1 /*- 2 * Copyright (c) 2004, 2005 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /*- 34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/namei.h> 54 #include <sys/linker.h> 55 #include <sys/firmware.h> 56 #include <sys/taskqueue.h> 57 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 #include <dev/pci/pcireg.h> 63 #include <dev/pci/pcivar.h> 64 65 #include <net/bpf.h> 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_arp.h> 69 #include <net/ethernet.h> 70 #include <net/if_dl.h> 71 #include <net/if_media.h> 72 #include <net/if_types.h> 73 74 #include <net80211/ieee80211_var.h> 75 #include <net80211/ieee80211_radiotap.h> 76 #include <net80211/ieee80211_input.h> 77 #include <net80211/ieee80211_regdomain.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip.h> 83 #include <netinet/if_ether.h> 84 85 #include <dev/iwi/if_iwireg.h> 86 #include <dev/iwi/if_iwivar.h> 87 #include <dev/iwi/if_iwi_ioctl.h> 88 89 #define IWI_DEBUG 90 #ifdef IWI_DEBUG 91 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 92 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 93 int iwi_debug = 0; 94 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 95 96 static const char *iwi_fw_states[] = { 97 "IDLE", /* IWI_FW_IDLE */ 98 "LOADING", /* IWI_FW_LOADING */ 99 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 100 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 101 "SCANNING", /* IWI_FW_SCANNING */ 102 }; 103 #else 104 #define DPRINTF(x) 105 #define DPRINTFN(n, x) 106 #endif 107 108 MODULE_DEPEND(iwi, pci, 1, 1, 1); 109 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 110 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 111 112 enum { 113 IWI_LED_TX, 114 IWI_LED_RX, 115 IWI_LED_POLL, 116 }; 117 118 struct iwi_ident { 119 uint16_t vendor; 120 uint16_t device; 121 const char *name; 122 }; 123 124 static const struct iwi_ident iwi_ident_table[] = { 125 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 126 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 127 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 128 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 129 130 { 0, 0, NULL } 131 }; 132 133 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 134 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 135 const uint8_t [IEEE80211_ADDR_LEN], 136 const uint8_t [IEEE80211_ADDR_LEN]); 137 static void iwi_vap_delete(struct ieee80211vap *); 138 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 139 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 140 int); 141 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 142 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 143 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 144 int, bus_addr_t, bus_addr_t); 145 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 146 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 147 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 148 int); 149 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 150 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 151 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 152 const uint8_t [IEEE80211_ADDR_LEN]); 153 static void iwi_node_free(struct ieee80211_node *); 154 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 155 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 156 static void iwi_wme_init(struct iwi_softc *); 157 static int iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *); 158 static void iwi_update_wme(void *, int); 159 static int iwi_wme_update(struct ieee80211com *); 160 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 161 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 162 struct iwi_frame *); 163 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 164 static void iwi_rx_intr(struct iwi_softc *); 165 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 166 static void iwi_intr(void *); 167 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 168 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 169 static int iwi_tx_start(struct ifnet *, struct mbuf *, 170 struct ieee80211_node *, int); 171 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 172 const struct ieee80211_bpf_params *); 173 static void iwi_start_locked(struct ifnet *); 174 static void iwi_start(struct ifnet *); 175 static void iwi_watchdog(void *); 176 static int iwi_ioctl(struct ifnet *, u_long, caddr_t); 177 static void iwi_stop_master(struct iwi_softc *); 178 static int iwi_reset(struct iwi_softc *); 179 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 180 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 181 static void iwi_release_fw_dma(struct iwi_softc *sc); 182 static int iwi_config(struct iwi_softc *); 183 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 184 static void iwi_put_firmware(struct iwi_softc *); 185 static void iwi_monitor_scan(void *, int); 186 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 187 static void iwi_scan_start(struct ieee80211com *); 188 static void iwi_scan_end(struct ieee80211com *); 189 static void iwi_set_channel(struct ieee80211com *); 190 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 191 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 192 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 193 static void iwi_disassoc(void *, int); 194 static int iwi_disassociate(struct iwi_softc *, int quiet); 195 static void iwi_init_locked(struct iwi_softc *); 196 static void iwi_init(void *); 197 static int iwi_init_fw_dma(struct iwi_softc *, int); 198 static void iwi_stop_locked(void *); 199 static void iwi_stop(struct iwi_softc *); 200 static void iwi_restart(void *, int); 201 static int iwi_getrfkill(struct iwi_softc *); 202 static void iwi_radio_on(void *, int); 203 static void iwi_radio_off(void *, int); 204 static void iwi_sysctlattach(struct iwi_softc *); 205 static void iwi_led_event(struct iwi_softc *, int); 206 static void iwi_ledattach(struct iwi_softc *); 207 208 static int iwi_probe(device_t); 209 static int iwi_attach(device_t); 210 static int iwi_detach(device_t); 211 static int iwi_shutdown(device_t); 212 static int iwi_suspend(device_t); 213 static int iwi_resume(device_t); 214 215 static device_method_t iwi_methods[] = { 216 /* Device interface */ 217 DEVMETHOD(device_probe, iwi_probe), 218 DEVMETHOD(device_attach, iwi_attach), 219 DEVMETHOD(device_detach, iwi_detach), 220 DEVMETHOD(device_shutdown, iwi_shutdown), 221 DEVMETHOD(device_suspend, iwi_suspend), 222 DEVMETHOD(device_resume, iwi_resume), 223 224 DEVMETHOD_END 225 }; 226 227 static driver_t iwi_driver = { 228 "iwi", 229 iwi_methods, 230 sizeof (struct iwi_softc) 231 }; 232 233 static devclass_t iwi_devclass; 234 235 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL); 236 237 MODULE_VERSION(iwi, 1); 238 239 static __inline uint8_t 240 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 241 { 242 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 243 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 244 } 245 246 static __inline uint32_t 247 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 248 { 249 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 250 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 251 } 252 253 static int 254 iwi_probe(device_t dev) 255 { 256 const struct iwi_ident *ident; 257 258 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 259 if (pci_get_vendor(dev) == ident->vendor && 260 pci_get_device(dev) == ident->device) { 261 device_set_desc(dev, ident->name); 262 return (BUS_PROBE_DEFAULT); 263 } 264 } 265 return ENXIO; 266 } 267 268 static int 269 iwi_attach(device_t dev) 270 { 271 struct iwi_softc *sc = device_get_softc(dev); 272 struct ifnet *ifp; 273 struct ieee80211com *ic; 274 uint16_t val; 275 int i, error; 276 uint8_t bands; 277 uint8_t macaddr[IEEE80211_ADDR_LEN]; 278 279 sc->sc_dev = dev; 280 281 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 282 if (ifp == NULL) { 283 device_printf(dev, "can not if_alloc()\n"); 284 return ENXIO; 285 } 286 ic = ifp->if_l2com; 287 288 IWI_LOCK_INIT(sc); 289 290 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 291 292 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 293 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 294 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 295 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); 296 TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme, sc); 297 TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc); 298 299 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 300 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 301 302 pci_write_config(dev, 0x41, 0, 1); 303 304 /* enable bus-mastering */ 305 pci_enable_busmaster(dev); 306 307 i = PCIR_BAR(0); 308 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 309 if (sc->mem == NULL) { 310 device_printf(dev, "could not allocate memory resource\n"); 311 goto fail; 312 } 313 314 sc->sc_st = rman_get_bustag(sc->mem); 315 sc->sc_sh = rman_get_bushandle(sc->mem); 316 317 i = 0; 318 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 319 RF_ACTIVE | RF_SHAREABLE); 320 if (sc->irq == NULL) { 321 device_printf(dev, "could not allocate interrupt resource\n"); 322 goto fail; 323 } 324 325 if (iwi_reset(sc) != 0) { 326 device_printf(dev, "could not reset adapter\n"); 327 goto fail; 328 } 329 330 /* 331 * Allocate rings. 332 */ 333 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 334 device_printf(dev, "could not allocate Cmd ring\n"); 335 goto fail; 336 } 337 338 for (i = 0; i < 4; i++) { 339 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 340 IWI_CSR_TX1_RIDX + i * 4, 341 IWI_CSR_TX1_WIDX + i * 4); 342 if (error != 0) { 343 device_printf(dev, "could not allocate Tx ring %d\n", 344 i+i); 345 goto fail; 346 } 347 } 348 349 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 350 device_printf(dev, "could not allocate Rx ring\n"); 351 goto fail; 352 } 353 354 iwi_wme_init(sc); 355 356 ifp->if_softc = sc; 357 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 358 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 359 ifp->if_init = iwi_init; 360 ifp->if_ioctl = iwi_ioctl; 361 ifp->if_start = iwi_start; 362 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 363 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 364 IFQ_SET_READY(&ifp->if_snd); 365 366 ic->ic_ifp = ifp; 367 ic->ic_opmode = IEEE80211_M_STA; 368 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 369 370 /* set device capabilities */ 371 ic->ic_caps = 372 IEEE80211_C_STA /* station mode supported */ 373 | IEEE80211_C_IBSS /* IBSS mode supported */ 374 | IEEE80211_C_MONITOR /* monitor mode supported */ 375 | IEEE80211_C_PMGT /* power save supported */ 376 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 377 | IEEE80211_C_WPA /* 802.11i */ 378 | IEEE80211_C_WME /* 802.11e */ 379 #if 0 380 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 381 #endif 382 ; 383 384 /* read MAC address from EEPROM */ 385 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 386 macaddr[0] = val & 0xff; 387 macaddr[1] = val >> 8; 388 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 389 macaddr[2] = val & 0xff; 390 macaddr[3] = val >> 8; 391 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 392 macaddr[4] = val & 0xff; 393 macaddr[5] = val >> 8; 394 395 bands = 0; 396 setbit(&bands, IEEE80211_MODE_11B); 397 setbit(&bands, IEEE80211_MODE_11G); 398 if (pci_get_device(dev) >= 0x4223) 399 setbit(&bands, IEEE80211_MODE_11A); 400 ieee80211_init_channels(ic, NULL, &bands); 401 402 ieee80211_ifattach(ic, macaddr); 403 /* override default methods */ 404 ic->ic_node_alloc = iwi_node_alloc; 405 sc->sc_node_free = ic->ic_node_free; 406 ic->ic_node_free = iwi_node_free; 407 ic->ic_raw_xmit = iwi_raw_xmit; 408 ic->ic_scan_start = iwi_scan_start; 409 ic->ic_scan_end = iwi_scan_end; 410 ic->ic_set_channel = iwi_set_channel; 411 ic->ic_scan_curchan = iwi_scan_curchan; 412 ic->ic_scan_mindwell = iwi_scan_mindwell; 413 ic->ic_wme.wme_update = iwi_wme_update; 414 415 ic->ic_vap_create = iwi_vap_create; 416 ic->ic_vap_delete = iwi_vap_delete; 417 418 ieee80211_radiotap_attach(ic, 419 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 420 IWI_TX_RADIOTAP_PRESENT, 421 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 422 IWI_RX_RADIOTAP_PRESENT); 423 424 iwi_sysctlattach(sc); 425 iwi_ledattach(sc); 426 427 /* 428 * Hook our interrupt after all initialization is complete. 