1 /*- 2 * Copyright (c) 2004, 2005 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /*- 34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/namei.h> 54 #include <sys/linker.h> 55 #include <sys/firmware.h> 56 #include <sys/taskqueue.h> 57 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 #include <dev/pci/pcireg.h> 63 #include <dev/pci/pcivar.h> 64 65 #include <net/bpf.h> 66 #include <net/if.h> 67 #include <net/if_arp.h> 68 #include <net/ethernet.h> 69 #include <net/if_dl.h> 70 #include <net/if_media.h> 71 #include <net/if_types.h> 72 73 #include <net80211/ieee80211_var.h> 74 #include <net80211/ieee80211_radiotap.h> 75 #include <net80211/ieee80211_input.h> 76 #include <net80211/ieee80211_regdomain.h> 77 78 #include <netinet/in.h> 79 #include <netinet/in_systm.h> 80 #include <netinet/in_var.h> 81 #include <netinet/ip.h> 82 #include <netinet/if_ether.h> 83 84 #include <dev/iwi/if_iwireg.h> 85 #include <dev/iwi/if_iwivar.h> 86 87 #define IWI_DEBUG 88 #ifdef IWI_DEBUG 89 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 90 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 91 int iwi_debug = 0; 92 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 93 94 static const char *iwi_fw_states[] = { 95 "IDLE", /* IWI_FW_IDLE */ 96 "LOADING", /* IWI_FW_LOADING */ 97 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 98 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 99 "SCANNING", /* IWI_FW_SCANNING */ 100 }; 101 #else 102 #define DPRINTF(x) 103 #define DPRINTFN(n, x) 104 #endif 105 106 MODULE_DEPEND(iwi, pci, 1, 1, 1); 107 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 108 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 109 110 enum { 111 IWI_LED_TX, 112 IWI_LED_RX, 113 IWI_LED_POLL, 114 }; 115 116 struct iwi_ident { 117 uint16_t vendor; 118 uint16_t device; 119 const char *name; 120 }; 121 122 static const struct iwi_ident iwi_ident_table[] = { 123 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 124 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 125 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 126 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 127 128 { 0, 0, NULL } 129 }; 130 131 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 132 const char name[IFNAMSIZ], int unit, int opmode, int flags, 133 const uint8_t bssid[IEEE80211_ADDR_LEN], 134 const uint8_t mac[IEEE80211_ADDR_LEN]); 135 static void iwi_vap_delete(struct ieee80211vap *); 136 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 137 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 138 int); 139 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 140 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 141 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 142 int, bus_addr_t, bus_addr_t); 143 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 144 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 145 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 146 int); 147 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 148 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 149 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 150 const uint8_t [IEEE80211_ADDR_LEN]); 151 static void iwi_node_free(struct ieee80211_node *); 152 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 153 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 154 static void iwi_wme_init(struct iwi_softc *); 155 static int iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *); 156 static void iwi_update_wme(void *, int); 157 static int iwi_wme_update(struct ieee80211com *); 158 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 159 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 160 struct iwi_frame *); 161 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 162 static void iwi_rx_intr(struct iwi_softc *); 163 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 164 static void iwi_intr(void *); 165 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 166 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 167 static int iwi_tx_start(struct ifnet *, struct mbuf *, 168 struct ieee80211_node *, int); 169 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 170 const struct ieee80211_bpf_params *); 171 static void iwi_start_locked(struct ifnet *); 172 static void iwi_start(struct ifnet *); 173 static void iwi_watchdog(void *); 174 static int iwi_ioctl(struct ifnet *, u_long, caddr_t); 175 static void iwi_stop_master(struct iwi_softc *); 176 static int iwi_reset(struct iwi_softc *); 177 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 178 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 179 static void iwi_release_fw_dma(struct iwi_softc *sc); 180 static int iwi_config(struct iwi_softc *); 181 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 182 static void iwi_put_firmware(struct iwi_softc *); 183 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 184 static void iwi_scan_start(struct ieee80211com *); 185 static void iwi_scan_end(struct ieee80211com *); 186 static void iwi_set_channel(struct ieee80211com *); 187 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 188 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 189 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 190 static void iwi_disassoc(void *, int); 191 static int iwi_disassociate(struct iwi_softc *, int quiet); 192 static void iwi_init_locked(struct iwi_softc *); 193 static void iwi_init(void *); 194 static int iwi_init_fw_dma(struct iwi_softc *, int); 195 static void iwi_stop_locked(void *); 196 static void iwi_stop(struct iwi_softc *); 197 static void iwi_restart(void *, int); 198 static int iwi_getrfkill(struct iwi_softc *); 199 static void iwi_radio_on(void *, int); 200 static void iwi_radio_off(void *, int); 201 static void iwi_sysctlattach(struct iwi_softc *); 202 static void iwi_led_event(struct iwi_softc *, int); 203 static void iwi_ledattach(struct iwi_softc *); 204 205 static int iwi_probe(device_t); 206 static int iwi_attach(device_t); 207 static int iwi_detach(device_t); 208 static int iwi_shutdown(device_t); 209 static int iwi_suspend(device_t); 210 static int iwi_resume(device_t); 211 212 static device_method_t iwi_methods[] = { 213 /* Device interface */ 214 DEVMETHOD(device_probe, iwi_probe), 215 DEVMETHOD(device_attach, iwi_attach), 216 DEVMETHOD(device_detach, iwi_detach), 217 DEVMETHOD(device_shutdown, iwi_shutdown), 218 DEVMETHOD(device_suspend, iwi_suspend), 219 DEVMETHOD(device_resume, iwi_resume), 220 221 { 0, 0 } 222 }; 223 224 static driver_t iwi_driver = { 225 "iwi", 226 iwi_methods, 227 sizeof (struct iwi_softc) 228 }; 229 230 static devclass_t iwi_devclass; 231 232 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0); 233 234 static __inline uint8_t 235 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 236 { 237 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 238 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 239 } 240 241 static __inline uint32_t 242 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 243 { 244 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 245 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 246 } 247 248 static int 249 iwi_probe(device_t dev) 250 { 251 const struct iwi_ident *ident; 252 253 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 254 if (pci_get_vendor(dev) == ident->vendor && 255 pci_get_device(dev) == ident->device) { 256 device_set_desc(dev, ident->name); 257 return 0; 258 } 259 } 260 return ENXIO; 261 } 262 263 /* Base Address Register */ 264 #define IWI_PCI_BAR0 0x10 265 266 static int 267 iwi_attach(device_t dev) 268 { 269 struct iwi_softc *sc = device_get_softc(dev); 270 struct ifnet *ifp; 271 struct ieee80211com *ic; 272 uint16_t val; 273 int i, error; 274 uint8_t bands; 275 uint8_t macaddr[IEEE80211_ADDR_LEN]; 276 277 sc->sc_dev = dev; 278 279 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 280 if (ifp == NULL) { 281 device_printf(dev, "can not if_alloc()\n"); 282 return ENXIO; 283 } 284 ic = ifp->if_l2com; 285 286 IWI_LOCK_INIT(sc); 287 288 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 289 290 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 291 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 292 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 293 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); 294 TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme, sc); 295 296 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 297 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 298 299 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 300 device_printf(dev, "chip is in D%d power mode " 301 "-- setting to D0\n", pci_get_powerstate(dev)); 302 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 303 } 304 305 pci_write_config(dev, 0x41, 0, 1); 306 307 /* enable bus-mastering */ 308 pci_enable_busmaster(dev); 309 310 sc->mem_rid = IWI_PCI_BAR0; 311 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 312 RF_ACTIVE); 313 if (sc->mem == NULL) { 314 device_printf(dev, "could not allocate memory resource\n"); 315 goto fail; 316 } 317 318 sc->sc_st = rman_get_bustag(sc->mem); 319 sc->sc_sh = rman_get_bushandle(sc->mem); 320 321 sc->irq_rid = 0; 322 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 323 RF_ACTIVE | RF_SHAREABLE); 324 if (sc->irq == NULL) { 325 device_printf(dev, "could not allocate interrupt resource\n"); 326 goto fail; 327 } 328 329 if (iwi_reset(sc) != 0) { 330 device_printf(dev, "could not reset adapter\n"); 331 goto fail; 332 } 333 334 /* 335 * Allocate rings. 336 */ 337 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 338 device_printf(dev, "could not allocate Cmd ring\n"); 339 goto fail; 340 } 341 342 for (i = 0; i < 4; i++) { 343 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 344 IWI_CSR_TX1_RIDX + i * 4, 345 IWI_CSR_TX1_WIDX + i * 4); 346 if (error != 0) { 347 device_printf(dev, "could not allocate Tx ring %d\n", 348 i+i); 349 goto fail; 350 } 351 } 352 353 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 354 device_printf(dev, "could not allocate Rx ring\n"); 355 goto fail; 356 } 357 358 iwi_wme_init(sc); 359 360 ifp->if_softc = sc; 361 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 362 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 363 ifp->if_init = iwi_init; 364 ifp->if_ioctl = iwi_ioctl; 365 ifp->if_start = iwi_start; 366 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 367 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 368 IFQ_SET_READY(&ifp->if_snd); 369 370 ic->ic_ifp = ifp; 371 ic->ic_opmode = IEEE80211_M_STA; 372 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 373 374 /* set device capabilities */ 375 ic->ic_caps = 376 IEEE80211_C_STA /* station mode supported */ 377 | IEEE80211_C_IBSS /* IBSS mode supported */ 378 | IEEE80211_C_MONITOR /* monitor mode supported */ 379 | IEEE80211_C_PMGT /* power save supported */ 380 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 381 | IEEE80211_C_WPA /* 802.11i */ 382 | IEEE80211_C_WME /* 802.11e */ 383 #if 0 384 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 385 #endif 386 ; 387 388 /* read MAC address from EEPROM */ 389 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 390 macaddr[0] = val & 0xff; 391 macaddr[1] = val >> 8; 392 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 393 macaddr[2] = val & 0xff; 394 macaddr[3] = val >> 8; 395 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 396 macaddr[4] = val & 0xff; 397 macaddr[5] = val >> 8; 398 399 bands = 0; 400 setbit(&bands, IEEE80211_MODE_11B); 401 setbit(&bands, IEEE80211_MODE_11G); 402 if (pci_get_device(dev) >= 0x4223) 403 setbit(&bands, IEEE80211_MODE_11A); 404 ieee80211_init_channels(ic, NULL, &bands); 405 406 ieee80211_ifattach(ic, macaddr); 407 /* override default methods */ 408 ic->ic_node_alloc = iwi_node_alloc; 409 sc->sc_node_free = ic->ic_node_free; 410 ic->ic_node_free = iwi_node_free; 411 ic->ic_raw_xmit = iwi_raw_xmit; 412 ic->ic_scan_start = iwi_scan_start; 413 ic->ic_scan_end = iwi_scan_end; 414 ic->ic_set_channel = iwi_set_channel; 415 ic->ic_scan_curchan = iwi_scan_curchan; 416 ic->ic_scan_mindwell = iwi_scan_mindwell; 417 ic->ic_wme.wme_update = iwi_wme_update; 418 419 ic->ic_vap_create = iwi_vap_create; 420 ic->ic_vap_delete = iwi_vap_delete; 421 422 ieee80211_radiotap_attach(ic, 423 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 424 IWI_TX_RADIOTAP_PRESENT, 425 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 426 IWI_RX_RADIOTAP_PRESENT); 427 428 iwi_sysctlattach(sc); 429 iwi_ledattach(sc); 430 431 /* 432 * Hook our interrupt after all initialization is complete. 