1 /*- 2 * Copyright (c) 2004, 2005 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /*- 34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/namei.h> 54 #include <sys/linker.h> 55 #include <sys/firmware.h> 56 #include <sys/kthread.h> 57 #include <sys/taskqueue.h> 58 59 #include <machine/bus.h> 60 #include <machine/resource.h> 61 #include <sys/rman.h> 62 63 #include <dev/pci/pcireg.h> 64 #include <dev/pci/pcivar.h> 65 66 #include <net/bpf.h> 67 #include <net/if.h> 68 #include <net/if_arp.h> 69 #include <net/ethernet.h> 70 #include <net/if_dl.h> 71 #include <net/if_media.h> 72 #include <net/if_types.h> 73 74 #include <net80211/ieee80211_var.h> 75 #include <net80211/ieee80211_radiotap.h> 76 #include <net80211/ieee80211_input.h> 77 #include <net80211/ieee80211_regdomain.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip.h> 83 #include <netinet/if_ether.h> 84 85 #include <dev/iwi/if_iwireg.h> 86 #include <dev/iwi/if_iwivar.h> 87 88 #define IWI_DEBUG 89 #ifdef IWI_DEBUG 90 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 91 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 92 int iwi_debug = 0; 93 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 94 95 static const char *iwi_fw_states[] = { 96 "IDLE", /* IWI_FW_IDLE */ 97 "LOADING", /* IWI_FW_LOADING */ 98 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 99 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 100 "SCANNING", /* IWI_FW_SCANNING */ 101 }; 102 #else 103 #define DPRINTF(x) 104 #define DPRINTFN(n, x) 105 #endif 106 107 MODULE_DEPEND(iwi, pci, 1, 1, 1); 108 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 109 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 110 111 enum { 112 IWI_LED_TX, 113 IWI_LED_RX, 114 IWI_LED_POLL, 115 }; 116 117 struct iwi_ident { 118 uint16_t vendor; 119 uint16_t device; 120 const char *name; 121 }; 122 123 static const struct iwi_ident iwi_ident_table[] = { 124 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 125 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 126 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 127 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 128 129 { 0, 0, NULL } 130 }; 131 132 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 133 const char name[IFNAMSIZ], int unit, int opmode, int flags, 134 const uint8_t bssid[IEEE80211_ADDR_LEN], 135 const uint8_t mac[IEEE80211_ADDR_LEN]); 136 static void iwi_vap_delete(struct ieee80211vap *); 137 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 138 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 139 int); 140 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 141 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 142 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 143 int, bus_addr_t, bus_addr_t); 144 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 145 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 146 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 147 int); 148 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 149 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 150 static struct ieee80211_node *iwi_node_alloc(struct ieee80211_node_table *); 151 static void iwi_node_free(struct ieee80211_node *); 152 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 153 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 154 static void iwi_wme_init(struct iwi_softc *); 155 static int iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *); 156 static int iwi_wme_update(struct ieee80211com *); 157 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 158 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 159 struct iwi_frame *); 160 static void iwi_authsuccess(void *, int); 161 static void iwi_assocsuccess(void *, int); 162 static void iwi_assocfailed(void *, int); 163 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 164 static void iwi_rx_intr(struct iwi_softc *); 165 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 166 static void iwi_intr(void *); 167 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 168 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 169 static int iwi_tx_start(struct ifnet *, struct mbuf *, 170 struct ieee80211_node *, int); 171 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 172 const struct ieee80211_bpf_params *); 173 static void iwi_start_locked(struct ifnet *); 174 static void iwi_start(struct ifnet *); 175 static void iwi_watchdog(void *); 176 static int iwi_ioctl(struct ifnet *, u_long, caddr_t); 177 static void iwi_stop_master(struct iwi_softc *); 178 static int iwi_reset(struct iwi_softc *); 179 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 180 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 181 static void iwi_release_fw_dma(struct iwi_softc *sc); 182 static int iwi_config(struct iwi_softc *); 183 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 184 static void iwi_put_firmware(struct iwi_softc *); 185 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 186 static void iwi_scan_start(struct ieee80211com *); 187 static void iwi_scan_end(struct ieee80211com *); 188 static void iwi_scanabort(void *, int); 189 static void iwi_set_channel(struct ieee80211com *); 190 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 191 #if 0 192 static void iwi_scan_allchan(struct ieee80211com *, unsigned long maxdwell); 193 #endif 194 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 195 static void iwi_ops(void *, int); 196 static int iwi_queue_cmd(struct iwi_softc *, int, unsigned long); 197 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 198 static int iwi_disassociate(struct iwi_softc *, int quiet); 199 static void iwi_init_locked(struct iwi_softc *); 200 static void iwi_init(void *); 201 static int iwi_init_fw_dma(struct iwi_softc *, int); 202 static void iwi_stop_locked(void *); 203 static void iwi_stop(struct iwi_softc *); 204 static void iwi_restart(void *, int); 205 static int iwi_getrfkill(struct iwi_softc *); 206 static void iwi_radio_on(void *, int); 207 static void iwi_radio_off(void *, int); 208 static void iwi_sysctlattach(struct iwi_softc *); 209 static void iwi_led_event(struct iwi_softc *, int); 210 static void iwi_ledattach(struct iwi_softc *); 211 212 static int iwi_probe(device_t); 213 static int iwi_attach(device_t); 214 static int iwi_detach(device_t); 215 static int iwi_shutdown(device_t); 216 static int iwi_suspend(device_t); 217 static int iwi_resume(device_t); 218 219 static device_method_t iwi_methods[] = { 220 /* Device interface */ 221 DEVMETHOD(device_probe, iwi_probe), 222 DEVMETHOD(device_attach, iwi_attach), 223 DEVMETHOD(device_detach, iwi_detach), 224 DEVMETHOD(device_shutdown, iwi_shutdown), 225 DEVMETHOD(device_suspend, iwi_suspend), 226 DEVMETHOD(device_resume, iwi_resume), 227 228 { 0, 0 } 229 }; 230 231 static driver_t iwi_driver = { 232 "iwi", 233 iwi_methods, 234 sizeof (struct iwi_softc) 235 }; 236 237 static devclass_t iwi_devclass; 238 239 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0); 240 241 static __inline uint8_t 242 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 243 { 244 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 245 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 246 } 247 248 static __inline uint32_t 249 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 250 { 251 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 252 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 253 } 254 255 static int 256 iwi_probe(device_t dev) 257 { 258 const struct iwi_ident *ident; 259 260 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 261 if (pci_get_vendor(dev) == ident->vendor && 262 pci_get_device(dev) == ident->device) { 263 device_set_desc(dev, ident->name); 264 return 0; 265 } 266 } 267 return ENXIO; 268 } 269 270 /* Base Address Register */ 271 #define IWI_PCI_BAR0 0x10 272 273 static int 274 iwi_attach(device_t dev) 275 { 276 struct iwi_softc *sc = device_get_softc(dev); 277 struct ifnet *ifp; 278 struct ieee80211com *ic; 279 uint16_t val; 280 int i, error; 281 uint8_t bands; 282 283 sc->sc_dev = dev; 284 285 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 286 if (ifp == NULL) { 287 device_printf(dev, "can not if_alloc()\n"); 288 return ENXIO; 289 } 290 ic = ifp->if_l2com; 291 292 IWI_LOCK_INIT(sc); 293 IWI_CMD_LOCK_INIT(sc); 294 295 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 296 297 sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT | M_ZERO, 298 taskqueue_thread_enqueue, &sc->sc_tq); 299 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 300 device_get_nameunit(dev)); 301 sc->sc_tq2 = taskqueue_create("iwi_taskq2", M_NOWAIT | M_ZERO, 302 taskqueue_thread_enqueue, &sc->sc_tq2); 303 taskqueue_start_threads(&sc->sc_tq2, 1, PI_NET, "%s taskq2", 304 device_get_nameunit(dev)); 305 306 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 307 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 308 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 309 TASK_INIT(&sc->sc_opstask, 0, iwi_ops, sc); 310 TASK_INIT(&sc->sc_scanaborttask, 0, iwi_scanabort, sc); 311 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 312 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 313 314 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 315 device_printf(dev, "chip is in D%d power mode " 316 "-- setting to D0\n", pci_get_powerstate(dev)); 317 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 318 } 319 320 pci_write_config(dev, 0x41, 0, 1); 321 322 /* enable bus-mastering */ 323 pci_enable_busmaster(dev); 324 325 sc->mem_rid = IWI_PCI_BAR0; 326 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 327 RF_ACTIVE); 328 if (sc->mem == NULL) { 329 device_printf(dev, "could not allocate memory resource\n"); 330 goto fail; 331 } 332 333 sc->sc_st = rman_get_bustag(sc->mem); 334 sc->sc_sh = rman_get_bushandle(sc->mem); 335 336 sc->irq_rid = 0; 337 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 338 RF_ACTIVE | RF_SHAREABLE); 339 if (sc->irq == NULL) { 340 device_printf(dev, "could not allocate interrupt resource\n"); 341 goto fail; 342 } 343 344 if (iwi_reset(sc) != 0) { 345 device_printf(dev, "could not reset adapter\n"); 346 goto fail; 347 } 348 349 /* 350 * Allocate rings. 351 */ 352 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 353 device_printf(dev, "could not allocate Cmd ring\n"); 354 goto fail; 355 } 356 357 for (i = 0; i < 4; i++) { 358 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 359 IWI_CSR_TX1_RIDX + i * 4, 360 IWI_CSR_TX1_WIDX + i * 4); 361 if (error != 0) { 362 device_printf(dev, "could not allocate Tx ring %d\n", 363 i+i); 364 goto fail; 365 } 366 } 367 368 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 369 device_printf(dev, "could not allocate Rx ring\n"); 370 goto fail; 371 } 372 373 iwi_wme_init(sc); 374 375 ifp->if_softc = sc; 376 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 377 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 378 ifp->if_init = iwi_init; 379 ifp->if_ioctl = iwi_ioctl; 380 ifp->if_start = iwi_start; 381 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 382 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 383 IFQ_SET_READY(&ifp->if_snd); 384 385 ic->ic_ifp = ifp; 386 ic->ic_opmode = IEEE80211_M_STA; 387 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 388 389 /* set device capabilities */ 390 ic->ic_caps = 391 IEEE80211_C_IBSS /* IBSS mode supported */ 392 | IEEE80211_C_MONITOR /* monitor mode supported */ 393 | IEEE80211_C_PMGT /* power save supported */ 394 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 395 | IEEE80211_C_WPA /* 802.11i */ 396 | IEEE80211_C_WME /* 802.11e */ 397 #if 0 398 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 399 #endif 400 ; 401 402 /* read MAC address from EEPROM */ 403 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 404 ic->ic_myaddr[0] = val & 0xff; 405 ic->ic_myaddr[1] = val >> 8; 406 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 407 ic->ic_myaddr[2] = val & 0xff; 408 ic->ic_myaddr[3] = val >> 8; 409 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 410 ic->ic_myaddr[4] = val & 0xff; 411 ic->ic_myaddr[5] = val >> 8; 412 413 bands = 0; 414 setbit(&bands, IEEE80211_MODE_11B); 415 setbit(&bands, IEEE80211_MODE_11G); 416 if (pci_get_device(dev) >= 0x4223) 417 setbit(&bands, IEEE80211_MODE_11A); 418 ieee80211_init_channels(ic, NULL, &bands); 419 420 ieee80211_ifattach(ic); 421 /* override default methods */ 422 ic->ic_node_alloc = iwi_node_alloc; 423 sc->sc_node_free = ic->ic_node_free; 424 ic->ic_node_free = iwi_node_free; 425 ic->ic_raw_xmit = iwi_raw_xmit; 426 ic->ic_scan_start = iwi_scan_start; 427 ic->ic_scan_end = iwi_scan_end; 428 ic->ic_set_channel = iwi_set_channel; 429 ic->ic_scan_curchan = iwi_scan_curchan; 430 ic->ic_scan_mindwell = iwi_scan_mindwell; 431 ic->ic_wme.wme_update = iwi_wme_update; 432 433 ic->ic_vap_create = iwi_vap_create; 434 ic->ic_vap_delete = iwi_vap_delete; 435 436 bpfattach(ifp, DLT_IEEE802_11_RADIO, 437 sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap)); 438 439 sc->sc_rxtap_len = sizeof sc->sc_rxtap; 440 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 441 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT); 442 443 sc->sc_txtap_len = sizeof sc->sc_txtap; 444 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 445 sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT); 446 447 iwi_sysctlattach(sc); 448 iwi_ledattach(sc); 449 450 /* 451 * Hook our interrupt after all initialization is complete. 