429 */ 430 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 431 NULL, iwi_intr, sc, &sc->sc_ih); 432 if (error != 0) { 433 device_printf(dev, "could not set up interrupt\n"); 434 goto fail; 435 } 436 437 if (bootverbose) 438 ieee80211_announce(ic); 439 440 return 0; 441 fail: 442 /* XXX fix */ 443 iwi_detach(dev); 444 return ENXIO; 445 } 446 447 static int 448 iwi_detach(device_t dev) 449 { 450 struct iwi_softc *sc = device_get_softc(dev); 451 struct ifnet *ifp = sc->sc_ifp; 452 struct ieee80211com *ic = ifp->if_l2com; 453 454 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 455 456 /* NB: do early to drain any pending tasks */ 457 ieee80211_draintask(ic, &sc->sc_radiontask); 458 ieee80211_draintask(ic, &sc->sc_radiofftask); 459 ieee80211_draintask(ic, &sc->sc_restarttask); 460 ieee80211_draintask(ic, &sc->sc_disassoctask); 461 ieee80211_draintask(ic, &sc->sc_monitortask); 462 463 iwi_stop(sc); 464 465 ieee80211_ifdetach(ic); 466 467 iwi_put_firmware(sc); 468 iwi_release_fw_dma(sc); 469 470 iwi_free_cmd_ring(sc, &sc->cmdq); 471 iwi_free_tx_ring(sc, &sc->txq[0]); 472 iwi_free_tx_ring(sc, &sc->txq[1]); 473 iwi_free_tx_ring(sc, &sc->txq[2]); 474 iwi_free_tx_ring(sc, &sc->txq[3]); 475 iwi_free_rx_ring(sc, &sc->rxq); 476 477 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 478 479 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 480 sc->mem); 481 482 delete_unrhdr(sc->sc_unr); 483 484 IWI_LOCK_DESTROY(sc); 485 486 if_free(ifp); 487 488 return 0; 489 } 490 491 static struct ieee80211vap * 492 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 493 enum ieee80211_opmode opmode, int flags, 494 const uint8_t bssid[IEEE80211_ADDR_LEN], 495 const uint8_t mac[IEEE80211_ADDR_LEN]) 496 { 497 struct ifnet *ifp = ic->ic_ifp; 498 struct iwi_softc *sc = ifp->if_softc; 499 struct iwi_vap *ivp; 500 struct ieee80211vap *vap; 501 int i; 502 503 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 504 return NULL; 505 /* 506 * Get firmware image (and possibly dma memory) on mode change. 507 */ 508 if (iwi_get_firmware(sc, opmode)) 509 return NULL; 510 /* allocate DMA memory for mapping firmware image */ 511 i = sc->fw_fw.size; 512 if (sc->fw_boot.size > i) 513 i = sc->fw_boot.size; 514 /* XXX do we dma the ucode as well ? */ 515 if (sc->fw_uc.size > i) 516 i = sc->fw_uc.size; 517 if (iwi_init_fw_dma(sc, i)) 518 return NULL; 519 520 ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap), 521 M_80211_VAP, M_NOWAIT | M_ZERO); 522 if (ivp == NULL) 523 return NULL; 524 vap = &ivp->iwi_vap; 525 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 526 /* override the default, the setting comes from the linux driver */ 527 vap->iv_bmissthreshold = 24; 528 /* override with driver methods */ 529 ivp->iwi_newstate = vap->iv_newstate; 530 vap->iv_newstate = iwi_newstate; 531 532 /* complete setup */ 533 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status); 534 ic->ic_opmode = opmode; 535 return vap; 536 } 537 538 static void 539 iwi_vap_delete(struct ieee80211vap *vap) 540 { 541 struct iwi_vap *ivp = IWI_VAP(vap); 542 543 ieee80211_vap_detach(vap); 544 free(ivp, M_80211_VAP); 545 } 546 547 static void 548 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 549 { 550 if (error != 0) 551 return; 552 553 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 554 555 *(bus_addr_t *)arg = segs[0].ds_addr; 556 } 557 558 static int 559 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 560 { 561 int error; 562 563 ring->count = count; 564 ring->queued = 0; 565 ring->cur = ring->next = 0; 566 567 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 568 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 569 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 570 NULL, NULL, &ring->desc_dmat); 571 if (error != 0) { 572 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 573 goto fail; 574 } 575 576 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 577 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 578 if (error != 0) { 579 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 580 goto fail; 581 } 582 583 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 584 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 585 if (error != 0) { 586 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 587 goto fail; 588 } 589 590 return 0; 591 592 fail: iwi_free_cmd_ring(sc, ring); 593 return error; 594 } 595 596 static void 597 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 598 { 599 ring->queued = 0; 600 ring->cur = ring->next = 0; 601 } 602 603 static void 604 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 605 { 606 if (ring->desc != NULL) { 607 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 608 BUS_DMASYNC_POSTWRITE); 609 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 610 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 611 } 612 613 if (ring->desc_dmat != NULL) 614 bus_dma_tag_destroy(ring->desc_dmat); 615 } 616 617 static int 618 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 619 bus_addr_t csr_ridx, bus_addr_t csr_widx) 620 { 621 int i, error; 622 623 ring->count = count; 624 ring->queued = 0; 625 ring->cur = ring->next = 0; 626 ring->csr_ridx = csr_ridx; 627 ring->csr_widx = csr_widx; 628 629 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 630 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 631 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 632 NULL, &ring->desc_dmat); 633 if (error != 0) { 634 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 635 goto fail; 636 } 637 638 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 639 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 640 if (error != 0) { 641 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 642 goto fail; 643 } 644 645 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 646 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 647 if (error != 0) { 648 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 649 goto fail; 650 } 651 652 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 653 M_NOWAIT | M_ZERO); 654 if (ring->data == NULL) { 655 device_printf(sc->sc_dev, "could not allocate soft data\n"); 656 error = ENOMEM; 657 goto fail; 658 } 659 660 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 661 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 662 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 663 if (error != 0) { 664 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 665 goto fail; 666 } 667 668 for (i = 0; i < count; i++) { 669 error = bus_dmamap_create(ring->data_dmat, 0, 670 &ring->data[i].map); 671 if (error != 0) { 672 device_printf(sc->sc_dev, "could not create DMA map\n"); 673 goto fail; 674 } 675 } 676 677 return 0; 678 679 fail: iwi_free_tx_ring(sc, ring); 680 return error; 681 } 682 683 static void 684 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 685 { 686 struct iwi_tx_data *data; 687 int i; 688 689 for (i = 0; i < ring->count; i++) { 690 data = &ring->data[i]; 691 692 if (data->m != NULL) { 693 bus_dmamap_sync(ring->data_dmat, data->map, 694 BUS_DMASYNC_POSTWRITE); 695 bus_dmamap_unload(ring->data_dmat, data->map); 696 m_freem(data->m); 697 data->m = NULL; 698 } 699 700 if (data->ni != NULL) { 701 ieee80211_free_node(data->ni); 702 data->ni = NULL; 703 } 704 } 705 706 ring->queued = 0; 707 ring->cur = ring->next = 0; 708 } 709 710 static void 711 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 712 { 713 struct iwi_tx_data *data; 714 int i; 715 716 if (ring->desc != NULL) { 717 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 718 BUS_DMASYNC_POSTWRITE); 719 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 720 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 721 } 722 723 if (ring->desc_dmat != NULL) 724 bus_dma_tag_destroy(ring->desc_dmat); 725 726 if (ring->data != NULL) { 727 for (i = 0; i < ring->count; i++) { 728 data = &ring->data[i]; 729 730 if (data->m != NULL) { 731 bus_dmamap_sync(ring->data_dmat, data->map, 732 BUS_DMASYNC_POSTWRITE); 733 bus_dmamap_unload(ring->data_dmat, data->map); 734 m_freem(data->m); 735 } 736 737 if (data->ni != NULL) 738 ieee80211_free_node(data->ni); 739 740 if (data->map != NULL) 741 bus_dmamap_destroy(ring->data_dmat, data->map); 742 } 743 744 free(ring->data, M_DEVBUF); 745 } 746 747 if (ring->data_dmat != NULL) 748 bus_dma_tag_destroy(ring->data_dmat); 749 } 750 751 static int 752 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 753 { 754 struct iwi_rx_data *data; 755 int i, error; 756 757 ring->count = count; 758 ring->cur = 0; 759 760 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 761 M_NOWAIT | M_ZERO); 762 if (ring->data == NULL) { 763 device_printf(sc->sc_dev, "could not allocate soft data\n"); 764 error = ENOMEM; 765 goto fail; 766 } 767 768 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 769 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 770 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 771 if (error != 0) { 772 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 773 goto fail; 774 } 775 776 for (i = 0; i < count; i++) { 777 data = &ring->data[i]; 778 779 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 780 if (error != 0) { 781 device_printf(sc->sc_dev, "could not create DMA map\n"); 782 goto fail; 783 } 784 785 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 786 if (data->m == NULL) { 787 device_printf(sc->sc_dev, 788 "could not allocate rx mbuf\n"); 789 error = ENOMEM; 790 goto fail; 791 } 792 793 error = bus_dmamap_load(ring->data_dmat, data->map, 794 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 795 &data->physaddr, 0); 796 if (error != 0) { 797 device_printf(sc->sc_dev, 798 "could not load rx buf DMA map"); 799 goto fail; 800 } 801 802 data->reg = IWI_CSR_RX_BASE + i * 4; 803 } 804 805 return 0; 806 807 fail: iwi_free_rx_ring(sc, ring); 808 return error; 809 } 810 811 static void 812 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 813 { 814 ring->cur = 0; 815 } 816 817 static void 818 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 819 { 820 struct iwi_rx_data *data; 821 int i; 822 823 if (ring->data != NULL) { 824 for (i = 0; i < ring->count; i++) { 825 data = &ring->data[i]; 826 827 if (data->m != NULL) { 828 bus_dmamap_sync(ring->data_dmat, data->map, 829 BUS_DMASYNC_POSTREAD); 830 bus_dmamap_unload(ring->data_dmat, data->map); 831 m_freem(data->m); 832 } 833 834 if (data->map != NULL) 835 bus_dmamap_destroy(ring->data_dmat, data->map); 836 } 837 838 free(ring->data, M_DEVBUF); 839 } 840 841 if (ring->data_dmat != NULL) 842 bus_dma_tag_destroy(ring->data_dmat); 843 } 844 845 static int 846 iwi_shutdown(device_t dev) 847 { 848 struct iwi_softc *sc = device_get_softc(dev); 849 850 iwi_stop(sc); 851 iwi_put_firmware(sc); /* ??? XXX */ 852 853 return 0; 854 } 855 856 static int 857 iwi_suspend(device_t dev) 858 { 859 struct iwi_softc *sc = device_get_softc(dev); 860 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 861 862 ieee80211_suspend_all(ic); 863 return 0; 864 } 865 866 static int 867 iwi_resume(device_t dev) 868 { 869 struct iwi_softc *sc = device_get_softc(dev); 870 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 871 872 pci_write_config(dev, 0x41, 0, 1); 873 874 ieee80211_resume_all(ic); 875 return 0; 876 } 877 878 static struct ieee80211_node * 879 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 880 { 881 struct iwi_node *in; 882 883 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 884 if (in == NULL) 885 return NULL; 886 /* XXX assign sta table entry for adhoc */ 887 in->in_station = -1; 888 889 return &in->in_node; 890 } 891 892 static void 893 iwi_node_free(struct ieee80211_node *ni) 894 { 895 struct ieee80211com *ic = ni->ni_ic; 896 struct iwi_softc *sc = ic->ic_ifp->if_softc; 897 struct iwi_node *in = (struct iwi_node *)ni; 898 899 if (in->in_station != -1) { 900 DPRINTF(("%s mac %6D station %u\n", __func__, 901 ni->ni_macaddr, ":", in->in_station)); 902 free_unr(sc->sc_unr, in->in_station); 903 } 904 905 sc->sc_node_free(ni); 906 } 907 908 /* 909 * Convert h/w rate code to IEEE rate code. 910 */ 911 static int 912 iwi_cvtrate(int iwirate) 913 { 914 switch (iwirate) { 915 case IWI_RATE_DS1: return 2; 916 case IWI_RATE_DS2: return 4; 917 case IWI_RATE_DS5: return 11; 918 case IWI_RATE_DS11: return 22; 919 case IWI_RATE_OFDM6: return 12; 920 case IWI_RATE_OFDM9: return 18; 921 case IWI_RATE_OFDM12: return 24; 922 case IWI_RATE_OFDM18: return 36; 923 case IWI_RATE_OFDM24: return 48; 924 case IWI_RATE_OFDM36: return 72; 925 case IWI_RATE_OFDM48: return 96; 926 case IWI_RATE_OFDM54: return 108; 927 } 928 return 0; 929 } 930 931 /* 932 * The firmware automatically adapts the transmit speed. We report its current 933 * value here. 934 */ 935 static void 936 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 937 { 938 struct ieee80211vap *vap = ifp->if_softc; 939 struct ieee80211com *ic = vap->iv_ic; 940 struct iwi_softc *sc = ic->ic_ifp->if_softc; 941 struct ieee80211_node *ni; 942 943 /* read current transmission rate from adapter */ 944 ni = ieee80211_ref_node(vap->iv_bss); 945 ni->ni_txrate = 946 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 947 ieee80211_free_node(ni); 948 ieee80211_media_status(ifp, imr); 949 } 950 951 static int 952 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 953 { 954 struct iwi_vap *ivp = IWI_VAP(vap); 955 struct ieee80211com *ic = vap->iv_ic; 956 struct ifnet *ifp = ic->ic_ifp; 957 struct iwi_softc *sc = ifp->if_softc; 958 IWI_LOCK_DECL; 959 960 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 961 ieee80211_state_name[vap->iv_state], 962 ieee80211_state_name[nstate], sc->flags)); 963 964 IEEE80211_UNLOCK(ic); 965 IWI_LOCK(sc); 966 switch (nstate) { 967 case IEEE80211_S_INIT: 968 /* 969 * NB: don't try to do this if iwi_stop_master has 970 * shutdown the firmware and disabled interrupts. 