uint8_t def_chan_5ghz_band3[] =
138 	{ 149, 153, 157, 161, 165 };
139 
140 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
141 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
142 		    const uint8_t [IEEE80211_ADDR_LEN],
143 		    const uint8_t [IEEE80211_ADDR_LEN]);
144 static void	iwi_vap_delete(struct ieee80211vap *);
145 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
147 		    int);
148 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
149 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
150 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
151 		    int, bus_addr_t, bus_addr_t);
152 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
153 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
154 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
155 		    int);
156 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
157 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
158 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
159 		    const uint8_t [IEEE80211_ADDR_LEN]);
160 static void	iwi_node_free(struct ieee80211_node *);
161 static void	iwi_media_status(if_t, struct ifmediareq *);
162 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
163 static void	iwi_wme_init(struct iwi_softc *);
164 static int	iwi_wme_setparams(struct iwi_softc *);
165 static int	iwi_wme_update(struct ieee80211com *);
166 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
167 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
168 		    struct iwi_frame *);
169 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
170 static void	iwi_rx_intr(struct iwi_softc *);
171 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
172 static void	iwi_intr(void *);
173 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
174 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [IEEE80211_ADDR_LEN], int);
175 static int	iwi_tx_start(struct iwi_softc *, struct mbuf *,
176 		    struct ieee80211_node *, int);
177 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
178 		    const struct ieee80211_bpf_params *);
179 static void	iwi_start(struct iwi_softc *);
180 static int	iwi_transmit(struct ieee80211com *, struct mbuf *);
181 static void	iwi_watchdog(void *);
182 static int	iwi_ioctl(struct ieee80211com *, u_long, void *);
183 static void	iwi_parent(struct ieee80211com *);
184 static void	iwi_stop_master(struct iwi_softc *);
185 static int	iwi_reset(struct iwi_softc *);
186 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
187 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
188 static void	iwi_release_fw_dma(struct iwi_softc *sc);
189 static int	iwi_config(struct iwi_softc *);
190 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
191 static void	iwi_put_firmware(struct iwi_softc *);
192 static void	iwi_monitor_scan(void *, int);
193 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
194 static void	iwi_scan_start(struct ieee80211com *);
195 static void	iwi_scan_end(struct ieee80211com *);
196 static void	iwi_set_channel(struct ieee80211com *);
197 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
198 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
199 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
200 static void	iwi_disassoc(void *, int);
201 static int	iwi_disassociate(struct iwi_softc *, int quiet);
202 static void	iwi_init_locked(struct iwi_softc *);
203 static void	iwi_init(void *);
204 static int	iwi_init_fw_dma(struct iwi_softc *, int);
205 static void	iwi_stop_locked(void *);
206 static void	iwi_stop(struct iwi_softc *);
207 static void	iwi_restart(void *, int);
208 static int	iwi_getrfkill(struct iwi_softc *);
209 static void	iwi_radio_on(void *, int);
210 static void	iwi_radio_off(void *, int);
211 static void	iwi_sysctlattach(struct iwi_softc *);
212 static void	iwi_led_event(struct iwi_softc *, int);
213 static void	iwi_ledattach(struct iwi_softc *);
214 static void	iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t);
215 static void	iwi_getradiocaps(struct ieee80211com *, int, int *,
216 		    struct ieee80211_channel []);
217 
218 static int iwi_probe(device_t);
219 static int iwi_attach(device_t);
220 static int iwi_detach(device_t);
221 static int iwi_shutdown(device_t);
222 static int iwi_suspend(device_t);
223 static int iwi_resume(device_t);
224 
225 static device_method_t iwi_methods[] = {
226 	/* Device interface */
227 	DEVMETHOD(device_probe,		iwi_probe),
228 	DEVMETHOD(device_attach,	iwi_attach),
229 	DEVMETHOD(device_detach,	iwi_detach),
230 	DEVMETHOD(device_shutdown,	iwi_shutdown),
231 	DEVMETHOD(device_suspend,	iwi_suspend),
232 	DEVMETHOD(device_resume,	iwi_resume),
233 
234 	DEVMETHOD_END
235 };
236 
237 static driver_t iwi_driver = {
238 	"iwi",
239 	iwi_methods,
240 	sizeof (struct iwi_softc)
241 };
242 
243 DRIVER_MODULE(iwi, pci, iwi_driver, NULL, NULL);
244 
245 MODULE_VERSION(iwi, 1);
246 
247 static __inline uint8_t
248 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
249 {
250 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
251 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
252 }
253 
254 static __inline uint32_t
255 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
256 {
257 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
258 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
259 }
260 
261 static int
262 iwi_probe(device_t dev)
263 {
264 	const struct iwi_ident *ident;
265 
266 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
267 		if (pci_get_vendor(dev) == ident->vendor &&
268 		    pci_get_device(dev) == ident->device) {
269 			device_set_desc(dev, ident->name);
270 			return (BUS_PROBE_DEFAULT);
271 		}
272 	}
273 	return ENXIO;
274 }
275 
276 static int
277 iwi_attach(device_t dev)
278 {
279 	struct iwi_softc *sc = device_get_softc(dev);
280 	struct ieee80211com *ic = &sc->sc_ic;
281 	uint16_t val;
282 	int i, error;
283 
284 	sc->sc_dev = dev;
285 	sc->sc_ledevent = ticks;
286 
287 	IWI_LOCK_INIT(sc);
288 	mbufq_init(&sc->sc_snd, ifqmaxlen);
289 
290 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
291 
292 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
293 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
294 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
295 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc);
296 	TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc);
297 
298 	callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
299 	callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
300 
301 	pci_write_config(dev, 0x41, 0, 1);
302 
303 	/* enable bus-mastering */
304 	pci_enable_busmaster(dev);
305 
306 	i = PCIR_BAR(0);
307 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE);
308 	if (sc->mem == NULL) {
309 		device_printf(dev, "could not allocate memory resource\n");
310 		goto fail;
311 	}
312 
313 	sc->sc_st = rman_get_bustag(sc->mem);
314 	sc->sc_sh = rman_get_bushandle(sc->mem);
315 
316 	i = 0;
317 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
318 	    RF_ACTIVE | RF_SHAREABLE);
319 	if (sc->irq == NULL) {
320 		device_printf(dev, "could not allocate interrupt resource\n");
321 		goto fail;
322 	}
323 
324 	if (iwi_reset(sc) != 0) {
325 		device_printf(dev, "could not reset adapter\n");
326 		goto fail;
327 	}
328 
329 	/*
330 	 * Allocate rings.
331 	 */
332 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
333 		device_printf(dev, "could not allocate Cmd ring\n");
334 		goto fail;
335 	}
336 
337 	for (i = 0; i < 4; i++) {
338 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
339 		    IWI_CSR_TX1_RIDX + i * 4,
340 		    IWI_CSR_TX1_WIDX + i * 4);
341 		if (error != 0) {
342 			device_printf(dev, "could not allocate Tx ring %d\n",
343 				i+i);
344 			goto fail;
345 		}
346 	}
347 
348 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
349 		device_printf(dev, "could not allocate Rx ring\n");
350 		goto fail;
351 	}
352 
353 	iwi_wme_init(sc);
354 
355 	ic->ic_softc = sc;
356 	ic->ic_name = device_get_nameunit(dev);
357 	ic->ic_opmode = IEEE80211_M_STA;
358 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
359 
360 	/* set device capabilities */
361 	ic->ic_caps =
362 	      IEEE80211_C_STA		/* station mode supported */
363 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
364 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
365 	    | IEEE80211_C_PMGT		/* power save supported */
366 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
367 	    | IEEE80211_C_WPA		/* 802.11i */
368 	    | IEEE80211_C_WME		/* 802.11e */
369 #if 0
370 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
371 #endif
372 	    ;
373 
374 	/* read MAC address from EEPROM */
375 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
376 	ic->ic_macaddr[0] = val & 0xff;
377 	ic->ic_macaddr[1] = val >> 8;
378 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
379 	ic->ic_macaddr[2] = val & 0xff;
380 	ic->ic_macaddr[3] = val >> 8;
381 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
382 	ic->ic_macaddr[4] = val & 0xff;
383 	ic->ic_macaddr[5] = val >> 8;
384 
385 	iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
386 	    ic->ic_channels);
387 
388 	ieee80211_ifattach(ic);
389 	/* override default methods */
390 	ic->ic_node_alloc = iwi_node_alloc;
391 	sc->sc_node_free = ic->ic_node_free;
392 	ic->ic_node_free = iwi_node_free;
393 	ic->ic_raw_xmit = iwi_raw_xmit;
394 	ic->ic_scan_start = iwi_scan_start;
395 	ic->ic_scan_end = iwi_scan_end;
396 	ic->ic_set_channel = iwi_set_channel;
397 	ic->ic_scan_curchan = iwi_scan_curchan;
398 	ic->ic_scan_mindwell = iwi_scan_mindwell;
399 	ic->ic_wme.wme_update = iwi_wme_update;
400 
401 	ic->ic_vap_create = iwi_vap_create;
402 	ic->ic_vap_delete = iwi_vap_delete;
403 	ic->ic_ioctl = iwi_ioctl;
404 	ic->ic_transmit = iwi_transmit;
405 	ic->ic_parent = iwi_parent;
406 	ic->ic_getradiocaps = iwi_getradiocaps;
407 
408 	ieee80211_radiotap_attach(ic,
409 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
410 		IWI_TX_RADIOTAP_PRESENT,
411 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
412 		IWI_RX_RADIOTAP_PRESENT);
413 
414 	iwi_sysctlattach(sc);
415 	iwi_ledattach(sc);
416 
417 	/*
418 	 * Hook our interrupt after all initialization is complete.
419 	 */
420 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
421 	    NULL, iwi_intr, sc, &sc->sc_ih);
422 	if (error != 0) {
423 		device_printf(dev, "could not set up interrupt\n");
424 		goto fail;
425 	}
426 
427 	if (bootverbose)
428 		ieee80211_announce(ic);
429 
430 	return 0;
431 fail:
432 	/* XXX fix */
433 	iwi_detach(dev);
434 	return ENXIO;
435 }
436 
437 static int
438 iwi_detach(device_t dev)
439 {
440 	struct iwi_softc *sc = device_get_softc(dev);
441 	struct ieee80211com *ic = &sc->sc_ic;
442 
443 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
444 
445 	/* NB: do early to drain any pending tasks */
446 	ieee80211_draintask(ic, &sc->sc_radiontask);
447 	ieee80211_draintask(ic, &sc->sc_radiofftask);
448 	ieee80211_draintask(ic, &sc->sc_restarttask);
449 	ieee80211_draintask(ic, &sc->sc_disassoctask);
450 	ieee80211_draintask(ic, &sc->sc_monitortask);
451 
452 	iwi_stop(sc);
453 
454 	ieee80211_ifdetach(ic);
455 
456 	iwi_put_firmware(sc);
457 	iwi_release_fw_dma(sc);
458 
459 	iwi_free_cmd_ring(sc, &sc->cmdq);
460 	iwi_free_tx_ring(sc, &sc->txq[0]);
461 	iwi_free_tx_ring(sc, &sc->txq[1]);
462 	iwi_free_tx_ring(sc, &sc->txq[2]);
463 	iwi_free_tx_ring(sc, &sc->txq[3]);
464 	iwi_free_rx_ring(sc, &sc->rxq);
465 
466 	bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
467 
468 	bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
469 	    sc->mem);
470 
471 	delete_unrhdr(sc->sc_unr);
472 	mbufq_drain(&sc->sc_snd);
473 
474 	IWI_LOCK_DESTROY(sc);
475 
476 	return 0;
477 }
478 
479 static struct ieee80211vap *
480 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
481     enum ieee80211_opmode opmode, int flags,
482     const uint8_t bssid[IEEE80211_ADDR_LEN],
483     const uint8_t mac[IEEE80211_ADDR_LEN])
484 {
485 	struct iwi_softc *sc = ic->ic_softc;
486 	struct iwi_vap *ivp;
487 	struct ieee80211vap *vap;
488 	int i;
489 
490 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
491 		return NULL;
492 	/*
493 	 * Get firmware image (and possibly dma memory) on mode change.