452 */ 453 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 454 NULL, iwi_intr, sc, &sc->sc_ih); 455 if (error != 0) { 456 device_printf(dev, "could not set up interrupt\n"); 457 goto fail; 458 } 459 460 if (bootverbose) 461 ieee80211_announce(ic); 462 463 return 0; 464 fail: 465 /* XXX fix */ 466 iwi_detach(dev); 467 return ENXIO; 468 } 469 470 static int 471 iwi_detach(device_t dev) 472 { 473 struct iwi_softc *sc = device_get_softc(dev); 474 struct ifnet *ifp = sc->sc_ifp; 475 struct ieee80211com *ic = ifp->if_l2com; 476 477 iwi_stop(sc); 478 479 bpfdetach(ifp); 480 ieee80211_ifdetach(ic); 481 482 /* NB: do early to drain any pending tasks */ 483 taskqueue_free(sc->sc_tq); 484 taskqueue_free(sc->sc_tq2); 485 486 iwi_put_firmware(sc); 487 iwi_release_fw_dma(sc); 488 489 iwi_free_cmd_ring(sc, &sc->cmdq); 490 iwi_free_tx_ring(sc, &sc->txq[0]); 491 iwi_free_tx_ring(sc, &sc->txq[1]); 492 iwi_free_tx_ring(sc, &sc->txq[2]); 493 iwi_free_tx_ring(sc, &sc->txq[3]); 494 iwi_free_rx_ring(sc, &sc->rxq); 495 496 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 497 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 498 499 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 500 501 delete_unrhdr(sc->sc_unr); 502 503 IWI_LOCK_DESTROY(sc); 504 IWI_CMD_LOCK_DESTROY(sc); 505 506 if_free(ifp); 507 508 return 0; 509 } 510 511 static struct ieee80211vap * 512 iwi_vap_create(struct ieee80211com *ic, 513 const char name[IFNAMSIZ], int unit, int opmode, int flags, 514 const uint8_t bssid[IEEE80211_ADDR_LEN], 515 const uint8_t mac[IEEE80211_ADDR_LEN]) 516 { 517 struct ifnet *ifp = ic->ic_ifp; 518 struct iwi_softc *sc = ifp->if_softc; 519 struct iwi_vap *ivp; 520 struct ieee80211vap *vap; 521 int i; 522 523 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 524 return NULL; 525 /* 526 * Get firmware image (and possibly dma memory) on mode change. 527 */ 528 if (iwi_get_firmware(sc, opmode)) 529 return NULL; 530 /* allocate DMA memory for mapping firmware image */ 531 i = sc->fw_fw.size; 532 if (sc->fw_boot.size > i) 533 i = sc->fw_boot.size; 534 /* XXX do we dma the ucode as well ? */ 535 if (sc->fw_uc.size > i) 536 i = sc->fw_uc.size; 537 if (iwi_init_fw_dma(sc, i)) 538 return NULL; 539 540 ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap), 541 M_80211_VAP, M_NOWAIT | M_ZERO); 542 if (ivp == NULL) 543 return NULL; 544 vap = &ivp->iwi_vap; 545 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 546 /* override the default, the setting comes from the linux driver */ 547 vap->iv_bmissthreshold = 24; 548 /* override with driver methods */ 549 ivp->iwi_newstate = vap->iv_newstate; 550 vap->iv_newstate = iwi_newstate; 551 552 TASK_INIT(&ivp->iwi_authsuccess_task, 0, iwi_authsuccess, vap); 553 TASK_INIT(&ivp->iwi_assocsuccess_task, 0, iwi_assocsuccess, vap); 554 TASK_INIT(&ivp->iwi_assocfailed_task, 0, iwi_assocfailed, vap); 555 556 /* complete setup */ 557 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status); 558 ic->ic_opmode = opmode; 559 return vap; 560 } 561 562 static void 563 iwi_vap_delete(struct ieee80211vap *vap) 564 { 565 struct iwi_vap *ivp = IWI_VAP(vap); 566 567 ieee80211_vap_detach(vap); 568 free(ivp, M_80211_VAP); 569 } 570 571 static void 572 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 573 { 574 if (error != 0) 575 return; 576 577 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 578 579 *(bus_addr_t *)arg = segs[0].ds_addr; 580 } 581 582 static int 583 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 584 { 585 int error; 586 587 ring->count = count; 588 ring->queued = 0; 589 ring->cur = ring->next = 0; 590 591 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 592 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 593 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 594 NULL, NULL, &ring->desc_dmat); 595 if (error != 0) { 596 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 597 goto fail; 598 } 599 600 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 601 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 602 if (error != 0) { 603 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 604 goto fail; 605 } 606 607 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 608 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 609 if (error != 0) { 610 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 611 goto fail; 612 } 613 614 return 0; 615 616 fail: iwi_free_cmd_ring(sc, ring); 617 return error; 618 } 619 620 static void 621 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 622 { 623 ring->queued = 0; 624 ring->cur = ring->next = 0; 625 } 626 627 static void 628 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 629 { 630 if (ring->desc != NULL) { 631 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 632 BUS_DMASYNC_POSTWRITE); 633 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 634 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 635 } 636 637 if (ring->desc_dmat != NULL) 638 bus_dma_tag_destroy(ring->desc_dmat); 639 } 640 641 static int 642 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 643 bus_addr_t csr_ridx, bus_addr_t csr_widx) 644 { 645 int i, error; 646 647 ring->count = count; 648 ring->queued = 0; 649 ring->cur = ring->next = 0; 650 ring->csr_ridx = csr_ridx; 651 ring->csr_widx = csr_widx; 652 653 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 654 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 655 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 656 NULL, &ring->desc_dmat); 657 if (error != 0) { 658 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 659 goto fail; 660 } 661 662 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 663 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 664 if (error != 0) { 665 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 666 goto fail; 667 } 668 669 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 670 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 671 if (error != 0) { 672 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 673 goto fail; 674 } 675 676 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 677 M_NOWAIT | M_ZERO); 678 if (ring->data == NULL) { 679 device_printf(sc->sc_dev, "could not allocate soft data\n"); 680 error = ENOMEM; 681 goto fail; 682 } 683 684 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 685 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 686 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 687 if (error != 0) { 688 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 689 goto fail; 690 } 691 692 for (i = 0; i < count; i++) { 693 error = bus_dmamap_create(ring->data_dmat, 0, 694 &ring->data[i].map); 695 if (error != 0) { 696 device_printf(sc->sc_dev, "could not create DMA map\n"); 697 goto fail; 698 } 699 } 700 701 return 0; 702 703 fail: iwi_free_tx_ring(sc, ring); 704 return error; 705 } 706 707 static void 708 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 709 { 710 struct iwi_tx_data *data; 711 int i; 712 713 for (i = 0; i < ring->count; i++) { 714 data = &ring->data[i]; 715 716 if (data->m != NULL) { 717 bus_dmamap_sync(ring->data_dmat, data->map, 718 BUS_DMASYNC_POSTWRITE); 719 bus_dmamap_unload(ring->data_dmat, data->map); 720 m_freem(data->m); 721 data->m = NULL; 722 } 723 724 if (data->ni != NULL) { 725 ieee80211_free_node(data->ni); 726 data->ni = NULL; 727 } 728 } 729 730 ring->queued = 0; 731 ring->cur = ring->next = 0; 732 } 733 734 static void 735 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 736 { 737 struct iwi_tx_data *data; 738 int i; 739 740 if (ring->desc != NULL) { 741 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 742 BUS_DMASYNC_POSTWRITE); 743 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 744 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 745 } 746 747 if (ring->desc_dmat != NULL) 748 bus_dma_tag_destroy(ring->desc_dmat); 749 750 if (ring->data != NULL) { 751 for (i = 0; i < ring->count; i++) { 752 data = &ring->data[i]; 753 754 if (data->m != NULL) { 755 bus_dmamap_sync(ring->data_dmat, data->map, 756 BUS_DMASYNC_POSTWRITE); 757 bus_dmamap_unload(ring->data_dmat, data->map); 758 m_freem(data->m); 759 } 760 761 if (data->ni != NULL) 762 ieee80211_free_node(data->ni); 763 764 if (data->map != NULL) 765 bus_dmamap_destroy(ring->data_dmat, data->map); 766 } 767 768 free(ring->data, M_DEVBUF); 769 } 770 771 if (ring->data_dmat != NULL) 772 bus_dma_tag_destroy(ring->data_dmat); 773 } 774 775 static int 776 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 777 { 778 struct iwi_rx_data *data; 779 int i, error; 780 781 ring->count = count; 782 ring->cur = 0; 783 784 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 785 M_NOWAIT | M_ZERO); 786 if (ring->data == NULL) { 787 device_printf(sc->sc_dev, "could not allocate soft data\n"); 788 error = ENOMEM; 789 goto fail; 790 } 791 792 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 793 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 794 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 795 if (error != 0) { 796 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 797 goto fail; 798 } 799 800 for (i = 0; i < count; i++) { 801 data = &ring->data[i]; 802 803 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 804 if (error != 0) { 805 device_printf(sc->sc_dev, "could not create DMA map\n"); 806 goto fail; 807 } 808 809 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 810 if (data->m == NULL) { 811 device_printf(sc->sc_dev, 812 "could not allocate rx mbuf\n"); 813 error = ENOMEM; 814 goto fail; 815 } 816 817 error = bus_dmamap_load(ring->data_dmat, data->map, 818 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 819 &data->physaddr, 0); 820 if (error != 0) { 821 device_printf(sc->sc_dev, 822 "could not load rx buf DMA map"); 823 goto fail; 824 } 825 826 data->reg = IWI_CSR_RX_BASE + i * 4; 827 } 828 829 return 0; 830 831 fail: iwi_free_rx_ring(sc, ring); 832 return error; 833 } 834 835 static void 836 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 837 { 838 ring->cur = 0; 839 } 840 841 static void 842 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 843 { 844 struct iwi_rx_data *data; 845 int i; 846 847 if (ring->data != NULL) { 848 for (i = 0; i < ring->count; i++) { 849 data = &ring->data[i]; 850 851 if (data->m != NULL) { 852 bus_dmamap_sync(ring->data_dmat, data->map, 853 BUS_DMASYNC_POSTREAD); 854 bus_dmamap_unload(ring->data_dmat, data->map); 855 m_freem(data->m); 856 } 857 858 if (data->map != NULL) 859 bus_dmamap_destroy(ring->data_dmat, data->map); 860 } 861 862 free(ring->data, M_DEVBUF); 863 } 864 865 if (ring->data_dmat != NULL) 866 bus_dma_tag_destroy(ring->data_dmat); 867 } 868 869 static int 870 iwi_shutdown(device_t dev) 871 { 872 struct iwi_softc *sc = device_get_softc(dev); 873 874 iwi_stop(sc); 875 iwi_put_firmware(sc); /* ??? XXX */ 876 877 return 0; 878 } 879 880 static int 881 iwi_suspend(device_t dev) 882 { 883 struct iwi_softc *sc = device_get_softc(dev); 884 885 iwi_stop(sc); 886 887 return 0; 888 } 889 890 static int 891 iwi_resume(device_t dev) 892 { 893 struct iwi_softc *sc = device_get_softc(dev); 894 struct ifnet *ifp = sc->sc_ifp; 895 896 pci_write_config(dev, 0x41, 0, 1); 897 898 if (ifp->if_flags & IFF_UP) 899 iwi_init(sc); 900 901 return 0; 902 } 903 904 static struct ieee80211_node * 905 iwi_node_alloc(struct ieee80211_node_table *nt) 906 { 907 struct iwi_node *in; 908 909 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 