971 */ 972 if (vap->iv_state == IEEE80211_S_RUN && 973 (sc->flags & IWI_FLAG_FW_INITED)) 974 iwi_disassociate(sc, 0); 975 break; 976 case IEEE80211_S_AUTH: 977 iwi_auth_and_assoc(sc, vap); 978 break; 979 case IEEE80211_S_RUN: 980 if (vap->iv_opmode == IEEE80211_M_IBSS && 981 vap->iv_state == IEEE80211_S_SCAN) { 982 /* 983 * XXX when joining an ibss network we are called 984 * with a SCAN -> RUN transition on scan complete. 985 * Use that to call iwi_auth_and_assoc. On completing 986 * the join we are then called again with an 987 * AUTH -> RUN transition and we want to do nothing. 988 * This is all totally bogus and needs to be redone. 989 */ 990 iwi_auth_and_assoc(sc, vap); 991 } else if (vap->iv_opmode == IEEE80211_M_MONITOR) 992 ieee80211_runtask(ic, &sc->sc_monitortask); 993 break; 994 case IEEE80211_S_ASSOC: 995 /* 996 * If we are transitioning from AUTH then just wait 997 * for the ASSOC status to come back from the firmware. 998 * Otherwise we need to issue the association request. 999 */ 1000 if (vap->iv_state == IEEE80211_S_AUTH) 1001 break; 1002 iwi_auth_and_assoc(sc, vap); 1003 break; 1004 default: 1005 break; 1006 } 1007 IWI_UNLOCK(sc); 1008 IEEE80211_LOCK(ic); 1009 return ivp->iwi_newstate(vap, nstate, arg); 1010 } 1011 1012 /* 1013 * WME parameters coming from IEEE 802.11e specification. These values are 1014 * already declared in ieee80211_proto.c, but they are static so they can't 1015 * be reused here. 1016 */ 1017 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1018 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1019 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1020 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1021 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1022 }; 1023 1024 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1025 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1026 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1027 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1028 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1029 }; 1030 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1031 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1032 1033 static void 1034 iwi_wme_init(struct iwi_softc *sc) 1035 { 1036 const struct wmeParams *wmep; 1037 int ac; 1038 1039 memset(sc->wme, 0, sizeof sc->wme); 1040 for (ac = 0; ac < WME_NUM_AC; ac++) { 1041 /* set WME values for CCK modulation */ 1042 wmep = &iwi_wme_cck_params[ac]; 1043 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1044 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1045 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1046 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1047 sc->wme[1].acm[ac] = wmep->wmep_acm; 1048 1049 /* set WME values for OFDM modulation */ 1050 wmep = &iwi_wme_ofdm_params[ac]; 1051 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1052 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1053 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1054 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1055 sc->wme[2].acm[ac] = wmep->wmep_acm; 1056 } 1057 } 1058 1059 static int 1060 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic) 1061 { 1062 const struct wmeParams *wmep; 1063 int ac; 1064 1065 for (ac = 0; ac < WME_NUM_AC; ac++) { 1066 /* set WME values for current operating mode */ 1067 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1068 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1069 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1070 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1071 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1072 sc->wme[0].acm[ac] = wmep->wmep_acm; 1073 } 1074 1075 DPRINTF(("Setting WME parameters\n")); 1076 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1077 } 1078 #undef IWI_USEC 1079 #undef IWI_EXP2 1080 1081 static void 1082 iwi_update_wme(void *arg, int npending) 1083 { 1084 struct ieee80211com *ic = arg; 1085 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1086 IWI_LOCK_DECL; 1087 1088 IWI_LOCK(sc); 1089 (void) iwi_wme_setparams(sc, ic); 1090 IWI_UNLOCK(sc); 1091 } 1092 1093 static int 1094 iwi_wme_update(struct ieee80211com *ic) 1095 { 1096 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1097 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1098 1099 /* 1100 * We may be called to update the WME parameters in 1101 * the adapter at various places. If we're already 1102 * associated then initiate the request immediately; 1103 * otherwise we assume the params will get sent down 1104 * to the adapter as part of the work iwi_auth_and_assoc 1105 * does. 1106 */ 1107 if (vap->iv_state == IEEE80211_S_RUN) 1108 ieee80211_runtask(ic, &sc->sc_wmetask); 1109 return (0); 1110 } 1111 1112 static int 1113 iwi_wme_setie(struct iwi_softc *sc) 1114 { 1115 struct ieee80211_wme_info wme; 1116 1117 memset(&wme, 0, sizeof wme); 1118 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1119 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1120 wme.wme_oui[0] = 0x00; 1121 wme.wme_oui[1] = 0x50; 1122 wme.wme_oui[2] = 0xf2; 1123 wme.wme_type = WME_OUI_TYPE; 1124 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1125 wme.wme_version = WME_VERSION; 1126 wme.wme_info = 0; 1127 1128 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1129 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1130 } 1131 1132 /* 1133 * Read 16 bits at address 'addr' from the serial EEPROM. 1134 */ 1135 static uint16_t 1136 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1137 { 1138 uint32_t tmp; 1139 uint16_t val; 1140 int n; 1141 1142 /* clock C once before the first command */ 1143 IWI_EEPROM_CTL(sc, 0); 1144 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1145 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1146 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1147 1148 /* write start bit (1) */ 1149 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1150 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1151 1152 /* write READ opcode (10) */ 1153 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1154 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1155 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1156 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1157 1158 /* write address A7-A0 */ 1159 for (n = 7; n >= 0; n--) { 1160 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1161 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1162 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1163 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1164 } 1165 1166 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1167 1168 /* read data Q15-Q0 */ 1169 val = 0; 1170 for (n = 15; n >= 0; n--) { 1171 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1172 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1173 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1174 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1175 } 1176 1177 IWI_EEPROM_CTL(sc, 0); 1178 1179 /* clear Chip Select and clock C */ 1180 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1181 IWI_EEPROM_CTL(sc, 0); 1182 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1183 1184 return val; 1185 } 1186 1187 static void 1188 iwi_setcurchan(struct iwi_softc *sc, int chan) 1189 { 1190 struct ifnet *ifp = sc->sc_ifp; 1191 struct ieee80211com *ic = ifp->if_l2com; 1192 1193 sc->curchan = chan; 1194 ieee80211_radiotap_chan_change(ic); 1195 } 1196 1197 static void 1198 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1199 struct iwi_frame *frame) 1200 { 1201 struct ifnet *ifp = sc->sc_ifp; 1202 struct ieee80211com *ic = ifp->if_l2com; 1203 struct mbuf *mnew, *m; 1204 struct ieee80211_node *ni; 1205 int type, error, framelen; 1206 int8_t rssi, nf; 1207 IWI_LOCK_DECL; 1208 1209 framelen = le16toh(frame->len); 1210 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1211 /* 1212 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1213 * out of bounds; need to figure out how to limit 1214 * frame size in the firmware 1215 */ 1216 /* XXX stat */ 1217 DPRINTFN(1, 1218 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1219 le16toh(frame->len), frame->chan, frame->rssi, 1220 frame->rssi_dbm)); 1221 return; 1222 } 1223 1224 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1225 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1226 1227 if (frame->chan != sc->curchan) 1228 iwi_setcurchan(sc, frame->chan); 1229 1230 /* 1231 * Try to allocate a new mbuf for this ring element and load it before 1232 * processing the current mbuf. If the ring element cannot be loaded, 1233 * drop the received packet and reuse the old mbuf. In the unlikely 1234 * case that the old mbuf can't be reloaded either, explicitly panic. 1235 */ 1236 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1237 if (mnew == NULL) { 1238 ifp->if_ierrors++; 1239 return; 1240 } 1241 1242 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1243 1244 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1245 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1246 0); 1247 if (error != 0) { 1248 m_freem(mnew); 1249 1250 /* try to reload the old mbuf */ 1251 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1252 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1253 &data->physaddr, 0); 1254 if (error != 0) { 1255 /* very unlikely that it will fail... */ 1256 panic("%s: could not load old rx mbuf", 1257 device_get_name(sc->sc_dev)); 1258 } 1259 ifp->if_ierrors++; 1260 return; 1261 } 1262 1263 /* 1264 * New mbuf successfully loaded, update Rx ring and continue 1265 * processing. 1266 */ 1267 m = data->m; 1268 data->m = mnew; 1269 CSR_WRITE_4(sc, data->reg, data->physaddr); 1270 1271 /* finalize mbuf */ 1272 m->m_pkthdr.rcvif = ifp; 1273 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1274 sizeof (struct iwi_frame) + framelen; 1275 1276 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1277 1278 rssi = frame->rssi_dbm; 1279 nf = -95; 1280 if (ieee80211_radiotap_active(ic)) { 1281 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1282 1283 tap->wr_flags = 0; 1284 tap->wr_antsignal = rssi; 1285 tap->wr_antnoise = nf; 1286 tap->wr_rate = iwi_cvtrate(frame->rate); 1287 tap->wr_antenna = frame->antenna; 1288 } 1289 IWI_UNLOCK(sc); 1290 1291 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1292 if (ni != NULL) { 1293 type = ieee80211_input(ni, m, rssi, nf); 1294 ieee80211_free_node(ni); 1295 } else 1296 type = ieee80211_input_all(ic, m, rssi, nf); 1297 1298 IWI_LOCK(sc); 1299 if (sc->sc_softled) { 1300 /* 1301 * Blink for any data frame. Otherwise do a 1302 * heartbeat-style blink when idle. The latter 1303 * is mainly for station mode where we depend on 1304 * periodic beacon frames to trigger the poll event. 1305 */ 1306 if (type == IEEE80211_FC0_TYPE_DATA) { 1307 sc->sc_rxrate = frame->rate; 1308 iwi_led_event(sc, IWI_LED_RX); 1309 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1310 iwi_led_event(sc, IWI_LED_POLL); 1311 } 1312 } 1313 1314 /* 1315 * Check for an association response frame to see if QoS 1316 * has been negotiated. We parse just enough to figure 1317 * out if we're supposed to use QoS. The proper solution 1318 * is to pass the frame up so ieee80211_input can do the 1319 * work but that's made hard by how things currently are 1320 * done in the driver. 1321 */ 1322 static void 1323 iwi_checkforqos(struct ieee80211vap *vap, 1324 const struct ieee80211_frame *wh, int len) 1325 { 1326 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1327 const uint8_t *frm, *efrm, *wme; 1328 struct ieee80211_node *ni; 1329 uint16_t capinfo, status, associd; 1330 1331 /* NB: +8 for capinfo, status, associd, and first ie */ 1332 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1333 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1334 return; 1335 /* 1336 * asresp frame format 1337 * [2] capability information 1338 * [2] status 1339 * [2] association ID 1340 * [tlv] supported rates 1341 * [tlv] extended supported rates 1342 * [tlv] WME 1343 */ 1344 frm = (const uint8_t *)&wh[1]; 1345 efrm = ((const uint8_t *) wh) + len; 1346 1347 capinfo = le16toh(*(const uint16_t *)frm); 1348 frm += 2; 1349 status = le16toh(*(const uint16_t *)frm); 1350 frm += 2; 1351 associd = le16toh(*(const uint16_t *)frm); 1352 frm += 2; 1353 1354 wme = NULL; 1355 while (efrm - frm > 1) { 1356 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); 1357 switch (*frm) { 1358 case IEEE80211_ELEMID_VENDOR: 1359 if (iswmeoui(frm)) 1360 wme = frm; 1361 break; 1362 } 1363 frm += frm[1] + 2; 1364 } 1365 1366 ni = ieee80211_ref_node(vap->iv_bss); 1367 ni->ni_capinfo = capinfo; 1368 ni->ni_associd = associd & 0x3fff; 1369 if (wme != NULL) 1370 ni->ni_flags |= IEEE80211_NODE_QOS; 1371 else 1372 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1373 ieee80211_free_node(ni); 1374 #undef SUBTYPE 1375 } 1376 1377 static void 1378 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif) 1379 { 1380 struct iwi_notif_link_quality *lq; 1381 int len; 1382 1383 len = le16toh(notif->len); 1384 1385 DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n", 1386 notif->type, 1387 len, 1388 sizeof(struct iwi_notif_link_quality) 1389 )); 1390 1391 /* enforce length */ 1392 if (len != sizeof(struct iwi_notif_link_quality)) { 1393 DPRINTFN(5, ("Notification: (%u) too short (%d)\n", 1394 notif->type, 1395 len)); 1396 return; 1397 } 1398 1399 lq = (struct iwi_notif_link_quality *)(notif + 1); 1400 memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual)); 1401 sc->sc_linkqual_valid = 1; 1402 } 1403 1404 /* 1405 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1406 */ 1407 1408 static void 1409 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1410 { 1411 struct ifnet *ifp = sc->sc_ifp; 1412 struct ieee80211com *ic = ifp->if_l2com; 1413 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1414 struct iwi_notif_scan_channel *chan; 1415 struct iwi_notif_scan_complete *scan; 1416 struct iwi_notif_authentication *auth; 1417 struct iwi_notif_association *assoc; 1418 struct iwi_notif_beacon_state *beacon; 1419 1420 switch (notif->type) { 1421 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1422 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1423 1424 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1425 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1426 1427 /* Reset the timer, the scan is still going */ 1428 sc->sc_state_timer = 3; 1429 break; 1430 1431 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1432 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1433 1434 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1435 scan->status)); 1436 1437 IWI_STATE_END(sc, IWI_FW_SCANNING); 1438 1439 /* 1440 * Monitor mode works by doing a passive scan to set 1441 * the channel and enable rx. Because we don't want 1442 * to abort a scan lest the firmware crash we scan 1443 * for a short period of time and automatically restart 1444 * the scan when notified the sweep has completed. 