494 	 */
495 	if (iwi_get_firmware(sc, opmode))
496 		return NULL;
497 	/* allocate DMA memory for mapping firmware image */
498 	i = sc->fw_fw.size;
499 	if (sc->fw_boot.size > i)
500 		i = sc->fw_boot.size;
501 	/* XXX do we dma the ucode as well ? */
502 	if (sc->fw_uc.size > i)
503 		i = sc->fw_uc.size;
504 	if (iwi_init_fw_dma(sc, i))
505 		return NULL;
506 
507 	ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
508 	vap = &ivp->iwi_vap;
509 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
510 	/* override the default, the setting comes from the linux driver */
511 	vap->iv_bmissthreshold = 24;
512 	/* override with driver methods */
513 	ivp->iwi_newstate = vap->iv_newstate;
514 	vap->iv_newstate = iwi_newstate;
515 
516 	/* complete setup */
517 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status,
518 	    mac);
519 	ic->ic_opmode = opmode;
520 	return vap;
521 }
522 
523 static void
524 iwi_vap_delete(struct ieee80211vap *vap)
525 {
526 	struct iwi_vap *ivp = IWI_VAP(vap);
527 
528 	ieee80211_vap_detach(vap);
529 	free(ivp, M_80211_VAP);
530 }
531 
532 static void
533 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
534 {
535 	if (error != 0)
536 		return;
537 
538 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
539 
540 	*(bus_addr_t *)arg = segs[0].ds_addr;
541 }
542 
543 static int
544 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
545 {
546 	int error;
547 
548 	ring->count = count;
549 	ring->queued = 0;
550 	ring->cur = ring->next = 0;
551 
552 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
553 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
554 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
555 	    NULL, NULL, &ring->desc_dmat);
556 	if (error != 0) {
557 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
558 		goto fail;
559 	}
560 
561 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
562 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
563 	if (error != 0) {
564 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
565 		goto fail;
566 	}
567 
568 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
569 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
570 	if (error != 0) {
571 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
572 		goto fail;
573 	}
574 
575 	return 0;
576 
577 fail:	iwi_free_cmd_ring(sc, ring);
578 	return error;
579 }
580 
581 static void
582 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
583 {
584 	ring->queued = 0;
585 	ring->cur = ring->next = 0;
586 }
587 
588 static void
589 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
590 {
591 	if (ring->desc != NULL) {
592 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
593 		    BUS_DMASYNC_POSTWRITE);
594 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
595 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
596 	}
597 
598 	if (ring->desc_dmat != NULL)
599 		bus_dma_tag_destroy(ring->desc_dmat);
600 }
601 
602 static int
603 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
604     bus_addr_t csr_ridx, bus_addr_t csr_widx)
605 {
606 	int i, error;
607 
608 	ring->count = count;
609 	ring->queued = 0;
610 	ring->cur = ring->next = 0;
611 	ring->csr_ridx = csr_ridx;
612 	ring->csr_widx = csr_widx;
613 
614 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
615 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
616 	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
617 	    NULL, &ring->desc_dmat);
618 	if (error != 0) {
619 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
620 		goto fail;
621 	}
622 
623 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
624 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
625 	if (error != 0) {
626 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
627 		goto fail;
628 	}
629 
630 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
631 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
632 	if (error != 0) {
633 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
634 		goto fail;
635 	}
636 
637 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
638 	    M_NOWAIT | M_ZERO);
639 	if (ring->data == NULL) {
640 		device_printf(sc->sc_dev, "could not allocate soft data\n");
641 		error = ENOMEM;
642 		goto fail;
643 	}
644 
645 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
646 	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
647 	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
648 	if (error != 0) {
649 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
650 		goto fail;
651 	}
652 
653 	for (i = 0; i < count; i++) {
654 		error = bus_dmamap_create(ring->data_dmat, 0,
655 		    &ring->data[i].map);
656 		if (error != 0) {
657 			device_printf(sc->sc_dev, "could not create DMA map\n");
658 			goto fail;
659 		}
660 	}
661 
662 	return 0;
663 
664 fail:	iwi_free_tx_ring(sc, ring);
665 	return error;
666 }
667 
668 static void
669 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
670 {
671 	struct iwi_tx_data *data;
672 	int i;
673 
674 	for (i = 0; i < ring->count; i++) {
675 		data = &ring->data[i];
676 
677 		if (data->m != NULL) {
678 			bus_dmamap_sync(ring->data_dmat, data->map,
679 			    BUS_DMASYNC_POSTWRITE);
680 			bus_dmamap_unload(ring->data_dmat, data->map);
681 			m_freem(data->m);
682 			data->m = NULL;
683 		}
684 
685 		if (data->ni != NULL) {
686 			ieee80211_free_node(data->ni);
687 			data->ni = NULL;
688 		}
689 	}
690 
691 	ring->queued = 0;
692 	ring->cur = ring->next = 0;
693 }
694 
695 static void
696 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
697 {
698 	struct iwi_tx_data *data;
699 	int i;
700 
701 	if (ring->desc != NULL) {
702 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
703 		    BUS_DMASYNC_POSTWRITE);
704 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
705 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
706 	}
707 
708 	if (ring->desc_dmat != NULL)
709 		bus_dma_tag_destroy(ring->desc_dmat);
710 
711 	if (ring->data != NULL) {
712 		for (i = 0; i < ring->count; i++) {
713 			data = &ring->data[i];
714 
715 			if (data->m != NULL) {
716 				bus_dmamap_sync(ring->data_dmat, data->map,
717 				    BUS_DMASYNC_POSTWRITE);
718 				bus_dmamap_unload(ring->data_dmat, data->map);
719 				m_freem(data->m);
720 			}
721 
722 			if (data->ni != NULL)
723 				ieee80211_free_node(data->ni);
724 
725 			if (data->map != NULL)
726 				bus_dmamap_destroy(ring->data_dmat, data->map);
727 		}
728 
729 		free(ring->data, M_DEVBUF);
730 	}
731 
732 	if (ring->data_dmat != NULL)
733 		bus_dma_tag_destroy(ring->data_dmat);
734 }
735 
736 static int
737 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
738 {
739 	struct iwi_rx_data *data;
740 	int i, error;
741 
742 	ring->count = count;
743 	ring->cur = 0;
744 
745 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
746 	    M_NOWAIT | M_ZERO);
747 	if (ring->data == NULL) {
748 		device_printf(sc->sc_dev, "could not allocate soft data\n");
749 		error = ENOMEM;
750 		goto fail;
751 	}
752 
753 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
754 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
755 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
756 	if (error != 0) {
757 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
758 		goto fail;
759 	}
760 
761 	for (i = 0; i < count; i++) {
762 		data = &ring->data[i];
763 
764 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
765 		if (error != 0) {
766 			device_printf(sc->sc_dev, "could not create DMA map\n");
767 			goto fail;
768 		}
769 
770 		data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
771 		if (data->m == NULL) {
772 			device_printf(sc->sc_dev,
773 			    "could not allocate rx mbuf\n");
774 			error = ENOMEM;
775 			goto fail;
776 		}
777 
778 		error = bus_dmamap_load(ring->data_dmat, data->map,
779 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
780 		    &data->physaddr, 0);
781 		if (error != 0) {
782 			device_printf(sc->sc_dev,
783 			    "could not load rx buf DMA map");
784 			goto fail;
785 		}
786 
787 		data->reg = IWI_CSR_RX_BASE + i * 4;
788 	}
789 
790 	return 0;
791 
792 fail:	iwi_free_rx_ring(sc, ring);
793 	return error;
794 }
795 
796 static void
797 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
798 {
799 	ring->cur = 0;
800 }
801 
802 static void
803 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
804 {
805 	struct iwi_rx_data *data;
806 	int i;
807 
808 	if (ring->data != NULL) {
809 		for (i = 0; i < ring->count; i++) {
810 			data = &ring->data[i];
811 
812 			if (data->m != NULL) {
813 				bus_dmamap_sync(ring->data_dmat, data->map,
814 				    BUS_DMASYNC_POSTREAD);
815 				bus_dmamap_unload(ring->data_dmat, data->map);
816 				m_freem(data->m);
817 			}
818 
819 			if (data->map != NULL)
820 				bus_dmamap_destroy(ring->data_dmat, data->map);
821 		}
822 
823 		free(ring->data, M_DEVBUF);
824 	}
825 
826 	if (ring->data_dmat != NULL)
827 		bus_dma_tag_destroy(ring->data_dmat);
828 }
829 
830 static int
831 iwi_shutdown(device_t dev)
832 {
833 	struct iwi_softc *sc = device_get_softc(dev);
834 
835 	iwi_stop(sc);
836 	iwi_put_firmware(sc);		/* ??? XXX */
837 
838 	return 0;
839 }
840 
841 static int
842 iwi_suspend(device_t dev)
843 {
844 	struct iwi_softc *sc = device_get_softc(dev);
845 	struct ieee80211com *ic = &sc->sc_ic;
846 
847 	ieee80211_suspend_all(ic);
848 	return 0;
849 }
850 
851 static int
852 iwi_resume(device_t dev)
853 {
854 	struct iwi_softc *sc = device_get_softc(dev);
855 	struct ieee80211com *ic = &sc->sc_ic;
856 
857 	pci_write_config(dev, 0x41, 0, 1);
858 
859 	ieee80211_resume_all(ic);
860 	return 0;
861 }
862 
863 static struct ieee80211_node *
864 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
865 {
866 	struct iwi_node *in;
867 
868 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
869 	if (in == NULL)
870 		return NULL;
871 	/* XXX assign sta table entry for adhoc */
872 	in->in_station = -1;
873 
874 	return &in->in_node;
875 }
876 
877 static void
878 iwi_node_free(struct ieee80211_node *ni)
879 {
880 	struct ieee80211com *ic = ni->ni_ic;
881 	struct iwi_softc *sc = ic->ic_softc;
882 	struct iwi_node *in = (struct iwi_node *)ni;
883 
884 	if (in->in_station != -1) {
885 		DPRINTF(("%s mac %6D station %u\n", __func__,
886 		    ni->ni_macaddr, ":", in->in_station));
887 		free_unr(sc->sc_unr, in->in_station);
888 	}
889 
890 	sc->sc_node_free(ni);
891 }
892 
893 /*
894  * Convert h/w rate code to IEEE rate code.
895  */
896 static int
897 iwi_cvtrate(int iwirate)
898 {
899 	switch (iwirate) {
900 	case IWI_RATE_DS1:	return 2;
901 	case IWI_RATE_DS2:	return 4;
902 	case IWI_RATE_DS5:	return 11;
903 	case IWI_RATE_DS11:	return 22;
904 	case IWI_RATE_OFDM6:	return 12;
905 	case IWI_RATE_OFDM9:	return 18;
906 	case IWI_RATE_OFDM12:	return 24;
907 	case IWI_RATE_OFDM18:	return 36;
908 	case IWI_RATE_OFDM24:	return 48;
909 	case IWI_RATE_OFDM36:	return 72;
910 	case IWI_RATE_OFDM48:	return 96;
911 	case IWI_RATE_OFDM54:	return 108;
912 	}
913 	return 0;
914 }
915 
916 /*
917  * The firmware automatically adapts the transmit speed.  We report its current
918  * value here.
919  */
920 static void
921 iwi_media_status(if_t ifp, struct ifmediareq *imr)
922 {
923 	struct ieee80211vap *vap = if_getsoftc(ifp);
924 	struct ieee80211com *ic = vap->iv_ic;
925 	struct iwi_softc *sc = ic->ic_softc;
926 	struct ieee80211_node *ni;
927 
928 	/* read current transmission rate from adapter */
929 	ni = ieee80211_ref_node(vap->iv_bss);
930 	ni->ni_txrate =
931 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
932 	ieee80211_free_node(ni);
933 	ieee80211_media_status(ifp, imr);
934 }
935 
936 static int
937 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
938 {
939 	struct iwi_vap *ivp = IWI_VAP(vap);
940 	struct ieee80211com *ic = vap->iv_ic;
941 	struct iwi_softc *sc = ic->ic_softc;
942 	IWI_LOCK_DECL;
943 
944 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
945 		ieee80211_state_name[vap->iv_state],
946 		ieee80211_state_name[nstate], sc->flags));
947 
948 	IEEE80211_UNLOCK(ic);
949 	IWI_LOCK(sc);
950 	switch (nstate) {
951 	case IEEE80211_S_INIT:
952 		/*
953 		 * NB: don't try to do this if iwi_stop_master has
954 		 *     shutdown the firmware and disabled interrupts.
955 		 */
956 		if (vap->iv_state == IEEE80211_S_RUN &&
957 		    (sc->flags & IWI_FLAG_FW_INITED))
958 			iwi_disassociate(sc, 0);
959 		break;
960 	case IEEE80211_S_AUTH:
961 		iwi_auth_and_assoc(sc, vap);
962 		break;
963 	case IEEE80211_S_RUN:
964 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
965 		    vap->iv_state == IEEE80211_S_SCAN) {
966 			/*
967 			 * XXX when joining an ibss network we are called
968 			 * with a SCAN -> RUN transition on scan complete.
969 			 * Use that to call iwi_auth_and_assoc.  On completing
970 			 * the join we are then called again with an
971 			 * AUTH -> RUN transition and we want to do nothing.
972 			 * This is all totally bogus and needs to be redone.
973 			 */
974 			iwi_auth_and_assoc(sc, vap);
975 		} else if (vap->iv_opmode == IEEE80211_M_MONITOR)
976 			ieee80211_runtask(ic, &sc->sc_monitortask);
977 		break;
978 	case IEEE80211_S_ASSOC:
979 		/*
980 		 * If we are transitioning from AUTH then just wait
981 		 * for the ASSOC status to come back from the firmware.
982 		 * Otherwise we need to issue the association request.