910 if (in == NULL) 911 return NULL; 912 913 in->in_station = -1; 914 915 return &in->in_node; 916 } 917 918 static void 919 iwi_node_free(struct ieee80211_node *ni) 920 { 921 struct ieee80211com *ic = ni->ni_ic; 922 struct iwi_softc *sc = ic->ic_ifp->if_softc; 923 struct iwi_node *in = (struct iwi_node *)ni; 924 925 if (in->in_station != -1) { 926 DPRINTF(("%s mac %6D station %u\n", __func__, 927 ni->ni_macaddr, ":", in->in_station)); 928 free_unr(sc->sc_unr, in->in_station); 929 } 930 931 sc->sc_node_free(ni); 932 } 933 934 /* 935 * Convert h/w rate code to IEEE rate code. 936 */ 937 static int 938 iwi_cvtrate(int iwirate) 939 { 940 switch (iwirate) { 941 case IWI_RATE_DS1: return 2; 942 case IWI_RATE_DS2: return 4; 943 case IWI_RATE_DS5: return 11; 944 case IWI_RATE_DS11: return 22; 945 case IWI_RATE_OFDM6: return 12; 946 case IWI_RATE_OFDM9: return 18; 947 case IWI_RATE_OFDM12: return 24; 948 case IWI_RATE_OFDM18: return 36; 949 case IWI_RATE_OFDM24: return 48; 950 case IWI_RATE_OFDM36: return 72; 951 case IWI_RATE_OFDM48: return 96; 952 case IWI_RATE_OFDM54: return 108; 953 } 954 return 0; 955 } 956 957 /* 958 * The firmware automatically adapts the transmit speed. We report its current 959 * value here. 960 */ 961 static void 962 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 963 { 964 struct ieee80211vap *vap = ifp->if_softc; 965 struct ieee80211com *ic = vap->iv_ic; 966 struct iwi_softc *sc = ic->ic_ifp->if_softc; 967 968 /* read current transmission rate from adapter */ 969 vap->iv_bss->ni_txrate = 970 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 971 ieee80211_media_status(ifp, imr); 972 } 973 974 static int 975 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 976 { 977 struct iwi_vap *ivp = IWI_VAP(vap); 978 struct ieee80211com *ic = vap->iv_ic; 979 struct ifnet *ifp = ic->ic_ifp; 980 struct iwi_softc *sc = ifp->if_softc; 981 IWI_LOCK_DECL; 982 983 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 984 ieee80211_state_name[vap->iv_state], 985 ieee80211_state_name[nstate], sc->flags)); 986 987 switch (nstate) { 988 case IEEE80211_S_INIT: 989 IWI_LOCK(sc); 990 /* 991 * NB: don't try to do this if iwi_stop_master has 992 * shutdown the firmware and disabled interrupts. 993 */ 994 if (vap->iv_state == IEEE80211_S_RUN && 995 (sc->flags & IWI_FLAG_FW_INITED)) 996 iwi_queue_cmd(sc, IWI_DISASSOC, 1); 997 IWI_UNLOCK(sc); 998 break; 999 case IEEE80211_S_AUTH: 1000 iwi_queue_cmd(sc, IWI_AUTH, arg); 1001 return EINPROGRESS; 1002 case IEEE80211_S_RUN: 1003 if (vap->iv_opmode == IEEE80211_M_IBSS && 1004 vap->iv_state == IEEE80211_S_SCAN) { 1005 /* 1006 * XXX when joining an ibss network we are called 1007 * with a SCAN -> RUN transition on scan complete. 1008 * Use that to call iwi_auth_and_assoc. On completing 1009 * the join we are then called again with an 1010 * AUTH -> RUN transition and we want to do nothing. 1011 * This is all totally bogus and needs to be redone. 1012 */ 1013 iwi_queue_cmd(sc, IWI_ASSOC, 0); 1014 return EINPROGRESS; 1015 } 1016 break; 1017 case IEEE80211_S_ASSOC: 1018 /* 1019 * If we are transitioning from AUTH then just wait 1020 * for the ASSOC status to come back from the firmware. 1021 * Otherwise we need to issue the association request. 1022 */ 1023 if (vap->iv_state == IEEE80211_S_AUTH) 1024 break; 1025 iwi_queue_cmd(sc, IWI_ASSOC, arg); 1026 return EINPROGRESS; 1027 default: 1028 break; 1029 } 1030 return ivp->iwi_newstate(vap, nstate, arg); 1031 } 1032 1033 /* 1034 * WME parameters coming from IEEE 802.11e specification. These values are 1035 * already declared in ieee80211_proto.c, but they are static so they can't 1036 * be reused here. 1037 */ 1038 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1039 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1040 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1041 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1042 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1043 }; 1044 1045 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1046 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1047 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1048 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1049 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1050 }; 1051 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1052 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1053 1054 static void 1055 iwi_wme_init(struct iwi_softc *sc) 1056 { 1057 const struct wmeParams *wmep; 1058 int ac; 1059 1060 memset(sc->wme, 0, sizeof sc->wme); 1061 for (ac = 0; ac < WME_NUM_AC; ac++) { 1062 /* set WME values for CCK modulation */ 1063 wmep = &iwi_wme_cck_params[ac]; 1064 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1065 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1066 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1067 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1068 sc->wme[1].acm[ac] = wmep->wmep_acm; 1069 1070 /* set WME values for OFDM modulation */ 1071 wmep = &iwi_wme_ofdm_params[ac]; 1072 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1073 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1074 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1075 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1076 sc->wme[2].acm[ac] = wmep->wmep_acm; 1077 } 1078 } 1079 1080 static int 1081 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic) 1082 { 1083 const struct wmeParams *wmep; 1084 int ac; 1085 1086 for (ac = 0; ac < WME_NUM_AC; ac++) { 1087 /* set WME values for current operating mode */ 1088 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1089 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1090 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1091 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1092 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1093 sc->wme[0].acm[ac] = wmep->wmep_acm; 1094 } 1095 1096 DPRINTF(("Setting WME parameters\n")); 1097 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1098 } 1099 #undef IWI_USEC 1100 #undef IWI_EXP2 1101 1102 static int 1103 iwi_wme_update(struct ieee80211com *ic) 1104 { 1105 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1106 1107 /* 1108 * We may be called to update the WME parameters in 1109 * the adapter at various places. If we're already 1110 * associated then initiate the request immediately 1111 * (via the taskqueue); otherwise we assume the params 1112 * will get sent down to the adapter as part of the 1113 * work iwi_auth_and_assoc does. 1114 */ 1115 return iwi_queue_cmd(sc, IWI_SET_WME, 0); 1116 } 1117 1118 static int 1119 iwi_wme_setie(struct iwi_softc *sc) 1120 { 1121 struct ieee80211_wme_info wme; 1122 1123 memset(&wme, 0, sizeof wme); 1124 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1125 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1126 wme.wme_oui[0] = 0x00; 1127 wme.wme_oui[1] = 0x50; 1128 wme.wme_oui[2] = 0xf2; 1129 wme.wme_type = WME_OUI_TYPE; 1130 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1131 wme.wme_version = WME_VERSION; 1132 wme.wme_info = 0; 1133 1134 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1135 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1136 } 1137 1138 /* 1139 * Read 16 bits at address 'addr' from the serial EEPROM. 1140 */ 1141 static uint16_t 1142 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1143 { 1144 uint32_t tmp; 1145 uint16_t val; 1146 int n; 1147 1148 /* clock C once before the first command */ 1149 IWI_EEPROM_CTL(sc, 0); 1150 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1151 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1152 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1153 1154 /* write start bit (1) */ 1155 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1156 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1157 1158 /* write READ opcode (10) */ 1159 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1160 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1161 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1162 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1163 1164 /* write address A7-A0 */ 1165 for (n = 7; n >= 0; n--) { 1166 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1167 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1168 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1169 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1170 } 1171 1172 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1173 1174 /* read data Q15-Q0 */ 1175 val = 0; 1176 for (n = 15; n >= 0; n--) { 1177 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1178 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1179 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1180 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1181 } 1182 1183 IWI_EEPROM_CTL(sc, 0); 1184 1185 /* clear Chip Select and clock C */ 1186 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1187 IWI_EEPROM_CTL(sc, 0); 1188 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1189 1190 return val; 1191 } 1192 1193 static void 1194 iwi_setcurchan(struct iwi_softc *sc, int chan) 1195 { 1196 struct ifnet *ifp = sc->sc_ifp; 1197 struct ieee80211com *ic = ifp->if_l2com; 1198 1199 sc->curchan = chan; 1200 1201 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 1202 htole16(ic->ic_curchan->ic_freq); 1203 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 1204 htole16(ic->ic_curchan->ic_flags); 1205 } 1206 1207 static void 1208 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1209 struct iwi_frame *frame) 1210 { 1211 struct ifnet *ifp = sc->sc_ifp; 1212 struct ieee80211com *ic = ifp->if_l2com; 1213 struct mbuf *mnew, *m; 1214 struct ieee80211_node *ni; 1215 int type, error, framelen; 1216 IWI_LOCK_DECL; 1217 1218 framelen = le16toh(frame->len); 1219 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1220 /* 1221 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1222 * out of bounds; need to figure out how to limit 1223 * frame size in the firmware 1224 */ 1225 /* XXX stat */ 1226 DPRINTFN(1, 1227 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1228 le16toh(frame->len), frame->chan, frame->rssi, 1229 frame->rssi_dbm)); 1230 return; 1231 } 1232 1233 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1234 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1235 1236 if (frame->chan != sc->curchan) 1237 iwi_setcurchan(sc, frame->chan); 1238 1239 /* 1240 * Try to allocate a new mbuf for this ring element and load it before 1241 * processing the current mbuf. If the ring element cannot be loaded, 1242 * drop the received packet and reuse the old mbuf. In the unlikely 1243 * case that the old mbuf can't be reloaded either, explicitly panic. 1244 */ 1245 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1246 if (mnew == NULL) { 1247 ifp->if_ierrors++; 1248 return; 1249 } 1250 1251 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1252 1253 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1254 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1255 0); 1256 if (error != 0) { 1257 m_freem(mnew); 1258 1259 /* try to reload the old mbuf */ 1260 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1261 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1262 &data->physaddr, 0); 1263 if (error != 0) { 1264 /* very unlikely that it will fail... */ 1265 panic("%s: could not load old rx mbuf", 1266 device_get_name(sc->sc_dev)); 1267 } 1268 ifp->if_ierrors++; 1269 return; 1270 } 1271 1272 /* 1273 * New mbuf successfully loaded, update Rx ring and continue 1274 * processing. 1275 */ 1276 m = data->m; 1277 data->m = mnew; 1278 CSR_WRITE_4(sc, data->reg, data->physaddr); 1279 1280 /* finalize mbuf */ 1281 m->m_pkthdr.rcvif = ifp; 1282 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1283 sizeof (struct iwi_frame) + framelen; 1284 1285 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1286 1287 if (bpf_peers_present(ifp->if_bpf)) { 1288 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1289 1290 tap->wr_flags = 0; 1291 tap->wr_rate = iwi_cvtrate(frame->rate); 1292 tap->wr_antsignal = frame->signal; 1293 tap->wr_antenna = frame->antenna; 1294 1295 bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m); 1296 } 1297 IWI_UNLOCK(sc); 1298 1299 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1300 if (ni != NULL) { 1301 type = ieee80211_input(ni, m, frame->rssi_dbm, 0, 0); 1302 ieee80211_free_node(ni); 1303 } else 1304 type = ieee80211_input_all(ic, m, frame->rssi_dbm, 0, 0); 1305 1306 IWI_LOCK(sc); 1307 if (sc->sc_softled) { 1308 /* 1309 * Blink for any data frame. Otherwise do a 1310 * heartbeat-style blink when idle. The latter 1311 * is mainly for station mode where we depend on 1312 * periodic beacon frames to trigger the poll event. 