433 */ 434 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 435 NULL, iwi_intr, sc, &sc->sc_ih); 436 if (error != 0) { 437 device_printf(dev, "could not set up interrupt\n"); 438 goto fail; 439 } 440 441 if (bootverbose) 442 ieee80211_announce(ic); 443 444 return 0; 445 fail: 446 /* XXX fix */ 447 iwi_detach(dev); 448 return ENXIO; 449 } 450 451 static int 452 iwi_detach(device_t dev) 453 { 454 struct iwi_softc *sc = device_get_softc(dev); 455 struct ifnet *ifp = sc->sc_ifp; 456 struct ieee80211com *ic = ifp->if_l2com; 457 458 /* NB: do early to drain any pending tasks */ 459 ieee80211_draintask(ic, &sc->sc_radiontask); 460 ieee80211_draintask(ic, &sc->sc_radiofftask); 461 ieee80211_draintask(ic, &sc->sc_restarttask); 462 ieee80211_draintask(ic, &sc->sc_disassoctask); 463 464 iwi_stop(sc); 465 466 ieee80211_ifdetach(ic); 467 468 iwi_put_firmware(sc); 469 iwi_release_fw_dma(sc); 470 471 iwi_free_cmd_ring(sc, &sc->cmdq); 472 iwi_free_tx_ring(sc, &sc->txq[0]); 473 iwi_free_tx_ring(sc, &sc->txq[1]); 474 iwi_free_tx_ring(sc, &sc->txq[2]); 475 iwi_free_tx_ring(sc, &sc->txq[3]); 476 iwi_free_rx_ring(sc, &sc->rxq); 477 478 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 479 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 480 481 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 482 483 delete_unrhdr(sc->sc_unr); 484 485 IWI_LOCK_DESTROY(sc); 486 487 if_free(ifp); 488 489 return 0; 490 } 491 492 static struct ieee80211vap * 493 iwi_vap_create(struct ieee80211com *ic, 494 const char name[IFNAMSIZ], int unit, int opmode, int flags, 495 const uint8_t bssid[IEEE80211_ADDR_LEN], 496 const uint8_t mac[IEEE80211_ADDR_LEN]) 497 { 498 struct ifnet *ifp = ic->ic_ifp; 499 struct iwi_softc *sc = ifp->if_softc; 500 struct iwi_vap *ivp; 501 struct ieee80211vap *vap; 502 int i; 503 504 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 505 return NULL; 506 /* 507 * Get firmware image (and possibly dma memory) on mode change. 508 */ 509 if (iwi_get_firmware(sc, opmode)) 510 return NULL; 511 /* allocate DMA memory for mapping firmware image */ 512 i = sc->fw_fw.size; 513 if (sc->fw_boot.size > i) 514 i = sc->fw_boot.size; 515 /* XXX do we dma the ucode as well ? */ 516 if (sc->fw_uc.size > i) 517 i = sc->fw_uc.size; 518 if (iwi_init_fw_dma(sc, i)) 519 return NULL; 520 521 ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap), 522 M_80211_VAP, M_NOWAIT | M_ZERO); 523 if (ivp == NULL) 524 return NULL; 525 vap = &ivp->iwi_vap; 526 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 527 /* override the default, the setting comes from the linux driver */ 528 vap->iv_bmissthreshold = 24; 529 /* override with driver methods */ 530 ivp->iwi_newstate = vap->iv_newstate; 531 vap->iv_newstate = iwi_newstate; 532 533 /* complete setup */ 534 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status); 535 ic->ic_opmode = opmode; 536 return vap; 537 } 538 539 static void 540 iwi_vap_delete(struct ieee80211vap *vap) 541 { 542 struct iwi_vap *ivp = IWI_VAP(vap); 543 544 ieee80211_vap_detach(vap); 545 free(ivp, M_80211_VAP); 546 } 547 548 static void 549 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 550 { 551 if (error != 0) 552 return; 553 554 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 555 556 *(bus_addr_t *)arg = segs[0].ds_addr; 557 } 558 559 static int 560 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 561 { 562 int error; 563 564 ring->count = count; 565 ring->queued = 0; 566 ring->cur = ring->next = 0; 567 568 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 569 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 570 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 571 NULL, NULL, &ring->desc_dmat); 572 if (error != 0) { 573 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 574 goto fail; 575 } 576 577 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 578 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 579 if (error != 0) { 580 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 581 goto fail; 582 } 583 584 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 585 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 586 if (error != 0) { 587 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 588 goto fail; 589 } 590 591 return 0; 592 593 fail: iwi_free_cmd_ring(sc, ring); 594 return error; 595 } 596 597 static void 598 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 599 { 600 ring->queued = 0; 601 ring->cur = ring->next = 0; 602 } 603 604 static void 605 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 606 { 607 if (ring->desc != NULL) { 608 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 609 BUS_DMASYNC_POSTWRITE); 610 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 611 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 612 } 613 614 if (ring->desc_dmat != NULL) 615 bus_dma_tag_destroy(ring->desc_dmat); 616 } 617 618 static int 619 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 620 bus_addr_t csr_ridx, bus_addr_t csr_widx) 621 { 622 int i, error; 623 624 ring->count = count; 625 ring->queued = 0; 626 ring->cur = ring->next = 0; 627 ring->csr_ridx = csr_ridx; 628 ring->csr_widx = csr_widx; 629 630 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 631 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 632 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 633 NULL, &ring->desc_dmat); 634 if (error != 0) { 635 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 636 goto fail; 637 } 638 639 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 640 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 641 if (error != 0) { 642 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 643 goto fail; 644 } 645 646 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 647 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 648 if (error != 0) { 649 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 650 goto fail; 651 } 652 653 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 654 M_NOWAIT | M_ZERO); 655 if (ring->data == NULL) { 656 device_printf(sc->sc_dev, "could not allocate soft data\n"); 657 error = ENOMEM; 658 goto fail; 659 } 660 661 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 662 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 663 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 664 if (error != 0) { 665 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 666 goto fail; 667 } 668 669 for (i = 0; i < count; i++) { 670 error = bus_dmamap_create(ring->data_dmat, 0, 671 &ring->data[i].map); 672 if (error != 0) { 673 device_printf(sc->sc_dev, "could not create DMA map\n"); 674 goto fail; 675 } 676 } 677 678 return 0; 679 680 fail: iwi_free_tx_ring(sc, ring); 681 return error; 682 } 683 684 static void 685 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 686 { 687 struct iwi_tx_data *data; 688 int i; 689 690 for (i = 0; i < ring->count; i++) { 691 data = &ring->data[i]; 692 693 if (data->m != NULL) { 694 bus_dmamap_sync(ring->data_dmat, data->map, 695 BUS_DMASYNC_POSTWRITE); 696 bus_dmamap_unload(ring->data_dmat, data->map); 697 m_freem(data->m); 698 data->m = NULL; 699 } 700 701 if (data->ni != NULL) { 702 ieee80211_free_node(data->ni); 703 data->ni = NULL; 704 } 705 } 706 707 ring->queued = 0; 708 ring->cur = ring->next = 0; 709 } 710 711 static void 712 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 713 { 714 struct iwi_tx_data *data; 715 int i; 716 717 if (ring->desc != NULL) { 718 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 719 BUS_DMASYNC_POSTWRITE); 720 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 721 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 722 } 723 724 if (ring->desc_dmat != NULL) 725 bus_dma_tag_destroy(ring->desc_dmat); 726 727 if (ring->data != NULL) { 728 for (i = 0; i < ring->count; i++) { 729 data = &ring->data[i]; 730 731 if (data->m != NULL) { 732 bus_dmamap_sync(ring->data_dmat, data->map, 733 BUS_DMASYNC_POSTWRITE); 734 bus_dmamap_unload(ring->data_dmat, data->map); 735 m_freem(data->m); 736 } 737 738 if (data->ni != NULL) 739 ieee80211_free_node(data->ni); 740 741 if (data->map != NULL) 742 bus_dmamap_destroy(ring->data_dmat, data->map); 743 } 744 745 free(ring->data, M_DEVBUF); 746 } 747 748 if (ring->data_dmat != NULL) 749 bus_dma_tag_destroy(ring->data_dmat); 750 } 751 752 static int 753 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 754 { 755 struct iwi_rx_data *data; 756 int i, error; 757 758 ring->count = count; 759 ring->cur = 0; 760 761 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 762 M_NOWAIT | M_ZERO); 763 if (ring->data == NULL) { 764 device_printf(sc->sc_dev, "could not allocate soft data\n"); 765 error = ENOMEM; 766 goto fail; 767 } 768 769 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 770 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 771 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 772 if (error != 0) { 773 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 774 goto fail; 775 } 776 777 for (i = 0; i < count; i++) { 778 data = &ring->data[i]; 779 780 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 781 if (error != 0) { 782 device_printf(sc->sc_dev, "could not create DMA map\n"); 783 goto fail; 784 } 785 786 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 787 if (data->m == NULL) { 788 device_printf(sc->sc_dev, 789 "could not allocate rx mbuf\n"); 790 error = ENOMEM; 791 goto fail; 792 } 793 794 error = bus_dmamap_load(ring->data_dmat, data->map, 795 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 796 &data->physaddr, 0); 797 if (error != 0) { 798 device_printf(sc->sc_dev, 799 "could not load rx buf DMA map"); 800 goto fail; 801 } 802 803 data->reg = IWI_CSR_RX_BASE + i * 4; 804 } 805 806 return 0; 807 808 fail: iwi_free_rx_ring(sc, ring); 809 return error; 810 } 811 812 static void 813 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 814 { 815 ring->cur = 0; 816 } 817 818 static void 819 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 820 { 821 struct iwi_rx_data *data; 822 int i; 823 824 if (ring->data != NULL) { 825 for (i = 0; i < ring->count; i++) { 826 data = &ring->data[i]; 827 828 if (data->m != NULL) { 829 bus_dmamap_sync(ring->data_dmat, data->map, 830 BUS_DMASYNC_POSTREAD); 831 bus_dmamap_unload(ring->data_dmat, data->map); 832 m_freem(data->m); 833 } 834 835 if (data->map != NULL) 836 bus_dmamap_destroy(ring->data_dmat, data->map); 837 } 838 839 free(ring->data, M_DEVBUF); 840 } 841 842 if (ring->data_dmat != NULL) 843 bus_dma_tag_destroy(ring->data_dmat); 844 } 845 846 static int 847 iwi_shutdown(device_t dev) 848 { 849 struct iwi_softc *sc = device_get_softc(dev); 850 851 iwi_stop(sc); 852 iwi_put_firmware(sc); /* ??? XXX */ 853 854 return 0; 855 } 856 857 static int 858 iwi_suspend(device_t dev) 859 { 860 struct iwi_softc *sc = device_get_softc(dev); 861 862 iwi_stop(sc); 863 864 return 0; 865 } 866 867 static int 868 iwi_resume(device_t dev) 869 { 870 struct iwi_softc *sc = device_get_softc(dev); 871 struct ifnet *ifp = sc->sc_ifp; 872 873 pci_write_config(dev, 0x41, 0, 1); 874 875 if (ifp->if_flags & IFF_UP) 876 iwi_init(sc); 877 878 return 0; 879 } 880 881 static struct ieee80211_node * 882 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 883 { 884 struct iwi_node *in; 885 886 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 887 if (in == NULL) 888 return NULL; 889 /* XXX assign sta table entry for adhoc */ 890 in->in_station = -1; 891 892 return &in->in_node; 893 } 894 895 static void 896 iwi_node_free(struct ieee80211_node *ni) 897 { 898 struct ieee80211com *ic = ni->ni_ic; 899 struct iwi_softc *sc = ic->ic_ifp->if_softc; 900 struct iwi_node *in = (struct iwi_node *)ni; 901 902 if (in->in_station != -1) { 903 DPRINTF(("%s mac %6D station %u\n", __func__, 904 ni->ni_macaddr, ":", in->in_station)); 905 free_unr(sc->sc_unr, in->in_station); 906 } 907 908 sc->sc_node_free(ni); 909 } 910 911 /* 912 * Convert h/w rate code to IEEE rate code. 913 */ 914 static int 915 iwi_cvtrate(int iwirate) 916 { 917 switch (iwirate) { 918 case IWI_RATE_DS1: return 2; 919 case IWI_RATE_DS2: return 4; 920 case IWI_RATE_DS5: return 11; 921 case IWI_RATE_DS11: return 22; 922 case IWI_RATE_OFDM6: return 12; 923 case IWI_RATE_OFDM9: return 18; 924 case IWI_RATE_OFDM12: return 24; 925 case IWI_RATE_OFDM18: return 36; 926 case IWI_RATE_OFDM24: return 48; 927 case IWI_RATE_OFDM36: return 72; 928 case IWI_RATE_OFDM48: return 96; 929 case IWI_RATE_OFDM54: return 108; 930 } 931 return 0; 932 } 933 934 /* 935 * The firmware automatically adapts the transmit speed. We report its current 936 * value here. 937 */ 938 static void 939 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 940 { 941 struct ieee80211vap *vap = ifp->if_softc; 942 struct ieee80211com *ic = vap->iv_ic; 943 struct iwi_softc *sc = ic->ic_ifp->if_softc; 944 945 /* read current transmission rate from adapter */ 946 vap->iv_bss->ni_txrate = 947 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 948 ieee80211_media_status(ifp, imr); 949 } 950 951 static int 952 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 953 { 954 struct iwi_vap *ivp = IWI_VAP(vap); 955 struct ieee80211com *ic = vap->iv_ic; 956 struct ifnet *ifp = ic->ic_ifp; 957 struct iwi_softc *sc = ifp->if_softc; 958 IWI_LOCK_DECL; 959 960 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 961 ieee80211_state_name[vap->iv_state], 962 ieee80211_state_name[nstate], sc->flags)); 963 964 IEEE80211_UNLOCK(ic); 965 IWI_LOCK(sc); 966 switch (nstate) { 967 case IEEE80211_S_INIT: 968 /* 969 * NB: don't try to do this if iwi_stop_master has 970 * shutdown the firmware and disabled interrupts. 