983 		 */
984 		if (vap->iv_state == IEEE80211_S_AUTH)
985 			break;
986 		iwi_auth_and_assoc(sc, vap);
987 		break;
988 	default:
989 		break;
990 	}
991 	IWI_UNLOCK(sc);
992 	IEEE80211_LOCK(ic);
993 	return ivp->iwi_newstate(vap, nstate, arg);
994 }
995 
996 /*
997  * WME parameters coming from IEEE 802.11e specification.  These values are
998  * already declared in ieee80211_proto.c, but they are static so they can't
999  * be reused here.
1000  */
1001 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1002 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1003 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1004 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1005 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1006 };
1007 
1008 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1009 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1010 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1011 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1012 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1013 };
1014 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1015 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1016 
1017 static void
1018 iwi_wme_init(struct iwi_softc *sc)
1019 {
1020 	const struct wmeParams *wmep;
1021 	int ac;
1022 
1023 	memset(sc->wme, 0, sizeof sc->wme);
1024 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1025 		/* set WME values for CCK modulation */
1026 		wmep = &iwi_wme_cck_params[ac];
1027 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1028 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1029 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1030 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1031 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1032 
1033 		/* set WME values for OFDM modulation */
1034 		wmep = &iwi_wme_ofdm_params[ac];
1035 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1036 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1037 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1038 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1039 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1040 	}
1041 }
1042 
1043 static int
1044 iwi_wme_setparams(struct iwi_softc *sc)
1045 {
1046 	struct ieee80211com *ic = &sc->sc_ic;
1047 	struct chanAccParams chp;
1048 	const struct wmeParams *wmep;
1049 	int ac;
1050 
1051 	ieee80211_wme_ic_getparams(ic, &chp);
1052 
1053 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1054 		/* set WME values for current operating mode */
1055 		wmep = &chp.cap_wmeParams[ac];
1056 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1057 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1058 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1059 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1060 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1061 	}
1062 
1063 	DPRINTF(("Setting WME parameters\n"));
1064 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1065 }
1066 #undef IWI_USEC
1067 #undef IWI_EXP2
1068 
1069 static int
1070 iwi_wme_update(struct ieee80211com *ic)
1071 {
1072 	struct iwi_softc *sc = ic->ic_softc;
1073 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1074 	IWI_LOCK_DECL;
1075 
1076 	/*
1077 	 * We may be called to update the WME parameters in
1078 	 * the adapter at various places.  If we're already
1079 	 * associated then initiate the request immediately;
1080 	 * otherwise we assume the params will get sent down
1081 	 * to the adapter as part of the work iwi_auth_and_assoc
1082 	 * does.
1083 	 */
1084 	if (vap->iv_state == IEEE80211_S_RUN) {
1085 		IWI_LOCK(sc);
1086 		iwi_wme_setparams(sc);
1087 		IWI_UNLOCK(sc);
1088 	}
1089 	return (0);
1090 }
1091 
1092 static int
1093 iwi_wme_setie(struct iwi_softc *sc)
1094 {
1095 	struct ieee80211_wme_info wme;
1096 
1097 	memset(&wme, 0, sizeof wme);
1098 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1099 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1100 	wme.wme_oui[0] = 0x00;
1101 	wme.wme_oui[1] = 0x50;
1102 	wme.wme_oui[2] = 0xf2;
1103 	wme.wme_type = WME_OUI_TYPE;
1104 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1105 	wme.wme_version = WME_VERSION;
1106 	wme.wme_info = 0;
1107 
1108 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1109 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1110 }
1111 
1112 /*
1113  * Read 16 bits at address 'addr' from the serial EEPROM.
1114  */
1115 static uint16_t
1116 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1117 {
1118 	uint32_t tmp;
1119 	uint16_t val;
1120 	int n;
1121 
1122 	/* clock C once before the first command */
1123 	IWI_EEPROM_CTL(sc, 0);
1124 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1125 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1126 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1127 
1128 	/* write start bit (1) */
1129 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1130 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1131 
1132 	/* write READ opcode (10) */
1133 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1134 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1135 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1136 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1137 
1138 	/* write address A7-A0 */
1139 	for (n = 7; n >= 0; n--) {
1140 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1141 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1142 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1143 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1144 	}
1145 
1146 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1147 
1148 	/* read data Q15-Q0 */
1149 	val = 0;
1150 	for (n = 15; n >= 0; n--) {
1151 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1152 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1153 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1154 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1155 	}
1156 
1157 	IWI_EEPROM_CTL(sc, 0);
1158 
1159 	/* clear Chip Select and clock C */
1160 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1161 	IWI_EEPROM_CTL(sc, 0);
1162 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1163 
1164 	return val;
1165 }
1166 
1167 static void
1168 iwi_setcurchan(struct iwi_softc *sc, int chan)
1169 {
1170 	struct ieee80211com *ic = &sc->sc_ic;
1171 
1172 	sc->curchan = chan;
1173 	ieee80211_radiotap_chan_change(ic);
1174 }
1175 
1176 static void
1177 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1178     struct iwi_frame *frame)
1179 {
1180 	struct epoch_tracker et;
1181 	struct ieee80211com *ic = &sc->sc_ic;
1182 	struct mbuf *mnew, *m;
1183 	struct ieee80211_node *ni;
1184 	int type, error, framelen;
1185 	int8_t rssi, nf;
1186 	IWI_LOCK_DECL;
1187 
1188 	framelen = le16toh(frame->len);
1189 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1190 		/*
1191 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1192 		 *     out of bounds; need to figure out how to limit
1193 		 *     frame size in the firmware
1194 		 */
1195 		/* XXX stat */
1196 		DPRINTFN(1,
1197 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1198 		    le16toh(frame->len), frame->chan, frame->rssi,
1199 		    frame->rssi_dbm));
1200 		return;
1201 	}
1202 
1203 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1204 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1205 
1206 	if (frame->chan != sc->curchan)
1207 		iwi_setcurchan(sc, frame->chan);
1208 
1209 	/*
1210 	 * Try to allocate a new mbuf for this ring element and load it before
1211 	 * processing the current mbuf. If the ring element cannot be loaded,
1212 	 * drop the received packet and reuse the old mbuf. In the unlikely
1213 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1214 	 */
1215 	mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1216 	if (mnew == NULL) {
1217 		counter_u64_add(ic->ic_ierrors, 1);
1218 		return;
1219 	}
1220 
1221 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1222 
1223 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1224 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1225 	    0);
1226 	if (error != 0) {
1227 		m_freem(mnew);
1228 
1229 		/* try to reload the old mbuf */
1230 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1231 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1232 		    &data->physaddr, 0);
1233 		if (error != 0) {
1234 			/* very unlikely that it will fail... */
1235 			panic("%s: could not load old rx mbuf",
1236 			    device_get_name(sc->sc_dev));
1237 		}
1238 		counter_u64_add(ic->ic_ierrors, 1);
1239 		return;
1240 	}
1241 
1242 	/*
1243 	 * New mbuf successfully loaded, update Rx ring and continue
1244 	 * processing.
1245 	 */
1246 	m = data->m;
1247 	data->m = mnew;
1248 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1249 
1250 	/* finalize mbuf */
1251 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1252 	    sizeof (struct iwi_frame) + framelen;
1253 
1254 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1255 
1256 	rssi = frame->rssi_dbm;
1257 	nf = -95;
1258 	if (ieee80211_radiotap_active(ic)) {
1259 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1260 
1261 		tap->wr_flags = 0;
1262 		tap->wr_antsignal = rssi;
1263 		tap->wr_antnoise = nf;
1264 		tap->wr_rate = iwi_cvtrate(frame->rate);
1265 		tap->wr_antenna = frame->antenna;
1266 	}
1267 	IWI_UNLOCK(sc);
1268 
1269 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1270 	NET_EPOCH_ENTER(et);
1271 	if (ni != NULL) {
1272 		type = ieee80211_input(ni, m, rssi, nf);
1273 		ieee80211_free_node(ni);
1274 	} else
1275 		type = ieee80211_input_all(ic, m, rssi, nf);
1276 	NET_EPOCH_EXIT(et);
1277 
1278 	IWI_LOCK(sc);
1279 	if (sc->sc_softled) {
1280 		/*
1281 		 * Blink for any data frame.  Otherwise do a
1282 		 * heartbeat-style blink when idle.  The latter
1283 		 * is mainly for station mode where we depend on
1284 		 * periodic beacon frames to trigger the poll event.
1285 		 */
1286 		if (type == IEEE80211_FC0_TYPE_DATA) {
1287 			sc->sc_rxrate = frame->rate;
1288 			iwi_led_event(sc, IWI_LED_RX);
1289 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1290 			iwi_led_event(sc, IWI_LED_POLL);
1291 	}
1292 }
1293 
1294 /*
1295  * Check for an association response frame to see if QoS
1296  * has been negotiated.  We parse just enough to figure
1297  * out if we're supposed to use QoS.  The proper solution
1298  * is to pass the frame up so ieee80211_input can do the
1299  * work but that's made hard by how things currently are
1300  * done in the driver.
1301  */
1302 static void
1303 iwi_checkforqos(struct ieee80211vap *vap,
1304 	const struct ieee80211_frame *wh, int len)
1305 {
1306 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1307 	const uint8_t *frm, *efrm, *wme;
1308 	struct ieee80211_node *ni;
1309 	uint16_t capinfo, associd;
1310 
1311 	/* NB: +8 for capinfo, status, associd, and first ie */
1312 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1313 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1314 		return;
1315 	/*
1316 	 * asresp frame format
1317 	 *	[2] capability information
1318 	 *	[2] status
1319 	 *	[2] association ID
1320 	 *	[tlv] supported rates
1321 	 *	[tlv] extended supported rates
1322 	 *	[tlv] WME
1323 	 */
1324 	frm = (const uint8_t *)&wh[1];
1325 	efrm = ((const uint8_t *) wh) + len;
1326 
1327 	capinfo = le16toh(*(const uint16_t *)frm);
1328 	frm += 2;
1329 	/* status */
1330 	frm += 2;
1331 	associd = le16toh(*(const uint16_t *)frm);
1332 	frm += 2;
1333 
1334 	wme = NULL;
1335 	while (efrm - frm > 1) {
1336 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
1337 		switch (*frm) {
1338 		case IEEE80211_ELEMID_VENDOR:
1339 			if (iswmeoui(frm))
1340 				wme = frm;
1341 			break;
1342 		}
1343 		frm += frm[1] + 2;
1344 	}
1345 
1346 	ni = ieee80211_ref_node(vap->iv_bss);
1347 	ni->ni_capinfo = capinfo;
1348 	ni->ni_associd = associd & 0x3fff;
1349 	if (wme != NULL)
1350 		ni->ni_flags |= IEEE80211_NODE_QOS;
1351 	else
1352 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1353 	ieee80211_free_node(ni);
1354 #undef SUBTYPE
1355 }
1356 
1357 static void
1358 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif)
1359 {
1360 	struct iwi_notif_link_quality *lq;
1361 	int len;
1362 
1363 	len = le16toh(notif->len);
1364 
1365 	DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n",
1366 	    notif->type,
1367 	    len,
1368 	    sizeof(struct iwi_notif_link_quality)
1369 	    ));
1370 
1371 	/* enforce length */
1372 	if (len != sizeof(struct iwi_notif_link_quality)) {
1373 		DPRINTFN(5, ("Notification: (%u) too short (%d)\n",
1374 		    notif->type,
1375 		    len));
1376 		return;
1377 	}
1378 
1379 	lq = (struct iwi_notif_link_quality *)(notif + 1);
1380 	memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual));
1381 	sc->sc_linkqual_valid = 1;
1382 }
1383 
1384 /*
1385  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1386  */
1387 
1388 static void
1389 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1390 {
1391 	struct ieee80211com *ic = &sc->sc_ic;
1392 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1393 	struct iwi_notif_scan_channel *chan;
1394 	struct iwi_notif_scan_complete *scan;
1395 	struct iwi_notif_authentication *auth;
1396 	struct iwi_notif_association *assoc;
1397 	struct iwi_notif_beacon_state *beacon;
1398 
1399 	switch (notif->type) {
1400 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1401 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1402 
1403 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1404 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1405 
1406 		/* Reset the timer, the scan is still going */
1407 		sc->sc_state_timer = 3;
1408 		break;
1409 
1410 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1411 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1412 
1413 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1414 		    scan->status));
1415 
1416 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1417 
1418 		/*
1419 		 * Monitor mode works by doing a passive scan to set
1420 		 * the channel and enable rx.  Because we don't want
1421 		 * to abort a scan lest the firmware crash we scan
1422 		 * for a short period of time and automatically restart
1423 		 * the scan when notified the sweep has completed.
1424 		 */
1425 		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1426 			ieee80211_runtask(ic, &sc->sc_monitortask);
1427 			break;
1428 		}
1429 
1430 		if (scan->status == IWI_SCAN_COMPLETED) {
1431 			/* NB: don't need to defer, net80211 does it for us */
1432 			ieee80211_scan_next(vap);
1433 		}
1434 		break;
1435 
1436 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1437 		auth = (struct iwi_notif_authentication *)(notif + 1);
1438 		switch (auth->state) {
1439 		case IWI_AUTH_SUCCESS:
1440 			DPRINTFN(2, ("Authentication succeeeded\n"));
1441 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1442 			break;
1443 		case IWI_AUTH_FAIL:
1444 			/*
1445 			 * These are delivered as an unsolicited deauth
1446 			 * (e.g. due to inactivity) or in response to an
1447 			 * associate request.