1445 */ 1446 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1447 ieee80211_runtask(ic, &sc->sc_monitortask); 1448 break; 1449 } 1450 1451 if (scan->status == IWI_SCAN_COMPLETED) { 1452 /* NB: don't need to defer, net80211 does it for us */ 1453 ieee80211_scan_next(vap); 1454 } 1455 break; 1456 1457 case IWI_NOTIF_TYPE_AUTHENTICATION: 1458 auth = (struct iwi_notif_authentication *)(notif + 1); 1459 switch (auth->state) { 1460 case IWI_AUTH_SUCCESS: 1461 DPRINTFN(2, ("Authentication succeeeded\n")); 1462 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1463 break; 1464 case IWI_AUTH_FAIL: 1465 /* 1466 * These are delivered as an unsolicited deauth 1467 * (e.g. due to inactivity) or in response to an 1468 * associate request. 1469 */ 1470 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1471 if (vap->iv_state != IEEE80211_S_RUN) { 1472 DPRINTFN(2, ("Authentication failed\n")); 1473 vap->iv_stats.is_rx_auth_fail++; 1474 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1475 } else { 1476 DPRINTFN(2, ("Deauthenticated\n")); 1477 vap->iv_stats.is_rx_deauth++; 1478 } 1479 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1480 break; 1481 case IWI_AUTH_SENT_1: 1482 case IWI_AUTH_RECV_2: 1483 case IWI_AUTH_SEQ1_PASS: 1484 break; 1485 case IWI_AUTH_SEQ1_FAIL: 1486 DPRINTFN(2, ("Initial authentication handshake failed; " 1487 "you probably need shared key\n")); 1488 vap->iv_stats.is_rx_auth_fail++; 1489 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1490 /* XXX retry shared key when in auto */ 1491 break; 1492 default: 1493 device_printf(sc->sc_dev, 1494 "unknown authentication state %u\n", auth->state); 1495 break; 1496 } 1497 break; 1498 1499 case IWI_NOTIF_TYPE_ASSOCIATION: 1500 assoc = (struct iwi_notif_association *)(notif + 1); 1501 switch (assoc->state) { 1502 case IWI_AUTH_SUCCESS: 1503 /* re-association, do nothing */ 1504 break; 1505 case IWI_ASSOC_SUCCESS: 1506 DPRINTFN(2, ("Association succeeded\n")); 1507 sc->flags |= IWI_FLAG_ASSOCIATED; 1508 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1509 iwi_checkforqos(vap, 1510 (const struct ieee80211_frame *)(assoc+1), 1511 le16toh(notif->len) - sizeof(*assoc) - 1); 1512 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1513 break; 1514 case IWI_ASSOC_INIT: 1515 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1516 switch (sc->fw_state) { 1517 case IWI_FW_ASSOCIATING: 1518 DPRINTFN(2, ("Association failed\n")); 1519 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1520 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1521 break; 1522 1523 case IWI_FW_DISASSOCIATING: 1524 DPRINTFN(2, ("Dissassociated\n")); 1525 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1526 vap->iv_stats.is_rx_disassoc++; 1527 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1528 break; 1529 } 1530 break; 1531 default: 1532 device_printf(sc->sc_dev, 1533 "unknown association state %u\n", assoc->state); 1534 break; 1535 } 1536 break; 1537 1538 case IWI_NOTIF_TYPE_BEACON: 1539 /* XXX check struct length */ 1540 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1541 1542 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1543 beacon->state, le32toh(beacon->number))); 1544 1545 if (beacon->state == IWI_BEACON_MISS) { 1546 /* 1547 * The firmware notifies us of every beacon miss 1548 * so we need to track the count against the 1549 * configured threshold before notifying the 1550 * 802.11 layer. 1551 * XXX try to roam, drop assoc only on much higher count 1552 */ 1553 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1554 DPRINTF(("Beacon miss: %u >= %u\n", 1555 le32toh(beacon->number), 1556 vap->iv_bmissthreshold)); 1557 vap->iv_stats.is_beacon_miss++; 1558 /* 1559 * It's pointless to notify the 802.11 layer 1560 * as it'll try to send a probe request (which 1561 * we'll discard) and then timeout and drop us 1562 * into scan state. Instead tell the firmware 1563 * to disassociate and then on completion we'll 1564 * kick the state machine to scan. 1565 */ 1566 ieee80211_runtask(ic, &sc->sc_disassoctask); 1567 } 1568 } 1569 break; 1570 1571 case IWI_NOTIF_TYPE_CALIBRATION: 1572 case IWI_NOTIF_TYPE_NOISE: 1573 /* XXX handle? */ 1574 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1575 break; 1576 case IWI_NOTIF_TYPE_LINK_QUALITY: 1577 iwi_notif_link_quality(sc, notif); 1578 break; 1579 1580 default: 1581 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1582 notif->type, notif->flags, le16toh(notif->len))); 1583 break; 1584 } 1585 } 1586 1587 static void 1588 iwi_rx_intr(struct iwi_softc *sc) 1589 { 1590 struct iwi_rx_data *data; 1591 struct iwi_hdr *hdr; 1592 uint32_t hw; 1593 1594 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1595 1596 for (; sc->rxq.cur != hw;) { 1597 data = &sc->rxq.data[sc->rxq.cur]; 1598 1599 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1600 BUS_DMASYNC_POSTREAD); 1601 1602 hdr = mtod(data->m, struct iwi_hdr *); 1603 1604 switch (hdr->type) { 1605 case IWI_HDR_TYPE_FRAME: 1606 iwi_frame_intr(sc, data, sc->rxq.cur, 1607 (struct iwi_frame *)(hdr + 1)); 1608 break; 1609 1610 case IWI_HDR_TYPE_NOTIF: 1611 iwi_notification_intr(sc, 1612 (struct iwi_notif *)(hdr + 1)); 1613 break; 1614 1615 default: 1616 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1617 hdr->type); 1618 } 1619 1620 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1621 1622 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1623 } 1624 1625 /* tell the firmware what we have processed */ 1626 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1627 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1628 } 1629 1630 static void 1631 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1632 { 1633 struct ifnet *ifp = sc->sc_ifp; 1634 struct iwi_tx_data *data; 1635 uint32_t hw; 1636 1637 hw = CSR_READ_4(sc, txq->csr_ridx); 1638 1639 for (; txq->next != hw;) { 1640 data = &txq->data[txq->next]; 1641 1642 bus_dmamap_sync(txq->data_dmat, data->map, 1643 BUS_DMASYNC_POSTWRITE); 1644 bus_dmamap_unload(txq->data_dmat, data->map); 1645 if (data->m->m_flags & M_TXCB) 1646 ieee80211_process_callback(data->ni, data->m, 0/*XXX*/); 1647 m_freem(data->m); 1648 data->m = NULL; 1649 ieee80211_free_node(data->ni); 1650 data->ni = NULL; 1651 1652 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1653 1654 ifp->if_opackets++; 1655 1656 txq->queued--; 1657 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1658 } 1659 1660 sc->sc_tx_timer = 0; 1661 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1662 1663 if (sc->sc_softled) 1664 iwi_led_event(sc, IWI_LED_TX); 1665 1666 iwi_start_locked(ifp); 1667 } 1668 1669 static void 1670 iwi_fatal_error_intr(struct iwi_softc *sc) 1671 { 1672 struct ifnet *ifp = sc->sc_ifp; 1673 struct ieee80211com *ic = ifp->if_l2com; 1674 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1675 1676 device_printf(sc->sc_dev, "firmware error\n"); 1677 if (vap != NULL) 1678 ieee80211_cancel_scan(vap); 1679 ieee80211_runtask(ic, &sc->sc_restarttask); 1680 1681 sc->flags &= ~IWI_FLAG_BUSY; 1682 sc->sc_busy_timer = 0; 1683 wakeup(sc); 1684 } 1685 1686 static void 1687 iwi_radio_off_intr(struct iwi_softc *sc) 1688 { 1689 struct ifnet *ifp = sc->sc_ifp; 1690 struct ieee80211com *ic = ifp->if_l2com; 1691 1692 ieee80211_runtask(ic, &sc->sc_radiofftask); 1693 } 1694 1695 static void 1696 iwi_intr(void *arg) 1697 { 1698 struct iwi_softc *sc = arg; 1699 uint32_t r; 1700 IWI_LOCK_DECL; 1701 1702 IWI_LOCK(sc); 1703 1704 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1705 IWI_UNLOCK(sc); 1706 return; 1707 } 1708 1709 /* acknowledge interrupts */ 1710 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1711 1712 if (r & IWI_INTR_FATAL_ERROR) { 1713 iwi_fatal_error_intr(sc); 1714 goto done; 1715 } 1716 1717 if (r & IWI_INTR_FW_INITED) { 1718 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1719 wakeup(sc); 1720 } 1721 1722 if (r & IWI_INTR_RADIO_OFF) 1723 iwi_radio_off_intr(sc); 1724 1725 if (r & IWI_INTR_CMD_DONE) { 1726 sc->flags &= ~IWI_FLAG_BUSY; 1727 sc->sc_busy_timer = 0; 1728 wakeup(sc); 1729 } 1730 1731 if (r & IWI_INTR_TX1_DONE) 1732 iwi_tx_intr(sc, &sc->txq[0]); 1733 1734 if (r & IWI_INTR_TX2_DONE) 1735 iwi_tx_intr(sc, &sc->txq[1]); 1736 1737 if (r & IWI_INTR_TX3_DONE) 1738 iwi_tx_intr(sc, &sc->txq[2]); 1739 1740 if (r & IWI_INTR_TX4_DONE) 1741 iwi_tx_intr(sc, &sc->txq[3]); 1742 1743 if (r & IWI_INTR_RX_DONE) 1744 iwi_rx_intr(sc); 1745 1746 if (r & IWI_INTR_PARITY_ERROR) { 1747 /* XXX rate-limit */ 1748 device_printf(sc->sc_dev, "parity error\n"); 1749 } 1750 done: 1751 IWI_UNLOCK(sc); 1752 } 1753 1754 static int 1755 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1756 { 1757 struct iwi_cmd_desc *desc; 1758 1759 IWI_LOCK_ASSERT(sc); 1760 1761 if (sc->flags & IWI_FLAG_BUSY) { 1762 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1763 __func__, type); 1764 return EAGAIN; 1765 } 1766 sc->flags |= IWI_FLAG_BUSY; 1767 sc->sc_busy_timer = 2; 1768 1769 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1770 1771 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1772 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1773 desc->type = type; 1774 desc->len = len; 1775 memcpy(desc->data, data, len); 1776 1777 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1778 BUS_DMASYNC_PREWRITE); 1779 1780 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1781 type, len)); 1782 1783 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1784 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1785 1786 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1787 } 1788 1789 static void 1790 iwi_write_ibssnode(struct iwi_softc *sc, 1791 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1792 { 1793 struct iwi_ibssnode node; 1794 1795 /* write node information into NIC memory */ 1796 memset(&node, 0, sizeof node); 1797 IEEE80211_ADDR_COPY(node.bssid, addr); 1798 1799 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1800 1801 CSR_WRITE_REGION_1(sc, 1802 IWI_CSR_NODE_BASE + entry * sizeof node, 1803 (uint8_t *)&node, sizeof node); 1804 } 1805 1806 static int 1807 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni, 1808 int ac) 1809 { 1810 struct iwi_softc *sc = ifp->if_softc; 1811 struct ieee80211vap *vap = ni->ni_vap; 1812 struct ieee80211com *ic = ni->ni_ic; 1813 struct iwi_node *in = (struct iwi_node *)ni; 1814 const struct ieee80211_frame *wh; 1815 struct ieee80211_key *k; 1816 const struct chanAccParams *cap; 1817 struct iwi_tx_ring *txq = &sc->txq[ac]; 1818 struct iwi_tx_data *data; 1819 struct iwi_tx_desc *desc; 1820 struct mbuf *mnew; 1821 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1822 int error, nsegs, hdrlen, i; 1823 int ismcast, flags, xflags, staid; 1824 1825 IWI_LOCK_ASSERT(sc); 1826 wh = mtod(m0, const struct ieee80211_frame *); 1827 /* NB: only data frames use this path */ 1828 hdrlen = ieee80211_hdrsize(wh); 1829 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1830 flags = xflags = 0; 1831 1832 if (!ismcast) 1833 flags |= IWI_DATA_FLAG_NEED_ACK; 1834 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1835 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1836 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1837 xflags |= IWI_DATA_XFLAG_QOS; 1838 cap = &ic->ic_wme.wme_chanParams; 1839 if (!cap->cap_wmeParams[ac].wmep_noackPolicy) 1840 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1841 } 1842 1843 /* 1844 * This is only used in IBSS mode where the firmware expect an index 1845 * in a h/w table instead of a destination address. 