971 */ 972 if (vap->iv_state == IEEE80211_S_RUN && 973 (sc->flags & IWI_FLAG_FW_INITED)) 974 iwi_disassociate(sc, 0); 975 break; 976 case IEEE80211_S_AUTH: 977 iwi_auth_and_assoc(sc, vap); 978 break; 979 case IEEE80211_S_RUN: 980 if (vap->iv_opmode == IEEE80211_M_IBSS && 981 vap->iv_state == IEEE80211_S_SCAN) { 982 /* 983 * XXX when joining an ibss network we are called 984 * with a SCAN -> RUN transition on scan complete. 985 * Use that to call iwi_auth_and_assoc. On completing 986 * the join we are then called again with an 987 * AUTH -> RUN transition and we want to do nothing. 988 * This is all totally bogus and needs to be redone. 989 */ 990 iwi_auth_and_assoc(sc, vap); 991 } 992 break; 993 case IEEE80211_S_ASSOC: 994 /* 995 * If we are transitioning from AUTH then just wait 996 * for the ASSOC status to come back from the firmware. 997 * Otherwise we need to issue the association request. 998 */ 999 if (vap->iv_state == IEEE80211_S_AUTH) 1000 break; 1001 iwi_auth_and_assoc(sc, vap); 1002 break; 1003 default: 1004 break; 1005 } 1006 IWI_UNLOCK(sc); 1007 IEEE80211_LOCK(ic); 1008 return ivp->iwi_newstate(vap, nstate, arg); 1009 } 1010 1011 /* 1012 * WME parameters coming from IEEE 802.11e specification. These values are 1013 * already declared in ieee80211_proto.c, but they are static so they can't 1014 * be reused here. 1015 */ 1016 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1017 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1018 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1019 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1020 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1021 }; 1022 1023 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1024 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1025 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1026 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1027 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1028 }; 1029 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1030 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1031 1032 static void 1033 iwi_wme_init(struct iwi_softc *sc) 1034 { 1035 const struct wmeParams *wmep; 1036 int ac; 1037 1038 memset(sc->wme, 0, sizeof sc->wme); 1039 for (ac = 0; ac < WME_NUM_AC; ac++) { 1040 /* set WME values for CCK modulation */ 1041 wmep = &iwi_wme_cck_params[ac]; 1042 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1043 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1044 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1045 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1046 sc->wme[1].acm[ac] = wmep->wmep_acm; 1047 1048 /* set WME values for OFDM modulation */ 1049 wmep = &iwi_wme_ofdm_params[ac]; 1050 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1051 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1052 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1053 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1054 sc->wme[2].acm[ac] = wmep->wmep_acm; 1055 } 1056 } 1057 1058 static int 1059 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic) 1060 { 1061 const struct wmeParams *wmep; 1062 int ac; 1063 1064 for (ac = 0; ac < WME_NUM_AC; ac++) { 1065 /* set WME values for current operating mode */ 1066 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1067 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1068 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1069 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1070 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1071 sc->wme[0].acm[ac] = wmep->wmep_acm; 1072 } 1073 1074 DPRINTF(("Setting WME parameters\n")); 1075 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1076 } 1077 #undef IWI_USEC 1078 #undef IWI_EXP2 1079 1080 static void 1081 iwi_update_wme(void *arg, int npending) 1082 { 1083 struct ieee80211com *ic = arg; 1084 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1085 IWI_LOCK_DECL; 1086 1087 IWI_LOCK(sc); 1088 (void) iwi_wme_setparams(sc, ic); 1089 IWI_UNLOCK(sc); 1090 } 1091 1092 static int 1093 iwi_wme_update(struct ieee80211com *ic) 1094 { 1095 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1096 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1097 1098 /* 1099 * We may be called to update the WME parameters in 1100 * the adapter at various places. If we're already 1101 * associated then initiate the request immediately; 1102 * otherwise we assume the params will get sent down 1103 * to the adapter as part of the work iwi_auth_and_assoc 1104 * does. 1105 */ 1106 if (vap->iv_state == IEEE80211_S_RUN) 1107 ieee80211_runtask(ic, &sc->sc_wmetask); 1108 return (0); 1109 } 1110 1111 static int 1112 iwi_wme_setie(struct iwi_softc *sc) 1113 { 1114 struct ieee80211_wme_info wme; 1115 1116 memset(&wme, 0, sizeof wme); 1117 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1118 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1119 wme.wme_oui[0] = 0x00; 1120 wme.wme_oui[1] = 0x50; 1121 wme.wme_oui[2] = 0xf2; 1122 wme.wme_type = WME_OUI_TYPE; 1123 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1124 wme.wme_version = WME_VERSION; 1125 wme.wme_info = 0; 1126 1127 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1128 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1129 } 1130 1131 /* 1132 * Read 16 bits at address 'addr' from the serial EEPROM. 1133 */ 1134 static uint16_t 1135 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1136 { 1137 uint32_t tmp; 1138 uint16_t val; 1139 int n; 1140 1141 /* clock C once before the first command */ 1142 IWI_EEPROM_CTL(sc, 0); 1143 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1144 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1145 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1146 1147 /* write start bit (1) */ 1148 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1149 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1150 1151 /* write READ opcode (10) */ 1152 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1153 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1154 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1155 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1156 1157 /* write address A7-A0 */ 1158 for (n = 7; n >= 0; n--) { 1159 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1160 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1161 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1162 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1163 } 1164 1165 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1166 1167 /* read data Q15-Q0 */ 1168 val = 0; 1169 for (n = 15; n >= 0; n--) { 1170 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1171 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1172 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1173 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1174 } 1175 1176 IWI_EEPROM_CTL(sc, 0); 1177 1178 /* clear Chip Select and clock C */ 1179 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1180 IWI_EEPROM_CTL(sc, 0); 1181 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1182 1183 return val; 1184 } 1185 1186 static void 1187 iwi_setcurchan(struct iwi_softc *sc, int chan) 1188 { 1189 struct ifnet *ifp = sc->sc_ifp; 1190 struct ieee80211com *ic = ifp->if_l2com; 1191 1192 sc->curchan = chan; 1193 ieee80211_radiotap_chan_change(ic); 1194 } 1195 1196 static void 1197 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1198 struct iwi_frame *frame) 1199 { 1200 struct ifnet *ifp = sc->sc_ifp; 1201 struct ieee80211com *ic = ifp->if_l2com; 1202 struct mbuf *mnew, *m; 1203 struct ieee80211_node *ni; 1204 int type, error, framelen; 1205 int8_t rssi, nf; 1206 IWI_LOCK_DECL; 1207 1208 framelen = le16toh(frame->len); 1209 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1210 /* 1211 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1212 * out of bounds; need to figure out how to limit 1213 * frame size in the firmware 1214 */ 1215 /* XXX stat */ 1216 DPRINTFN(1, 1217 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1218 le16toh(frame->len), frame->chan, frame->rssi, 1219 frame->rssi_dbm)); 1220 return; 1221 } 1222 1223 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1224 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1225 1226 if (frame->chan != sc->curchan) 1227 iwi_setcurchan(sc, frame->chan); 1228 1229 /* 1230 * Try to allocate a new mbuf for this ring element and load it before 1231 * processing the current mbuf. If the ring element cannot be loaded, 1232 * drop the received packet and reuse the old mbuf. In the unlikely 1233 * case that the old mbuf can't be reloaded either, explicitly panic. 1234 */ 1235 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1236 if (mnew == NULL) { 1237 ifp->if_ierrors++; 1238 return; 1239 } 1240 1241 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1242 1243 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1244 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1245 0); 1246 if (error != 0) { 1247 m_freem(mnew); 1248 1249 /* try to reload the old mbuf */ 1250 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1251 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1252 &data->physaddr, 0); 1253 if (error != 0) { 1254 /* very unlikely that it will fail... */ 1255 panic("%s: could not load old rx mbuf", 1256 device_get_name(sc->sc_dev)); 1257 } 1258 ifp->if_ierrors++; 1259 return; 1260 } 1261 1262 /* 1263 * New mbuf successfully loaded, update Rx ring and continue 1264 * processing. 1265 */ 1266 m = data->m; 1267 data->m = mnew; 1268 CSR_WRITE_4(sc, data->reg, data->physaddr); 1269 1270 /* finalize mbuf */ 1271 m->m_pkthdr.rcvif = ifp; 1272 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1273 sizeof (struct iwi_frame) + framelen; 1274 1275 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1276 1277 rssi = frame->rssi_dbm; 1278 nf = -95; 1279 if (ieee80211_radiotap_active(ic)) { 1280 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1281 1282 tap->wr_flags = 0; 1283 tap->wr_antsignal = rssi; 1284 tap->wr_antnoise = nf; 1285 tap->wr_rate = iwi_cvtrate(frame->rate); 1286 tap->wr_antenna = frame->antenna; 1287 } 1288 IWI_UNLOCK(sc); 1289 1290 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1291 if (ni != NULL) { 1292 type = ieee80211_input(ni, m, rssi, nf); 1293 ieee80211_free_node(ni); 1294 } else 1295 type = ieee80211_input_all(ic, m, rssi, nf); 1296 1297 IWI_LOCK(sc); 1298 if (sc->sc_softled) { 1299 /* 1300 * Blink for any data frame. Otherwise do a 1301 * heartbeat-style blink when idle. The latter 1302 * is mainly for station mode where we depend on 1303 * periodic beacon frames to trigger the poll event. 1304 */ 1305 if (type == IEEE80211_FC0_TYPE_DATA) { 1306 sc->sc_rxrate = frame->rate; 1307 iwi_led_event(sc, IWI_LED_RX); 1308 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1309 iwi_led_event(sc, IWI_LED_POLL); 1310 } 1311 } 1312 1313 /* 1314 * Check for an association response frame to see if QoS 1315 * has been negotiated. We parse just enough to figure 1316 * out if we're supposed to use QoS. The proper solution 1317 * is to pass the frame up so ieee80211_input can do the 1318 * work but that's made hard by how things currently are 1319 * done in the driver. 