1448 			 */
1449 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1450 			if (vap->iv_state != IEEE80211_S_RUN) {
1451 				DPRINTFN(2, ("Authentication failed\n"));
1452 				vap->iv_stats.is_rx_auth_fail++;
1453 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1454 			} else {
1455 				DPRINTFN(2, ("Deauthenticated\n"));
1456 				vap->iv_stats.is_rx_deauth++;
1457 			}
1458 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1459 			break;
1460 		case IWI_AUTH_SENT_1:
1461 		case IWI_AUTH_RECV_2:
1462 		case IWI_AUTH_SEQ1_PASS:
1463 			break;
1464 		case IWI_AUTH_SEQ1_FAIL:
1465 			DPRINTFN(2, ("Initial authentication handshake failed; "
1466 				"you probably need shared key\n"));
1467 			vap->iv_stats.is_rx_auth_fail++;
1468 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1469 			/* XXX retry shared key when in auto */
1470 			break;
1471 		default:
1472 			device_printf(sc->sc_dev,
1473 			    "unknown authentication state %u\n", auth->state);
1474 			break;
1475 		}
1476 		break;
1477 
1478 	case IWI_NOTIF_TYPE_ASSOCIATION:
1479 		assoc = (struct iwi_notif_association *)(notif + 1);
1480 		switch (assoc->state) {
1481 		case IWI_AUTH_SUCCESS:
1482 			/* re-association, do nothing */
1483 			break;
1484 		case IWI_ASSOC_SUCCESS:
1485 			DPRINTFN(2, ("Association succeeded\n"));
1486 			sc->flags |= IWI_FLAG_ASSOCIATED;
1487 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1488 			iwi_checkforqos(vap,
1489 			    (const struct ieee80211_frame *)(assoc+1),
1490 			    le16toh(notif->len) - sizeof(*assoc) - 1);
1491 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1492 			break;
1493 		case IWI_ASSOC_INIT:
1494 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1495 			switch (sc->fw_state) {
1496 			case IWI_FW_ASSOCIATING:
1497 				DPRINTFN(2, ("Association failed\n"));
1498 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1499 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1500 				break;
1501 
1502 			case IWI_FW_DISASSOCIATING:
1503 				DPRINTFN(2, ("Dissassociated\n"));
1504 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1505 				vap->iv_stats.is_rx_disassoc++;
1506 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1507 				break;
1508 			}
1509 			break;
1510 		default:
1511 			device_printf(sc->sc_dev,
1512 			    "unknown association state %u\n", assoc->state);
1513 			break;
1514 		}
1515 		break;
1516 
1517 	case IWI_NOTIF_TYPE_BEACON:
1518 		/* XXX check struct length */
1519 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1520 
1521 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1522 		    beacon->state, le32toh(beacon->number)));
1523 
1524 		if (beacon->state == IWI_BEACON_MISS) {
1525 			/*
1526 			 * The firmware notifies us of every beacon miss
1527 			 * so we need to track the count against the
1528 			 * configured threshold before notifying the
1529 			 * 802.11 layer.
1530 			 * XXX try to roam, drop assoc only on much higher count
1531 			 */
1532 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1533 				DPRINTF(("Beacon miss: %u >= %u\n",
1534 				    le32toh(beacon->number),
1535 				    vap->iv_bmissthreshold));
1536 				vap->iv_stats.is_beacon_miss++;
1537 				/*
1538 				 * It's pointless to notify the 802.11 layer
1539 				 * as it'll try to send a probe request (which
1540 				 * we'll discard) and then timeout and drop us
1541 				 * into scan state.  Instead tell the firmware
1542 				 * to disassociate and then on completion we'll
1543 				 * kick the state machine to scan.
1544 				 */
1545 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1546 			}
1547 		}
1548 		break;
1549 
1550 	case IWI_NOTIF_TYPE_CALIBRATION:
1551 	case IWI_NOTIF_TYPE_NOISE:
1552 		/* XXX handle? */
1553 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1554 		break;
1555 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1556 		iwi_notif_link_quality(sc, notif);
1557 		break;
1558 
1559 	default:
1560 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1561 		    notif->type, notif->flags, le16toh(notif->len)));
1562 		break;
1563 	}
1564 }
1565 
1566 static void
1567 iwi_rx_intr(struct iwi_softc *sc)
1568 {
1569 	struct iwi_rx_data *data;
1570 	struct iwi_hdr *hdr;
1571 	uint32_t hw;
1572 
1573 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1574 
1575 	for (; sc->rxq.cur != hw;) {
1576 		data = &sc->rxq.data[sc->rxq.cur];
1577 
1578 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1579 		    BUS_DMASYNC_POSTREAD);
1580 
1581 		hdr = mtod(data->m, struct iwi_hdr *);
1582 
1583 		switch (hdr->type) {
1584 		case IWI_HDR_TYPE_FRAME:
1585 			iwi_frame_intr(sc, data, sc->rxq.cur,
1586 			    (struct iwi_frame *)(hdr + 1));
1587 			break;
1588 
1589 		case IWI_HDR_TYPE_NOTIF:
1590 			iwi_notification_intr(sc,
1591 			    (struct iwi_notif *)(hdr + 1));
1592 			break;
1593 
1594 		default:
1595 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1596 			    hdr->type);
1597 		}
1598 
1599 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1600 
1601 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1602 	}
1603 
1604 	/* tell the firmware what we have processed */
1605 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1606 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1607 }
1608 
1609 static void
1610 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1611 {
1612 	struct iwi_tx_data *data;
1613 	uint32_t hw;
1614 
1615 	hw = CSR_READ_4(sc, txq->csr_ridx);
1616 
1617 	while (txq->next != hw) {
1618 		data = &txq->data[txq->next];
1619 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1620 		bus_dmamap_sync(txq->data_dmat, data->map,
1621 		    BUS_DMASYNC_POSTWRITE);
1622 		bus_dmamap_unload(txq->data_dmat, data->map);
1623 		ieee80211_tx_complete(data->ni, data->m, 0);
1624 		data->ni = NULL;
1625 		data->m = NULL;
1626 		txq->queued--;
1627 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1628 	}
1629 	sc->sc_tx_timer = 0;
1630 	if (sc->sc_softled)
1631 		iwi_led_event(sc, IWI_LED_TX);
1632 	iwi_start(sc);
1633 }
1634 
1635 static void
1636 iwi_fatal_error_intr(struct iwi_softc *sc)
1637 {
1638 	struct ieee80211com *ic = &sc->sc_ic;
1639 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1640 
1641 	device_printf(sc->sc_dev, "firmware error\n");
1642 	if (vap != NULL)
1643 		ieee80211_cancel_scan(vap);
1644 	ieee80211_runtask(ic, &sc->sc_restarttask);
1645 
1646 	sc->flags &= ~IWI_FLAG_BUSY;
1647 	sc->sc_busy_timer = 0;
1648 	wakeup(sc);
1649 }
1650 
1651 static void
1652 iwi_radio_off_intr(struct iwi_softc *sc)
1653 {
1654 
1655 	ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask);
1656 }
1657 
1658 static void
1659 iwi_intr(void *arg)
1660 {
1661 	struct iwi_softc *sc = arg;
1662 	uint32_t r;
1663 	IWI_LOCK_DECL;
1664 
1665 	IWI_LOCK(sc);
1666 
1667 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1668 		IWI_UNLOCK(sc);
1669 		return;
1670 	}
1671 
1672 	/* acknowledge interrupts */
1673 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1674 
1675 	if (r & IWI_INTR_FATAL_ERROR) {
1676 		iwi_fatal_error_intr(sc);
1677 		goto done;
1678 	}
1679 
1680 	if (r & IWI_INTR_FW_INITED) {
1681 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1682 			wakeup(sc);
1683 	}
1684 
1685 	if (r & IWI_INTR_RADIO_OFF)
1686 		iwi_radio_off_intr(sc);
1687 
1688 	if (r & IWI_INTR_CMD_DONE) {
1689 		sc->flags &= ~IWI_FLAG_BUSY;
1690 		sc->sc_busy_timer = 0;
1691 		wakeup(sc);
1692 	}
1693 
1694 	if (r & IWI_INTR_TX1_DONE)
1695 		iwi_tx_intr(sc, &sc->txq[0]);
1696 
1697 	if (r & IWI_INTR_TX2_DONE)
1698 		iwi_tx_intr(sc, &sc->txq[1]);
1699 
1700 	if (r & IWI_INTR_TX3_DONE)
1701 		iwi_tx_intr(sc, &sc->txq[2]);
1702 
1703 	if (r & IWI_INTR_TX4_DONE)
1704 		iwi_tx_intr(sc, &sc->txq[3]);
1705 
1706 	if (r & IWI_INTR_RX_DONE)
1707 		iwi_rx_intr(sc);
1708 
1709 	if (r & IWI_INTR_PARITY_ERROR) {
1710 		/* XXX rate-limit */
1711 		device_printf(sc->sc_dev, "parity error\n");
1712 	}
1713 done:
1714 	IWI_UNLOCK(sc);
1715 }
1716 
1717 static int
1718 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1719 {
1720 	struct iwi_cmd_desc *desc;
1721 
1722 	IWI_LOCK_ASSERT(sc);
1723 
1724 	if (sc->flags & IWI_FLAG_BUSY) {
1725 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1726 			__func__, type);
1727 		return EAGAIN;
1728 	}
1729 	sc->flags |= IWI_FLAG_BUSY;
1730 	sc->sc_busy_timer = 2;
1731 
1732 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1733 
1734 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1735 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1736 	desc->type = type;
1737 	desc->len = len;
1738 	memcpy(desc->data, data, len);
1739 
1740 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1741 	    BUS_DMASYNC_PREWRITE);
1742 
1743 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1744 	    type, len));
1745 
1746 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1747 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1748 
1749 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1750 }
1751 
1752 static void
1753 iwi_write_ibssnode(struct iwi_softc *sc,
1754 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1755 {
1756 	struct iwi_ibssnode node;
1757 
1758 	/* write node information into NIC memory */
1759 	memset(&node, 0, sizeof node);
1760 	IEEE80211_ADDR_COPY(node.bssid, addr);
1761 
1762 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1763 
1764 	CSR_WRITE_REGION_1(sc,
1765 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1766 	    (uint8_t *)&node, sizeof node);
1767 }
1768 
1769 static int
1770 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1771     int ac)
1772 {
1773 	struct ieee80211vap *vap = ni->ni_vap;
1774 	struct iwi_node *in = (struct iwi_node *)ni;
1775 	const struct ieee80211_frame *wh;
1776 	struct ieee80211_key *k;
1777 	struct iwi_tx_ring *txq = &sc->txq[ac];
1778 	struct iwi_tx_data *data;
1779 	struct iwi_tx_desc *desc;
1780 	struct mbuf *mnew;
1781 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1782 	int error, nsegs, hdrlen, i;
1783 	int ismcast, flags, xflags, staid;
1784 
1785 	IWI_LOCK_ASSERT(sc);
1786 	wh = mtod(m0, const struct ieee80211_frame *);
1787 	/* NB: only data frames use this path */
1788 	hdrlen = ieee80211_hdrsize(wh);
1789 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1790 	flags = xflags = 0;
1791 
1792 	if (!ismcast)
1793 		flags |= IWI_DATA_FLAG_NEED_ACK;
1794 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1795 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1796 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1797 		xflags |= IWI_DATA_XFLAG_QOS;
1798 		if (ieee80211_wme_vap_ac_is_noack(vap, ac))
1799 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1800 	}
1801 
1802 	/*
1803 	 * This is only used in IBSS mode where the firmware expect an index
1804 	 * in a h/w table instead of a destination address.
1805 	 */
1806 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1807 		if (!ismcast) {
1808 			if (in->in_station == -1) {
1809 				in->in_station = alloc_unr(sc->sc_unr);
1810 				if (in->in_station == -1) {
1811 					/* h/w table is full */
1812 					if_inc_counter(ni->ni_vap->iv_ifp,
1813 					    IFCOUNTER_OERRORS, 1);
1814 					m_freem(m0);
1815 					ieee80211_free_node(ni);
1816 					return 0;
1817 				}
1818 				iwi_write_ibssnode(sc,
1819 					ni->ni_macaddr, in->in_station);
1820 			}
1821 			staid = in->in_station;
1822 		} else {
1823 			/*
1824 			 * Multicast addresses have no associated node
1825 			 * so there will be no station entry.  We reserve
1826 			 * entry 0 for one mcast address and use that.
1827 			 * If there are many being used this will be
1828 			 * expensive and we'll need to do a better job
1829 			 * but for now this handles the broadcast case.