1313 */ 1314 if (type == IEEE80211_FC0_TYPE_DATA) { 1315 sc->sc_rxrate = frame->rate; 1316 iwi_led_event(sc, IWI_LED_RX); 1317 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1318 iwi_led_event(sc, IWI_LED_POLL); 1319 } 1320 } 1321 1322 /* 1323 * Check for an association response frame to see if QoS 1324 * has been negotiated. We parse just enough to figure 1325 * out if we're supposed to use QoS. The proper solution 1326 * is to pass the frame up so ieee80211_input can do the 1327 * work but that's made hard by how things currently are 1328 * done in the driver. 1329 */ 1330 static void 1331 iwi_checkforqos(struct ieee80211vap *vap, 1332 const struct ieee80211_frame *wh, int len) 1333 { 1334 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1335 const uint8_t *frm, *efrm, *wme; 1336 struct ieee80211_node *ni; 1337 uint16_t capinfo, status, associd; 1338 1339 /* NB: +8 for capinfo, status, associd, and first ie */ 1340 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1341 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1342 return; 1343 /* 1344 * asresp frame format 1345 * [2] capability information 1346 * [2] status 1347 * [2] association ID 1348 * [tlv] supported rates 1349 * [tlv] extended supported rates 1350 * [tlv] WME 1351 */ 1352 frm = (const uint8_t *)&wh[1]; 1353 efrm = ((const uint8_t *) wh) + len; 1354 1355 capinfo = le16toh(*(const uint16_t *)frm); 1356 frm += 2; 1357 status = le16toh(*(const uint16_t *)frm); 1358 frm += 2; 1359 associd = le16toh(*(const uint16_t *)frm); 1360 frm += 2; 1361 1362 wme = NULL; 1363 while (frm < efrm) { 1364 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1], return); 1365 switch (*frm) { 1366 case IEEE80211_ELEMID_VENDOR: 1367 if (iswmeoui(frm)) 1368 wme = frm; 1369 break; 1370 } 1371 frm += frm[1] + 2; 1372 } 1373 1374 ni = vap->iv_bss; 1375 ni->ni_capinfo = capinfo; 1376 ni->ni_associd = associd; 1377 if (wme != NULL) 1378 ni->ni_flags |= IEEE80211_NODE_QOS; 1379 else 1380 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1381 #undef SUBTYPE 1382 } 1383 1384 /* 1385 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1386 */ 1387 1388 static void 1389 iwi_authsuccess(void *arg, int npending) 1390 { 1391 struct ieee80211vap *vap = arg; 1392 1393 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1394 } 1395 1396 static void 1397 iwi_assocsuccess(void *arg, int npending) 1398 { 1399 struct ieee80211vap *vap = arg; 1400 1401 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1402 } 1403 1404 static void 1405 iwi_assocfailed(void *arg, int npending) 1406 { 1407 struct ieee80211vap *vap = arg; 1408 1409 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1410 } 1411 1412 static void 1413 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1414 { 1415 struct ifnet *ifp = sc->sc_ifp; 1416 struct ieee80211com *ic = ifp->if_l2com; 1417 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1418 struct iwi_notif_scan_channel *chan; 1419 struct iwi_notif_scan_complete *scan; 1420 struct iwi_notif_authentication *auth; 1421 struct iwi_notif_association *assoc; 1422 struct iwi_notif_beacon_state *beacon; 1423 1424 switch (notif->type) { 1425 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1426 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1427 1428 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1429 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1430 1431 /* Reset the timer, the scan is still going */ 1432 sc->sc_state_timer = 3; 1433 break; 1434 1435 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1436 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1437 1438 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1439 scan->status)); 1440 1441 IWI_STATE_END(sc, IWI_FW_SCANNING); 1442 1443 if (scan->status == IWI_SCAN_COMPLETED) { 1444 /* NB: don't need to defer, net80211 does it for us */ 1445 ieee80211_scan_next(vap); 1446 } 1447 break; 1448 1449 case IWI_NOTIF_TYPE_AUTHENTICATION: 1450 auth = (struct iwi_notif_authentication *)(notif + 1); 1451 switch (auth->state) { 1452 case IWI_AUTH_SUCCESS: 1453 DPRINTFN(2, ("Authentication succeeeded\n")); 1454 taskqueue_enqueue(taskqueue_swi, 1455 &IWI_VAP(vap)->iwi_authsuccess_task); 1456 break; 1457 case IWI_AUTH_FAIL: 1458 /* 1459 * These are delivered as an unsolicited deauth 1460 * (e.g. due to inactivity) or in response to an 1461 * associate request. 1462 */ 1463 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1464 if (vap->iv_state != IEEE80211_S_RUN) { 1465 DPRINTFN(2, ("Authentication failed\n")); 1466 vap->iv_stats.is_rx_auth_fail++; 1467 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1468 } else { 1469 DPRINTFN(2, ("Deauthenticated\n")); 1470 vap->iv_stats.is_rx_deauth++; 1471 } 1472 taskqueue_enqueue(taskqueue_swi, 1473 &IWI_VAP(vap)->iwi_assocfailed_task); 1474 break; 1475 case IWI_AUTH_SENT_1: 1476 case IWI_AUTH_RECV_2: 1477 case IWI_AUTH_SEQ1_PASS: 1478 break; 1479 case IWI_AUTH_SEQ1_FAIL: 1480 DPRINTFN(2, ("Initial authentication handshake failed; " 1481 "you probably need shared key\n")); 1482 vap->iv_stats.is_rx_auth_fail++; 1483 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1484 /* XXX retry shared key when in auto */ 1485 break; 1486 default: 1487 device_printf(sc->sc_dev, 1488 "unknown authentication state %u\n", auth->state); 1489 break; 1490 } 1491 break; 1492 1493 case IWI_NOTIF_TYPE_ASSOCIATION: 1494 assoc = (struct iwi_notif_association *)(notif + 1); 1495 switch (assoc->state) { 1496 case IWI_AUTH_SUCCESS: 1497 /* re-association, do nothing */ 1498 break; 1499 case IWI_ASSOC_SUCCESS: 1500 DPRINTFN(2, ("Association succeeded\n")); 1501 sc->flags |= IWI_FLAG_ASSOCIATED; 1502 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1503 iwi_checkforqos(vap, 1504 (const struct ieee80211_frame *)(assoc+1), 1505 le16toh(notif->len) - sizeof(*assoc)); 1506 taskqueue_enqueue(taskqueue_swi, 1507 &IWI_VAP(vap)->iwi_assocsuccess_task); 1508 break; 1509 case IWI_ASSOC_INIT: 1510 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1511 switch (sc->fw_state) { 1512 case IWI_FW_ASSOCIATING: 1513 DPRINTFN(2, ("Association failed\n")); 1514 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1515 taskqueue_enqueue(taskqueue_swi, 1516 &IWI_VAP(vap)->iwi_assocfailed_task); 1517 break; 1518 1519 case IWI_FW_DISASSOCIATING: 1520 DPRINTFN(2, ("Dissassociated\n")); 1521 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1522 vap->iv_stats.is_rx_disassoc++; 1523 taskqueue_enqueue(taskqueue_swi, 1524 &IWI_VAP(vap)->iwi_assocfailed_task); 1525 break; 1526 } 1527 break; 1528 default: 1529 device_printf(sc->sc_dev, 1530 "unknown association state %u\n", assoc->state); 1531 break; 1532 } 1533 break; 1534 1535 case IWI_NOTIF_TYPE_BEACON: 1536 /* XXX check struct length */ 1537 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1538 1539 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1540 beacon->state, le32toh(beacon->number))); 1541 1542 if (beacon->state == IWI_BEACON_MISS) { 1543 /* 1544 * The firmware notifies us of every beacon miss 1545 * so we need to track the count against the 1546 * configured threshold before notifying the 1547 * 802.11 layer. 1548 * XXX try to roam, drop assoc only on much higher count 1549 */ 1550 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1551 DPRINTF(("Beacon miss: %u >= %u\n", 1552 le32toh(beacon->number), 1553 vap->iv_bmissthreshold)); 1554 vap->iv_stats.is_beacon_miss++; 1555 /* 1556 * It's pointless to notify the 802.11 layer 1557 * as it'll try to send a probe request (which 1558 * we'll discard) and then timeout and drop us 1559 * into scan state. Instead tell the firmware 1560 * to disassociate and then on completion we'll 1561 * kick the state machine to scan. 1562 */ 1563 iwi_queue_cmd(sc, IWI_DISASSOC, 1); 1564 } 1565 } 1566 break; 1567 1568 case IWI_NOTIF_TYPE_CALIBRATION: 1569 case IWI_NOTIF_TYPE_NOISE: 1570 case IWI_NOTIF_TYPE_LINK_QUALITY: 1571 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1572 break; 1573 1574 default: 1575 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1576 notif->type, notif->flags, le16toh(notif->len))); 1577 break; 1578 } 1579 } 1580 1581 static void 1582 iwi_rx_intr(struct iwi_softc *sc) 1583 { 1584 struct iwi_rx_data *data; 1585 struct iwi_hdr *hdr; 1586 uint32_t hw; 1587 1588 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1589 1590 for (; sc->rxq.cur != hw;) { 1591 data = &sc->rxq.data[sc->rxq.cur]; 1592 1593 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1594 BUS_DMASYNC_POSTREAD); 1595 1596 hdr = mtod(data->m, struct iwi_hdr *); 1597 1598 switch (hdr->type) { 1599 case IWI_HDR_TYPE_FRAME: 1600 iwi_frame_intr(sc, data, sc->rxq.cur, 1601 (struct iwi_frame *)(hdr + 1)); 1602 break; 1603 1604 case IWI_HDR_TYPE_NOTIF: 1605 iwi_notification_intr(sc, 1606 (struct iwi_notif *)(hdr + 1)); 1607 break; 1608 1609 default: 1610 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1611 hdr->type); 1612 } 1613 1614 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1615 1616 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1617 } 1618 1619 /* tell the firmware what we have processed */ 1620 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1621 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1622 } 1623 1624 static void 1625 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1626 { 1627 struct ifnet *ifp = sc->sc_ifp; 1628 struct iwi_tx_data *data; 1629 uint32_t hw; 1630 1631 hw = CSR_READ_4(sc, txq->csr_ridx); 1632 1633 for (; txq->next != hw;) { 1634 data = &txq->data[txq->next]; 1635 1636 bus_dmamap_sync(txq->data_dmat, data->map, 1637 BUS_DMASYNC_POSTWRITE); 1638 bus_dmamap_unload(txq->data_dmat, data->map); 1639 if (data->m->m_flags & M_TXCB) 1640 ieee80211_process_callback(data->ni, data->m, 0/*XXX*/); 1641 m_freem(data->m); 1642 data->m = NULL; 1643 ieee80211_free_node(data->ni); 1644 data->ni = NULL; 1645 1646 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1647 1648 ifp->if_opackets++; 1649 1650 txq->queued--; 1651 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1652 } 1653 1654 sc->sc_tx_timer = 0; 1655 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1656 1657 if (sc->sc_softled) 1658 iwi_led_event(sc, IWI_LED_TX); 1659 1660 iwi_start_locked(ifp); 1661 } 1662 1663 static void 1664 iwi_intr(void *arg) 1665 { 1666 struct iwi_softc *sc = arg; 1667 uint32_t r; 1668 IWI_LOCK_DECL; 1669 1670 IWI_LOCK(sc); 1671 1672 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1673 IWI_UNLOCK(sc); 1674 return; 1675 } 1676 1677 /* acknowledge interrupts */ 1678 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1679 1680 if (r & IWI_INTR_FATAL_ERROR) { 1681 device_printf(sc->sc_dev, "firmware error\n"); 1682 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 1683 1684 sc->flags &= ~IWI_FLAG_BUSY; 1685 sc->sc_busy_timer = 0; 1686 wakeup(sc); 1687 } 1688 1689 if (r & IWI_INTR_FW_INITED) { 1690 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1691 wakeup(sc); 1692 } 1693 1694 if (r & IWI_INTR_RADIO_OFF) 1695 taskqueue_enqueue(sc->sc_tq, &sc->sc_radiofftask); 1696 1697 if (r & IWI_INTR_CMD_DONE) { 1698 sc->flags &= ~IWI_FLAG_BUSY; 1699 sc->sc_busy_timer = 0; 1700 wakeup(sc); 1701 } 1702 1703 if (r & IWI_INTR_TX1_DONE) 1704 iwi_tx_intr(sc, &sc->txq[0]); 1705 1706 if (r & IWI_INTR_TX2_DONE) 1707 iwi_tx_intr(sc, &sc->txq[1]); 1708 1709 if (r & IWI_INTR_TX3_DONE) 1710 iwi_tx_intr(sc, &sc->txq[2]); 1711 1712 if (r & IWI_INTR_TX4_DONE) 1713 iwi_tx_intr(sc, &sc->txq[3]); 1714 1715 if (r & IWI_INTR_RX_DONE) 1716 iwi_rx_intr(sc); 1717 1718 if (r & IWI_INTR_PARITY_ERROR) { 1719 /* XXX rate-limit */ 1720 device_printf(sc->sc_dev, "parity error\n"); 1721 } 1722 1723 IWI_UNLOCK(sc); 1724 } 1725 1726 static int 1727 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1728 { 1729 struct iwi_cmd_desc *desc; 1730 1731 IWI_LOCK_ASSERT(sc); 1732 1733 if (sc->flags & IWI_FLAG_BUSY) { 1734 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1735 __func__, type); 1736 return EAGAIN; 1737 } 1738 sc->flags |= IWI_FLAG_BUSY; 1739 sc->sc_busy_timer = 2; 1740 1741 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1742 1743 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1744 