1320 */ 1321 static void 1322 iwi_checkforqos(struct ieee80211vap *vap, 1323 const struct ieee80211_frame *wh, int len) 1324 { 1325 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1326 const uint8_t *frm, *efrm, *wme; 1327 struct ieee80211_node *ni; 1328 uint16_t capinfo, status, associd; 1329 1330 /* NB: +8 for capinfo, status, associd, and first ie */ 1331 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1332 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1333 return; 1334 /* 1335 * asresp frame format 1336 * [2] capability information 1337 * [2] status 1338 * [2] association ID 1339 * [tlv] supported rates 1340 * [tlv] extended supported rates 1341 * [tlv] WME 1342 */ 1343 frm = (const uint8_t *)&wh[1]; 1344 efrm = ((const uint8_t *) wh) + len; 1345 1346 capinfo = le16toh(*(const uint16_t *)frm); 1347 frm += 2; 1348 status = le16toh(*(const uint16_t *)frm); 1349 frm += 2; 1350 associd = le16toh(*(const uint16_t *)frm); 1351 frm += 2; 1352 1353 wme = NULL; 1354 while (frm < efrm) { 1355 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1], return); 1356 switch (*frm) { 1357 case IEEE80211_ELEMID_VENDOR: 1358 if (iswmeoui(frm)) 1359 wme = frm; 1360 break; 1361 } 1362 frm += frm[1] + 2; 1363 } 1364 1365 ni = vap->iv_bss; 1366 ni->ni_capinfo = capinfo; 1367 ni->ni_associd = associd; 1368 if (wme != NULL) 1369 ni->ni_flags |= IEEE80211_NODE_QOS; 1370 else 1371 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1372 #undef SUBTYPE 1373 } 1374 1375 /* 1376 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1377 */ 1378 1379 static void 1380 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1381 { 1382 struct ifnet *ifp = sc->sc_ifp; 1383 struct ieee80211com *ic = ifp->if_l2com; 1384 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1385 struct iwi_notif_scan_channel *chan; 1386 struct iwi_notif_scan_complete *scan; 1387 struct iwi_notif_authentication *auth; 1388 struct iwi_notif_association *assoc; 1389 struct iwi_notif_beacon_state *beacon; 1390 1391 switch (notif->type) { 1392 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1393 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1394 1395 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1396 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1397 1398 /* Reset the timer, the scan is still going */ 1399 sc->sc_state_timer = 3; 1400 break; 1401 1402 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1403 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1404 1405 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1406 scan->status)); 1407 1408 IWI_STATE_END(sc, IWI_FW_SCANNING); 1409 1410 if (scan->status == IWI_SCAN_COMPLETED) { 1411 /* NB: don't need to defer, net80211 does it for us */ 1412 ieee80211_scan_next(vap); 1413 } 1414 break; 1415 1416 case IWI_NOTIF_TYPE_AUTHENTICATION: 1417 auth = (struct iwi_notif_authentication *)(notif + 1); 1418 switch (auth->state) { 1419 case IWI_AUTH_SUCCESS: 1420 DPRINTFN(2, ("Authentication succeeeded\n")); 1421 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1422 break; 1423 case IWI_AUTH_FAIL: 1424 /* 1425 * These are delivered as an unsolicited deauth 1426 * (e.g. due to inactivity) or in response to an 1427 * associate request. 1428 */ 1429 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1430 if (vap->iv_state != IEEE80211_S_RUN) { 1431 DPRINTFN(2, ("Authentication failed\n")); 1432 vap->iv_stats.is_rx_auth_fail++; 1433 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1434 } else { 1435 DPRINTFN(2, ("Deauthenticated\n")); 1436 vap->iv_stats.is_rx_deauth++; 1437 } 1438 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1439 break; 1440 case IWI_AUTH_SENT_1: 1441 case IWI_AUTH_RECV_2: 1442 case IWI_AUTH_SEQ1_PASS: 1443 break; 1444 case IWI_AUTH_SEQ1_FAIL: 1445 DPRINTFN(2, ("Initial authentication handshake failed; " 1446 "you probably need shared key\n")); 1447 vap->iv_stats.is_rx_auth_fail++; 1448 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1449 /* XXX retry shared key when in auto */ 1450 break; 1451 default: 1452 device_printf(sc->sc_dev, 1453 "unknown authentication state %u\n", auth->state); 1454 break; 1455 } 1456 break; 1457 1458 case IWI_NOTIF_TYPE_ASSOCIATION: 1459 assoc = (struct iwi_notif_association *)(notif + 1); 1460 switch (assoc->state) { 1461 case IWI_AUTH_SUCCESS: 1462 /* re-association, do nothing */ 1463 break; 1464 case IWI_ASSOC_SUCCESS: 1465 DPRINTFN(2, ("Association succeeded\n")); 1466 sc->flags |= IWI_FLAG_ASSOCIATED; 1467 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1468 iwi_checkforqos(vap, 1469 (const struct ieee80211_frame *)(assoc+1), 1470 le16toh(notif->len) - sizeof(*assoc)); 1471 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1472 break; 1473 case IWI_ASSOC_INIT: 1474 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1475 switch (sc->fw_state) { 1476 case IWI_FW_ASSOCIATING: 1477 DPRINTFN(2, ("Association failed\n")); 1478 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1479 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1480 break; 1481 1482 case IWI_FW_DISASSOCIATING: 1483 DPRINTFN(2, ("Dissassociated\n")); 1484 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1485 vap->iv_stats.is_rx_disassoc++; 1486 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1487 break; 1488 } 1489 break; 1490 default: 1491 device_printf(sc->sc_dev, 1492 "unknown association state %u\n", assoc->state); 1493 break; 1494 } 1495 break; 1496 1497 case IWI_NOTIF_TYPE_BEACON: 1498 /* XXX check struct length */ 1499 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1500 1501 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1502 beacon->state, le32toh(beacon->number))); 1503 1504 if (beacon->state == IWI_BEACON_MISS) { 1505 /* 1506 * The firmware notifies us of every beacon miss 1507 * so we need to track the count against the 1508 * configured threshold before notifying the 1509 * 802.11 layer. 1510 * XXX try to roam, drop assoc only on much higher count 1511 */ 1512 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1513 DPRINTF(("Beacon miss: %u >= %u\n", 1514 le32toh(beacon->number), 1515 vap->iv_bmissthreshold)); 1516 vap->iv_stats.is_beacon_miss++; 1517 /* 1518 * It's pointless to notify the 802.11 layer 1519 * as it'll try to send a probe request (which 1520 * we'll discard) and then timeout and drop us 1521 * into scan state. Instead tell the firmware 1522 * to disassociate and then on completion we'll 1523 * kick the state machine to scan. 1524 */ 1525 ieee80211_runtask(ic, &sc->sc_disassoctask); 1526 } 1527 } 1528 break; 1529 1530 case IWI_NOTIF_TYPE_CALIBRATION: 1531 case IWI_NOTIF_TYPE_NOISE: 1532 case IWI_NOTIF_TYPE_LINK_QUALITY: 1533 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1534 break; 1535 1536 default: 1537 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1538 notif->type, notif->flags, le16toh(notif->len))); 1539 break; 1540 } 1541 } 1542 1543 static void 1544 iwi_rx_intr(struct iwi_softc *sc) 1545 { 1546 struct iwi_rx_data *data; 1547 struct iwi_hdr *hdr; 1548 uint32_t hw; 1549 1550 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1551 1552 for (; sc->rxq.cur != hw;) { 1553 data = &sc->rxq.data[sc->rxq.cur]; 1554 1555 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1556 BUS_DMASYNC_POSTREAD); 1557 1558 hdr = mtod(data->m, struct iwi_hdr *); 1559 1560 switch (hdr->type) { 1561 case IWI_HDR_TYPE_FRAME: 1562 iwi_frame_intr(sc, data, sc->rxq.cur, 1563 (struct iwi_frame *)(hdr + 1)); 1564 break; 1565 1566 case IWI_HDR_TYPE_NOTIF: 1567 iwi_notification_intr(sc, 1568 (struct iwi_notif *)(hdr + 1)); 1569 break; 1570 1571 default: 1572 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1573 hdr->type); 1574 } 1575 1576 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1577 1578 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1579 } 1580 1581 /* tell the firmware what we have processed */ 1582 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1583 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1584 } 1585 1586 static void 1587 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1588 { 1589 struct ifnet *ifp = sc->sc_ifp; 1590 struct iwi_tx_data *data; 1591 uint32_t hw; 1592 1593 hw = CSR_READ_4(sc, txq->csr_ridx); 1594 1595 for (; txq->next != hw;) { 1596 data = &txq->data[txq->next]; 1597 1598 bus_dmamap_sync(txq->data_dmat, data->map, 1599 BUS_DMASYNC_POSTWRITE); 1600 bus_dmamap_unload(txq->data_dmat, data->map); 1601 if (data->m->m_flags & M_TXCB) 1602 ieee80211_process_callback(data->ni, data->m, 0/*XXX*/); 1603 m_freem(data->m); 1604 data->m = NULL; 1605 ieee80211_free_node(data->ni); 1606 data->ni = NULL; 1607 1608 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1609 1610 ifp->if_opackets++; 1611 1612 txq->queued--; 1613 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1614 } 1615 1616 sc->sc_tx_timer = 0; 1617 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1618 1619 if (sc->sc_softled) 1620 iwi_led_event(sc, IWI_LED_TX); 1621 1622 iwi_start_locked(ifp); 1623 } 1624 1625 static void 1626 iwi_fatal_error_intr(struct iwi_softc *sc) 1627 { 1628 struct ifnet *ifp = sc->sc_ifp; 1629 struct ieee80211com *ic = ifp->if_l2com; 1630 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1631 1632 device_printf(sc->sc_dev, "firmware error\n"); 1633 if (vap != NULL) 1634 ieee80211_cancel_scan(vap); 1635 ieee80211_runtask(ic, &sc->sc_restarttask); 1636 1637 sc->flags &= ~IWI_FLAG_BUSY; 1638 sc->sc_busy_timer = 0; 1639 wakeup(sc); 1640 } 1641 1642 static void 1643 iwi_radio_off_intr(struct iwi_softc *sc) 1644 { 1645 struct ifnet *ifp = sc->sc_ifp; 1646 struct ieee80211com *ic = ifp->if_l2com; 1647 1648 ieee80211_runtask(ic, &sc->sc_radiofftask); 1649 } 1650 1651 static void 1652 iwi_intr(void *arg) 1653 { 1654 struct iwi_softc *sc = arg; 1655 uint32_t r; 1656 IWI_LOCK_DECL; 1657 1658 IWI_LOCK(sc); 1659 1660 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1661 IWI_UNLOCK(sc); 1662 return; 1663 } 1664 1665 /* acknowledge interrupts */ 1666 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1667 1668 if (r & IWI_INTR_FATAL_ERROR) { 1669 iwi_fatal_error_intr(sc); 1670 goto done; 1671 } 1672 1673 if (r & IWI_INTR_FW_INITED) { 1674 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1675 wakeup(sc); 1676 } 1677 1678 if (r & IWI_INTR_RADIO_OFF) 1679 iwi_radio_off_intr(sc); 1680 1681 if (r & IWI_INTR_CMD_DONE) { 1682 sc->flags &= ~IWI_FLAG_BUSY; 1683 sc->sc_busy_timer = 0; 1684 wakeup(sc); 1685 } 1686 1687 if (r & IWI_INTR_TX1_DONE) 1688 iwi_tx_intr(sc, &sc->txq[0]); 1689 1690 if (r & IWI_INTR_TX2_DONE) 1691 iwi_tx_intr(sc, &sc->txq[1]); 1692 1693 if (r & IWI_INTR_TX3_DONE) 1694 iwi_tx_intr(sc, &sc->txq[2]); 1695 1696 if (r & IWI_INTR_TX4_DONE) 1697 iwi_tx_intr(sc, &sc->txq[3]); 1698 1699 if (r & IWI_INTR_RX_DONE) 1700 iwi_rx_intr(sc); 1701 1702 if (r & IWI_INTR_PARITY_ERROR) { 1703 /* XXX rate-limit */ 1704 device_printf(sc->sc_dev, "parity error\n"); 1705 } 1706 done: 1707 IWI_UNLOCK(sc); 1708 } 1709 1710 static int 1711 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1712 { 1713 struct iwi_cmd_desc *desc; 1714 1715 IWI_LOCK_ASSERT(sc); 1716 1717 if (sc->flags & IWI_FLAG_BUSY) { 1718 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1719 __func__, type); 1720 return EAGAIN; 1721 } 1722 sc->flags |= IWI_FLAG_BUSY; 1723 sc->sc_busy_timer = 2; 1724 1725 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1726 1727 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1728 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1729 desc->type = type; 1730 desc->len = len; 1731 memcpy(desc->data, data, len); 1732 1733 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1734 BUS_DMASYNC_PREWRITE); 1735 1736 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1737 type, len)); 1738 1739 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1740 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1741 1742 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1743 } 1744 1745 static void 1746 iwi_write_ibssnode(struct iwi_softc *sc, 1747 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1748 { 1749 struct iwi_ibssnode node; 1750 1751 /* write node information into NIC memory */ 1752 memset(&node, 0, sizeof node); 1753 IEEE80211_ADDR_COPY(node.bssid, addr); 1754 1755 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1756 1757 CSR_WRITE_REGION_1(sc, 1758 IWI_CSR_NODE_BASE + entry * sizeof node, 1759 (uint8_t *)&node, sizeof node); 1760 } 1761 1762 static int 1763 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni, 1764 int ac) 1765 { 1766 struct iwi_softc *sc = ifp->if_softc; 1767 struct ieee80211vap *vap = ni->ni_vap; 1768 struct ieee80211com *ic = ni->ni_ic; 1769 struct iwi_node *in = (struct iwi_node *)ni; 1770 const struct ieee80211_frame *wh; 1771 struct ieee80211_key *k; 1772 const struct chanAccParams *cap; 1773 struct iwi_tx_ring *txq = &sc->txq[ac]; 1774 struct iwi_tx_data *data; 1775 struct iwi_tx_desc *desc; 1776 struct mbuf *mnew; 1777 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1778 int error, nsegs, hdrlen, i; 1779 int ismcast, flags, xflags, staid; 1780 1781 IWI_LOCK_ASSERT(sc); 1782 wh = mtod(m0, const struct ieee80211_frame *); 1783 /* NB: only data frames use this path */ 1784 hdrlen = ieee80211_hdrsize(wh); 1785 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1786 flags = xflags = 0; 1787 1788 if (!ismcast) 1789 flags |= IWI_DATA_FLAG_NEED_ACK; 1790 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1791 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1792 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1793 xflags |= IWI_DATA_XFLAG_QOS; 1794 cap = &ic->ic_wme.wme_chanParams; 1795 if (!cap->cap_wmeParams[ac].wmep_noackPolicy) 1796 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1797 } 1798 1799 /* 1800 * This is only used in IBSS mode where the firmware expect an index 1801 * in a h/w table instead of a destination address. 