1830 			 */
1831 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1832 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1833 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1834 			}
1835 			staid = 0;
1836 		}
1837 	} else
1838 		staid = 0;
1839 
1840 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1841 		k = ieee80211_crypto_encap(ni, m0);
1842 		if (k == NULL) {
1843 			m_freem(m0);
1844 			return ENOBUFS;
1845 		}
1846 
1847 		/* packet header may have moved, reset our local pointer */
1848 		wh = mtod(m0, struct ieee80211_frame *);
1849 	}
1850 
1851 	if (ieee80211_radiotap_active_vap(vap)) {
1852 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1853 
1854 		tap->wt_flags = 0;
1855 
1856 		ieee80211_radiotap_tx(vap, m0);
1857 	}
1858 
1859 	data = &txq->data[txq->cur];
1860 	desc = &txq->desc[txq->cur];
1861 
1862 	/* save and trim IEEE802.11 header */
1863 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1864 	m_adj(m0, hdrlen);
1865 
1866 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1867 	    &nsegs, 0);
1868 	if (error != 0 && error != EFBIG) {
1869 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1870 		    error);
1871 		m_freem(m0);
1872 		return error;
1873 	}
1874 	if (error != 0) {
1875 		mnew = m_defrag(m0, M_NOWAIT);
1876 		if (mnew == NULL) {
1877 			device_printf(sc->sc_dev,
1878 			    "could not defragment mbuf\n");
1879 			m_freem(m0);
1880 			return ENOBUFS;
1881 		}
1882 		m0 = mnew;
1883 
1884 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1885 		    m0, segs, &nsegs, 0);
1886 		if (error != 0) {
1887 			device_printf(sc->sc_dev,
1888 			    "could not map mbuf (error %d)\n", error);
1889 			m_freem(m0);
1890 			return error;
1891 		}
1892 	}
1893 
1894 	data->m = m0;
1895 	data->ni = ni;
1896 
1897 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1898 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1899 	desc->station = staid;
1900 	desc->cmd = IWI_DATA_CMD_TX;
1901 	desc->len = htole16(m0->m_pkthdr.len);
1902 	desc->flags = flags;
1903 	desc->xflags = xflags;
1904 
1905 #if 0
1906 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1907 		desc->wep_txkey = vap->iv_def_txkey;
1908 	else
1909 #endif
1910 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1911 
1912 	desc->nseg = htole32(nsegs);
1913 	for (i = 0; i < nsegs; i++) {
1914 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1915 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1916 	}
1917 
1918 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1919 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1920 
1921 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1922 	    ac, txq->cur, le16toh(desc->len), nsegs));
1923 
1924 	txq->queued++;
1925 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1926 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1927 
1928 	return 0;
1929 }
1930 
1931 static int
1932 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1933 	const struct ieee80211_bpf_params *params)
1934 {
1935 	/* no support; just discard */
1936 	m_freem(m);
1937 	ieee80211_free_node(ni);
1938 	return 0;
1939 }
1940 
1941 static int
1942 iwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1943 {
1944 	struct iwi_softc *sc = ic->ic_softc;
1945 	int error;
1946 	IWI_LOCK_DECL;
1947 
1948 	IWI_LOCK(sc);
1949 	if (!sc->sc_running) {
1950 		IWI_UNLOCK(sc);
1951 		return (ENXIO);
1952 	}
1953 	error = mbufq_enqueue(&sc->sc_snd, m);
1954 	if (error) {
1955 		IWI_UNLOCK(sc);
1956 		return (error);
1957 	}
1958 	iwi_start(sc);
1959 	IWI_UNLOCK(sc);
1960 	return (0);
1961 }
1962 
1963 static void
1964 iwi_start(struct iwi_softc *sc)
1965 {
1966 	struct mbuf *m;
1967 	struct ieee80211_node *ni;
1968 	int ac;
1969 
1970 	IWI_LOCK_ASSERT(sc);
1971 
1972 	while ((m =  mbufq_dequeue(&sc->sc_snd)) != NULL) {
1973 		ac = M_WME_GETAC(m);
1974 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1975 			/* there is no place left in this ring; tail drop */
1976 			/* XXX tail drop */
1977 			mbufq_prepend(&sc->sc_snd, m);
1978 			break;
1979 		}
1980 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1981 		if (iwi_tx_start(sc, m, ni, ac) != 0) {
1982 			if_inc_counter(ni->ni_vap->iv_ifp,
1983 			    IFCOUNTER_OERRORS, 1);
1984 			ieee80211_free_node(ni);
1985 			break;
1986 		}
1987 		sc->sc_tx_timer = 5;
1988 	}
1989 }
1990 
1991 static void
1992 iwi_watchdog(void *arg)
1993 {
1994 	struct iwi_softc *sc = arg;
1995 	struct ieee80211com *ic = &sc->sc_ic;
1996 
1997 	IWI_LOCK_ASSERT(sc);
1998 
1999 	if (sc->sc_tx_timer > 0) {
2000 		if (--sc->sc_tx_timer == 0) {
2001 			device_printf(sc->sc_dev, "device timeout\n");
2002 			counter_u64_add(ic->ic_oerrors, 1);
2003 			ieee80211_runtask(ic, &sc->sc_restarttask);
2004 		}
2005 	}
2006 	if (sc->sc_state_timer > 0) {
2007 		if (--sc->sc_state_timer == 0) {
2008 			device_printf(sc->sc_dev,
2009 			    "firmware stuck in state %d, resetting\n",
2010 			    sc->fw_state);
2011 			if (sc->fw_state == IWI_FW_SCANNING)
2012 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2013 			ieee80211_runtask(ic, &sc->sc_restarttask);
2014 			sc->sc_state_timer = 3;
2015 		}
2016 	}
2017 	if (sc->sc_busy_timer > 0) {
2018 		if (--sc->sc_busy_timer == 0) {
2019 			device_printf(sc->sc_dev,
2020 			    "firmware command timeout, resetting\n");
2021 			ieee80211_runtask(ic, &sc->sc_restarttask);
2022 		}
2023 	}
2024 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
2025 }
2026 
2027 static void
2028 iwi_parent(struct ieee80211com *ic)
2029 {
2030 	struct iwi_softc *sc = ic->ic_softc;
2031 	int startall = 0;
2032 	IWI_LOCK_DECL;
2033 
2034 	IWI_LOCK(sc);
2035 	if (ic->ic_nrunning > 0) {
2036 		if (!sc->sc_running) {
2037 			iwi_init_locked(sc);
2038 			startall = 1;
2039 		}
2040 	} else if (sc->sc_running)
2041 		iwi_stop_locked(sc);
2042 	IWI_UNLOCK(sc);
2043 	if (startall)
2044 		ieee80211_start_all(ic);
2045 }
2046 
2047 static int
2048 iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
2049 {
2050 	struct ifreq *ifr = data;
2051 	struct iwi_softc *sc = ic->ic_softc;
2052 	int error;
2053 	IWI_LOCK_DECL;
2054 
2055 	IWI_LOCK(sc);
2056 	switch (cmd) {
2057 	case SIOCGIWISTATS:
2058 		/* XXX validate permissions/memory/etc? */
2059 		error = copyout(&sc->sc_linkqual, ifr_data_get_ptr(ifr),
2060 		    sizeof(struct iwi_notif_link_quality));
2061 		break;
2062 	case SIOCZIWISTATS:
2063 		memset(&sc->sc_linkqual, 0,
2064 		    sizeof(struct iwi_notif_link_quality));
2065 		error = 0;
2066 		break;
2067 	default:
2068 		error = ENOTTY;
2069 		break;
2070 	}
2071 	IWI_UNLOCK(sc);
2072 
2073 	return (error);
2074 }
2075 
2076 static void
2077 iwi_stop_master(struct iwi_softc *sc)
2078 {
2079 	uint32_t tmp;
2080 	int ntries;
2081 
2082 	/* disable interrupts */
2083 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2084 
2085 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2086 	for (ntries = 0; ntries < 5; ntries++) {
2087 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2088 			break;
2089 		DELAY(10);
2090 	}
2091 	if (ntries == 5)
2092 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2093 
2094 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2095 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2096 
2097 	sc->flags &= ~IWI_FLAG_FW_INITED;
2098 }
2099 
2100 static int
2101 iwi_reset(struct iwi_softc *sc)
2102 {
2103 	uint32_t tmp;
2104 	int i, ntries;
2105 
2106 	iwi_stop_master(sc);
2107 
2108 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2109 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2110 
2111 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2112 
2113 	/* wait for clock stabilization */
2114 	for (ntries = 0; ntries < 1000; ntries++) {
2115 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2116 			break;
2117 		DELAY(200);
2118 	}
2119 	if (ntries == 1000) {
2120 		device_printf(sc->sc_dev,
2121 		    "timeout waiting for clock stabilization\n");
2122 		return EIO;
2123 	}
2124 
2125 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2126 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2127 
2128 	DELAY(10);
2129 
2130 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2131 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2132 
2133 	/* clear NIC memory */
2134 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2135 	for (i = 0; i < 0xc000; i++)
2136 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2137 
2138 	return 0;
2139 }
2140 
2141 static const struct iwi_firmware_ohdr *
2142 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2143 {
2144 	const struct firmware *fp = fw->fp;
2145 	const struct iwi_firmware_ohdr *hdr;
2146 
2147 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2148 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2149 		return NULL;
2150 	}
2151 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2152 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2153 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2154 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2155 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2156 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2157 		    IWI_FW_REQ_MINOR);
2158 		return NULL;
2159 	}
2160 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2161 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2162 	fw->name = fp->name;
2163 	return hdr;
2164 }
2165 
2166 static const struct iwi_firmware_ohdr *
2167 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2168 {
2169 	const struct iwi_firmware_ohdr *hdr;
2170 
2171 	hdr = iwi_setup_ofw(sc, fw);
2172 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2173 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2174 		    fw->name);
2175 		hdr = NULL;
2176 	}
2177 	return hdr;
2178 }
2179 
2180 static void
2181 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2182 	  struct iwi_fw *uc, const char *ucname)
2183 {
2184 	if (fw->fp == NULL)
2185 		fw->fp = firmware_get(fwname);
2186 	/* NB: pre-3.0 ucode is packaged separately */
2187 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2188 		uc->fp = firmware_get(ucname);
2189 }
2190 
2191 /*
2192  * Get the required firmware images if not already loaded.
2193  * Note that we hold firmware images so long as the device
2194  * is marked up in case we need to reload them on device init.
2195  * This is necessary because we re-init the device sometimes
2196  * from a context where we cannot read from the filesystem
2197  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2198  * XXX return 0 on success, 1 on error.
2199  *
2200  * NB: the order of get'ing and put'ing images here is
2201  * intentional to support handling firmware images bundled
2202  * by operating mode and/or all together in one file with
2203  * the boot firmware as "master".
2204  */
2205 static int
2206 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2207 {
2208 	const struct iwi_firmware_hdr *hdr;
2209 	const struct firmware *fp;
2210 
2211 	/* invalidate cached firmware on mode change */
2212 	if (sc->fw_mode != opmode)
2213 		iwi_put_firmware(sc);
2214 
2215 	switch (opmode) {
2216 	case IEEE80211_M_STA:
2217 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2218 		break;
2219 	case IEEE80211_M_IBSS:
2220 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2221 		break;
2222 	case IEEE80211_M_MONITOR:
2223 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2224 			  &sc->fw_uc, "iwi_ucode_monitor");
2225 		break;
2226 	default:
2227 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2228 		return EINVAL;
2229 	}
2230 	fp = sc->fw_fw.fp;
2231 	if (fp == NULL) {
2232 		device_printf(sc->sc_dev, "could not load firmware\n");
2233 		goto bad;
2234 	}
2235 	if (fp->version < 300) {
2236 		/*
2237 		 * Firmware prior to 3.0 was packaged as separate
2238 		 * boot, firmware, and ucode images.  Verify the
2239 		 * ucode image was read in, retrieve the boot image
2240 		 * if needed, and check version stamps for consistency.
2241 		 * The version stamps in the data are also checked
2242 		 * above; this is a bit paranoid but is a cheap
2243 		 * safeguard against mis-packaging.
2244 		 */
2245 		if (sc->fw_uc.fp == NULL) {
2246 			device_printf(sc->sc_dev, "could not load ucode\n");
2247 			goto bad;
2248 		}
2249 		if (sc->fw_boot.fp == NULL) {
2250 			sc->fw_boot.fp = firmware_get("iwi_boot");
2251 			if (sc->fw_boot.fp == NULL) {
2252 				device_printf(sc->sc_dev,
2253 					"could not load boot firmware\n");
2254 				goto bad;
2255 			}
2256 		}
2257 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2258 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2259 			device_printf(sc->sc_dev,
2260 			    "firmware version mismatch: "
2261 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2262 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2263 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2264 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2265 			);
2266 			goto bad;
2267 		}
2268 		/*
2269 		 * Check and setup each image.
2270 		 */
2271 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2272 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2273 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2274 			goto bad;
2275 	} else {
2276 		/*
2277 		 * Check and setup combined image.