1846 */ 1847 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1848 if (!ismcast) { 1849 if (in->in_station == -1) { 1850 in->in_station = alloc_unr(sc->sc_unr); 1851 if (in->in_station == -1) { 1852 /* h/w table is full */ 1853 m_freem(m0); 1854 ieee80211_free_node(ni); 1855 ifp->if_oerrors++; 1856 return 0; 1857 } 1858 iwi_write_ibssnode(sc, 1859 ni->ni_macaddr, in->in_station); 1860 } 1861 staid = in->in_station; 1862 } else { 1863 /* 1864 * Multicast addresses have no associated node 1865 * so there will be no station entry. We reserve 1866 * entry 0 for one mcast address and use that. 1867 * If there are many being used this will be 1868 * expensive and we'll need to do a better job 1869 * but for now this handles the broadcast case. 1870 */ 1871 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1872 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1873 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1874 } 1875 staid = 0; 1876 } 1877 } else 1878 staid = 0; 1879 1880 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1881 k = ieee80211_crypto_encap(ni, m0); 1882 if (k == NULL) { 1883 m_freem(m0); 1884 return ENOBUFS; 1885 } 1886 1887 /* packet header may have moved, reset our local pointer */ 1888 wh = mtod(m0, struct ieee80211_frame *); 1889 } 1890 1891 if (ieee80211_radiotap_active_vap(vap)) { 1892 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1893 1894 tap->wt_flags = 0; 1895 1896 ieee80211_radiotap_tx(vap, m0); 1897 } 1898 1899 data = &txq->data[txq->cur]; 1900 desc = &txq->desc[txq->cur]; 1901 1902 /* save and trim IEEE802.11 header */ 1903 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1904 m_adj(m0, hdrlen); 1905 1906 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1907 &nsegs, 0); 1908 if (error != 0 && error != EFBIG) { 1909 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1910 error); 1911 m_freem(m0); 1912 return error; 1913 } 1914 if (error != 0) { 1915 mnew = m_defrag(m0, M_NOWAIT); 1916 if (mnew == NULL) { 1917 device_printf(sc->sc_dev, 1918 "could not defragment mbuf\n"); 1919 m_freem(m0); 1920 return ENOBUFS; 1921 } 1922 m0 = mnew; 1923 1924 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1925 m0, segs, &nsegs, 0); 1926 if (error != 0) { 1927 device_printf(sc->sc_dev, 1928 "could not map mbuf (error %d)\n", error); 1929 m_freem(m0); 1930 return error; 1931 } 1932 } 1933 1934 data->m = m0; 1935 data->ni = ni; 1936 1937 desc->hdr.type = IWI_HDR_TYPE_DATA; 1938 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1939 desc->station = staid; 1940 desc->cmd = IWI_DATA_CMD_TX; 1941 desc->len = htole16(m0->m_pkthdr.len); 1942 desc->flags = flags; 1943 desc->xflags = xflags; 1944 1945 #if 0 1946 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1947 desc->wep_txkey = vap->iv_def_txkey; 1948 else 1949 #endif 1950 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1951 1952 desc->nseg = htole32(nsegs); 1953 for (i = 0; i < nsegs; i++) { 1954 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1955 desc->seg_len[i] = htole16(segs[i].ds_len); 1956 } 1957 1958 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1959 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1960 1961 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1962 ac, txq->cur, le16toh(desc->len), nsegs)); 1963 1964 txq->queued++; 1965 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1966 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1967 1968 return 0; 1969 } 1970 1971 static int 1972 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1973 const struct ieee80211_bpf_params *params) 1974 { 1975 /* no support; just discard */ 1976 m_freem(m); 1977 ieee80211_free_node(ni); 1978 return 0; 1979 } 1980 1981 static void 1982 iwi_start_locked(struct ifnet *ifp) 1983 { 1984 struct iwi_softc *sc = ifp->if_softc; 1985 struct mbuf *m; 1986 struct ieee80211_node *ni; 1987 int ac; 1988 1989 IWI_LOCK_ASSERT(sc); 1990 1991 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1992 return; 1993 1994 for (;;) { 1995 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1996 if (m == NULL) 1997 break; 1998 ac = M_WME_GETAC(m); 1999 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 2000 /* there is no place left in this ring; tail drop */ 2001 /* XXX tail drop */ 2002 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2003 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2004 break; 2005 } 2006 2007 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2008 if (iwi_tx_start(ifp, m, ni, ac) != 0) { 2009 ieee80211_free_node(ni); 2010 ifp->if_oerrors++; 2011 break; 2012 } 2013 2014 sc->sc_tx_timer = 5; 2015 } 2016 } 2017 2018 static void 2019 iwi_start(struct ifnet *ifp) 2020 { 2021 struct iwi_softc *sc = ifp->if_softc; 2022 IWI_LOCK_DECL; 2023 2024 IWI_LOCK(sc); 2025 iwi_start_locked(ifp); 2026 IWI_UNLOCK(sc); 2027 } 2028 2029 static void 2030 iwi_watchdog(void *arg) 2031 { 2032 struct iwi_softc *sc = arg; 2033 struct ifnet *ifp = sc->sc_ifp; 2034 struct ieee80211com *ic = ifp->if_l2com; 2035 2036 IWI_LOCK_ASSERT(sc); 2037 2038 if (sc->sc_tx_timer > 0) { 2039 if (--sc->sc_tx_timer == 0) { 2040 if_printf(ifp, "device timeout\n"); 2041 ifp->if_oerrors++; 2042 ieee80211_runtask(ic, &sc->sc_restarttask); 2043 } 2044 } 2045 if (sc->sc_state_timer > 0) { 2046 if (--sc->sc_state_timer == 0) { 2047 if_printf(ifp, "firmware stuck in state %d, resetting\n", 2048 sc->fw_state); 2049 if (sc->fw_state == IWI_FW_SCANNING) { 2050 struct ieee80211com *ic = ifp->if_l2com; 2051 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2052 } 2053 ieee80211_runtask(ic, &sc->sc_restarttask); 2054 sc->sc_state_timer = 3; 2055 } 2056 } 2057 if (sc->sc_busy_timer > 0) { 2058 if (--sc->sc_busy_timer == 0) { 2059 if_printf(ifp, "firmware command timeout, resetting\n"); 2060 ieee80211_runtask(ic, &sc->sc_restarttask); 2061 } 2062 } 2063 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2064 } 2065 2066 static int 2067 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2068 { 2069 struct iwi_softc *sc = ifp->if_softc; 2070 struct ieee80211com *ic = ifp->if_l2com; 2071 struct ifreq *ifr = (struct ifreq *) data; 2072 int error = 0, startall = 0; 2073 IWI_LOCK_DECL; 2074 2075 switch (cmd) { 2076 case SIOCSIFFLAGS: 2077 IWI_LOCK(sc); 2078 if (ifp->if_flags & IFF_UP) { 2079 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2080 iwi_init_locked(sc); 2081 startall = 1; 2082 } 2083 } else { 2084 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2085 iwi_stop_locked(sc); 2086 } 2087 IWI_UNLOCK(sc); 2088 if (startall) 2089 ieee80211_start_all(ic); 2090 break; 2091 case SIOCGIFMEDIA: 2092 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2093 break; 2094 case SIOCGIFADDR: 2095 error = ether_ioctl(ifp, cmd, data); 2096 break; 2097 case SIOCGIWISTATS: 2098 IWI_LOCK(sc); 2099 /* XXX validate permissions/memory/etc? */ 2100 error = copyout(&sc->sc_linkqual, ifr->ifr_data, 2101 sizeof(struct iwi_notif_link_quality)); 2102 IWI_UNLOCK(sc); 2103 break; 2104 case SIOCZIWISTATS: 2105 IWI_LOCK(sc); 2106 memset(&sc->sc_linkqual, 0, 2107 sizeof(struct iwi_notif_link_quality)); 2108 IWI_UNLOCK(sc); 2109 error = 0; 2110 break; 2111 default: 2112 error = EINVAL; 2113 break; 2114 } 2115 return error; 2116 } 2117 2118 static void 2119 iwi_stop_master(struct iwi_softc *sc) 2120 { 2121 uint32_t tmp; 2122 int ntries; 2123 2124 /* disable interrupts */ 2125 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2126 2127 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2128 for (ntries = 0; ntries < 5; ntries++) { 2129 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2130 break; 2131 DELAY(10); 2132 } 2133 if (ntries == 5) 2134 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2135 2136 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2137 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2138 2139 sc->flags &= ~IWI_FLAG_FW_INITED; 2140 } 2141 2142 static int 2143 iwi_reset(struct iwi_softc *sc) 2144 { 2145 uint32_t tmp; 2146 int i, ntries; 2147 2148 iwi_stop_master(sc); 2149 2150 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2151 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2152 2153 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2154 2155 /* wait for clock stabilization */ 2156 for (ntries = 0; ntries < 1000; ntries++) { 2157 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2158 break; 2159 DELAY(200); 2160 } 2161 if (ntries == 1000) { 2162 device_printf(sc->sc_dev, 2163 "timeout waiting for clock stabilization\n"); 2164 return EIO; 2165 } 2166 2167 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2168 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2169 2170 DELAY(10); 2171 2172 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2173 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2174 2175 /* clear NIC memory */ 2176 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2177 for (i = 0; i < 0xc000; i++) 2178 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2179 2180 return 0; 2181 } 2182 2183 static const struct iwi_firmware_ohdr * 2184 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2185 { 2186 const struct firmware *fp = fw->fp; 2187 const struct iwi_firmware_ohdr *hdr; 2188 2189 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2190 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2191 return NULL; 2192 } 2193 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2194 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2195 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2196 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2197 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2198 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2199 IWI_FW_REQ_MINOR); 2200 return NULL; 2201 } 2202 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2203 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2204 fw->name = fp->name; 2205 return hdr; 2206 } 2207 2208 static const struct iwi_firmware_ohdr * 2209 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2210 { 2211 const struct iwi_firmware_ohdr *hdr; 2212 2213 hdr = iwi_setup_ofw(sc, fw); 2214 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2215 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2216 fw->name); 2217 hdr = NULL; 2218 } 2219 return hdr; 2220 } 2221 2222 static void 2223 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2224 struct iwi_fw *uc, const char *ucname) 2225 { 2226 if (fw->fp == NULL) 2227 fw->fp = firmware_get(fwname); 2228 /* NB: pre-3.0 ucode is packaged separately */ 2229 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2230 uc->fp = firmware_get(ucname); 2231 } 2232 2233 /* 2234 * Get the required firmware images if not already loaded. 2235 * Note that we hold firmware images so long as the device 2236 * is marked up in case we need to reload them on device init. 2237 * This is necessary because we re-init the device sometimes 2238 * from a context where we cannot read from the filesystem 2239 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2240 * XXX return 0 on success, 1 on error. 2241 * 2242 * NB: the order of get'ing and put'ing images here is 2243 * intentional to support handling firmware images bundled 2244 * by operating mode and/or all together in one file with 2245 * the boot firmware as "master". 2246 */ 2247 static int 2248 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2249 { 2250 const struct iwi_firmware_hdr *hdr; 2251 const struct firmware *fp; 2252 2253 /* invalidate cached firmware on mode change */ 2254 if (sc->fw_mode != opmode) 2255 iwi_put_firmware(sc); 2256 2257 switch (opmode) { 2258 case IEEE80211_M_STA: 2259 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2260 break; 2261 case IEEE80211_M_IBSS: 2262 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2263 break; 2264 case IEEE80211_M_MONITOR: 2265 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2266 &sc->fw_uc, "iwi_ucode_monitor"); 2267 break; 2268 default: 2269 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 2270 return EINVAL; 2271 } 2272 fp = sc->fw_fw.fp; 2273 if (fp == NULL) { 2274 device_printf(sc->sc_dev, "could not load firmware\n"); 2275 goto bad; 2276 } 2277 if (fp->version < 300) { 2278 /* 2279 * Firmware prior to 3.0 was packaged as separate 2280 * boot, firmware, and ucode images. Verify the 2281 * ucode image was read in, retrieve the boot image 2282 * if needed, and check version stamps for consistency. 2283 * The version stamps in the data are also checked 2284 * above; this is a bit paranoid but is a cheap 2285 * safeguard against mis-packaging. 2286 */ 2287 if (sc->fw_uc.fp == NULL) { 2288 device_printf(sc->sc_dev, "could not load ucode\n"); 2289 goto bad; 2290 } 2291 if (sc->fw_boot.fp == NULL) { 2292 sc->fw_boot.fp = firmware_get("iwi_boot"); 2293 if (sc->fw_boot.fp == NULL) { 2294 device_printf(sc->sc_dev, 2295 "could not load boot firmware\n"); 2296 goto bad; 2297 } 2298 } 2299 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2300 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2301 device_printf(sc->sc_dev, 2302 "firmware version mismatch: " 2303 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2304 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2305 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2306 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2307 ); 2308 goto bad; 2309 } 2310 /* 2311 * Check and setup each image. 