1802 */ 1803 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1804 if (!ismcast) { 1805 if (in->in_station == -1) { 1806 in->in_station = alloc_unr(sc->sc_unr); 1807 if (in->in_station == -1) { 1808 /* h/w table is full */ 1809 m_freem(m0); 1810 ieee80211_free_node(ni); 1811 ifp->if_oerrors++; 1812 return 0; 1813 } 1814 iwi_write_ibssnode(sc, 1815 ni->ni_macaddr, in->in_station); 1816 } 1817 staid = in->in_station; 1818 } else { 1819 /* 1820 * Multicast addresses have no associated node 1821 * so there will be no station entry. We reserve 1822 * entry 0 for one mcast address and use that. 1823 * If there are many being used this will be 1824 * expensive and we'll need to do a better job 1825 * but for now this handles the broadcast case. 1826 */ 1827 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1828 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1829 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1830 } 1831 staid = 0; 1832 } 1833 } else 1834 staid = 0; 1835 1836 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1837 k = ieee80211_crypto_encap(ni, m0); 1838 if (k == NULL) { 1839 m_freem(m0); 1840 return ENOBUFS; 1841 } 1842 1843 /* packet header may have moved, reset our local pointer */ 1844 wh = mtod(m0, struct ieee80211_frame *); 1845 } 1846 1847 if (ieee80211_radiotap_active_vap(vap)) { 1848 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1849 1850 tap->wt_flags = 0; 1851 1852 ieee80211_radiotap_tx(vap, m0); 1853 } 1854 1855 data = &txq->data[txq->cur]; 1856 desc = &txq->desc[txq->cur]; 1857 1858 /* save and trim IEEE802.11 header */ 1859 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1860 m_adj(m0, hdrlen); 1861 1862 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1863 &nsegs, 0); 1864 if (error != 0 && error != EFBIG) { 1865 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1866 error); 1867 m_freem(m0); 1868 return error; 1869 } 1870 if (error != 0) { 1871 mnew = m_defrag(m0, M_DONTWAIT); 1872 if (mnew == NULL) { 1873 device_printf(sc->sc_dev, 1874 "could not defragment mbuf\n"); 1875 m_freem(m0); 1876 return ENOBUFS; 1877 } 1878 m0 = mnew; 1879 1880 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1881 m0, segs, &nsegs, 0); 1882 if (error != 0) { 1883 device_printf(sc->sc_dev, 1884 "could not map mbuf (error %d)\n", error); 1885 m_freem(m0); 1886 return error; 1887 } 1888 } 1889 1890 data->m = m0; 1891 data->ni = ni; 1892 1893 desc->hdr.type = IWI_HDR_TYPE_DATA; 1894 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1895 desc->station = staid; 1896 desc->cmd = IWI_DATA_CMD_TX; 1897 desc->len = htole16(m0->m_pkthdr.len); 1898 desc->flags = flags; 1899 desc->xflags = xflags; 1900 1901 #if 0 1902 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1903 desc->wep_txkey = vap->iv_def_txkey; 1904 else 1905 #endif 1906 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1907 1908 desc->nseg = htole32(nsegs); 1909 for (i = 0; i < nsegs; i++) { 1910 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1911 desc->seg_len[i] = htole16(segs[i].ds_len); 1912 } 1913 1914 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1915 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1916 1917 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1918 ac, txq->cur, le16toh(desc->len), nsegs)); 1919 1920 txq->queued++; 1921 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1922 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1923 1924 return 0; 1925 } 1926 1927 static int 1928 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1929 const struct ieee80211_bpf_params *params) 1930 { 1931 /* no support; just discard */ 1932 m_freem(m); 1933 ieee80211_free_node(ni); 1934 return 0; 1935 } 1936 1937 static void 1938 iwi_start_locked(struct ifnet *ifp) 1939 { 1940 struct iwi_softc *sc = ifp->if_softc; 1941 struct mbuf *m; 1942 struct ieee80211_node *ni; 1943 int ac; 1944 1945 IWI_LOCK_ASSERT(sc); 1946 1947 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1948 return; 1949 1950 for (;;) { 1951 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1952 if (m == NULL) 1953 break; 1954 ac = M_WME_GETAC(m); 1955 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1956 /* there is no place left in this ring; tail drop */ 1957 /* XXX tail drop */ 1958 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1959 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1960 break; 1961 } 1962 1963 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1964 if (iwi_tx_start(ifp, m, ni, ac) != 0) { 1965 ieee80211_free_node(ni); 1966 ifp->if_oerrors++; 1967 break; 1968 } 1969 1970 sc->sc_tx_timer = 5; 1971 } 1972 } 1973 1974 static void 1975 iwi_start(struct ifnet *ifp) 1976 { 1977 struct iwi_softc *sc = ifp->if_softc; 1978 IWI_LOCK_DECL; 1979 1980 IWI_LOCK(sc); 1981 iwi_start_locked(ifp); 1982 IWI_UNLOCK(sc); 1983 } 1984 1985 static void 1986 iwi_watchdog(void *arg) 1987 { 1988 struct iwi_softc *sc = arg; 1989 struct ifnet *ifp = sc->sc_ifp; 1990 struct ieee80211com *ic = ifp->if_l2com; 1991 1992 IWI_LOCK_ASSERT(sc); 1993 1994 if (sc->sc_tx_timer > 0) { 1995 if (--sc->sc_tx_timer == 0) { 1996 if_printf(ifp, "device timeout\n"); 1997 ifp->if_oerrors++; 1998 ieee80211_runtask(ic, &sc->sc_restarttask); 1999 } 2000 } 2001 if (sc->sc_state_timer > 0) { 2002 if (--sc->sc_state_timer == 0) { 2003 if_printf(ifp, "firmware stuck in state %d, resetting\n", 2004 sc->fw_state); 2005 if (sc->fw_state == IWI_FW_SCANNING) { 2006 struct ieee80211com *ic = ifp->if_l2com; 2007 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2008 } 2009 ieee80211_runtask(ic, &sc->sc_restarttask); 2010 sc->sc_state_timer = 3; 2011 } 2012 } 2013 if (sc->sc_busy_timer > 0) { 2014 if (--sc->sc_busy_timer == 0) { 2015 if_printf(ifp, "firmware command timeout, resetting\n"); 2016 ieee80211_runtask(ic, &sc->sc_restarttask); 2017 } 2018 } 2019 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2020 } 2021 2022 static int 2023 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2024 { 2025 struct iwi_softc *sc = ifp->if_softc; 2026 struct ieee80211com *ic = ifp->if_l2com; 2027 struct ifreq *ifr = (struct ifreq *) data; 2028 int error = 0, startall = 0; 2029 IWI_LOCK_DECL; 2030 2031 switch (cmd) { 2032 case SIOCSIFFLAGS: 2033 IWI_LOCK(sc); 2034 if (ifp->if_flags & IFF_UP) { 2035 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2036 iwi_init_locked(sc); 2037 startall = 1; 2038 } 2039 } else { 2040 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2041 iwi_stop_locked(sc); 2042 } 2043 IWI_UNLOCK(sc); 2044 if (startall) 2045 ieee80211_start_all(ic); 2046 break; 2047 case SIOCGIFMEDIA: 2048 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2049 break; 2050 case SIOCGIFADDR: 2051 error = ether_ioctl(ifp, cmd, data); 2052 break; 2053 default: 2054 error = EINVAL; 2055 break; 2056 } 2057 return error; 2058 } 2059 2060 static void 2061 iwi_stop_master(struct iwi_softc *sc) 2062 { 2063 uint32_t tmp; 2064 int ntries; 2065 2066 /* disable interrupts */ 2067 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2068 2069 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2070 for (ntries = 0; ntries < 5; ntries++) { 2071 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2072 break; 2073 DELAY(10); 2074 } 2075 if (ntries == 5) 2076 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2077 2078 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2079 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2080 2081 sc->flags &= ~IWI_FLAG_FW_INITED; 2082 } 2083 2084 static int 2085 iwi_reset(struct iwi_softc *sc) 2086 { 2087 uint32_t tmp; 2088 int i, ntries; 2089 2090 iwi_stop_master(sc); 2091 2092 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2093 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2094 2095 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2096 2097 /* wait for clock stabilization */ 2098 for (ntries = 0; ntries < 1000; ntries++) { 2099 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2100 break; 2101 DELAY(200); 2102 } 2103 if (ntries == 1000) { 2104 device_printf(sc->sc_dev, 2105 "timeout waiting for clock stabilization\n"); 2106 return EIO; 2107 } 2108 2109 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2110 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2111 2112 DELAY(10); 2113 2114 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2115 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2116 2117 /* clear NIC memory */ 2118 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2119 for (i = 0; i < 0xc000; i++) 2120 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2121 2122 return 0; 2123 } 2124 2125 static const struct iwi_firmware_ohdr * 2126 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2127 { 2128 const struct firmware *fp = fw->fp; 2129 const struct iwi_firmware_ohdr *hdr; 2130 2131 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2132 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2133 return NULL; 2134 } 2135 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2136 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2137 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2138 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2139 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2140 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2141 IWI_FW_REQ_MINOR); 2142 return NULL; 2143 } 2144 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2145 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2146 fw->name = fp->name; 2147 return hdr; 2148 } 2149 2150 static const struct iwi_firmware_ohdr * 2151 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2152 { 2153 const struct iwi_firmware_ohdr *hdr; 2154 2155 hdr = iwi_setup_ofw(sc, fw); 2156 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2157 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2158 fw->name); 2159 hdr = NULL; 2160 } 2161 return hdr; 2162 } 2163 2164 static void 2165 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2166 struct iwi_fw *uc, const char *ucname) 2167 { 2168 if (fw->fp == NULL) 2169 fw->fp = firmware_get(fwname); 2170 /* NB: pre-3.0 ucode is packaged separately */ 2171 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2172 uc->fp = firmware_get(ucname); 2173 } 2174 2175 /* 2176 * Get the required firmware images if not already loaded. 2177 * Note that we hold firmware images so long as the device 2178 * is marked up in case we need to reload them on device init. 2179 * This is necessary because we re-init the device sometimes 2180 * from a context where we cannot read from the filesystem 2181 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2182 * XXX return 0 on success, 1 on error. 2183 * 2184 * NB: the order of get'ing and put'ing images here is 2185 * intentional to support handling firmware images bundled 2186 * by operating mode and/or all together in one file with 2187 * the boot firmware as "master". 2188 */ 2189 static int 2190 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2191 { 2192 const struct iwi_firmware_hdr *hdr; 2193 const struct firmware *fp; 2194 2195 /* invalidate cached firmware on mode change */ 2196 if (sc->fw_mode != opmode) 2197 iwi_put_firmware(sc); 2198 2199 switch (opmode) { 2200 case IEEE80211_M_STA: 2201 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2202 break; 2203 case IEEE80211_M_IBSS: 2204 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2205 break; 2206 case IEEE80211_M_MONITOR: 2207 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2208 &sc->fw_uc, "iwi_ucode_monitor"); 2209 break; 2210 default: 2211 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 2212 return EINVAL; 2213 } 2214 fp = sc->fw_fw.fp; 2215 if (fp == NULL) { 2216 device_printf(sc->sc_dev, "could not load firmware\n"); 2217 goto bad; 2218 } 2219 if (fp->version < 300) { 2220 /* 2221 * Firmware prior to 3.0 was packaged as separate 2222 * boot, firmware, and ucode images. Verify the 2223 * ucode image was read in, retrieve the boot image 2224 * if needed, and check version stamps for consistency. 2225 * The version stamps in the data are also checked 2226 * above; this is a bit paranoid but is a cheap 2227 * safeguard against mis-packaging. 2228 */ 2229 if (sc->fw_uc.fp == NULL) { 2230 device_printf(sc->sc_dev, "could not load ucode\n"); 2231 goto bad; 2232 } 2233 if (sc->fw_boot.fp == NULL) { 2234 sc->fw_boot.fp = firmware_get("iwi_boot"); 2235 if (sc->fw_boot.fp == NULL) { 2236 device_printf(sc->sc_dev, 2237 "could not load boot firmware\n"); 2238 goto bad; 2239 } 2240 } 2241 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2242 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2243 device_printf(sc->sc_dev, 2244 "firmware version mismatch: " 2245 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2246 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2247 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2248 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2249 ); 2250 goto bad; 2251 } 2252 /* 2253 * Check and setup each image. 2254 */ 2255 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2256 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2257 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2258 goto bad; 2259 } else { 2260 /* 2261 * Check and setup combined image. 