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1745 desc->type = type; 1746 desc->len = len; 1747 memcpy(desc->data, data, len); 1748 1749 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1750 BUS_DMASYNC_PREWRITE); 1751 1752 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1753 type, len)); 1754 1755 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1756 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1757 1758 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1759 } 1760 1761 static void 1762 iwi_write_ibssnode(struct iwi_softc *sc, 1763 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1764 { 1765 struct iwi_ibssnode node; 1766 1767 /* write node information into NIC memory */ 1768 memset(&node, 0, sizeof node); 1769 IEEE80211_ADDR_COPY(node.bssid, addr); 1770 1771 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1772 1773 CSR_WRITE_REGION_1(sc, 1774 IWI_CSR_NODE_BASE + entry * sizeof node, 1775 (uint8_t *)&node, sizeof node); 1776 } 1777 1778 static int 1779 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni, 1780 int ac) 1781 { 1782 struct iwi_softc *sc = ifp->if_softc; 1783 struct ieee80211vap *vap = ni->ni_vap; 1784 struct ieee80211com *ic = ni->ni_ic; 1785 struct iwi_node *in = (struct iwi_node *)ni; 1786 const struct ieee80211_frame *wh; 1787 struct ieee80211_key *k; 1788 const struct chanAccParams *cap; 1789 struct iwi_tx_ring *txq = &sc->txq[ac]; 1790 struct iwi_tx_data *data; 1791 struct iwi_tx_desc *desc; 1792 struct mbuf *mnew; 1793 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1794 int error, nsegs, hdrlen, i; 1795 int ismcast, flags, xflags, staid; 1796 1797 IWI_LOCK_ASSERT(sc); 1798 wh = mtod(m0, const struct ieee80211_frame *); 1799 /* NB: only data frames use this path */ 1800 hdrlen = ieee80211_hdrsize(wh); 1801 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1802 flags = xflags = 0; 1803 1804 if (!ismcast) 1805 flags |= IWI_DATA_FLAG_NEED_ACK; 1806 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1807 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1808 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1809 xflags |= IWI_DATA_XFLAG_QOS; 1810 cap = &ic->ic_wme.wme_chanParams; 1811 if (!cap->cap_wmeParams[ac].wmep_noackPolicy) 1812 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1813 } 1814 1815 /* 1816 * This is only used in IBSS mode where the firmware expect an index 1817 * in a h/w table instead of a destination address. 1818 */ 1819 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1820 if (!ismcast) { 1821 if (in->in_station == -1) { 1822 in->in_station = alloc_unr(sc->sc_unr); 1823 if (in->in_station == -1) { 1824 /* h/w table is full */ 1825 m_freem(m0); 1826 ieee80211_free_node(ni); 1827 ifp->if_oerrors++; 1828 return 0; 1829 } 1830 iwi_write_ibssnode(sc, 1831 ni->ni_macaddr, in->in_station); 1832 } 1833 staid = in->in_station; 1834 } else { 1835 /* 1836 * Multicast addresses have no associated node 1837 * so there will be no station entry. We reserve 1838 * entry 0 for one mcast address and use that. 1839 * If there are many being used this will be 1840 * expensive and we'll need to do a better job 1841 * but for now this handles the broadcast case. 1842 */ 1843 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1844 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1845 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1846 } 1847 staid = 0; 1848 } 1849 } else 1850 staid = 0; 1851 1852 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1853 k = ieee80211_crypto_encap(ni, m0); 1854 if (k == NULL) { 1855 m_freem(m0); 1856 return ENOBUFS; 1857 } 1858 1859 /* packet header may have moved, reset our local pointer */ 1860 wh = mtod(m0, struct ieee80211_frame *); 1861 } 1862 1863 if (bpf_peers_present(ifp->if_bpf)) { 1864 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1865 1866 tap->wt_flags = 0; 1867 1868 bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0); 1869 } 1870 1871 data = &txq->data[txq->cur]; 1872 desc = &txq->desc[txq->cur]; 1873 1874 /* save and trim IEEE802.11 header */ 1875 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1876 m_adj(m0, hdrlen); 1877 1878 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1879 &nsegs, 0); 1880 if (error != 0 && error != EFBIG) { 1881 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1882 error); 1883 m_freem(m0); 1884 return error; 1885 } 1886 if (error != 0) { 1887 mnew = m_defrag(m0, M_DONTWAIT); 1888 if (mnew == NULL) { 1889 device_printf(sc->sc_dev, 1890 "could not defragment mbuf\n"); 1891 m_freem(m0); 1892 return ENOBUFS; 1893 } 1894 m0 = mnew; 1895 1896 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1897 m0, segs, &nsegs, 0); 1898 if (error != 0) { 1899 device_printf(sc->sc_dev, 1900 "could not map mbuf (error %d)\n", error); 1901 m_freem(m0); 1902 return error; 1903 } 1904 } 1905 1906 data->m = m0; 1907 data->ni = ni; 1908 1909 desc->hdr.type = IWI_HDR_TYPE_DATA; 1910 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1911 desc->station = staid; 1912 desc->cmd = IWI_DATA_CMD_TX; 1913 desc->len = htole16(m0->m_pkthdr.len); 1914 desc->flags = flags; 1915 desc->xflags = xflags; 1916 1917 #if 0 1918 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1919 desc->wep_txkey = vap->iv_def_txkey; 1920 else 1921 #endif 1922 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1923 1924 desc->nseg = htole32(nsegs); 1925 for (i = 0; i < nsegs; i++) { 1926 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1927 desc->seg_len[i] = htole16(segs[i].ds_len); 1928 } 1929 1930 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1931 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1932 1933 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1934 ac, txq->cur, le16toh(desc->len), nsegs)); 1935 1936 txq->queued++; 1937 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1938 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1939 1940 return 0; 1941 } 1942 1943 static int 1944 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1945 const struct ieee80211_bpf_params *params) 1946 { 1947 /* no support; just discard */ 1948 m_freem(m); 1949 ieee80211_free_node(ni); 1950 return 0; 1951 } 1952 1953 static void 1954 iwi_start_locked(struct ifnet *ifp) 1955 { 1956 struct iwi_softc *sc = ifp->if_softc; 1957 struct mbuf *m; 1958 struct ieee80211_node *ni; 1959 int ac; 1960 1961 IWI_LOCK_ASSERT(sc); 1962 1963 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1964 return; 1965 1966 for (;;) { 1967 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1968 if (m == NULL) 1969 break; 1970 ac = M_WME_GETAC(m); 1971 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1972 /* there is no place left in this ring; tail drop */ 1973 /* XXX tail drop */ 1974 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1975 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1976 break; 1977 } 1978 1979 BPF_MTAP(ifp, m); 1980 1981 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1982 m = ieee80211_encap(ni, m); 1983 if (m == NULL) { 1984 ieee80211_free_node(ni); 1985 ifp->if_oerrors++; 1986 continue; 1987 } 1988 1989 if (iwi_tx_start(ifp, m, ni, ac) != 0) { 1990 ieee80211_free_node(ni); 1991 ifp->if_oerrors++; 1992 break; 1993 } 1994 1995 sc->sc_tx_timer = 5; 1996 } 1997 } 1998 1999 static void 2000 iwi_start(struct ifnet *ifp) 2001 { 2002 struct iwi_softc *sc = ifp->if_softc; 2003 IWI_LOCK_DECL; 2004 2005 IWI_LOCK(sc); 2006 iwi_start_locked(ifp); 2007 IWI_UNLOCK(sc); 2008 } 2009 2010 static void 2011 iwi_watchdog(void *arg) 2012 { 2013 struct iwi_softc *sc = arg; 2014 struct ifnet *ifp = sc->sc_ifp; 2015 2016 IWI_LOCK_ASSERT(sc); 2017 2018 if (sc->sc_tx_timer > 0) { 2019 if (--sc->sc_tx_timer == 0) { 2020 if_printf(ifp, "device timeout\n"); 2021 ifp->if_oerrors++; 2022 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 2023 } 2024 } 2025 if (sc->sc_state_timer > 0) { 2026 if (--sc->sc_state_timer == 0) { 2027 if_printf(ifp, "firmware stuck in state %d, resetting\n", 2028 sc->fw_state); 2029 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 2030 if (sc->fw_state == IWI_FW_SCANNING) { 2031 struct ieee80211com *ic = ifp->if_l2com; 2032 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2033 } 2034 sc->sc_state_timer = 3; 2035 } 2036 } 2037 if (sc->sc_busy_timer > 0) { 2038 if (--sc->sc_busy_timer == 0) { 2039 if_printf(ifp, "firmware command timeout, resetting\n"); 2040 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 2041 } 2042 } 2043 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2044 } 2045 2046 static int 2047 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2048 { 2049 struct iwi_softc *sc = ifp->if_softc; 2050 struct ieee80211com *ic = ifp->if_l2com; 2051 struct ifreq *ifr = (struct ifreq *) data; 2052 int error = 0, startall = 0; 2053 IWI_LOCK_DECL; 2054 2055 switch (cmd) { 2056 case SIOCSIFFLAGS: 2057 IWI_LOCK(sc); 2058 if (ifp->if_flags & IFF_UP) { 2059 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2060 iwi_init_locked(sc); 2061 startall = 1; 2062 } 2063 } else { 2064 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2065 iwi_stop_locked(sc); 2066 } 2067 IWI_UNLOCK(sc); 2068 if (startall) 2069 ieee80211_start_all(ic); 2070 break; 2071 case SIOCGIFMEDIA: 2072 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2073 break; 2074 case SIOCGIFADDR: 2075 error = ether_ioctl(ifp, cmd, data); 2076 break; 2077 default: 2078 error = EINVAL; 2079 break; 2080 } 2081 return error; 2082 } 2083 2084 static void 2085 iwi_stop_master(struct iwi_softc *sc) 2086 { 2087 uint32_t tmp; 2088 int ntries; 2089 2090 /* disable interrupts */ 2091 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2092 2093 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2094 for (ntries = 0; ntries < 5; ntries++) { 2095 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2096 break; 2097 DELAY(10); 2098 } 2099 if (ntries == 5) 2100 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2101 2102 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2103 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2104 2105 sc->flags &= ~IWI_FLAG_FW_INITED; 2106 } 2107 2108 static int 2109 iwi_reset(struct iwi_softc *sc) 2110 { 2111 uint32_t tmp; 2112 int i, ntries; 2113 2114 iwi_stop_master(sc); 2115 2116 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2117 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2118 2119 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2120 2121 /* wait for clock stabilization */ 2122 for (ntries = 0; ntries < 1000; ntries++) { 2123 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2124 break; 2125 DELAY(200); 2126 } 2127 if (ntries == 1000) { 2128 device_printf(sc->sc_dev, 2129 "timeout waiting for clock stabilization\n"); 2130 return EIO; 2131 } 2132 2133 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2134 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2135 2136 DELAY(10); 2137 2138 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2139 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2140 2141 /* clear NIC memory */ 2142 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2143 for (i = 0; i < 0xc000; i++) 2144 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2145 2146 return 0; 2147 } 2148 2149 static const struct iwi_firmware_ohdr * 2150 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2151 { 2152 const struct firmware *fp = fw->fp; 2153 const struct iwi_firmware_ohdr *hdr; 2154 2155 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2156 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2157 return NULL; 2158 } 2159 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2160 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2161 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2162 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2163 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2164 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2165 IWI_FW_REQ_MINOR); 2166 return NULL; 2167 } 2168 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2169 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2170 fw->name = fp->name; 2171 return hdr; 2172 } 2173 2174 static const struct iwi_firmware_ohdr * 2175 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2176 { 2177 const struct iwi_firmware_ohdr *hdr; 2178 2179 hdr = iwi_setup_ofw(sc, fw); 2180 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2181 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2182 fw->name); 2183 hdr = NULL; 2184 } 2185 return hdr; 2186 } 2187 2188 static void 2189 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2190 struct iwi_fw *uc, const char *ucname) 2191 { 2192 if (fw->fp == NULL) 2193 fw->fp = firmware_get(fwname); 2194 /* NB: pre-3.0 ucode is packaged separately */ 2195 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2196 uc->fp = firmware_get(ucname); 2197 } 2198 2199 /* 2200 * Get the required firmware images if not already loaded. 