2312 */ 2313 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2314 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2315 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2316 goto bad; 2317 } else { 2318 /* 2319 * Check and setup combined image. 2320 */ 2321 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2322 device_printf(sc->sc_dev, "image '%s' too small\n", 2323 fp->name); 2324 goto bad; 2325 } 2326 hdr = (const struct iwi_firmware_hdr *)fp->data; 2327 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2328 + le32toh(hdr->fsize)) { 2329 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2330 fp->name); 2331 goto bad; 2332 } 2333 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2334 sc->fw_boot.size = le32toh(hdr->bsize); 2335 sc->fw_boot.name = fp->name; 2336 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2337 sc->fw_uc.size = le32toh(hdr->usize); 2338 sc->fw_uc.name = fp->name; 2339 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2340 sc->fw_fw.size = le32toh(hdr->fsize); 2341 sc->fw_fw.name = fp->name; 2342 } 2343 #if 0 2344 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2345 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2346 #endif 2347 2348 sc->fw_mode = opmode; 2349 return 0; 2350 bad: 2351 iwi_put_firmware(sc); 2352 return 1; 2353 } 2354 2355 static void 2356 iwi_put_fw(struct iwi_fw *fw) 2357 { 2358 if (fw->fp != NULL) { 2359 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2360 fw->fp = NULL; 2361 } 2362 fw->data = NULL; 2363 fw->size = 0; 2364 fw->name = NULL; 2365 } 2366 2367 /* 2368 * Release any cached firmware images. 2369 */ 2370 static void 2371 iwi_put_firmware(struct iwi_softc *sc) 2372 { 2373 iwi_put_fw(&sc->fw_uc); 2374 iwi_put_fw(&sc->fw_fw); 2375 iwi_put_fw(&sc->fw_boot); 2376 } 2377 2378 static int 2379 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2380 { 2381 uint32_t tmp; 2382 const uint16_t *w; 2383 const char *uc = fw->data; 2384 size_t size = fw->size; 2385 int i, ntries, error; 2386 2387 IWI_LOCK_ASSERT(sc); 2388 error = 0; 2389 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2390 IWI_RST_STOP_MASTER); 2391 for (ntries = 0; ntries < 5; ntries++) { 2392 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2393 break; 2394 DELAY(10); 2395 } 2396 if (ntries == 5) { 2397 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2398 error = EIO; 2399 goto fail; 2400 } 2401 2402 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2403 DELAY(5000); 2404 2405 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2406 tmp &= ~IWI_RST_PRINCETON_RESET; 2407 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2408 2409 DELAY(5000); 2410 MEM_WRITE_4(sc, 0x3000e0, 0); 2411 DELAY(1000); 2412 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2413 DELAY(1000); 2414 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2415 DELAY(1000); 2416 MEM_WRITE_1(sc, 0x200000, 0x00); 2417 MEM_WRITE_1(sc, 0x200000, 0x40); 2418 DELAY(1000); 2419 2420 /* write microcode into adapter memory */ 2421 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2422 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2423 2424 MEM_WRITE_1(sc, 0x200000, 0x00); 2425 MEM_WRITE_1(sc, 0x200000, 0x80); 2426 2427 /* wait until we get an answer */ 2428 for (ntries = 0; ntries < 100; ntries++) { 2429 if (MEM_READ_1(sc, 0x200000) & 1) 2430 break; 2431 DELAY(100); 2432 } 2433 if (ntries == 100) { 2434 device_printf(sc->sc_dev, 2435 "timeout waiting for ucode to initialize\n"); 2436 error = EIO; 2437 goto fail; 2438 } 2439 2440 /* read the answer or the firmware will not initialize properly */ 2441 for (i = 0; i < 7; i++) 2442 MEM_READ_4(sc, 0x200004); 2443 2444 MEM_WRITE_1(sc, 0x200000, 0x00); 2445 2446 fail: 2447 return error; 2448 } 2449 2450 /* macro to handle unaligned little endian data in firmware image */ 2451 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2452 2453 static int 2454 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2455 { 2456 u_char *p, *end; 2457 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2458 int ntries, error; 2459 2460 IWI_LOCK_ASSERT(sc); 2461 2462 /* copy firmware image to DMA memory */ 2463 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2464 2465 /* make sure the adapter will get up-to-date values */ 2466 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2467 2468 /* tell the adapter where the command blocks are stored */ 2469 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2470 2471 /* 2472 * Store command blocks into adapter's internal memory using register 2473 * indirections. The adapter will read the firmware image through DMA 2474 * using information stored in command blocks. 2475 */ 2476 src = sc->fw_physaddr; 2477 p = sc->fw_virtaddr; 2478 end = p + fw->size; 2479 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2480 2481 while (p < end) { 2482 dst = GETLE32(p); p += 4; src += 4; 2483 len = GETLE32(p); p += 4; src += 4; 2484 p += len; 2485 2486 while (len > 0) { 2487 mlen = min(len, IWI_CB_MAXDATALEN); 2488 2489 ctl = IWI_CB_DEFAULT_CTL | mlen; 2490 sum = ctl ^ src ^ dst; 2491 2492 /* write a command block */ 2493 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2494 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2495 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2496 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2497 2498 src += mlen; 2499 dst += mlen; 2500 len -= mlen; 2501 } 2502 } 2503 2504 /* write a fictive final command block (sentinel) */ 2505 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2506 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2507 2508 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2509 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2510 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2511 2512 /* tell the adapter to start processing command blocks */ 2513 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2514 2515 /* wait until the adapter reaches the sentinel */ 2516 for (ntries = 0; ntries < 400; ntries++) { 2517 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2518 break; 2519 DELAY(100); 2520 } 2521 /* sync dma, just in case */ 2522 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2523 if (ntries == 400) { 2524 device_printf(sc->sc_dev, 2525 "timeout processing command blocks for %s firmware\n", 2526 fw->name); 2527 return EIO; 2528 } 2529 2530 /* we're done with command blocks processing */ 2531 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2532 2533 /* allow interrupts so we know when the firmware is ready */ 2534 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2535 2536 /* tell the adapter to initialize the firmware */ 2537 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2538 2539 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2540 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2541 2542 /* wait at most one second for firmware initialization to complete */ 2543 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2544 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2545 "initialization to complete\n", fw->name); 2546 } 2547 2548 return error; 2549 } 2550 2551 static int 2552 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2553 { 2554 uint32_t data; 2555 2556 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2557 /* XXX set more fine-grained operation */ 2558 data = htole32(IWI_POWER_MODE_MAX); 2559 } else 2560 data = htole32(IWI_POWER_MODE_CAM); 2561 2562 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2563 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2564 } 2565 2566 static int 2567 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2568 { 2569 struct iwi_wep_key wepkey; 2570 struct ieee80211_key *wk; 2571 int error, i; 2572 2573 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2574 wk = &vap->iv_nw_keys[i]; 2575 2576 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2577 wepkey.idx = i; 2578 wepkey.len = wk->wk_keylen; 2579 memset(wepkey.key, 0, sizeof wepkey.key); 2580 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2581 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2582 wepkey.len)); 2583 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2584 sizeof wepkey); 2585 if (error != 0) 2586 return error; 2587 } 2588 return 0; 2589 } 2590 2591 static int 2592 iwi_config(struct iwi_softc *sc) 2593 { 2594 struct ifnet *ifp = sc->sc_ifp; 2595 struct ieee80211com *ic = ifp->if_l2com; 2596 struct iwi_configuration config; 2597 struct iwi_rateset rs; 2598 struct iwi_txpower power; 2599 uint32_t data; 2600 int error, i; 2601 2602 IWI_LOCK_ASSERT(sc); 2603 2604 DPRINTF(("Setting MAC address to %6D\n", IF_LLADDR(ifp), ":")); 2605 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp), 2606 IEEE80211_ADDR_LEN); 2607 if (error != 0) 2608 return error; 2609 2610 memset(&config, 0, sizeof config); 2611 config.bluetooth_coexistence = sc->bluetooth; 2612 config.silence_threshold = 0x1e; 2613 config.antenna = sc->antenna; 2614 config.multicast_enabled = 1; 2615 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2616 config.disable_unicast_decryption = 1; 2617 config.disable_multicast_decryption = 1; 2618 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2619 config.allow_invalid_frames = 1; 2620 config.allow_beacon_and_probe_resp = 1; 2621 config.allow_mgt = 1; 2622 } 2623 DPRINTF(("Configuring adapter\n")); 2624 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2625 if (error != 0) 2626 return error; 2627 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2628 power.mode = IWI_MODE_11B; 2629 power.nchan = 11; 2630 for (i = 0; i < 11; i++) { 2631 power.chan[i].chan = i + 1; 2632 power.chan[i].power = IWI_TXPOWER_MAX; 2633 } 2634 DPRINTF(("Setting .11b channels tx power\n")); 2635 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2636 if (error != 0) 2637 return error; 2638 2639 power.mode = IWI_MODE_11G; 2640 DPRINTF(("Setting .11g channels tx power\n")); 2641 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2642 if (error != 0) 2643 return error; 2644 } 2645 2646 memset(&rs, 0, sizeof rs); 2647 rs.mode = IWI_MODE_11G; 2648 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2649 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; 2650 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, 2651 rs.nrates); 2652 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); 2653 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2654 if (error != 0) 2655 return error; 2656 2657 memset(&rs, 0, sizeof rs); 2658 rs.mode = IWI_MODE_11A; 2659 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2660 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; 2661 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, 2662 rs.nrates); 2663 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); 2664 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2665 if (error != 0) 2666 return error; 2667 2668 data = htole32(arc4random()); 2669 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2670 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2671 if (error != 0) 2672 return error; 2673 2674 /* enable adapter */ 2675 DPRINTF(("Enabling adapter\n")); 2676 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2677 } 2678 2679 static __inline void 2680 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2681 { 2682 uint8_t *st = &scan->scan_type[ix / 2]; 2683 if (ix % 2) 2684 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2685 else 2686 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2687 } 2688 2689 static int 2690 scan_type(const struct ieee80211_scan_state *ss, 2691 const struct ieee80211_channel *chan) 2692 { 2693 /* We can only set one essid for a directed scan */ 2694 if (ss->ss_nssid != 0) 2695 return IWI_SCAN_TYPE_BDIRECTED; 2696 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2697 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2698 return IWI_SCAN_TYPE_BROADCAST; 2699 return IWI_SCAN_TYPE_PASSIVE; 2700 } 2701 2702 static __inline int 2703 scan_band(const struct ieee80211_channel *c) 2704 { 2705 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2706 } 2707 2708 static void 2709 iwi_monitor_scan(void *arg, int npending) 2710 { 2711 struct iwi_softc *sc = arg; 2712 IWI_LOCK_DECL; 2713 2714 IWI_LOCK(sc); 2715 (void) iwi_scanchan(sc, 2000, 0); 2716 IWI_UNLOCK(sc); 2717 } 2718 2719 /* 2720 * Start a scan on the current channel or all channels. 2721 */ 2722 static int 2723 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) 2724 { 2725 struct ieee80211com *ic; 2726 struct ieee80211_channel *chan; 2727 struct ieee80211_scan_state *ss; 2728 struct iwi_scan_ext scan; 2729 int error = 0; 2730 2731 IWI_LOCK_ASSERT(sc); 2732 if (sc->fw_state == IWI_FW_SCANNING) { 2733 /* 2734 * This should not happen as we only trigger scan_next after 2735 * completion 2736 */ 2737 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2738 return (EBUSY); 2739 } 2740 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2741 2742 ic = sc->sc_ifp->if_l2com; 2743 ss = ic->ic_scan; 2744 2745 memset(&scan, 0, sizeof scan); 2746 scan.full_scan_index = htole32(++sc->sc_scangen); 2747 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2748 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2749 /* 2750 * Use very short dwell times for when we send probe request 2751 * frames. Without this bg scans hang. Ideally this should 2752 * be handled with early-termination as done by net80211 but 2753 * that's not feasible (aborting a scan is problematic). 