2262 */ 2263 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2264 device_printf(sc->sc_dev, "image '%s' too small\n", 2265 fp->name); 2266 goto bad; 2267 } 2268 hdr = (const struct iwi_firmware_hdr *)fp->data; 2269 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2270 + le32toh(hdr->fsize)) { 2271 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2272 fp->name); 2273 goto bad; 2274 } 2275 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2276 sc->fw_boot.size = le32toh(hdr->bsize); 2277 sc->fw_boot.name = fp->name; 2278 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2279 sc->fw_uc.size = le32toh(hdr->usize); 2280 sc->fw_uc.name = fp->name; 2281 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2282 sc->fw_fw.size = le32toh(hdr->fsize); 2283 sc->fw_fw.name = fp->name; 2284 } 2285 #if 0 2286 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2287 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2288 #endif 2289 2290 sc->fw_mode = opmode; 2291 return 0; 2292 bad: 2293 iwi_put_firmware(sc); 2294 return 1; 2295 } 2296 2297 static void 2298 iwi_put_fw(struct iwi_fw *fw) 2299 { 2300 if (fw->fp != NULL) { 2301 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2302 fw->fp = NULL; 2303 } 2304 fw->data = NULL; 2305 fw->size = 0; 2306 fw->name = NULL; 2307 } 2308 2309 /* 2310 * Release any cached firmware images. 2311 */ 2312 static void 2313 iwi_put_firmware(struct iwi_softc *sc) 2314 { 2315 iwi_put_fw(&sc->fw_uc); 2316 iwi_put_fw(&sc->fw_fw); 2317 iwi_put_fw(&sc->fw_boot); 2318 } 2319 2320 static int 2321 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2322 { 2323 uint32_t tmp; 2324 const uint16_t *w; 2325 const char *uc = fw->data; 2326 size_t size = fw->size; 2327 int i, ntries, error; 2328 2329 IWI_LOCK_ASSERT(sc); 2330 error = 0; 2331 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2332 IWI_RST_STOP_MASTER); 2333 for (ntries = 0; ntries < 5; ntries++) { 2334 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2335 break; 2336 DELAY(10); 2337 } 2338 if (ntries == 5) { 2339 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2340 error = EIO; 2341 goto fail; 2342 } 2343 2344 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2345 DELAY(5000); 2346 2347 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2348 tmp &= ~IWI_RST_PRINCETON_RESET; 2349 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2350 2351 DELAY(5000); 2352 MEM_WRITE_4(sc, 0x3000e0, 0); 2353 DELAY(1000); 2354 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2355 DELAY(1000); 2356 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2357 DELAY(1000); 2358 MEM_WRITE_1(sc, 0x200000, 0x00); 2359 MEM_WRITE_1(sc, 0x200000, 0x40); 2360 DELAY(1000); 2361 2362 /* write microcode into adapter memory */ 2363 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2364 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2365 2366 MEM_WRITE_1(sc, 0x200000, 0x00); 2367 MEM_WRITE_1(sc, 0x200000, 0x80); 2368 2369 /* wait until we get an answer */ 2370 for (ntries = 0; ntries < 100; ntries++) { 2371 if (MEM_READ_1(sc, 0x200000) & 1) 2372 break; 2373 DELAY(100); 2374 } 2375 if (ntries == 100) { 2376 device_printf(sc->sc_dev, 2377 "timeout waiting for ucode to initialize\n"); 2378 error = EIO; 2379 goto fail; 2380 } 2381 2382 /* read the answer or the firmware will not initialize properly */ 2383 for (i = 0; i < 7; i++) 2384 MEM_READ_4(sc, 0x200004); 2385 2386 MEM_WRITE_1(sc, 0x200000, 0x00); 2387 2388 fail: 2389 return error; 2390 } 2391 2392 /* macro to handle unaligned little endian data in firmware image */ 2393 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2394 2395 static int 2396 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2397 { 2398 u_char *p, *end; 2399 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2400 int ntries, error; 2401 2402 IWI_LOCK_ASSERT(sc); 2403 2404 /* copy firmware image to DMA memory */ 2405 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2406 2407 /* make sure the adapter will get up-to-date values */ 2408 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2409 2410 /* tell the adapter where the command blocks are stored */ 2411 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2412 2413 /* 2414 * Store command blocks into adapter's internal memory using register 2415 * indirections. The adapter will read the firmware image through DMA 2416 * using information stored in command blocks. 2417 */ 2418 src = sc->fw_physaddr; 2419 p = sc->fw_virtaddr; 2420 end = p + fw->size; 2421 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2422 2423 while (p < end) { 2424 dst = GETLE32(p); p += 4; src += 4; 2425 len = GETLE32(p); p += 4; src += 4; 2426 p += len; 2427 2428 while (len > 0) { 2429 mlen = min(len, IWI_CB_MAXDATALEN); 2430 2431 ctl = IWI_CB_DEFAULT_CTL | mlen; 2432 sum = ctl ^ src ^ dst; 2433 2434 /* write a command block */ 2435 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2436 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2437 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2438 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2439 2440 src += mlen; 2441 dst += mlen; 2442 len -= mlen; 2443 } 2444 } 2445 2446 /* write a fictive final command block (sentinel) */ 2447 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2448 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2449 2450 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2451 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2452 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2453 2454 /* tell the adapter to start processing command blocks */ 2455 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2456 2457 /* wait until the adapter reaches the sentinel */ 2458 for (ntries = 0; ntries < 400; ntries++) { 2459 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2460 break; 2461 DELAY(100); 2462 } 2463 /* sync dma, just in case */ 2464 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2465 if (ntries == 400) { 2466 device_printf(sc->sc_dev, 2467 "timeout processing command blocks for %s firmware\n", 2468 fw->name); 2469 return EIO; 2470 } 2471 2472 /* we're done with command blocks processing */ 2473 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2474 2475 /* allow interrupts so we know when the firmware is ready */ 2476 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2477 2478 /* tell the adapter to initialize the firmware */ 2479 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2480 2481 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2482 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2483 2484 /* wait at most one second for firmware initialization to complete */ 2485 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2486 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2487 "initialization to complete\n", fw->name); 2488 } 2489 2490 return error; 2491 } 2492 2493 static int 2494 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2495 { 2496 uint32_t data; 2497 2498 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2499 /* XXX set more fine-grained operation */ 2500 data = htole32(IWI_POWER_MODE_MAX); 2501 } else 2502 data = htole32(IWI_POWER_MODE_CAM); 2503 2504 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2505 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2506 } 2507 2508 static int 2509 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2510 { 2511 struct iwi_wep_key wepkey; 2512 struct ieee80211_key *wk; 2513 int error, i; 2514 2515 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2516 wk = &vap->iv_nw_keys[i]; 2517 2518 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2519 wepkey.idx = i; 2520 wepkey.len = wk->wk_keylen; 2521 memset(wepkey.key, 0, sizeof wepkey.key); 2522 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2523 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2524 wepkey.len)); 2525 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2526 sizeof wepkey); 2527 if (error != 0) 2528 return error; 2529 } 2530 return 0; 2531 } 2532 2533 static int 2534 iwi_config(struct iwi_softc *sc) 2535 { 2536 struct ifnet *ifp = sc->sc_ifp; 2537 struct ieee80211com *ic = ifp->if_l2com; 2538 struct iwi_configuration config; 2539 struct iwi_rateset rs; 2540 struct iwi_txpower power; 2541 uint32_t data; 2542 int error, i; 2543 2544 IWI_LOCK_ASSERT(sc); 2545 2546 DPRINTF(("Setting MAC address to %6D\n", IF_LLADDR(ifp), ":")); 2547 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp), 2548 IEEE80211_ADDR_LEN); 2549 if (error != 0) 2550 return error; 2551 2552 memset(&config, 0, sizeof config); 2553 config.bluetooth_coexistence = sc->bluetooth; 2554 config.silence_threshold = 0x1e; 2555 config.antenna = sc->antenna; 2556 config.multicast_enabled = 1; 2557 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2558 config.disable_unicast_decryption = 1; 2559 config.disable_multicast_decryption = 1; 2560 DPRINTF(("Configuring adapter\n")); 2561 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2562 if (error != 0) 2563 return error; 2564 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2565 power.mode = IWI_MODE_11B; 2566 power.nchan = 11; 2567 for (i = 0; i < 11; i++) { 2568 power.chan[i].chan = i + 1; 2569 power.chan[i].power = IWI_TXPOWER_MAX; 2570 } 2571 DPRINTF(("Setting .11b channels tx power\n")); 2572 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2573 if (error != 0) 2574 return error; 2575 2576 power.mode = IWI_MODE_11G; 2577 DPRINTF(("Setting .11g channels tx power\n")); 2578 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2579 if (error != 0) 2580 return error; 2581 } 2582 2583 memset(&rs, 0, sizeof rs); 2584 rs.mode = IWI_MODE_11G; 2585 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2586 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; 2587 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, 2588 rs.nrates); 2589 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); 2590 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2591 if (error != 0) 2592 return error; 2593 2594 memset(&rs, 0, sizeof rs); 2595 rs.mode = IWI_MODE_11A; 2596 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2597 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; 2598 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, 2599 rs.nrates); 2600 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); 2601 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2602 if (error != 0) 2603 return error; 2604 2605 data = htole32(arc4random()); 2606 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2607 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2608 if (error != 0) 2609 return error; 2610 2611 /* enable adapter */ 2612 DPRINTF(("Enabling adapter\n")); 2613 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2614 } 2615 2616 static __inline void 2617 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2618 { 2619 uint8_t *st = &scan->scan_type[ix / 2]; 2620 if (ix % 2) 2621 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2622 else 2623 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2624 } 2625 2626 static int 2627 scan_type(const struct ieee80211_scan_state *ss, 2628 const struct ieee80211_channel *chan) 2629 { 2630 /* We can only set one essid for a directed scan */ 2631 if (ss->ss_nssid != 0) 2632 return IWI_SCAN_TYPE_BDIRECTED; 2633 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2634 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2635 return IWI_SCAN_TYPE_BROADCAST; 2636 return IWI_SCAN_TYPE_PASSIVE; 2637 } 2638 2639 static __inline int 2640 scan_band(const struct ieee80211_channel *c) 2641 { 2642 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2643 } 2644 2645 /* 2646 * Start a scan on the current channel or all channels. 2647 */ 2648 static int 2649 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) 2650 { 2651 struct ieee80211com *ic; 2652 struct ieee80211_channel *chan; 2653 struct ieee80211_scan_state *ss; 2654 struct iwi_scan_ext scan; 2655 int error = 0; 2656 2657 IWI_LOCK_ASSERT(sc); 2658 if (sc->fw_state == IWI_FW_SCANNING) { 2659 /* 2660 * This should not happen as we only trigger scan_next after 2661 * completion 2662 */ 2663 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2664 return (EBUSY); 2665 } 2666 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2667 2668 ic = sc->sc_ifp->if_l2com; 2669 ss = ic->ic_scan; 2670 2671 memset(&scan, 0, sizeof scan); 2672 scan.full_scan_index = htole32(++sc->sc_scangen); 2673 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2674 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2675 /* 2676 * Use very short dwell times for when we send probe request 2677 * frames. Without this bg scans hang. Ideally this should 2678 * be handled with early-termination as done by net80211 but 2679 * that's not feasible (aborting a scan is problematic). 