2201 * Note that we hold firmware images so long as the device 2202 * is marked up in case we need to reload them on device init. 2203 * This is necessary because we re-init the device sometimes 2204 * from a context where we cannot read from the filesystem 2205 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2206 * XXX return 0 on success, 1 on error. 2207 * 2208 * NB: the order of get'ing and put'ing images here is 2209 * intentional to support handling firmware images bundled 2210 * by operating mode and/or all together in one file with 2211 * the boot firmware as "master". 2212 */ 2213 static int 2214 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2215 { 2216 const struct iwi_firmware_hdr *hdr; 2217 const struct firmware *fp; 2218 2219 /* invalidate cached firmware on mode change */ 2220 if (sc->fw_mode != opmode) 2221 iwi_put_firmware(sc); 2222 2223 switch (opmode) { 2224 case IEEE80211_M_STA: 2225 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2226 break; 2227 case IEEE80211_M_IBSS: 2228 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2229 break; 2230 case IEEE80211_M_MONITOR: 2231 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2232 &sc->fw_uc, "iwi_ucode_monitor"); 2233 break; 2234 default: 2235 break; 2236 } 2237 fp = sc->fw_fw.fp; 2238 if (fp == NULL) { 2239 device_printf(sc->sc_dev, "could not load firmware\n"); 2240 goto bad; 2241 } 2242 if (fp->version < 300) { 2243 /* 2244 * Firmware prior to 3.0 was packaged as separate 2245 * boot, firmware, and ucode images. Verify the 2246 * ucode image was read in, retrieve the boot image 2247 * if needed, and check version stamps for consistency. 2248 * The version stamps in the data are also checked 2249 * above; this is a bit paranoid but is a cheap 2250 * safeguard against mis-packaging. 2251 */ 2252 if (sc->fw_uc.fp == NULL) { 2253 device_printf(sc->sc_dev, "could not load ucode\n"); 2254 goto bad; 2255 } 2256 if (sc->fw_boot.fp == NULL) { 2257 sc->fw_boot.fp = firmware_get("iwi_boot"); 2258 if (sc->fw_boot.fp == NULL) { 2259 device_printf(sc->sc_dev, 2260 "could not load boot firmware\n"); 2261 goto bad; 2262 } 2263 } 2264 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2265 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2266 device_printf(sc->sc_dev, 2267 "firmware version mismatch: " 2268 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2269 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2270 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2271 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2272 ); 2273 goto bad; 2274 } 2275 /* 2276 * Check and setup each image. 2277 */ 2278 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2279 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2280 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2281 goto bad; 2282 } else { 2283 /* 2284 * Check and setup combined image. 2285 */ 2286 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2287 device_printf(sc->sc_dev, "image '%s' too small\n", 2288 fp->name); 2289 goto bad; 2290 } 2291 hdr = (const struct iwi_firmware_hdr *)fp->data; 2292 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2293 + le32toh(hdr->fsize)) { 2294 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2295 fp->name); 2296 goto bad; 2297 } 2298 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2299 sc->fw_boot.size = le32toh(hdr->bsize); 2300 sc->fw_boot.name = fp->name; 2301 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2302 sc->fw_uc.size = le32toh(hdr->usize); 2303 sc->fw_uc.name = fp->name; 2304 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2305 sc->fw_fw.size = le32toh(hdr->fsize); 2306 sc->fw_fw.name = fp->name; 2307 } 2308 #if 0 2309 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2310 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2311 #endif 2312 2313 sc->fw_mode = opmode; 2314 return 0; 2315 bad: 2316 iwi_put_firmware(sc); 2317 return 1; 2318 } 2319 2320 static void 2321 iwi_put_fw(struct iwi_fw *fw) 2322 { 2323 if (fw->fp != NULL) { 2324 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2325 fw->fp = NULL; 2326 } 2327 fw->data = NULL; 2328 fw->size = 0; 2329 fw->name = NULL; 2330 } 2331 2332 /* 2333 * Release any cached firmware images. 2334 */ 2335 static void 2336 iwi_put_firmware(struct iwi_softc *sc) 2337 { 2338 iwi_put_fw(&sc->fw_uc); 2339 iwi_put_fw(&sc->fw_fw); 2340 iwi_put_fw(&sc->fw_boot); 2341 } 2342 2343 static int 2344 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2345 { 2346 uint32_t tmp; 2347 const uint16_t *w; 2348 const char *uc = fw->data; 2349 size_t size = fw->size; 2350 int i, ntries, error; 2351 2352 IWI_LOCK_ASSERT(sc); 2353 error = 0; 2354 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2355 IWI_RST_STOP_MASTER); 2356 for (ntries = 0; ntries < 5; ntries++) { 2357 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2358 break; 2359 DELAY(10); 2360 } 2361 if (ntries == 5) { 2362 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2363 error = EIO; 2364 goto fail; 2365 } 2366 2367 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2368 DELAY(5000); 2369 2370 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2371 tmp &= ~IWI_RST_PRINCETON_RESET; 2372 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2373 2374 DELAY(5000); 2375 MEM_WRITE_4(sc, 0x3000e0, 0); 2376 DELAY(1000); 2377 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2378 DELAY(1000); 2379 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2380 DELAY(1000); 2381 MEM_WRITE_1(sc, 0x200000, 0x00); 2382 MEM_WRITE_1(sc, 0x200000, 0x40); 2383 DELAY(1000); 2384 2385 /* write microcode into adapter memory */ 2386 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2387 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2388 2389 MEM_WRITE_1(sc, 0x200000, 0x00); 2390 MEM_WRITE_1(sc, 0x200000, 0x80); 2391 2392 /* wait until we get an answer */ 2393 for (ntries = 0; ntries < 100; ntries++) { 2394 if (MEM_READ_1(sc, 0x200000) & 1) 2395 break; 2396 DELAY(100); 2397 } 2398 if (ntries == 100) { 2399 device_printf(sc->sc_dev, 2400 "timeout waiting for ucode to initialize\n"); 2401 error = EIO; 2402 goto fail; 2403 } 2404 2405 /* read the answer or the firmware will not initialize properly */ 2406 for (i = 0; i < 7; i++) 2407 MEM_READ_4(sc, 0x200004); 2408 2409 MEM_WRITE_1(sc, 0x200000, 0x00); 2410 2411 fail: 2412 return error; 2413 } 2414 2415 /* macro to handle unaligned little endian data in firmware image */ 2416 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2417 2418 static int 2419 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2420 { 2421 u_char *p, *end; 2422 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2423 int ntries, error; 2424 2425 IWI_LOCK_ASSERT(sc); 2426 2427 /* copy firmware image to DMA memory */ 2428 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2429 2430 /* make sure the adapter will get up-to-date values */ 2431 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2432 2433 /* tell the adapter where the command blocks are stored */ 2434 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2435 2436 /* 2437 * Store command blocks into adapter's internal memory using register 2438 * indirections. The adapter will read the firmware image through DMA 2439 * using information stored in command blocks. 2440 */ 2441 src = sc->fw_physaddr; 2442 p = sc->fw_virtaddr; 2443 end = p + fw->size; 2444 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2445 2446 while (p < end) { 2447 dst = GETLE32(p); p += 4; src += 4; 2448 len = GETLE32(p); p += 4; src += 4; 2449 p += len; 2450 2451 while (len > 0) { 2452 mlen = min(len, IWI_CB_MAXDATALEN); 2453 2454 ctl = IWI_CB_DEFAULT_CTL | mlen; 2455 sum = ctl ^ src ^ dst; 2456 2457 /* write a command block */ 2458 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2459 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2460 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2461 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2462 2463 src += mlen; 2464 dst += mlen; 2465 len -= mlen; 2466 } 2467 } 2468 2469 /* write a fictive final command block (sentinel) */ 2470 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2471 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2472 2473 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2474 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2475 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2476 2477 /* tell the adapter to start processing command blocks */ 2478 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2479 2480 /* wait until the adapter reaches the sentinel */ 2481 for (ntries = 0; ntries < 400; ntries++) { 2482 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2483 break; 2484 DELAY(100); 2485 } 2486 /* sync dma, just in case */ 2487 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2488 if (ntries == 400) { 2489 device_printf(sc->sc_dev, 2490 "timeout processing command blocks for %s firmware\n", 2491 fw->name); 2492 return EIO; 2493 } 2494 2495 /* we're done with command blocks processing */ 2496 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2497 2498 /* allow interrupts so we know when the firmware is ready */ 2499 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2500 2501 /* tell the adapter to initialize the firmware */ 2502 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2503 2504 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2505 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2506 2507 /* wait at most one second for firmware initialization to complete */ 2508 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2509 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2510 "initialization to complete\n", fw->name); 2511 } 2512 2513 return error; 2514 } 2515 2516 static int 2517 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2518 { 2519 uint32_t data; 2520 2521 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2522 /* XXX set more fine-grained operation */ 2523 data = htole32(IWI_POWER_MODE_MAX); 2524 } else 2525 data = htole32(IWI_POWER_MODE_CAM); 2526 2527 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2528 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2529 } 2530 2531 static int 2532 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2533 { 2534 struct iwi_wep_key wepkey; 2535 struct ieee80211_key *wk; 2536 int error, i; 2537 2538 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2539 wk = &vap->iv_nw_keys[i]; 2540 2541 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2542 wepkey.idx = i; 2543 wepkey.len = wk->wk_keylen; 2544 memset(wepkey.key, 0, sizeof wepkey.key); 2545 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2546 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2547 wepkey.len)); 2548 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2549 sizeof wepkey); 2550 if (error != 0) 2551 return error; 2552 } 2553 return 0; 2554 } 2555 2556 static int 2557 iwi_config(struct iwi_softc *sc) 2558 { 2559 struct ifnet *ifp = sc->sc_ifp; 2560 struct ieee80211com *ic = ifp->if_l2com; 2561 struct iwi_configuration config; 2562 struct iwi_rateset rs; 2563 struct iwi_txpower power; 2564 uint32_t data; 2565 int error, i; 2566 2567 IWI_LOCK_ASSERT(sc); 2568 2569 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 2570 DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":")); 2571 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, 2572 IEEE80211_ADDR_LEN); 2573 if (error != 0) 2574 return error; 2575 2576 memset(&config, 0, sizeof config); 2577 config.bluetooth_coexistence = sc->bluetooth; 2578 config.silence_threshold = 0x1e; 2579 config.antenna = sc->antenna; 2580 config.multicast_enabled = 1; 2581 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2582 config.disable_unicast_decryption = 1; 2583 config.disable_multicast_decryption = 1; 2584 DPRINTF(("Configuring adapter\n")); 2585 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2586 if (error != 0) 2587 return error; 2588 