2278 		 */
2279 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2280 			device_printf(sc->sc_dev, "image '%s' too small\n",
2281 			    fp->name);
2282 			goto bad;
2283 		}
2284 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2285 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2286 				+ le32toh(hdr->fsize)) {
2287 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2288 			    fp->name);
2289 			goto bad;
2290 		}
2291 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2292 		sc->fw_boot.size = le32toh(hdr->bsize);
2293 		sc->fw_boot.name = fp->name;
2294 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2295 		sc->fw_uc.size = le32toh(hdr->usize);
2296 		sc->fw_uc.name = fp->name;
2297 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2298 		sc->fw_fw.size = le32toh(hdr->fsize);
2299 		sc->fw_fw.name = fp->name;
2300 	}
2301 #if 0
2302 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2303 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2304 #endif
2305 
2306 	sc->fw_mode = opmode;
2307 	return 0;
2308 bad:
2309 	iwi_put_firmware(sc);
2310 	return 1;
2311 }
2312 
2313 static void
2314 iwi_put_fw(struct iwi_fw *fw)
2315 {
2316 	if (fw->fp != NULL) {
2317 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2318 		fw->fp = NULL;
2319 	}
2320 	fw->data = NULL;
2321 	fw->size = 0;
2322 	fw->name = NULL;
2323 }
2324 
2325 /*
2326  * Release any cached firmware images.
2327  */
2328 static void
2329 iwi_put_firmware(struct iwi_softc *sc)
2330 {
2331 	iwi_put_fw(&sc->fw_uc);
2332 	iwi_put_fw(&sc->fw_fw);
2333 	iwi_put_fw(&sc->fw_boot);
2334 }
2335 
2336 static int
2337 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2338 {
2339 	uint32_t tmp;
2340 	const uint16_t *w;
2341 	const char *uc = fw->data;
2342 	size_t size = fw->size;
2343 	int i, ntries, error;
2344 
2345 	IWI_LOCK_ASSERT(sc);
2346 	error = 0;
2347 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2348 	    IWI_RST_STOP_MASTER);
2349 	for (ntries = 0; ntries < 5; ntries++) {
2350 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2351 			break;
2352 		DELAY(10);
2353 	}
2354 	if (ntries == 5) {
2355 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2356 		error = EIO;
2357 		goto fail;
2358 	}
2359 
2360 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2361 	DELAY(5000);
2362 
2363 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2364 	tmp &= ~IWI_RST_PRINCETON_RESET;
2365 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2366 
2367 	DELAY(5000);
2368 	MEM_WRITE_4(sc, 0x3000e0, 0);
2369 	DELAY(1000);
2370 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2371 	DELAY(1000);
2372 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2373 	DELAY(1000);
2374 	MEM_WRITE_1(sc, 0x200000, 0x00);
2375 	MEM_WRITE_1(sc, 0x200000, 0x40);
2376 	DELAY(1000);
2377 
2378 	/* write microcode into adapter memory */
2379 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2380 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2381 
2382 	MEM_WRITE_1(sc, 0x200000, 0x00);
2383 	MEM_WRITE_1(sc, 0x200000, 0x80);
2384 
2385 	/* wait until we get an answer */
2386 	for (ntries = 0; ntries < 100; ntries++) {
2387 		if (MEM_READ_1(sc, 0x200000) & 1)
2388 			break;
2389 		DELAY(100);
2390 	}
2391 	if (ntries == 100) {
2392 		device_printf(sc->sc_dev,
2393 		    "timeout waiting for ucode to initialize\n");
2394 		error = EIO;
2395 		goto fail;
2396 	}
2397 
2398 	/* read the answer or the firmware will not initialize properly */
2399 	for (i = 0; i < 7; i++)
2400 		MEM_READ_4(sc, 0x200004);
2401 
2402 	MEM_WRITE_1(sc, 0x200000, 0x00);
2403 
2404 fail:
2405 	return error;
2406 }
2407 
2408 /* macro to handle unaligned little endian data in firmware image */
2409 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2410 
2411 static int
2412 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2413 {
2414 	u_char *p, *end;
2415 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2416 	int ntries, error;
2417 
2418 	IWI_LOCK_ASSERT(sc);
2419 
2420 	/* copy firmware image to DMA memory */
2421 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2422 
2423 	/* make sure the adapter will get up-to-date values */
2424 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2425 
2426 	/* tell the adapter where the command blocks are stored */
2427 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2428 
2429 	/*
2430 	 * Store command blocks into adapter's internal memory using register
2431 	 * indirections. The adapter will read the firmware image through DMA
2432 	 * using information stored in command blocks.
2433 	 */
2434 	src = sc->fw_physaddr;
2435 	p = sc->fw_virtaddr;
2436 	end = p + fw->size;
2437 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2438 
2439 	while (p < end) {
2440 		dst = GETLE32(p); p += 4; src += 4;
2441 		len = GETLE32(p); p += 4; src += 4;
2442 		p += len;
2443 
2444 		while (len > 0) {
2445 			mlen = min(len, IWI_CB_MAXDATALEN);
2446 
2447 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2448 			sum = ctl ^ src ^ dst;
2449 
2450 			/* write a command block */
2451 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2452 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2453 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2454 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2455 
2456 			src += mlen;
2457 			dst += mlen;
2458 			len -= mlen;
2459 		}
2460 	}
2461 
2462 	/* write a fictive final command block (sentinel) */
2463 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2464 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2465 
2466 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2467 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2468 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2469 
2470 	/* tell the adapter to start processing command blocks */
2471 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2472 
2473 	/* wait until the adapter reaches the sentinel */
2474 	for (ntries = 0; ntries < 400; ntries++) {
2475 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2476 			break;
2477 		DELAY(100);
2478 	}
2479 	/* sync dma, just in case */
2480 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2481 	if (ntries == 400) {
2482 		device_printf(sc->sc_dev,
2483 		    "timeout processing command blocks for %s firmware\n",
2484 		    fw->name);
2485 		return EIO;
2486 	}
2487 
2488 	/* we're done with command blocks processing */
2489 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2490 
2491 	/* allow interrupts so we know when the firmware is ready */
2492 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2493 
2494 	/* tell the adapter to initialize the firmware */
2495 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2496 
2497 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2498 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2499 
2500 	/* wait at most one second for firmware initialization to complete */
2501 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2502 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2503 		    "initialization to complete\n", fw->name);
2504 	}
2505 
2506 	return error;
2507 }
2508 
2509 static int
2510 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2511 {
2512 	uint32_t data;
2513 
2514 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2515 		/* XXX set more fine-grained operation */
2516 		data = htole32(IWI_POWER_MODE_MAX);
2517 	} else
2518 		data = htole32(IWI_POWER_MODE_CAM);
2519 
2520 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2521 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2522 }
2523 
2524 static int
2525 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2526 {
2527 	struct iwi_wep_key wepkey;
2528 	struct ieee80211_key *wk;
2529 	int error, i;
2530 
2531 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2532 		wk = &vap->iv_nw_keys[i];
2533 
2534 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2535 		wepkey.idx = i;
2536 		wepkey.len = wk->wk_keylen;
2537 		memset(wepkey.key, 0, sizeof wepkey.key);
2538 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2539 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2540 		    wepkey.len));
2541 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2542 		    sizeof wepkey);
2543 		if (error != 0)
2544 			return error;
2545 	}
2546 	return 0;
2547 }
2548 
2549 static int
2550 iwi_set_rateset(struct iwi_softc *sc, const struct ieee80211_rateset *net_rs,
2551     int mode, int type)
2552 {
2553 	struct iwi_rateset rs;
2554 
2555 	memset(&rs, 0, sizeof(rs));
2556 	rs.mode = mode;
2557 	rs.type = type;
2558 	rs.nrates = net_rs->rs_nrates;
2559 	if (rs.nrates > nitems(rs.rates)) {
2560 		DPRINTF(("Truncating negotiated rate set from %u\n",
2561 		    rs.nrates));
2562 		rs.nrates = nitems(rs.rates);
2563 	}
2564 	memcpy(rs.rates, net_rs->rs_rates, rs.nrates);
2565 	DPRINTF(("Setting .11%c%s %s rates (%u)\n",
2566 	    mode == IWI_MODE_11A ? 'a' : 'b',
2567 	    mode == IWI_MODE_11G ? "g" : "",
2568 	    type == IWI_RATESET_TYPE_SUPPORTED ? "supported" : "negotiated",
2569 	    rs.nrates));
2570 
2571 	return (iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof(rs)));
2572 }
2573 
2574 static int
2575 iwi_config(struct iwi_softc *sc)
2576 {
2577 	struct ieee80211com *ic = &sc->sc_ic;
2578 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2579 	struct iwi_configuration config;
2580 	struct iwi_txpower power;
2581 	uint8_t *macaddr;
2582 	uint32_t data;
2583 	int error, i;
2584 
2585 	IWI_LOCK_ASSERT(sc);
2586 
2587 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
2588 	DPRINTF(("Setting MAC address to %6D\n", macaddr, ":"));
2589 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, macaddr,
2590 	    IEEE80211_ADDR_LEN);
2591 	if (error != 0)
2592 		return error;
2593 
2594 	memset(&config, 0, sizeof config);
2595 	config.bluetooth_coexistence = sc->bluetooth;
2596 	config.silence_threshold = 0x1e;
2597 	config.antenna = sc->antenna;
2598 	config.multicast_enabled = 1;
2599 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2600 	config.disable_unicast_decryption = 1;
2601 	config.disable_multicast_decryption = 1;
2602 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2603 		config.allow_invalid_frames = 1;
2604 		config.allow_beacon_and_probe_resp = 1;
2605 		config.allow_mgt = 1;
2606 	}
2607 	DPRINTF(("Configuring adapter\n"));
2608 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2609 	if (error != 0)
2610 		return error;
2611 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2612 		power.mode = IWI_MODE_11B;
2613 		power.nchan = 11;
2614 		for (i = 0; i < 11; i++) {
2615 			power.chan[i].chan = i + 1;
2616 			power.chan[i].power = IWI_TXPOWER_MAX;
2617 		}
2618 		DPRINTF(("Setting .11b channels tx power\n"));
2619 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2620 		if (error != 0)
2621 			return error;
2622 
2623 		power.mode = IWI_MODE_11G;
2624 		DPRINTF(("Setting .11g channels tx power\n"));
2625 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2626 		if (error != 0)
2627 			return error;
2628 	}
2629 
2630 	error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11G],
2631 	    IWI_MODE_11G, IWI_RATESET_TYPE_SUPPORTED);
2632 	if (error != 0)
2633 		return error;
2634 
2635 	error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11A],
2636 	    IWI_MODE_11A, IWI_RATESET_TYPE_SUPPORTED);
2637 	if (error != 0)
2638 		return error;
2639 
2640 	data = htole32(arc4random());
2641 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2642 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2643 	if (error != 0)
2644 		return error;
2645 
2646 	/* enable adapter */
2647 	DPRINTF(("Enabling adapter\n"));
2648 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2649 }
2650 
2651 static __inline void
2652 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2653 {
2654 	uint8_t *st = &scan->scan_type[ix / 2];
2655 	if (ix % 2)
2656 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2657 	else
2658 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2659 }
2660 
2661 static int
2662 scan_type(const struct ieee80211_scan_state *ss,
2663 	const struct ieee80211_channel *chan)
2664 {
2665 	/* We can only set one essid for a directed scan */
2666 	if (ss->ss_nssid != 0)
2667 		return IWI_SCAN_TYPE_BDIRECTED;
2668 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2669 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2670 		return IWI_SCAN_TYPE_BROADCAST;
2671 	return IWI_SCAN_TYPE_PASSIVE;
2672 }
2673 
2674 static __inline int
2675 scan_band(const struct ieee80211_channel *c)
2676 {
2677 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2678 }
2679 
2680 static void
2681 iwi_monitor_scan(void *arg, int npending)
2682 {
2683 	struct iwi_softc *sc = arg;
2684 	IWI_LOCK_DECL;
2685 
2686 	IWI_LOCK(sc);
2687 	(void) iwi_scanchan(sc, 2000, 0);
2688 	IWI_UNLOCK(sc);
2689 }
2690 
2691 /*
2692  * Start a scan on the current channel or all channels.
2693  */
2694 static int
2695 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2696 {
2697 	struct ieee80211com *ic = &sc->sc_ic;
2698 	struct ieee80211_channel *chan;
2699 	struct ieee80211_scan_state *ss;
2700 	struct iwi_scan_ext scan;
2701 	int error = 0;
2702 
2703 	IWI_LOCK_ASSERT(sc);
2704 	if (sc->fw_state == IWI_FW_SCANNING) {
2705 		/*
2706 		 * This should not happen as we only trigger scan_next after
2707 		 * completion
2708 		 */
2709 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2710 		return (EBUSY);
2711 	}
2712 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2713 
2714 	ss = ic->ic_scan;
2715 
2716 	memset(&scan, 0, sizeof scan);
2717 	scan.full_scan_index = htole32(++sc->sc_scangen);
2718 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2719 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2720 		/*
2721 		 * Use very short dwell times for when we send probe request
2722 		 * frames.  Without this bg scans hang.  Ideally this should
2723 		 * be handled with early-termination as done by net80211 but
2724 		 * that's not feasible (aborting a scan is problematic).