2680 */ 2681 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2682 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2683 } else { 2684 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2685 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2686 } 2687 2688 /* We can only set one essid for a directed scan */ 2689 if (ss->ss_nssid != 0) { 2690 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2691 ss->ss_ssid[0].len); 2692 if (error) 2693 return (error); 2694 } 2695 2696 if (allchan) { 2697 int i, next, band, b, bstart; 2698 /* 2699 * Convert scan list to run-length encoded channel list 2700 * the firmware requires (preserving the order setup by 2701 * net80211). The first entry in each run specifies the 2702 * band and the count of items in the run. 2703 */ 2704 next = 0; /* next open slot */ 2705 bstart = 0; /* NB: not needed, silence compiler */ 2706 band = -1; /* NB: impossible value */ 2707 KASSERT(ss->ss_last > 0, ("no channels")); 2708 for (i = 0; i < ss->ss_last; i++) { 2709 chan = ss->ss_chans[i]; 2710 b = scan_band(chan); 2711 if (b != band) { 2712 if (band != -1) 2713 scan.channels[bstart] = 2714 (next - bstart) | band; 2715 /* NB: this allocates a slot for the run-len */ 2716 band = b, bstart = next++; 2717 } 2718 if (next >= IWI_SCAN_CHANNELS) { 2719 DPRINTF(("truncating scan list\n")); 2720 break; 2721 } 2722 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2723 set_scan_type(&scan, next, scan_type(ss, chan)); 2724 next++; 2725 } 2726 scan.channels[bstart] = (next - bstart) | band; 2727 } else { 2728 /* Scan the current channel only */ 2729 chan = ic->ic_curchan; 2730 scan.channels[0] = 1 | scan_band(chan); 2731 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2732 set_scan_type(&scan, 1, scan_type(ss, chan)); 2733 } 2734 #ifdef IWI_DEBUG 2735 if (iwi_debug > 0) { 2736 static const char *scantype[8] = 2737 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2738 int i; 2739 printf("Scan request: index %u dwell %d/%d/%d\n" 2740 , le32toh(scan.full_scan_index) 2741 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2742 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2743 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2744 ); 2745 i = 0; 2746 do { 2747 int run = scan.channels[i]; 2748 if (run == 0) 2749 break; 2750 printf("Scan %d %s channels:", run & 0x3f, 2751 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2752 for (run &= 0x3f, i++; run > 0; run--, i++) { 2753 uint8_t type = scan.scan_type[i/2]; 2754 printf(" %u/%s", scan.channels[i], 2755 scantype[(i & 1 ? type : type>>4) & 7]); 2756 } 2757 printf("\n"); 2758 } while (i < IWI_SCAN_CHANNELS); 2759 } 2760 #endif 2761 2762 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2763 } 2764 2765 static int 2766 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2767 { 2768 struct iwi_sensitivity sens; 2769 2770 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2771 2772 memset(&sens, 0, sizeof sens); 2773 sens.rssi = htole16(rssi_dbm); 2774 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2775 } 2776 2777 static int 2778 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2779 { 2780 struct ieee80211com *ic = vap->iv_ic; 2781 struct ifnet *ifp = vap->iv_ifp; 2782 struct ieee80211_node *ni = vap->iv_bss; 2783 struct iwi_configuration config; 2784 struct iwi_associate *assoc = &sc->assoc; 2785 struct iwi_rateset rs; 2786 uint16_t capinfo; 2787 uint32_t data; 2788 int error, mode; 2789 2790 IWI_LOCK_ASSERT(sc); 2791 2792 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2793 DPRINTF(("Already associated\n")); 2794 return (-1); 2795 } 2796 2797 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2798 error = 0; 2799 mode = 0; 2800 2801 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2802 mode = IWI_MODE_11A; 2803 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2804 mode = IWI_MODE_11G; 2805 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2806 mode = IWI_MODE_11B; 2807 2808 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2809 memset(&config, 0, sizeof config); 2810 config.bluetooth_coexistence = sc->bluetooth; 2811 config.antenna = sc->antenna; 2812 config.multicast_enabled = 1; 2813 if (mode == IWI_MODE_11G) 2814 config.use_protection = 1; 2815 config.answer_pbreq = 2816 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2817 config.disable_unicast_decryption = 1; 2818 config.disable_multicast_decryption = 1; 2819 DPRINTF(("Configuring adapter\n")); 2820 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2821 if (error != 0) 2822 goto done; 2823 } 2824 2825 #ifdef IWI_DEBUG 2826 if (iwi_debug > 0) { 2827 printf("Setting ESSID to "); 2828 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2829 printf("\n"); 2830 } 2831 #endif 2832 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2833 if (error != 0) 2834 goto done; 2835 2836 error = iwi_setpowermode(sc, vap); 2837 if (error != 0) 2838 goto done; 2839 2840 data = htole32(vap->iv_rtsthreshold); 2841 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2842 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2843 if (error != 0) 2844 goto done; 2845 2846 data = htole32(vap->iv_fragthreshold); 2847 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2848 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2849 if (error != 0) 2850 goto done; 2851 2852 /* the rate set has already been "negotiated" */ 2853 memset(&rs, 0, sizeof rs); 2854 rs.mode = mode; 2855 rs.type = IWI_RATESET_TYPE_NEGOTIATED; 2856 rs.nrates = ni->ni_rates.rs_nrates; 2857 if (rs.nrates > IWI_RATESET_SIZE) { 2858 DPRINTF(("Truncating negotiated rate set from %u\n", 2859 rs.nrates)); 2860 rs.nrates = IWI_RATESET_SIZE; 2861 } 2862 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); 2863 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); 2864 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2865 if (error != 0) 2866 goto done; 2867 2868 memset(assoc, 0, sizeof *assoc); 2869 2870 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2871 /* NB: don't treat WME setup as failure */ 2872 if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0) 2873 assoc->policy |= htole16(IWI_POLICY_WME); 2874 /* XXX complain on failure? */ 2875 } 2876 2877 if (vap->iv_appie_wpa != NULL) { 2878 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2879 2880 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2881 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2882 if (error != 0) 2883 goto done; 2884 } 2885 2886 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2887 if (error != 0) 2888 goto done; 2889 2890 assoc->mode = mode; 2891 assoc->chan = ic->ic_curchan->ic_ieee; 2892 /* 2893 * NB: do not arrange for shared key auth w/o privacy 2894 * (i.e. a wep key); it causes a firmware error. 2895 */ 2896 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2897 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2898 assoc->auth = IWI_AUTH_SHARED; 2899 /* 2900 * It's possible to have privacy marked but no default 2901 * key setup. This typically is due to a user app bug 2902 * but if we blindly grab the key the firmware will 2903 * barf so avoid it for now. 2904 */ 2905 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2906 assoc->auth |= vap->iv_def_txkey << 4; 2907 2908 error = iwi_setwepkeys(sc, vap); 2909 if (error != 0) 2910 goto done; 2911 } 2912 if (vap->iv_flags & IEEE80211_F_WPA) 2913 assoc->policy |= htole16(IWI_POLICY_WPA); 2914 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2915 assoc->type = IWI_HC_IBSS_START; 2916 else 2917 assoc->type = IWI_HC_ASSOC; 2918 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2919 2920 if (vap->iv_opmode == IEEE80211_M_IBSS) 2921 capinfo = IEEE80211_CAPINFO_IBSS; 2922 else 2923 capinfo = IEEE80211_CAPINFO_ESS; 2924 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2925 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2926 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2927 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2928 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2929 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2930 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2931 assoc->capinfo = htole16(capinfo); 2932 2933 assoc->lintval = htole16(ic->ic_lintval); 2934 assoc->intval = htole16(ni->ni_intval); 2935 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2936 if (vap->iv_opmode == IEEE80211_M_IBSS) 2937 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 2938 else 2939 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2940 2941 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2942 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2943 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2944 assoc->bssid, ":", assoc->dst, ":", 2945 assoc->chan, le16toh(assoc->policy), assoc->auth, 2946 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2947 le16toh(assoc->intval))); 2948 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2949 done: 2950 if (error) 2951 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2952 2953 return (error); 2954 } 2955 2956 static void 2957 iwi_disassoc(void *arg, int pending) 2958 { 2959 struct iwi_softc *sc = arg; 2960 IWI_LOCK_DECL; 2961 2962 IWI_LOCK(sc); 2963 iwi_disassociate(sc, 0); 2964 IWI_UNLOCK(sc); 2965 } 2966 2967 static int 2968 iwi_disassociate(struct iwi_softc *sc, int quiet) 2969 { 2970 struct iwi_associate *assoc = &sc->assoc; 2971 2972 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 2973 DPRINTF(("Not associated\n")); 2974 return (-1); 2975 } 2976 2977 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 2978 2979 if (quiet) 2980 assoc->type = IWI_HC_DISASSOC_QUIET; 2981 else 2982 assoc->type = IWI_HC_DISASSOC; 2983 2984 DPRINTF(("Trying to disassociate from %6D channel %u\n", 2985 assoc->bssid, ":", assoc->chan)); 2986 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2987 } 2988 2989 /* 2990 * release dma resources for the firmware 2991 */ 2992 static void 2993 iwi_release_fw_dma(struct iwi_softc *sc) 2994 { 2995 if (sc->fw_flags & IWI_FW_HAVE_PHY) 2996 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 2997 if (sc->fw_flags & IWI_FW_HAVE_MAP) 2998 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 2999 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3000 bus_dma_tag_destroy(sc->fw_dmat); 3001 3002 sc->fw_flags = 0; 3003 sc->fw_dma_size = 0; 3004 sc->fw_dmat = NULL; 3005 sc->fw_map = NULL; 3006 sc->fw_physaddr = 0; 3007 sc->fw_virtaddr = NULL; 3008 } 3009 3010 /* 3011 * allocate the dma descriptor for the firmware. 3012 * Return 0 on success, 1 on error. 3013 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3014 */ 3015 static int 3016 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3017 { 3018 if (sc->fw_dma_size >= size) 3019 return 0; 3020 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3021 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3022 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3023 device_printf(sc->sc_dev, 3024 "could not create firmware DMA tag\n"); 3025 goto error; 3026 } 3027 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3028 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3029 &sc->fw_map) != 0) { 3030 device_printf(sc->sc_dev, 3031 "could not allocate firmware DMA memory\n"); 3032 goto error; 3033 } 3034 sc->fw_flags |= IWI_FW_HAVE_MAP; 3035 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3036 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3037 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3038 goto error; 3039 } 3040 sc->fw_flags |= IWI_FW_HAVE_PHY; 3041 sc->fw_dma_size = size; 3042 return 0; 3043 3044 error: 3045 iwi_release_fw_dma(sc); 3046 return 1; 3047 } 3048 3049 static void 3050 iwi_init_locked(struct iwi_softc *sc) 3051 { 3052 struct ifnet *ifp = sc->sc_ifp; 3053 struct iwi_rx_data *data; 3054 int i; 3055 3056 IWI_LOCK_ASSERT(sc); 3057 3058 if (sc->fw_state == IWI_FW_LOADING) { 3059 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3060 return; /* XXX: condvar? */ 3061 } 3062 3063 iwi_stop_locked(sc); 3064 3065 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3066 3067 if (iwi_reset(sc) != 0) { 3068 device_printf(sc->sc_dev, "could not reset adapter\n"); 3069 goto fail; 3070 } 3071 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3072 device_printf(sc->sc_dev, 3073 "could not load boot firmware %s\n", sc->fw_boot.name); 3074 goto fail; 3075 } 3076 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3077 device_printf(sc->sc_dev, 3078 "could not load microcode %s\n", sc->fw_uc.name); 3079 goto fail; 3080 } 3081 3082 iwi_stop_master(sc); 3083 3084 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3085 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3086 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3087 3088 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3089 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3090 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3091 3092 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3093 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3094 