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2589 power.mode = IWI_MODE_11B; 2590 power.nchan = 11; 2591 for (i = 0; i < 11; i++) { 2592 power.chan[i].chan = i + 1; 2593 power.chan[i].power = IWI_TXPOWER_MAX; 2594 } 2595 DPRINTF(("Setting .11b channels tx power\n")); 2596 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2597 if (error != 0) 2598 return error; 2599 2600 power.mode = IWI_MODE_11G; 2601 DPRINTF(("Setting .11g channels tx power\n")); 2602 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2603 if (error != 0) 2604 return error; 2605 } 2606 2607 memset(&rs, 0, sizeof rs); 2608 rs.mode = IWI_MODE_11G; 2609 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2610 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; 2611 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, 2612 rs.nrates); 2613 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); 2614 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2615 if (error != 0) 2616 return error; 2617 2618 memset(&rs, 0, sizeof rs); 2619 rs.mode = IWI_MODE_11A; 2620 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2621 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; 2622 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, 2623 rs.nrates); 2624 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); 2625 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2626 if (error != 0) 2627 return error; 2628 2629 data = htole32(arc4random()); 2630 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2631 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2632 if (error != 0) 2633 return error; 2634 2635 /* enable adapter */ 2636 DPRINTF(("Enabling adapter\n")); 2637 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2638 } 2639 2640 static __inline void 2641 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2642 { 2643 uint8_t *st = &scan->scan_type[ix / 2]; 2644 if (ix % 2) 2645 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2646 else 2647 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2648 } 2649 2650 static int 2651 scan_type(const struct ieee80211_scan_state *ss, 2652 const struct ieee80211_channel *chan) 2653 { 2654 /* We can only set one essid for a directed scan */ 2655 if (ss->ss_nssid != 0) 2656 return IWI_SCAN_TYPE_BDIRECTED; 2657 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2658 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2659 return IWI_SCAN_TYPE_BROADCAST; 2660 return IWI_SCAN_TYPE_PASSIVE; 2661 } 2662 2663 static __inline int 2664 scan_band(const struct ieee80211_channel *c) 2665 { 2666 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2667 } 2668 2669 /* 2670 * Start a scan on the current channel or all channels. 2671 */ 2672 static int 2673 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int mode) 2674 { 2675 struct ieee80211com *ic; 2676 struct ieee80211_channel *chan; 2677 struct ieee80211_scan_state *ss; 2678 struct iwi_scan_ext scan; 2679 int error = 0; 2680 2681 IWI_LOCK_ASSERT(sc); 2682 if (sc->fw_state == IWI_FW_SCANNING) { 2683 /* 2684 * This should not happen as we only trigger scan_next after 2685 * completion 2686 */ 2687 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2688 return (EBUSY); 2689 } 2690 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2691 2692 ic = sc->sc_ifp->if_l2com; 2693 ss = ic->ic_scan; 2694 2695 memset(&scan, 0, sizeof scan); 2696 scan.full_scan_index = htole32(++sc->sc_scangen); 2697 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2698 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2699 /* 2700 * Use very short dwell times for when we send probe request 2701 * frames. Without this bg scans hang. Ideally this should 2702 * be handled with early-termination as done by net80211 but 2703 * that's not feasible (aborting a scan is problematic). 2704 */ 2705 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2706 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2707 } else { 2708 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2709 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2710 } 2711 2712 /* We can only set one essid for a directed scan */ 2713 if (ss->ss_nssid != 0) { 2714 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2715 ss->ss_ssid[0].len); 2716 if (error) 2717 return (error); 2718 } 2719 2720 if (mode == IWI_SCAN_ALLCHAN) { 2721 int i, next, band, b, bstart; 2722 /* 2723 * Convert scan list to run-length encoded channel list 2724 * the firmware requires (preserving the order setup by 2725 * net80211). The first entry in each run specifies the 2726 * band and the count of items in the run. 2727 */ 2728 next = 0; /* next open slot */ 2729 bstart = 0; /* NB: not needed, silence compiler */ 2730 band = -1; /* NB: impossible value */ 2731 KASSERT(ss->ss_last > 0, ("no channels")); 2732 for (i = 0; i < ss->ss_last; i++) { 2733 chan = ss->ss_chans[i]; 2734 b = scan_band(chan); 2735 if (b != band) { 2736 if (band != -1) 2737 scan.channels[bstart] = 2738 (next - bstart) | band; 2739 /* NB: this allocates a slot for the run-len */ 2740 band = b, bstart = next++; 2741 } 2742 if (next >= IWI_SCAN_CHANNELS) { 2743 DPRINTF(("truncating scan list\n")); 2744 break; 2745 } 2746 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2747 set_scan_type(&scan, next, scan_type(ss, chan)); 2748 next++; 2749 } 2750 scan.channels[bstart] = (next - bstart) | band; 2751 } else { 2752 /* Scan the current channel only */ 2753 chan = ic->ic_curchan; 2754 scan.channels[0] = 1 | scan_band(chan); 2755 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2756 set_scan_type(&scan, 1, scan_type(ss, chan)); 2757 } 2758 #ifdef IWI_DEBUG 2759 if (iwi_debug > 0) { 2760 static const char *scantype[8] = 2761 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2762 int i; 2763 printf("Scan request: index %u dwell %d/%d/%d\n" 2764 , le32toh(scan.full_scan_index) 2765 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2766 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2767 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2768 ); 2769 i = 0; 2770 do { 2771 int run = scan.channels[i]; 2772 if (run == 0) 2773 break; 2774 printf("Scan %d %s channels:", run & 0x3f, 2775 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2776 for (run &= 0x3f, i++; run > 0; run--, i++) { 2777 uint8_t type = scan.scan_type[i/2]; 2778 printf(" %u/%s", scan.channels[i], 2779 scantype[(i & 1 ? type : type>>4) & 7]); 2780 } 2781 printf("\n"); 2782 } while (i < IWI_SCAN_CHANNELS); 2783 } 2784 #endif 2785 2786 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2787 } 2788 2789 static void 2790 iwi_scanabort(void *arg, int npending) 2791 { 2792 struct iwi_softc *sc = arg; 2793 IWI_LOCK_DECL; 2794 2795 IWI_LOCK(sc); 2796 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 2797 /* NB: make sure we're still scanning */ 2798 if (sc->fw_state == IWI_FW_SCANNING) 2799 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 2800 IWI_UNLOCK(sc); 2801 } 2802 2803 static int 2804 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2805 { 2806 struct iwi_sensitivity sens; 2807 2808 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2809 2810 memset(&sens, 0, sizeof sens); 2811 sens.rssi = htole16(rssi_dbm); 2812 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2813 } 2814 2815 static int 2816 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2817 { 2818 struct ieee80211com *ic = vap->iv_ic; 2819 struct ifnet *ifp = vap->iv_ifp; 2820 struct ieee80211_node *ni = vap->iv_bss; 2821 struct iwi_configuration config; 2822 struct iwi_associate *assoc = &sc->assoc; 2823 struct iwi_rateset rs; 2824 uint16_t capinfo; 2825 uint32_t data; 2826 int error, mode; 2827 2828 IWI_LOCK_ASSERT(sc); 2829 2830 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2831 DPRINTF(("Already associated\n")); 2832 return (-1); 2833 } 2834 2835 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2836 error = 0; 2837 mode = 0; 2838 2839 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2840 mode = IWI_MODE_11A; 2841 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2842 mode = IWI_MODE_11G; 2843 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2844 mode = IWI_MODE_11B; 2845 2846 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2847 memset(&config, 0, sizeof config); 2848 config.bluetooth_coexistence = sc->bluetooth; 2849 config.antenna = sc->antenna; 2850 config.multicast_enabled = 1; 2851 if (mode == IWI_MODE_11G) 2852 config.use_protection = 1; 2853 config.answer_pbreq = 2854 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2855 config.disable_unicast_decryption = 1; 2856 config.disable_multicast_decryption = 1; 2857 DPRINTF(("Configuring adapter\n")); 2858 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2859 if (error != 0) 2860 goto done; 2861 } 2862 2863 #ifdef IWI_DEBUG 2864 if (iwi_debug > 0) { 2865 printf("Setting ESSID to "); 2866 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2867 printf("\n"); 2868 } 2869 #endif 2870 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2871 if (error != 0) 2872 goto done; 2873 2874 error = iwi_setpowermode(sc, vap); 2875 if (error != 0) 2876 goto done; 2877 2878 data = htole32(vap->iv_rtsthreshold); 2879 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2880 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2881 if (error != 0) 2882 goto done; 2883 2884 data = htole32(vap->iv_fragthreshold); 2885 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2886 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2887 if (error != 0) 2888 goto done; 2889 2890 /* the rate set has already been "negotiated" */ 2891 memset(&rs, 0, sizeof rs); 2892 rs.mode = mode; 2893 rs.type = IWI_RATESET_TYPE_NEGOTIATED; 2894 rs.nrates = ni->ni_rates.rs_nrates; 2895 if (rs.nrates > IWI_RATESET_SIZE) { 2896 DPRINTF(("Truncating negotiated rate set from %u\n", 2897 rs.nrates)); 2898 rs.nrates = IWI_RATESET_SIZE; 2899 } 2900 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); 2901 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); 2902 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2903 if (error != 0) 2904 goto done; 2905 2906 memset(assoc, 0, sizeof *assoc); 2907 2908 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2909 /* NB: don't treat WME setup as failure */ 2910 if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0) 2911 assoc->policy |= htole16(IWI_POLICY_WME); 2912 /* XXX complain on failure? */ 2913 } 2914 2915 if (vap->iv_appie_wpa != NULL) { 2916 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2917 2918 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2919 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2920 if (error != 0) 2921 goto done; 2922 } 2923 2924 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2925 if (error != 0) 2926 goto done; 2927 2928 assoc->mode = mode; 2929 assoc->chan = ic->ic_curchan->ic_ieee; 2930 /* 2931 * NB: do not arrange for shared key auth w/o privacy 2932 * (i.e. a wep key); it causes a firmware error. 