2725 		 */
2726 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2727 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2728 	} else {
2729 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2730 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2731 	}
2732 
2733 	/* We can only set one essid for a directed scan */
2734 	if (ss->ss_nssid != 0) {
2735 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2736 		    ss->ss_ssid[0].len);
2737 		if (error)
2738 			return (error);
2739 	}
2740 
2741 	if (allchan) {
2742 		int i, next, band, b, bstart;
2743 		/*
2744 		 * Convert scan list to run-length encoded channel list
2745 		 * the firmware requires (preserving the order setup by
2746 		 * net80211).  The first entry in each run specifies the
2747 		 * band and the count of items in the run.
2748 		 */
2749 		next = 0;		/* next open slot */
2750 		bstart = 0;		/* NB: not needed, silence compiler */
2751 		band = -1;		/* NB: impossible value */
2752 		KASSERT(ss->ss_last > 0, ("no channels"));
2753 		for (i = 0; i < ss->ss_last; i++) {
2754 			chan = ss->ss_chans[i];
2755 			b = scan_band(chan);
2756 			if (b != band) {
2757 				if (band != -1)
2758 					scan.channels[bstart] =
2759 					    (next - bstart) | band;
2760 				/* NB: this allocates a slot for the run-len */
2761 				band = b, bstart = next++;
2762 			}
2763 			if (next >= IWI_SCAN_CHANNELS) {
2764 				DPRINTF(("truncating scan list\n"));
2765 				break;
2766 			}
2767 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2768 			set_scan_type(&scan, next, scan_type(ss, chan));
2769 			next++;
2770 		}
2771 		scan.channels[bstart] = (next - bstart) | band;
2772 	} else {
2773 		/* Scan the current channel only */
2774 		chan = ic->ic_curchan;
2775 		scan.channels[0] = 1 | scan_band(chan);
2776 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2777 		set_scan_type(&scan, 1, scan_type(ss, chan));
2778 	}
2779 #ifdef IWI_DEBUG
2780 	if (iwi_debug > 0) {
2781 		static const char *scantype[8] =
2782 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2783 		int i;
2784 		printf("Scan request: index %u dwell %d/%d/%d\n"
2785 		    , le32toh(scan.full_scan_index)
2786 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2787 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2788 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2789 		);
2790 		i = 0;
2791 		do {
2792 			int run = scan.channels[i];
2793 			if (run == 0)
2794 				break;
2795 			printf("Scan %d %s channels:", run & 0x3f,
2796 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2797 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2798 				uint8_t type = scan.scan_type[i/2];
2799 				printf(" %u/%s", scan.channels[i],
2800 				    scantype[(i & 1 ? type : type>>4) & 7]);
2801 			}
2802 			printf("\n");
2803 		} while (i < IWI_SCAN_CHANNELS);
2804 	}
2805 #endif
2806 
2807 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2808 }
2809 
2810 static int
2811 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2812 {
2813 	struct iwi_sensitivity sens;
2814 
2815 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2816 
2817 	memset(&sens, 0, sizeof sens);
2818 	sens.rssi = htole16(rssi_dbm);
2819 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2820 }
2821 
2822 static int
2823 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2824 {
2825 	struct ieee80211com *ic = vap->iv_ic;
2826 	if_t ifp = vap->iv_ifp;
2827 	struct ieee80211_node *ni;
2828 	struct iwi_configuration config;
2829 	struct iwi_associate *assoc = &sc->assoc;
2830 	uint16_t capinfo;
2831 	uint32_t data;
2832 	int error, mode;
2833 
2834 	IWI_LOCK_ASSERT(sc);
2835 
2836 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2837 		DPRINTF(("Already associated\n"));
2838 		return (-1);
2839 	}
2840 
2841 	ni = ieee80211_ref_node(vap->iv_bss);
2842 
2843 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2844 	error = 0;
2845 	mode = 0;
2846 
2847 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2848 		mode = IWI_MODE_11A;
2849 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2850 		mode = IWI_MODE_11G;
2851 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2852 		mode = IWI_MODE_11B;
2853 
2854 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2855 		memset(&config, 0, sizeof config);
2856 		config.bluetooth_coexistence = sc->bluetooth;
2857 		config.antenna = sc->antenna;
2858 		config.multicast_enabled = 1;
2859 		if (mode == IWI_MODE_11G)
2860 			config.use_protection = 1;
2861 		config.answer_pbreq =
2862 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2863 		config.disable_unicast_decryption = 1;
2864 		config.disable_multicast_decryption = 1;
2865 		DPRINTF(("Configuring adapter\n"));
2866 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2867 		if (error != 0)
2868 			goto done;
2869 	}
2870 
2871 #ifdef IWI_DEBUG
2872 	if (iwi_debug > 0) {
2873 		printf("Setting ESSID to ");
2874 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2875 		printf("\n");
2876 	}
2877 #endif
2878 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2879 	if (error != 0)
2880 		goto done;
2881 
2882 	error = iwi_setpowermode(sc, vap);
2883 	if (error != 0)
2884 		goto done;
2885 
2886 	data = htole32(vap->iv_rtsthreshold);
2887 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2888 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2889 	if (error != 0)
2890 		goto done;
2891 
2892 	data = htole32(vap->iv_fragthreshold);
2893 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2894 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2895 	if (error != 0)
2896 		goto done;
2897 
2898 	/* the rate set has already been "negotiated" */
2899 	error = iwi_set_rateset(sc, &ni->ni_rates, mode,
2900 	    IWI_RATESET_TYPE_NEGOTIATED);
2901 	if (error != 0)
2902 		goto done;
2903 
2904 	memset(assoc, 0, sizeof *assoc);
2905 
2906 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2907 		/* NB: don't treat WME setup as failure */
2908 		if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0)
2909 			assoc->policy |= htole16(IWI_POLICY_WME);
2910 		/* XXX complain on failure? */
2911 	}
2912 
2913 	if (vap->iv_appie_wpa != NULL) {
2914 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2915 
2916 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2917 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2918 		if (error != 0)
2919 			goto done;
2920 	}
2921 
2922 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2923 	if (error != 0)
2924 		goto done;
2925 
2926 	assoc->mode = mode;
2927 	assoc->chan = ic->ic_curchan->ic_ieee;
2928 	/*
2929 	 * NB: do not arrange for shared key auth w/o privacy
2930 	 *     (i.e. a wep key); it causes a firmware error.
2931 	 */
2932 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2933 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2934 		assoc->auth = IWI_AUTH_SHARED;
2935 		/*
2936 		 * It's possible to have privacy marked but no default
2937 		 * key setup.  This typically is due to a user app bug
2938 		 * but if we blindly grab the key the firmware will
2939 		 * barf so avoid it for now.
2940 		 */
2941 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2942 			assoc->auth |= vap->iv_def_txkey << 4;
2943 
2944 		error = iwi_setwepkeys(sc, vap);
2945 		if (error != 0)
2946 			goto done;
2947 	}
2948 	if (vap->iv_flags & IEEE80211_F_WPA)
2949 		assoc->policy |= htole16(IWI_POLICY_WPA);
2950 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2951 		assoc->type = IWI_HC_IBSS_START;
2952 	else
2953 		assoc->type = IWI_HC_ASSOC;
2954 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2955 
2956 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2957 		capinfo = IEEE80211_CAPINFO_IBSS;
2958 	else
2959 		capinfo = IEEE80211_CAPINFO_ESS;
2960 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2961 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2962 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2963 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2964 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2965 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2966 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2967 	assoc->capinfo = htole16(capinfo);
2968 
2969 	assoc->lintval = htole16(ic->ic_lintval);
2970 	assoc->intval = htole16(ni->ni_intval);
2971 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2972 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2973 		IEEE80211_ADDR_COPY(assoc->dst, if_getbroadcastaddr(ifp));
2974 	else
2975 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2976 
2977 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2978 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2979 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2980 	    assoc->bssid, ":", assoc->dst, ":",
2981 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2982 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2983 	    le16toh(assoc->intval)));
2984 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2985 done:
2986 	ieee80211_free_node(ni);
2987 	if (error)
2988 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2989 
2990 	return (error);
2991 }
2992 
2993 static void
2994 iwi_disassoc(void *arg, int pending)
2995 {
2996 	struct iwi_softc *sc = arg;
2997 	IWI_LOCK_DECL;
2998 
2999 	IWI_LOCK(sc);
3000 	iwi_disassociate(sc, 0);
3001 	IWI_UNLOCK(sc);
3002 }
3003 
3004 static int
3005 iwi_disassociate(struct iwi_softc *sc, int quiet)
3006 {
3007 	struct iwi_associate *assoc = &sc->assoc;
3008 
3009 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
3010 		DPRINTF(("Not associated\n"));
3011 		return (-1);
3012 	}
3013 
3014 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
3015 
3016 	if (quiet)
3017 		assoc->type = IWI_HC_DISASSOC_QUIET;
3018 	else
3019 		assoc->type = IWI_HC_DISASSOC;
3020 
3021 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3022 	    assoc->bssid, ":", assoc->chan));
3023 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3024 }
3025 
3026 /*
3027  * release dma resources for the firmware
3028  */
3029 static void
3030 iwi_release_fw_dma(struct iwi_softc *sc)
3031 {
3032 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3033 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3034 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3035 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3036 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3037 		bus_dma_tag_destroy(sc->fw_dmat);
3038 
3039 	sc->fw_flags = 0;
3040 	sc->fw_dma_size = 0;
3041 	sc->fw_dmat = NULL;
3042 	sc->fw_map = NULL;
3043 	sc->fw_physaddr = 0;
3044 	sc->fw_virtaddr = NULL;
3045 }
3046 
3047 /*
3048  * allocate the dma descriptor for the firmware.
3049  * Return 0 on success, 1 on error.
3050  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3051  */
3052 static int
3053 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3054 {
3055 	if (sc->fw_dma_size >= size)
3056 		return 0;
3057 	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3058 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3059 	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3060 		device_printf(sc->sc_dev,
3061 		    "could not create firmware DMA tag\n");
3062 		goto error;
3063 	}
3064 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3065 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3066 	    &sc->fw_map) != 0) {
3067 		device_printf(sc->sc_dev,
3068 		    "could not allocate firmware DMA memory\n");
3069 		goto error;
3070 	}
3071 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3072 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3073 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3074 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3075 		goto error;
3076 	}
3077 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3078 	sc->fw_dma_size = size;
3079 	return 0;
3080 
3081 error:
3082 	iwi_release_fw_dma(sc);
3083 	return 1;
3084 }
3085 
3086 static void
3087 iwi_init_locked(struct iwi_softc *sc)
3088 {
3089 	struct iwi_rx_data *data;
3090 	int i;
3091 
3092 	IWI_LOCK_ASSERT(sc);
3093 
3094 	if (sc->fw_state == IWI_FW_LOADING) {
3095 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3096 		return;		/* XXX: condvar? */
3097 	}
3098 
3099 	iwi_stop_locked(sc);
3100 
3101 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3102 
3103 	if (iwi_reset(sc) != 0) {
3104 		device_printf(sc->sc_dev, "could not reset adapter\n");
3105 		goto fail;
3106 	}
3107 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3108 		device_printf(sc->sc_dev,
3109 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3110 		goto fail;
3111 	}
3112 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3113 		device_printf(sc->sc_dev,
3114 		    "could not load microcode %s\n", sc->fw_uc.name);
3115 		goto fail;
3116 	}
3117 
3118 	iwi_stop_master(sc);
3119 
3120 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3121 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3122 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3123 
3124 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3125 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3126 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3127 
3128 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3129 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3130 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3131 
3132 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3133 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3134 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3135 
3136 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3137 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3138 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3139 
3140 	for (i = 0; i < sc->rxq.count; i++) {
3141 		data = &sc->rxq.data[i];
3142 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3143 	}
3144 
3145 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3146 
3147 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3148 		device_printf(sc->sc_dev,
3149 		    "could not load main firmware %s\n", sc->fw_fw.name);
3150 		goto fail;
3151 	}
3152 	sc->flags |= IWI_FLAG_FW_INITED;
3153 
3154 	IWI_STATE_END(sc, IWI_FW_LOADING);
3155 
3156 	if (iwi_config(sc) != 0) {
3157 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3158 		goto fail2;
3159 	}
3160 
3161 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
3162 	sc->sc_running = 1;
3163 	return;
3164 fail:
3165 	IWI_STATE_END(sc, IWI_FW_LOADING);
3166 fail2:
3167 	iwi_stop_locked(sc);
3168 }
3169 
3170 static void
3171 iwi_init(void *priv)
3172 {
3173 	struct iwi_softc *sc = priv;
3174 	struct ieee80211com *ic = &sc->sc_ic;
3175 	IWI_LOCK_DECL;
3176 
3177 	IWI_LOCK(sc);
3178 	iwi_init_locked(sc);
3179 	IWI_UNLOCK(sc);
3180 
3181 	if (sc->sc_running)
3182 		ieee80211_start_all(ic);
3183 }
3184 
3185 static void
3186 iwi_stop_locked(void *priv)
3187 {
3188 	struct iwi_softc *sc = priv;
3189 
3190 	IWI_LOCK_ASSERT(sc);
3191 
3192 	sc->sc_running = 0;
3193 
3194 	if (sc->sc_softled) {
3195 		callout_stop(&sc->sc_ledtimer);
3196 		sc->sc_blinking = 0;
3197 	}
3198 	callout_stop(&sc->sc_wdtimer);
3199 	callout_stop(&sc->sc_rftimer);
3200 
3201 	iwi_stop_master(sc);
3202 
3203 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3204 
3205 	/* reset rings */
3206 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3207 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3208 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3209 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3210 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3211 	iwi_reset_rx_ring(sc, &sc->rxq);
3212 
3213 	sc->sc_tx_timer = 0;
3214 	sc->sc_state_timer = 0;
3215 	sc->sc_busy_timer = 0;
3216 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3217 	sc->fw_state = IWI_FW_IDLE;
3218 	wakeup(sc);
3219 }
3220 
3221 static void
3222 iwi_stop(struct iwi_softc *sc)
3223 {
3224 	IWI_LOCK_DECL;
3225 
3226 	IWI_LOCK(sc);
3227 	iwi_stop_locked(sc);
3228 	IWI_UNLOCK(sc);
3229 }
3230 
3231 static void
3232 iwi_restart(void *arg, int npending)
3233 {
3234 	struct iwi_softc *sc = arg;
3235 
3236 	iwi_init(sc);
3237 }
3238 
3239 /*
3240  * Return whether or not the radio is enabled in hardware
3241  * (i.e. the rfkill switch is "off").