2754 */ 2755 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2756 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2757 } else { 2758 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2759 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2760 } 2761 2762 /* We can only set one essid for a directed scan */ 2763 if (ss->ss_nssid != 0) { 2764 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2765 ss->ss_ssid[0].len); 2766 if (error) 2767 return (error); 2768 } 2769 2770 if (allchan) { 2771 int i, next, band, b, bstart; 2772 /* 2773 * Convert scan list to run-length encoded channel list 2774 * the firmware requires (preserving the order setup by 2775 * net80211). The first entry in each run specifies the 2776 * band and the count of items in the run. 2777 */ 2778 next = 0; /* next open slot */ 2779 bstart = 0; /* NB: not needed, silence compiler */ 2780 band = -1; /* NB: impossible value */ 2781 KASSERT(ss->ss_last > 0, ("no channels")); 2782 for (i = 0; i < ss->ss_last; i++) { 2783 chan = ss->ss_chans[i]; 2784 b = scan_band(chan); 2785 if (b != band) { 2786 if (band != -1) 2787 scan.channels[bstart] = 2788 (next - bstart) | band; 2789 /* NB: this allocates a slot for the run-len */ 2790 band = b, bstart = next++; 2791 } 2792 if (next >= IWI_SCAN_CHANNELS) { 2793 DPRINTF(("truncating scan list\n")); 2794 break; 2795 } 2796 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2797 set_scan_type(&scan, next, scan_type(ss, chan)); 2798 next++; 2799 } 2800 scan.channels[bstart] = (next - bstart) | band; 2801 } else { 2802 /* Scan the current channel only */ 2803 chan = ic->ic_curchan; 2804 scan.channels[0] = 1 | scan_band(chan); 2805 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2806 set_scan_type(&scan, 1, scan_type(ss, chan)); 2807 } 2808 #ifdef IWI_DEBUG 2809 if (iwi_debug > 0) { 2810 static const char *scantype[8] = 2811 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2812 int i; 2813 printf("Scan request: index %u dwell %d/%d/%d\n" 2814 , le32toh(scan.full_scan_index) 2815 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2816 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2817 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2818 ); 2819 i = 0; 2820 do { 2821 int run = scan.channels[i]; 2822 if (run == 0) 2823 break; 2824 printf("Scan %d %s channels:", run & 0x3f, 2825 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2826 for (run &= 0x3f, i++; run > 0; run--, i++) { 2827 uint8_t type = scan.scan_type[i/2]; 2828 printf(" %u/%s", scan.channels[i], 2829 scantype[(i & 1 ? type : type>>4) & 7]); 2830 } 2831 printf("\n"); 2832 } while (i < IWI_SCAN_CHANNELS); 2833 } 2834 #endif 2835 2836 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2837 } 2838 2839 static int 2840 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2841 { 2842 struct iwi_sensitivity sens; 2843 2844 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2845 2846 memset(&sens, 0, sizeof sens); 2847 sens.rssi = htole16(rssi_dbm); 2848 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2849 } 2850 2851 static int 2852 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2853 { 2854 struct ieee80211com *ic = vap->iv_ic; 2855 struct ifnet *ifp = vap->iv_ifp; 2856 struct ieee80211_node *ni; 2857 struct iwi_configuration config; 2858 struct iwi_associate *assoc = &sc->assoc; 2859 struct iwi_rateset rs; 2860 uint16_t capinfo; 2861 uint32_t data; 2862 int error, mode; 2863 2864 IWI_LOCK_ASSERT(sc); 2865 2866 ni = ieee80211_ref_node(vap->iv_bss); 2867 2868 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2869 DPRINTF(("Already associated\n")); 2870 return (-1); 2871 } 2872 2873 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2874 error = 0; 2875 mode = 0; 2876 2877 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2878 mode = IWI_MODE_11A; 2879 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2880 mode = IWI_MODE_11G; 2881 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2882 mode = IWI_MODE_11B; 2883 2884 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2885 memset(&config, 0, sizeof config); 2886 config.bluetooth_coexistence = sc->bluetooth; 2887 config.antenna = sc->antenna; 2888 config.multicast_enabled = 1; 2889 if (mode == IWI_MODE_11G) 2890 config.use_protection = 1; 2891 config.answer_pbreq = 2892 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2893 config.disable_unicast_decryption = 1; 2894 config.disable_multicast_decryption = 1; 2895 DPRINTF(("Configuring adapter\n")); 2896 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2897 if (error != 0) 2898 goto done; 2899 } 2900 2901 #ifdef IWI_DEBUG 2902 if (iwi_debug > 0) { 2903 printf("Setting ESSID to "); 2904 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2905 printf("\n"); 2906 } 2907 #endif 2908 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2909 if (error != 0) 2910 goto done; 2911 2912 error = iwi_setpowermode(sc, vap); 2913 if (error != 0) 2914 goto done; 2915 2916 data = htole32(vap->iv_rtsthreshold); 2917 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2918 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2919 if (error != 0) 2920 goto done; 2921 2922 data = htole32(vap->iv_fragthreshold); 2923 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2924 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2925 if (error != 0) 2926 goto done; 2927 2928 /* the rate set has already been "negotiated" */ 2929 memset(&rs, 0, sizeof rs); 2930 rs.mode = mode; 2931 rs.type = IWI_RATESET_TYPE_NEGOTIATED; 2932 rs.nrates = ni->ni_rates.rs_nrates; 2933 if (rs.nrates > IWI_RATESET_SIZE) { 2934 DPRINTF(("Truncating negotiated rate set from %u\n", 2935 rs.nrates)); 2936 rs.nrates = IWI_RATESET_SIZE; 2937 } 2938 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); 2939 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); 2940 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2941 if (error != 0) 2942 goto done; 2943 2944 memset(assoc, 0, sizeof *assoc); 2945 2946 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2947 /* NB: don't treat WME setup as failure */ 2948 if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0) 2949 assoc->policy |= htole16(IWI_POLICY_WME); 2950 /* XXX complain on failure? */ 2951 } 2952 2953 if (vap->iv_appie_wpa != NULL) { 2954 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2955 2956 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2957 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2958 if (error != 0) 2959 goto done; 2960 } 2961 2962 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2963 if (error != 0) 2964 goto done; 2965 2966 assoc->mode = mode; 2967 assoc->chan = ic->ic_curchan->ic_ieee; 2968 /* 2969 * NB: do not arrange for shared key auth w/o privacy 2970 * (i.e. a wep key); it causes a firmware error. 2971 */ 2972 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2973 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2974 assoc->auth = IWI_AUTH_SHARED; 2975 /* 2976 * It's possible to have privacy marked but no default 2977 * key setup. This typically is due to a user app bug 2978 * but if we blindly grab the key the firmware will 2979 * barf so avoid it for now. 2980 */ 2981 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2982 assoc->auth |= vap->iv_def_txkey << 4; 2983 2984 error = iwi_setwepkeys(sc, vap); 2985 if (error != 0) 2986 goto done; 2987 } 2988 if (vap->iv_flags & IEEE80211_F_WPA) 2989 assoc->policy |= htole16(IWI_POLICY_WPA); 2990 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2991 assoc->type = IWI_HC_IBSS_START; 2992 else 2993 assoc->type = IWI_HC_ASSOC; 2994 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2995 2996 if (vap->iv_opmode == IEEE80211_M_IBSS) 2997 capinfo = IEEE80211_CAPINFO_IBSS; 2998 else 2999 capinfo = IEEE80211_CAPINFO_ESS; 3000 if (vap->iv_flags & IEEE80211_F_PRIVACY) 3001 capinfo |= IEEE80211_CAPINFO_PRIVACY; 3002 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3003 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 3004 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 3005 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 3006 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 3007 assoc->capinfo = htole16(capinfo); 3008 3009 assoc->lintval = htole16(ic->ic_lintval); 3010 assoc->intval = htole16(ni->ni_intval); 3011 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 3012 if (vap->iv_opmode == IEEE80211_M_IBSS) 3013 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 3014 else 3015 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 3016 3017 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 3018 "auth %u capinfo 0x%x lintval %u bintval %u\n", 3019 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 3020 assoc->bssid, ":", assoc->dst, ":", 3021 assoc->chan, le16toh(assoc->policy), assoc->auth, 3022 le16toh(assoc->capinfo), le16toh(assoc->lintval), 3023 le16toh(assoc->intval))); 3024 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3025 done: 3026 ieee80211_free_node(ni); 3027 if (error) 3028 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 3029 3030 return (error); 3031 } 3032 3033 static void 3034 iwi_disassoc(void *arg, int pending) 3035 { 3036 struct iwi_softc *sc = arg; 3037 IWI_LOCK_DECL; 3038 3039 IWI_LOCK(sc); 3040 iwi_disassociate(sc, 0); 3041 IWI_UNLOCK(sc); 3042 } 3043 3044 static int 3045 iwi_disassociate(struct iwi_softc *sc, int quiet) 3046 { 3047 struct iwi_associate *assoc = &sc->assoc; 3048 3049 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 3050 DPRINTF(("Not associated\n")); 3051 return (-1); 3052 } 3053 3054 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3055 3056 if (quiet) 3057 assoc->type = IWI_HC_DISASSOC_QUIET; 3058 else 3059 assoc->type = IWI_HC_DISASSOC; 3060 3061 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3062 assoc->bssid, ":", assoc->chan)); 3063 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3064 } 3065 3066 /* 3067 * release dma resources for the firmware 3068 */ 3069 static void 3070 iwi_release_fw_dma(struct iwi_softc *sc) 3071 { 3072 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3073 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3074 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3075 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3076 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3077 bus_dma_tag_destroy(sc->fw_dmat); 3078 3079 sc->fw_flags = 0; 3080 sc->fw_dma_size = 0; 3081 sc->fw_dmat = NULL; 3082 sc->fw_map = NULL; 3083 sc->fw_physaddr = 0; 3084 sc->fw_virtaddr = NULL; 3085 } 3086 3087 /* 3088 * allocate the dma descriptor for the firmware. 3089 * Return 0 on success, 1 on error. 3090 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3091 */ 3092 static int 3093 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3094 { 3095 if (sc->fw_dma_size >= size) 3096 return 0; 3097 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3098 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3099 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3100 device_printf(sc->sc_dev, 3101 "could not create firmware DMA tag\n"); 3102 goto error; 3103 } 3104 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3105 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3106 &sc->fw_map) != 0) { 3107 device_printf(sc->sc_dev, 3108 "could not allocate firmware DMA memory\n"); 3109 goto error; 3110 } 3111 sc->fw_flags |= IWI_FW_HAVE_MAP; 3112 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3113 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3114 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3115 goto error; 3116 } 3117 sc->fw_flags |= IWI_FW_HAVE_PHY; 3118 sc->fw_dma_size = size; 3119 return 0; 3120 3121 error: 3122 iwi_release_fw_dma(sc); 3123 return 1; 3124 } 3125 3126 static void 3127 iwi_init_locked(struct iwi_softc *sc) 3128 { 3129 struct ifnet *ifp = sc->sc_ifp; 3130 struct iwi_rx_data *data; 3131 int i; 3132 3133 IWI_LOCK_ASSERT(sc); 3134 3135 if (sc->fw_state == IWI_FW_LOADING) { 3136 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3137 return; /* XXX: condvar? */ 3138 } 3139 3140 iwi_stop_locked(sc); 3141 3142 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3143 3144 if (iwi_reset(sc) != 0) { 3145 device_printf(sc->sc_dev, "could not reset adapter\n"); 3146 goto fail; 3147 } 3148 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3149 device_printf(sc->sc_dev, 3150 "could not load boot firmware %s\n", sc->fw_boot.name); 3151 goto fail; 3152 } 3153 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3154 device_printf(sc->sc_dev, 3155 "could not load microcode %s\n", sc->fw_uc.name); 3156 goto fail; 3157 } 3158 3159 iwi_stop_master(sc); 3160 3161 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3162 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3163 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3164 