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3095 3096 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3097 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3098 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3099 3100 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3101 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3102 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3103 3104 for (i = 0; i < sc->rxq.count; i++) { 3105 data = &sc->rxq.data[i]; 3106 CSR_WRITE_4(sc, data->reg, data->physaddr); 3107 } 3108 3109 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3110 3111 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3112 device_printf(sc->sc_dev, 3113 "could not load main firmware %s\n", sc->fw_fw.name); 3114 goto fail; 3115 } 3116 sc->flags |= IWI_FLAG_FW_INITED; 3117 3118 IWI_STATE_END(sc, IWI_FW_LOADING); 3119 3120 if (iwi_config(sc) != 0) { 3121 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3122 goto fail2; 3123 } 3124 3125 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3126 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3127 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3128 return; 3129 fail: 3130 IWI_STATE_END(sc, IWI_FW_LOADING); 3131 fail2: 3132 iwi_stop_locked(sc); 3133 } 3134 3135 static void 3136 iwi_init(void *priv) 3137 { 3138 struct iwi_softc *sc = priv; 3139 struct ifnet *ifp = sc->sc_ifp; 3140 struct ieee80211com *ic = ifp->if_l2com; 3141 IWI_LOCK_DECL; 3142 3143 IWI_LOCK(sc); 3144 iwi_init_locked(sc); 3145 IWI_UNLOCK(sc); 3146 3147 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3148 ieee80211_start_all(ic); 3149 } 3150 3151 static void 3152 iwi_stop_locked(void *priv) 3153 { 3154 struct iwi_softc *sc = priv; 3155 struct ifnet *ifp = sc->sc_ifp; 3156 3157 IWI_LOCK_ASSERT(sc); 3158 3159 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3160 3161 if (sc->sc_softled) { 3162 callout_stop(&sc->sc_ledtimer); 3163 sc->sc_blinking = 0; 3164 } 3165 callout_stop(&sc->sc_wdtimer); 3166 callout_stop(&sc->sc_rftimer); 3167 3168 iwi_stop_master(sc); 3169 3170 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3171 3172 /* reset rings */ 3173 iwi_reset_cmd_ring(sc, &sc->cmdq); 3174 iwi_reset_tx_ring(sc, &sc->txq[0]); 3175 iwi_reset_tx_ring(sc, &sc->txq[1]); 3176 iwi_reset_tx_ring(sc, &sc->txq[2]); 3177 iwi_reset_tx_ring(sc, &sc->txq[3]); 3178 iwi_reset_rx_ring(sc, &sc->rxq); 3179 3180 sc->sc_tx_timer = 0; 3181 sc->sc_state_timer = 0; 3182 sc->sc_busy_timer = 0; 3183 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3184 sc->fw_state = IWI_FW_IDLE; 3185 wakeup(sc); 3186 } 3187 3188 static void 3189 iwi_stop(struct iwi_softc *sc) 3190 { 3191 IWI_LOCK_DECL; 3192 3193 IWI_LOCK(sc); 3194 iwi_stop_locked(sc); 3195 IWI_UNLOCK(sc); 3196 } 3197 3198 static void 3199 iwi_restart(void *arg, int npending) 3200 { 3201 struct iwi_softc *sc = arg; 3202 3203 iwi_init(sc); 3204 } 3205 3206 /* 3207 * Return whether or not the radio is enabled in hardware 3208 * (i.e. the rfkill switch is "off"). 3209 */ 3210 static int 3211 iwi_getrfkill(struct iwi_softc *sc) 3212 { 3213 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3214 } 3215 3216 static void 3217 iwi_radio_on(void *arg, int pending) 3218 { 3219 struct iwi_softc *sc = arg; 3220 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3221 3222 device_printf(sc->sc_dev, "radio turned on\n"); 3223 3224 iwi_init(sc); 3225 ieee80211_notify_radio(ic, 1); 3226 } 3227 3228 static void 3229 iwi_rfkill_poll(void *arg) 3230 { 3231 struct iwi_softc *sc = arg; 3232 3233 IWI_LOCK_ASSERT(sc); 3234 3235 /* 3236 * Check for a change in rfkill state. We get an 3237 * interrupt when a radio is disabled but not when 3238 * it is enabled so we must poll for the latter. 3239 */ 3240 if (!iwi_getrfkill(sc)) { 3241 struct ifnet *ifp = sc->sc_ifp; 3242 struct ieee80211com *ic = ifp->if_l2com; 3243 3244 ieee80211_runtask(ic, &sc->sc_radiontask); 3245 return; 3246 } 3247 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3248 } 3249 3250 static void 3251 iwi_radio_off(void *arg, int pending) 3252 { 3253 struct iwi_softc *sc = arg; 3254 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3255 IWI_LOCK_DECL; 3256 3257 device_printf(sc->sc_dev, "radio turned off\n"); 3258 3259 ieee80211_notify_radio(ic, 0); 3260 3261 IWI_LOCK(sc); 3262 iwi_stop_locked(sc); 3263 iwi_rfkill_poll(sc); 3264 IWI_UNLOCK(sc); 3265 } 3266 3267 static int 3268 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3269 { 3270 struct iwi_softc *sc = arg1; 3271 uint32_t size, buf[128]; 3272 3273 memset(buf, 0, sizeof buf); 3274 3275 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3276 return SYSCTL_OUT(req, buf, sizeof buf); 3277 3278 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3279 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3280 3281 return SYSCTL_OUT(req, buf, size); 3282 } 3283 3284 static int 3285 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3286 { 3287 struct iwi_softc *sc = arg1; 3288 int val = !iwi_getrfkill(sc); 3289 3290 return SYSCTL_OUT(req, &val, sizeof val); 3291 } 3292 3293 /* 3294 * Add sysctl knobs. 3295 */ 3296 static void 3297 iwi_sysctlattach(struct iwi_softc *sc) 3298 { 3299 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3300 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3301 3302 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3303 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3304 "radio transmitter switch state (0=off, 1=on)"); 3305 3306 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3307 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3308 "statistics"); 3309 3310 sc->bluetooth = 0; 3311 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3312 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3313 3314 sc->antenna = IWI_ANTENNA_AUTO; 3315 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3316 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3317 } 3318 3319 /* 3320 * LED support. 3321 * 3322 * Different cards have different capabilities. Some have three 3323 * led's while others have only one. The linux ipw driver defines 3324 * led's for link state (associated or not), band (11a, 11g, 11b), 3325 * and for link activity. We use one led and vary the blink rate 3326 * according to the tx/rx traffic a la the ath driver. 3327 */ 3328 3329 static __inline uint32_t 3330 iwi_toggle_event(uint32_t r) 3331 { 3332 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3333 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3334 } 3335 3336 static uint32_t 3337 iwi_read_event(struct iwi_softc *sc) 3338 { 3339 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3340 } 3341 3342 static void 3343 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3344 { 3345 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3346 } 3347 3348 static void 3349 iwi_led_done(void *arg) 3350 { 3351 struct iwi_softc *sc = arg; 3352 3353 sc->sc_blinking = 0; 3354 } 3355 3356 /* 3357 * Turn the activity LED off: flip the pin and then set a timer so no 3358 * update will happen for the specified duration. 3359 */ 3360 static void 3361 iwi_led_off(void *arg) 3362 { 3363 struct iwi_softc *sc = arg; 3364 uint32_t v; 3365 3366 v = iwi_read_event(sc); 3367 v &= ~sc->sc_ledpin; 3368 iwi_write_event(sc, iwi_toggle_event(v)); 3369 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3370 } 3371 3372 /* 3373 * Blink the LED according to the specified on/off times. 3374 */ 3375 static void 3376 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3377 { 3378 uint32_t v; 3379 3380 v = iwi_read_event(sc); 3381 v |= sc->sc_ledpin; 3382 iwi_write_event(sc, iwi_toggle_event(v)); 3383 sc->sc_blinking = 1; 3384 sc->sc_ledoff = off; 3385 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3386 } 3387 3388 static void 3389 iwi_led_event(struct iwi_softc *sc, int event) 3390 { 3391 #define N(a) (sizeof(a)/sizeof(a[0])) 3392 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3393 static const struct { 3394 u_int rate; /* tx/rx iwi rate */ 3395 u_int16_t timeOn; /* LED on time (ms) */ 3396 u_int16_t timeOff; /* LED off time (ms) */ 3397 } blinkrates[] = { 3398 { IWI_RATE_OFDM54, 40, 10 }, 3399 { IWI_RATE_OFDM48, 44, 11 }, 3400 { IWI_RATE_OFDM36, 50, 13 }, 3401 { IWI_RATE_OFDM24, 57, 14 }, 3402 { IWI_RATE_OFDM18, 67, 16 }, 3403 { IWI_RATE_OFDM12, 80, 20 }, 3404 { IWI_RATE_DS11, 100, 25 }, 3405 { IWI_RATE_OFDM9, 133, 34 }, 3406 { IWI_RATE_OFDM6, 160, 40 }, 3407 { IWI_RATE_DS5, 200, 50 }, 3408 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3409 { IWI_RATE_DS2, 267, 66 }, 3410 { IWI_RATE_DS1, 400, 100 }, 3411 { 0, 500, 130 }, /* unknown rate/polling */ 3412 }; 3413 uint32_t txrate; 3414 int j = 0; /* XXX silence compiler */ 3415 3416 sc->sc_ledevent = ticks; /* time of last event */ 3417 if (sc->sc_blinking) /* don't interrupt active blink */ 3418 return; 3419 switch (event) { 3420 case IWI_LED_POLL: 3421 j = N(blinkrates)-1; 3422 break; 3423 case IWI_LED_TX: 3424 /* read current transmission rate from adapter */ 3425 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3426 if (blinkrates[sc->sc_txrix].rate != txrate) { 3427 for (j = 0; j < N(blinkrates)-1; j++) 3428 if (blinkrates[j].rate == txrate) 3429 break; 3430 sc->sc_txrix = j; 3431 } else 3432 j = sc->sc_txrix; 3433 break; 3434 case IWI_LED_RX: 3435 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3436 for (j = 0; j < N(blinkrates)-1; j++) 3437 if (blinkrates[j].rate == sc->sc_rxrate) 3438 break; 3439 sc->sc_rxrix = j; 3440 } else 3441 j = sc->sc_rxrix; 3442 break; 3443 } 3444 /* XXX beware of overflow */ 3445 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3446 (blinkrates[j].timeOff * hz) / 1000); 3447 #undef N 3448 } 3449 3450 static int 3451 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3452 { 3453 struct iwi_softc *sc = arg1; 3454 int softled = sc->sc_softled; 3455 int error; 3456 3457 error = sysctl_handle_int(oidp, &softled, 0, req); 3458 if (error || !req->newptr) 3459 return error; 3460 softled = (softled != 0); 3461 if (softled != sc->sc_softled) { 3462 if (softled) { 3463 uint32_t v = iwi_read_event(sc); 3464 v &= ~sc->sc_ledpin; 3465 iwi_write_event(sc, iwi_toggle_event(v)); 3466 } 3467 sc->sc_softled = softled; 3468 } 3469 return 0; 3470 } 3471 3472 static void 3473 iwi_ledattach(struct iwi_softc *sc) 3474 { 3475 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3476 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3477 3478 sc->sc_blinking = 0; 3479 sc->sc_ledstate = 1; 3480 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3481 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3482 3483 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3484 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3485 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3486 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3487 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3488 "pin setting to turn activity LED on"); 3489 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3490 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3491 "idle time for inactivity LED (ticks)"); 3492 /* XXX for debugging */ 3493 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3494 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3495 "NIC type from EEPROM"); 3496 3497 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3498 sc->sc_softled = 1; 3499 3500 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3501 if (sc->sc_nictype == 1) { 3502 /* 3503 * NB: led's are reversed. 3504 */ 3505 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3506 } 3507 } 3508 3509 static void 3510 iwi_scan_start(struct ieee80211com *ic) 3511 { 3512 /* ignore */ 3513 } 3514 3515 static void 3516 iwi_set_channel(struct ieee80211com *ic) 3517 { 3518 struct ifnet *ifp = ic->ic_ifp; 3519 struct iwi_softc *sc = ifp->if_softc; 3520 if (sc->fw_state == IWI_FW_IDLE) 3521 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3522 } 3523 3524 static void 3525 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3526 { 3527 struct ieee80211vap *vap = ss->ss_vap; 3528 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3529 struct iwi_softc *sc = ifp->if_softc; 3530 IWI_LOCK_DECL; 3531 3532 IWI_LOCK(sc); 3533 if (iwi_scanchan(sc, maxdwell, 0)) 3534 ieee80211_cancel_scan(vap); 3535 IWI_UNLOCK(sc); 3536 } 3537 3538 static void 3539 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3540 { 3541 /* NB: don't try to abort scan; wait for firmware to finish */ 3542 } 3543 3544 static void 3545 iwi_scan_end(struct ieee80211com *ic) 3546 { 3547 struct ifnet *ifp = ic->ic_ifp; 3548 struct iwi_softc *sc = ifp->if_softc; 3549 IWI_LOCK_DECL; 3550 3551 IWI_LOCK(sc); 3552 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 3553 /* NB: make sure we're still scanning */ 3554 if (sc->fw_state == IWI_FW_SCANNING) 3555 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 3556 IWI_UNLOCK(sc); 3557 } 3558