3242  */
3243 static int
3244 iwi_getrfkill(struct iwi_softc *sc)
3245 {
3246 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3247 }
3248 
3249 static void
3250 iwi_radio_on(void *arg, int pending)
3251 {
3252 	struct iwi_softc *sc = arg;
3253 	struct ieee80211com *ic = &sc->sc_ic;
3254 
3255 	device_printf(sc->sc_dev, "radio turned on\n");
3256 
3257 	iwi_init(sc);
3258 	ieee80211_notify_radio(ic, 1);
3259 }
3260 
3261 static void
3262 iwi_rfkill_poll(void *arg)
3263 {
3264 	struct iwi_softc *sc = arg;
3265 
3266 	IWI_LOCK_ASSERT(sc);
3267 
3268 	/*
3269 	 * Check for a change in rfkill state.  We get an
3270 	 * interrupt when a radio is disabled but not when
3271 	 * it is enabled so we must poll for the latter.
3272 	 */
3273 	if (!iwi_getrfkill(sc)) {
3274 		ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask);
3275 		return;
3276 	}
3277 	callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
3278 }
3279 
3280 static void
3281 iwi_radio_off(void *arg, int pending)
3282 {
3283 	struct iwi_softc *sc = arg;
3284 	struct ieee80211com *ic = &sc->sc_ic;
3285 	IWI_LOCK_DECL;
3286 
3287 	device_printf(sc->sc_dev, "radio turned off\n");
3288 
3289 	ieee80211_notify_radio(ic, 0);
3290 
3291 	IWI_LOCK(sc);
3292 	iwi_stop_locked(sc);
3293 	iwi_rfkill_poll(sc);
3294 	IWI_UNLOCK(sc);
3295 }
3296 
3297 static int
3298 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3299 {
3300 	struct iwi_softc *sc = arg1;
3301 	uint32_t size, buf[128];
3302 
3303 	memset(buf, 0, sizeof buf);
3304 
3305 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3306 		return SYSCTL_OUT(req, buf, sizeof buf);
3307 
3308 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3309 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3310 
3311 	return SYSCTL_OUT(req, buf, size);
3312 }
3313 
3314 static int
3315 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3316 {
3317 	struct iwi_softc *sc = arg1;
3318 	int val = !iwi_getrfkill(sc);
3319 
3320 	return SYSCTL_OUT(req, &val, sizeof val);
3321 }
3322 
3323 /*
3324  * Add sysctl knobs.
3325  */
3326 static void
3327 iwi_sysctlattach(struct iwi_softc *sc)
3328 {
3329 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3330 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3331 
3332 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3333 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
3334 	    iwi_sysctl_radio, "I",
3335 	    "radio transmitter switch state (0=off, 1=on)");
3336 
3337 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3338 	    CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
3339 	    iwi_sysctl_stats, "S", "statistics");
3340 
3341 	sc->bluetooth = 0;
3342 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3343 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3344 
3345 	sc->antenna = IWI_ANTENNA_AUTO;
3346 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3347 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3348 }
3349 
3350 /*
3351  * LED support.
3352  *
3353  * Different cards have different capabilities.  Some have three
3354  * led's while others have only one.  The linux ipw driver defines
3355  * led's for link state (associated or not), band (11a, 11g, 11b),
3356  * and for link activity.  We use one led and vary the blink rate
3357  * according to the tx/rx traffic a la the ath driver.
3358  */
3359 
3360 static __inline uint32_t
3361 iwi_toggle_event(uint32_t r)
3362 {
3363 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3364 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3365 }
3366 
3367 static uint32_t
3368 iwi_read_event(struct iwi_softc *sc)
3369 {
3370 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3371 }
3372 
3373 static void
3374 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3375 {
3376 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3377 }
3378 
3379 static void
3380 iwi_led_done(void *arg)
3381 {
3382 	struct iwi_softc *sc = arg;
3383 
3384 	sc->sc_blinking = 0;
3385 }
3386 
3387 /*
3388  * Turn the activity LED off: flip the pin and then set a timer so no
3389  * update will happen for the specified duration.
3390  */
3391 static void
3392 iwi_led_off(void *arg)
3393 {
3394 	struct iwi_softc *sc = arg;
3395 	uint32_t v;
3396 
3397 	v = iwi_read_event(sc);
3398 	v &= ~sc->sc_ledpin;
3399 	iwi_write_event(sc, iwi_toggle_event(v));
3400 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3401 }
3402 
3403 /*
3404  * Blink the LED according to the specified on/off times.
3405  */
3406 static void
3407 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3408 {
3409 	uint32_t v;
3410 
3411 	v = iwi_read_event(sc);
3412 	v |= sc->sc_ledpin;
3413 	iwi_write_event(sc, iwi_toggle_event(v));
3414 	sc->sc_blinking = 1;
3415 	sc->sc_ledoff = off;
3416 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3417 }
3418 
3419 static void
3420 iwi_led_event(struct iwi_softc *sc, int event)
3421 {
3422 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3423 	static const struct {
3424 		u_int		rate;		/* tx/rx iwi rate */
3425 		u_int16_t	timeOn;		/* LED on time (ms) */
3426 		u_int16_t	timeOff;	/* LED off time (ms) */
3427 	} blinkrates[] = {
3428 		{ IWI_RATE_OFDM54, 40,  10 },
3429 		{ IWI_RATE_OFDM48, 44,  11 },
3430 		{ IWI_RATE_OFDM36, 50,  13 },
3431 		{ IWI_RATE_OFDM24, 57,  14 },
3432 		{ IWI_RATE_OFDM18, 67,  16 },
3433 		{ IWI_RATE_OFDM12, 80,  20 },
3434 		{ IWI_RATE_DS11,  100,  25 },
3435 		{ IWI_RATE_OFDM9, 133,  34 },
3436 		{ IWI_RATE_OFDM6, 160,  40 },
3437 		{ IWI_RATE_DS5,   200,  50 },
3438 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3439 		{ IWI_RATE_DS2,   267,  66 },
3440 		{ IWI_RATE_DS1,   400, 100 },
3441 		{            0,   500, 130 },	/* unknown rate/polling */
3442 	};
3443 	uint32_t txrate;
3444 	int j = 0;			/* XXX silence compiler */
3445 
3446 	sc->sc_ledevent = ticks;	/* time of last event */
3447 	if (sc->sc_blinking)		/* don't interrupt active blink */
3448 		return;
3449 	switch (event) {
3450 	case IWI_LED_POLL:
3451 		j = nitems(blinkrates)-1;
3452 		break;
3453 	case IWI_LED_TX:
3454 		/* read current transmission rate from adapter */
3455 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3456 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3457 			for (j = 0; j < nitems(blinkrates)-1; j++)
3458 				if (blinkrates[j].rate == txrate)
3459 					break;
3460 			sc->sc_txrix = j;
3461 		} else
3462 			j = sc->sc_txrix;
3463 		break;
3464 	case IWI_LED_RX:
3465 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3466 			for (j = 0; j < nitems(blinkrates)-1; j++)
3467 				if (blinkrates[j].rate == sc->sc_rxrate)
3468 					break;
3469 			sc->sc_rxrix = j;
3470 		} else
3471 			j = sc->sc_rxrix;
3472 		break;
3473 	}
3474 	/* XXX beware of overflow */
3475 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3476 		(blinkrates[j].timeOff * hz) / 1000);
3477 }
3478 
3479 static int
3480 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3481 {
3482 	struct iwi_softc *sc = arg1;
3483 	int softled = sc->sc_softled;
3484 	int error;
3485 
3486 	error = sysctl_handle_int(oidp, &softled, 0, req);
3487 	if (error || !req->newptr)
3488 		return error;
3489 	softled = (softled != 0);
3490 	if (softled != sc->sc_softled) {
3491 		if (softled) {
3492 			uint32_t v = iwi_read_event(sc);
3493 			v &= ~sc->sc_ledpin;
3494 			iwi_write_event(sc, iwi_toggle_event(v));
3495 		}
3496 		sc->sc_softled = softled;
3497 	}
3498 	return 0;
3499 }
3500 
3501 static void
3502 iwi_ledattach(struct iwi_softc *sc)
3503 {
3504 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3505 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3506 
3507 	sc->sc_blinking = 0;
3508 	sc->sc_ledstate = 1;
3509 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3510 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3511 
3512 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3513 	    "softled", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
3514 	    iwi_sysctl_softled, "I", "enable/disable software LED support");
3515 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3516 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3517 		"pin setting to turn activity LED on");
3518 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3519 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3520 		"idle time for inactivity LED (ticks)");
3521 	/* XXX for debugging */
3522 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3523 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3524 		"NIC type from EEPROM");
3525 
3526 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3527 	sc->sc_softled = 1;
3528 
3529 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3530 	if (sc->sc_nictype == 1) {
3531 		/*
3532 		 * NB: led's are reversed.
3533 		 */
3534 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3535 	}
3536 }
3537 
3538 static void
3539 iwi_scan_start(struct ieee80211com *ic)
3540 {
3541 	/* ignore */
3542 }
3543 
3544 static void
3545 iwi_set_channel(struct ieee80211com *ic)
3546 {
3547 	struct iwi_softc *sc = ic->ic_softc;
3548 
3549 	if (sc->fw_state == IWI_FW_IDLE)
3550 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3551 }
3552 
3553 static void
3554 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3555 {
3556 	struct ieee80211vap *vap = ss->ss_vap;
3557 	struct iwi_softc *sc = vap->iv_ic->ic_softc;
3558 	IWI_LOCK_DECL;
3559 
3560 	IWI_LOCK(sc);
3561 	if (iwi_scanchan(sc, maxdwell, 0))
3562 		ieee80211_cancel_scan(vap);
3563 	IWI_UNLOCK(sc);
3564 }
3565 
3566 static void
3567 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3568 {
3569 	/* NB: don't try to abort scan; wait for firmware to finish */
3570 }
3571 
3572 static void
3573 iwi_scan_end(struct ieee80211com *ic)
3574 {
3575 	struct iwi_softc *sc = ic->ic_softc;
3576 	IWI_LOCK_DECL;
3577 
3578 	IWI_LOCK(sc);
3579 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3580 	/* NB: make sure we're still scanning */
3581 	if (sc->fw_state == IWI_FW_SCANNING)
3582 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3583 	IWI_UNLOCK(sc);
3584 }
3585 
3586 static void
3587 iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz)
3588 {
3589 	struct iwi_softc *sc = ic->ic_softc;
3590 	device_t dev = sc->sc_dev;
3591 
3592 	memset(bands, 0, bands_sz);
3593 	setbit(bands, IEEE80211_MODE_11B);
3594 	setbit(bands, IEEE80211_MODE_11G);
3595 	if (pci_get_device(dev) >= 0x4223)
3596 		setbit(bands, IEEE80211_MODE_11A);
3597 }
3598 
3599 static void
3600 iwi_getradiocaps(struct ieee80211com *ic,
3601     int maxchans, int *nchans, struct ieee80211_channel chans[])
3602 {
3603 	uint8_t bands[IEEE80211_MODE_BYTES];
3604 
3605 	iwi_collect_bands(ic, bands, sizeof(bands));
3606 	*nchans = 0;
3607 	if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G))
3608 		ieee80211_add_channels_default_2ghz(chans, maxchans, nchans,
3609 		    bands, 0);
3610 	if (isset(bands, IEEE80211_MODE_11A)) {
3611 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3612 		    def_chan_5ghz_band1, nitems(def_chan_5ghz_band1),
3613 		    bands, 0);
3614 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3615 		    def_chan_5ghz_band2, nitems(def_chan_5ghz_band2),
3616 		    bands, 0);
3617 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3618 		    def_chan_5ghz_band3, nitems(def_chan_5ghz_band3),
3619 		    bands, 0);
3620 	}
3621 }
3622