3165 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3166 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3167 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3168 3169 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3170 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3171 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3172 3173 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3174 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3175 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3176 3177 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3178 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3179 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3180 3181 for (i = 0; i < sc->rxq.count; i++) { 3182 data = &sc->rxq.data[i]; 3183 CSR_WRITE_4(sc, data->reg, data->physaddr); 3184 } 3185 3186 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3187 3188 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3189 device_printf(sc->sc_dev, 3190 "could not load main firmware %s\n", sc->fw_fw.name); 3191 goto fail; 3192 } 3193 sc->flags |= IWI_FLAG_FW_INITED; 3194 3195 IWI_STATE_END(sc, IWI_FW_LOADING); 3196 3197 if (iwi_config(sc) != 0) { 3198 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3199 goto fail2; 3200 } 3201 3202 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3203 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3204 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3205 return; 3206 fail: 3207 IWI_STATE_END(sc, IWI_FW_LOADING); 3208 fail2: 3209 iwi_stop_locked(sc); 3210 } 3211 3212 static void 3213 iwi_init(void *priv) 3214 { 3215 struct iwi_softc *sc = priv; 3216 struct ifnet *ifp = sc->sc_ifp; 3217 struct ieee80211com *ic = ifp->if_l2com; 3218 IWI_LOCK_DECL; 3219 3220 IWI_LOCK(sc); 3221 iwi_init_locked(sc); 3222 IWI_UNLOCK(sc); 3223 3224 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3225 ieee80211_start_all(ic); 3226 } 3227 3228 static void 3229 iwi_stop_locked(void *priv) 3230 { 3231 struct iwi_softc *sc = priv; 3232 struct ifnet *ifp = sc->sc_ifp; 3233 3234 IWI_LOCK_ASSERT(sc); 3235 3236 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3237 3238 if (sc->sc_softled) { 3239 callout_stop(&sc->sc_ledtimer); 3240 sc->sc_blinking = 0; 3241 } 3242 callout_stop(&sc->sc_wdtimer); 3243 callout_stop(&sc->sc_rftimer); 3244 3245 iwi_stop_master(sc); 3246 3247 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3248 3249 /* reset rings */ 3250 iwi_reset_cmd_ring(sc, &sc->cmdq); 3251 iwi_reset_tx_ring(sc, &sc->txq[0]); 3252 iwi_reset_tx_ring(sc, &sc->txq[1]); 3253 iwi_reset_tx_ring(sc, &sc->txq[2]); 3254 iwi_reset_tx_ring(sc, &sc->txq[3]); 3255 iwi_reset_rx_ring(sc, &sc->rxq); 3256 3257 sc->sc_tx_timer = 0; 3258 sc->sc_state_timer = 0; 3259 sc->sc_busy_timer = 0; 3260 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3261 sc->fw_state = IWI_FW_IDLE; 3262 wakeup(sc); 3263 } 3264 3265 static void 3266 iwi_stop(struct iwi_softc *sc) 3267 { 3268 IWI_LOCK_DECL; 3269 3270 IWI_LOCK(sc); 3271 iwi_stop_locked(sc); 3272 IWI_UNLOCK(sc); 3273 } 3274 3275 static void 3276 iwi_restart(void *arg, int npending) 3277 { 3278 struct iwi_softc *sc = arg; 3279 3280 iwi_init(sc); 3281 } 3282 3283 /* 3284 * Return whether or not the radio is enabled in hardware 3285 * (i.e. the rfkill switch is "off"). 3286 */ 3287 static int 3288 iwi_getrfkill(struct iwi_softc *sc) 3289 { 3290 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3291 } 3292 3293 static void 3294 iwi_radio_on(void *arg, int pending) 3295 { 3296 struct iwi_softc *sc = arg; 3297 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3298 3299 device_printf(sc->sc_dev, "radio turned on\n"); 3300 3301 iwi_init(sc); 3302 ieee80211_notify_radio(ic, 1); 3303 } 3304 3305 static void 3306 iwi_rfkill_poll(void *arg) 3307 { 3308 struct iwi_softc *sc = arg; 3309 3310 IWI_LOCK_ASSERT(sc); 3311 3312 /* 3313 * Check for a change in rfkill state. We get an 3314 * interrupt when a radio is disabled but not when 3315 * it is enabled so we must poll for the latter. 3316 */ 3317 if (!iwi_getrfkill(sc)) { 3318 struct ifnet *ifp = sc->sc_ifp; 3319 struct ieee80211com *ic = ifp->if_l2com; 3320 3321 ieee80211_runtask(ic, &sc->sc_radiontask); 3322 return; 3323 } 3324 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3325 } 3326 3327 static void 3328 iwi_radio_off(void *arg, int pending) 3329 { 3330 struct iwi_softc *sc = arg; 3331 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3332 IWI_LOCK_DECL; 3333 3334 device_printf(sc->sc_dev, "radio turned off\n"); 3335 3336 ieee80211_notify_radio(ic, 0); 3337 3338 IWI_LOCK(sc); 3339 iwi_stop_locked(sc); 3340 iwi_rfkill_poll(sc); 3341 IWI_UNLOCK(sc); 3342 } 3343 3344 static int 3345 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3346 { 3347 struct iwi_softc *sc = arg1; 3348 uint32_t size, buf[128]; 3349 3350 memset(buf, 0, sizeof buf); 3351 3352 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3353 return SYSCTL_OUT(req, buf, sizeof buf); 3354 3355 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3356 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3357 3358 return SYSCTL_OUT(req, buf, size); 3359 } 3360 3361 static int 3362 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3363 { 3364 struct iwi_softc *sc = arg1; 3365 int val = !iwi_getrfkill(sc); 3366 3367 return SYSCTL_OUT(req, &val, sizeof val); 3368 } 3369 3370 /* 3371 * Add sysctl knobs. 3372 */ 3373 static void 3374 iwi_sysctlattach(struct iwi_softc *sc) 3375 { 3376 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3377 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3378 3379 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3380 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3381 "radio transmitter switch state (0=off, 1=on)"); 3382 3383 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3384 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3385 "statistics"); 3386 3387 sc->bluetooth = 0; 3388 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3389 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3390 3391 sc->antenna = IWI_ANTENNA_AUTO; 3392 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3393 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3394 } 3395 3396 /* 3397 * LED support. 3398 * 3399 * Different cards have different capabilities. Some have three 3400 * led's while others have only one. The linux ipw driver defines 3401 * led's for link state (associated or not), band (11a, 11g, 11b), 3402 * and for link activity. We use one led and vary the blink rate 3403 * according to the tx/rx traffic a la the ath driver. 3404 */ 3405 3406 static __inline uint32_t 3407 iwi_toggle_event(uint32_t r) 3408 { 3409 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3410 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3411 } 3412 3413 static uint32_t 3414 iwi_read_event(struct iwi_softc *sc) 3415 { 3416 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3417 } 3418 3419 static void 3420 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3421 { 3422 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3423 } 3424 3425 static void 3426 iwi_led_done(void *arg) 3427 { 3428 struct iwi_softc *sc = arg; 3429 3430 sc->sc_blinking = 0; 3431 } 3432 3433 /* 3434 * Turn the activity LED off: flip the pin and then set a timer so no 3435 * update will happen for the specified duration. 3436 */ 3437 static void 3438 iwi_led_off(void *arg) 3439 { 3440 struct iwi_softc *sc = arg; 3441 uint32_t v; 3442 3443 v = iwi_read_event(sc); 3444 v &= ~sc->sc_ledpin; 3445 iwi_write_event(sc, iwi_toggle_event(v)); 3446 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3447 } 3448 3449 /* 3450 * Blink the LED according to the specified on/off times. 3451 */ 3452 static void 3453 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3454 { 3455 uint32_t v; 3456 3457 v = iwi_read_event(sc); 3458 v |= sc->sc_ledpin; 3459 iwi_write_event(sc, iwi_toggle_event(v)); 3460 sc->sc_blinking = 1; 3461 sc->sc_ledoff = off; 3462 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3463 } 3464 3465 static void 3466 iwi_led_event(struct iwi_softc *sc, int event) 3467 { 3468 #define N(a) (sizeof(a)/sizeof(a[0])) 3469 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3470 static const struct { 3471 u_int rate; /* tx/rx iwi rate */ 3472 u_int16_t timeOn; /* LED on time (ms) */ 3473 u_int16_t timeOff; /* LED off time (ms) */ 3474 } blinkrates[] = { 3475 { IWI_RATE_OFDM54, 40, 10 }, 3476 { IWI_RATE_OFDM48, 44, 11 }, 3477 { IWI_RATE_OFDM36, 50, 13 }, 3478 { IWI_RATE_OFDM24, 57, 14 }, 3479 { IWI_RATE_OFDM18, 67, 16 }, 3480 { IWI_RATE_OFDM12, 80, 20 }, 3481 { IWI_RATE_DS11, 100, 25 }, 3482 { IWI_RATE_OFDM9, 133, 34 }, 3483 { IWI_RATE_OFDM6, 160, 40 }, 3484 { IWI_RATE_DS5, 200, 50 }, 3485 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3486 { IWI_RATE_DS2, 267, 66 }, 3487 { IWI_RATE_DS1, 400, 100 }, 3488 { 0, 500, 130 }, /* unknown rate/polling */ 3489 }; 3490 uint32_t txrate; 3491 int j = 0; /* XXX silence compiler */ 3492 3493 sc->sc_ledevent = ticks; /* time of last event */ 3494 if (sc->sc_blinking) /* don't interrupt active blink */ 3495 return; 3496 switch (event) { 3497 case IWI_LED_POLL: 3498 j = N(blinkrates)-1; 3499 break; 3500 case IWI_LED_TX: 3501 /* read current transmission rate from adapter */ 3502 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3503 if (blinkrates[sc->sc_txrix].rate != txrate) { 3504 for (j = 0; j < N(blinkrates)-1; j++) 3505 if (blinkrates[j].rate == txrate) 3506 break; 3507 sc->sc_txrix = j; 3508 } else 3509 j = sc->sc_txrix; 3510 break; 3511 case IWI_LED_RX: 3512 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3513 for (j = 0; j < N(blinkrates)-1; j++) 3514 if (blinkrates[j].rate == sc->sc_rxrate) 3515 break; 3516 sc->sc_rxrix = j; 3517 } else 3518 j = sc->sc_rxrix; 3519 break; 3520 } 3521 /* XXX beware of overflow */ 3522 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3523 (blinkrates[j].timeOff * hz) / 1000); 3524 #undef N 3525 } 3526 3527 static int 3528 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3529 { 3530 struct iwi_softc *sc = arg1; 3531 int softled = sc->sc_softled; 3532 int error; 3533 3534 error = sysctl_handle_int(oidp, &softled, 0, req); 3535 if (error || !req->newptr) 3536 return error; 3537 softled = (softled != 0); 3538 if (softled != sc->sc_softled) { 3539 if (softled) { 3540 uint32_t v = iwi_read_event(sc); 3541 v &= ~sc->sc_ledpin; 3542 iwi_write_event(sc, iwi_toggle_event(v)); 3543 } 3544 sc->sc_softled = softled; 3545 } 3546 return 0; 3547 } 3548 3549 static void 3550 iwi_ledattach(struct iwi_softc *sc) 3551 { 3552 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3553 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3554 3555 sc->sc_blinking = 0; 3556 sc->sc_ledstate = 1; 3557 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3558 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3559 3560 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3561 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3562 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3563 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3564 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3565 "pin setting to turn activity LED on"); 3566 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3567 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3568 "idle time for inactivity LED (ticks)"); 3569 /* XXX for debugging */ 3570 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3571 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3572 "NIC type from EEPROM"); 3573 3574 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3575 sc->sc_softled = 1; 3576 3577 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3578 if (sc->sc_nictype == 1) { 3579 /* 3580 * NB: led's are reversed. 3581 */ 3582 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3583 } 3584 } 3585 3586 static void 3587 iwi_scan_start(struct ieee80211com *ic) 3588 { 3589 /* ignore */ 3590 } 3591 3592 static void 3593 iwi_set_channel(struct ieee80211com *ic) 3594 { 3595 struct ifnet *ifp = ic->ic_ifp; 3596 struct iwi_softc *sc = ifp->if_softc; 3597 if (sc->fw_state == IWI_FW_IDLE) 3598 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3599 } 3600 3601 static void 3602 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3603 { 3604 struct ieee80211vap *vap = ss->ss_vap; 3605 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3606 struct iwi_softc *sc = ifp->if_softc; 3607 IWI_LOCK_DECL; 3608 3609 IWI_LOCK(sc); 3610 if (iwi_scanchan(sc, maxdwell, 0)) 3611 ieee80211_cancel_scan(vap); 3612 IWI_UNLOCK(sc); 3613 } 3614 3615 static void 3616 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3617 { 3618 /* NB: don't try to abort scan; wait for firmware to finish */ 3619 } 3620 3621 static void 3622 iwi_scan_end(struct ieee80211com *ic) 3623 { 3624 struct ifnet *ifp = ic->ic_ifp; 3625 struct iwi_softc *sc = ifp->if_softc; 3626 IWI_LOCK_DECL; 3627 3628 IWI_LOCK(sc); 3629 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 3630 /* NB: make sure we're still scanning */ 3631 if (sc->fw_state == IWI_FW_SCANNING) 3632 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 3633 IWI_UNLOCK(sc); 3634 } 3635