2933 */ 2934 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2935 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2936 assoc->auth = IWI_AUTH_SHARED; 2937 /* 2938 * It's possible to have privacy marked but no default 2939 * key setup. This typically is due to a user app bug 2940 * but if we blindly grab the key the firmware will 2941 * barf so avoid it for now. 2942 */ 2943 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2944 assoc->auth |= vap->iv_def_txkey << 4; 2945 2946 error = iwi_setwepkeys(sc, vap); 2947 if (error != 0) 2948 goto done; 2949 } 2950 if (vap->iv_flags & IEEE80211_F_WPA) 2951 assoc->policy |= htole16(IWI_POLICY_WPA); 2952 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2953 assoc->type = IWI_HC_IBSS_START; 2954 else 2955 assoc->type = IWI_HC_ASSOC; 2956 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2957 2958 if (vap->iv_opmode == IEEE80211_M_IBSS) 2959 capinfo = IEEE80211_CAPINFO_IBSS; 2960 else 2961 capinfo = IEEE80211_CAPINFO_ESS; 2962 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2963 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2964 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2965 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2966 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2967 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2968 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2969 assoc->capinfo = htole16(capinfo); 2970 2971 assoc->lintval = htole16(ic->ic_lintval); 2972 assoc->intval = htole16(ni->ni_intval); 2973 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2974 if (vap->iv_opmode == IEEE80211_M_IBSS) 2975 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 2976 else 2977 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2978 2979 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2980 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2981 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2982 assoc->bssid, ":", assoc->dst, ":", 2983 assoc->chan, le16toh(assoc->policy), assoc->auth, 2984 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2985 le16toh(assoc->intval))); 2986 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2987 done: 2988 if (error) 2989 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2990 2991 return (error); 2992 } 2993 2994 static int 2995 iwi_disassociate(struct iwi_softc *sc, int quiet) 2996 { 2997 struct iwi_associate *assoc = &sc->assoc; 2998 2999 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 3000 DPRINTF(("Not associated\n")); 3001 return (-1); 3002 } 3003 3004 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3005 3006 if (quiet) 3007 assoc->type = IWI_HC_DISASSOC_QUIET; 3008 else 3009 assoc->type = IWI_HC_DISASSOC; 3010 3011 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3012 assoc->bssid, ":", assoc->chan)); 3013 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3014 } 3015 3016 /* 3017 * release dma resources for the firmware 3018 */ 3019 static void 3020 iwi_release_fw_dma(struct iwi_softc *sc) 3021 { 3022 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3023 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3024 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3025 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3026 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3027 bus_dma_tag_destroy(sc->fw_dmat); 3028 3029 sc->fw_flags = 0; 3030 sc->fw_dma_size = 0; 3031 sc->fw_dmat = NULL; 3032 sc->fw_map = NULL; 3033 sc->fw_physaddr = 0; 3034 sc->fw_virtaddr = NULL; 3035 } 3036 3037 /* 3038 * allocate the dma descriptor for the firmware. 3039 * Return 0 on success, 1 on error. 3040 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3041 */ 3042 static int 3043 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3044 { 3045 if (sc->fw_dma_size >= size) 3046 return 0; 3047 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3048 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3049 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3050 device_printf(sc->sc_dev, 3051 "could not create firmware DMA tag\n"); 3052 goto error; 3053 } 3054 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3055 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3056 &sc->fw_map) != 0) { 3057 device_printf(sc->sc_dev, 3058 "could not allocate firmware DMA memory\n"); 3059 goto error; 3060 } 3061 sc->fw_flags |= IWI_FW_HAVE_MAP; 3062 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3063 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3064 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3065 goto error; 3066 } 3067 sc->fw_flags |= IWI_FW_HAVE_PHY; 3068 sc->fw_dma_size = size; 3069 return 0; 3070 3071 error: 3072 iwi_release_fw_dma(sc); 3073 return 1; 3074 } 3075 3076 static void 3077 iwi_init_locked(struct iwi_softc *sc) 3078 { 3079 struct ifnet *ifp = sc->sc_ifp; 3080 struct iwi_rx_data *data; 3081 int i; 3082 3083 IWI_LOCK_ASSERT(sc); 3084 3085 if (sc->fw_state == IWI_FW_LOADING) { 3086 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3087 return; /* XXX: condvar? */ 3088 } 3089 3090 iwi_stop_locked(sc); 3091 3092 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3093 3094 taskqueue_unblock(sc->sc_tq); 3095 taskqueue_unblock(sc->sc_tq2); 3096 3097 if (iwi_reset(sc) != 0) { 3098 device_printf(sc->sc_dev, "could not reset adapter\n"); 3099 goto fail; 3100 } 3101 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3102 device_printf(sc->sc_dev, 3103 "could not load boot firmware %s\n", sc->fw_boot.name); 3104 goto fail; 3105 } 3106 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3107 device_printf(sc->sc_dev, 3108 "could not load microcode %s\n", sc->fw_uc.name); 3109 goto fail; 3110 } 3111 3112 iwi_stop_master(sc); 3113 3114 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3115 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3116 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3117 3118 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3119 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3120 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3121 3122 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3123 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3124 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3125 3126 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3127 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3128 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3129 3130 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3131 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3132 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3133 3134 for (i = 0; i < sc->rxq.count; i++) { 3135 data = &sc->rxq.data[i]; 3136 CSR_WRITE_4(sc, data->reg, data->physaddr); 3137 } 3138 3139 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3140 3141 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3142 device_printf(sc->sc_dev, 3143 "could not load main firmware %s\n", sc->fw_fw.name); 3144 goto fail; 3145 } 3146 sc->flags |= IWI_FLAG_FW_INITED; 3147 3148 IWI_STATE_END(sc, IWI_FW_LOADING); 3149 3150 if (iwi_config(sc) != 0) { 3151 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3152 goto fail2; 3153 } 3154 3155 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3156 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3157 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3158 return; 3159 fail: 3160 IWI_STATE_END(sc, IWI_FW_LOADING); 3161 fail2: 3162 iwi_stop_locked(sc); 3163 } 3164 3165 static void 3166 iwi_init(void *priv) 3167 { 3168 struct iwi_softc *sc = priv; 3169 struct ifnet *ifp = sc->sc_ifp; 3170 struct ieee80211com *ic = ifp->if_l2com; 3171 IWI_LOCK_DECL; 3172 3173 IWI_LOCK(sc); 3174 iwi_init_locked(sc); 3175 IWI_UNLOCK(sc); 3176 3177 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3178 ieee80211_start_all(ic); 3179 } 3180 3181 static void 3182 iwi_stop_locked(void *priv) 3183 { 3184 struct iwi_softc *sc = priv; 3185 struct ifnet *ifp = sc->sc_ifp; 3186 3187 IWI_LOCK_ASSERT(sc); 3188 3189 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3190 3191 taskqueue_block(sc->sc_tq); 3192 taskqueue_block(sc->sc_tq2); 3193 if (sc->sc_softled) { 3194 callout_stop(&sc->sc_ledtimer); 3195 sc->sc_blinking = 0; 3196 } 3197 callout_stop(&sc->sc_wdtimer); 3198 callout_stop(&sc->sc_rftimer); 3199 3200 iwi_stop_master(sc); 3201 3202 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3203 3204 /* reset rings */ 3205 iwi_reset_cmd_ring(sc, &sc->cmdq); 3206 iwi_reset_tx_ring(sc, &sc->txq[0]); 3207 iwi_reset_tx_ring(sc, &sc->txq[1]); 3208 iwi_reset_tx_ring(sc, &sc->txq[2]); 3209 iwi_reset_tx_ring(sc, &sc->txq[3]); 3210 iwi_reset_rx_ring(sc, &sc->rxq); 3211 3212 memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd)); 3213 sc->sc_tx_timer = 0; 3214 sc->sc_state_timer = 0; 3215 sc->sc_busy_timer = 0; 3216 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3217 sc->fw_state = IWI_FW_IDLE; 3218 wakeup(sc); 3219 } 3220 3221 static void 3222 iwi_stop(struct iwi_softc *sc) 3223 { 3224 IWI_LOCK_DECL; 3225 3226 IWI_LOCK(sc); 3227 iwi_stop_locked(sc); 3228 IWI_UNLOCK(sc); 3229 } 3230 3231 static void 3232 iwi_restart(void *arg, int npending) 3233 { 3234 struct iwi_softc *sc = arg; 3235 3236 iwi_init(sc); 3237 } 3238 3239 /* 3240 * Return whether or not the radio is enabled in hardware 3241 * (i.e. the rfkill switch is "off"). 3242 */ 3243 static int 3244 iwi_getrfkill(struct iwi_softc *sc) 3245 { 3246 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3247 } 3248 3249 static void 3250 iwi_radio_on(void *arg, int pending) 3251 { 3252 struct iwi_softc *sc = arg; 3253 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3254 3255 device_printf(sc->sc_dev, "radio turned on\n"); 3256 3257 iwi_init(sc); 3258 ieee80211_notify_radio(ic, 1); 3259 } 3260 3261 static void 3262 iwi_rfkill_poll(void *arg) 3263 { 3264 struct iwi_softc *sc = arg; 3265 3266 IWI_LOCK_ASSERT(sc); 3267 3268 /* 3269 * Check for a change in rfkill state. We get an 3270 * interrupt when a radio is disabled but not when 3271 * it is enabled so we must poll for the latter. 3272 */ 3273 if (!iwi_getrfkill(sc)) { 3274 taskqueue_unblock(sc->sc_tq); 3275 taskqueue_enqueue(sc->sc_tq, &sc->sc_radiontask); 3276 return; 3277 } 3278 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3279 } 3280 3281 static void 3282 iwi_radio_off(void *arg, int pending) 3283 { 3284 struct iwi_softc *sc = arg; 3285 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3286 IWI_LOCK_DECL; 3287 3288 device_printf(sc->sc_dev, "radio turned off\n"); 3289 3290 ieee80211_notify_radio(ic, 0); 3291 3292 IWI_LOCK(sc); 3293 iwi_stop_locked(sc); 3294 iwi_rfkill_poll(sc); 3295 IWI_UNLOCK(sc); 3296 } 3297 3298 static int 3299 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3300 { 3301 struct iwi_softc *sc = arg1; 3302 uint32_t size, buf[128]; 3303 3304 memset(buf, 0, sizeof buf); 3305 3306 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3307 return SYSCTL_OUT(req, buf, sizeof buf); 3308 3309 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3310 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3311 3312 return SYSCTL_OUT(req, buf, size); 3313 } 3314 3315 static int 3316 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3317 { 3318 struct iwi_softc *sc = arg1; 3319 int val = !iwi_getrfkill(sc); 3320 3321 return SYSCTL_OUT(req, &val, sizeof val); 3322 } 3323 3324 /* 3325 * Add sysctl knobs. 3326 */ 3327 static void 3328 iwi_sysctlattach(struct iwi_softc *sc) 3329 { 3330 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3331 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3332 3333 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3334 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3335 "radio transmitter switch state (0=off, 1=on)"); 3336 3337 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3338 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3339 "statistics"); 3340 3341 sc->bluetooth = 0; 3342 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3343 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3344 3345 sc->antenna = IWI_ANTENNA_AUTO; 3346 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3347 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3348 } 3349 3350 /* 3351 * LED support. 3352 * 3353 * Different cards have different capabilities. Some have three 3354 * led's while others have only one. The linux ipw driver defines 3355 * led's for link state (associated or not), band (11a, 11g, 11b), 3356 * and for link activity. We use one led and vary the blink rate 3357 * according to the tx/rx traffic a la the ath driver. 3358 */ 3359 3360 static __inline uint32_t 3361 iwi_toggle_event(uint32_t r) 3362 { 3363 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3364 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3365 } 3366 3367 static uint32_t 3368 iwi_read_event(struct iwi_softc *sc) 3369 { 3370 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3371 } 3372 3373 static void 3374 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3375 { 3376 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3377 } 3378 3379 static void 3380 iwi_led_done(void *arg) 3381 { 3382 struct iwi_softc *sc = arg; 3383 3384 sc->sc_blinking = 0; 3385 } 3386 3387 /* 3388 * Turn the activity LED off: flip the pin and then set a timer so no 3389 * update will happen for the specified duration. 3390 */ 3391 static void 3392 iwi_led_off(void *arg) 3393 { 3394 struct iwi_softc *sc = arg; 3395 uint32_t v; 3396 3397 v = iwi_read_event(sc); 3398 v &= ~sc->sc_ledpin; 3399 iwi_write_event(sc, iwi_toggle_event(v)); 3400 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3401 } 3402 3403 /* 3404 * Blink the LED according to the specified on/off times. 3405 */ 3406 static void 3407 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3408 { 3409 uint32_t v; 3410 3411 v = iwi_read_event(sc); 3412 v |= sc->sc_ledpin; 3413 iwi_write_event(sc, iwi_toggle_event(v)); 3414 sc->sc_blinking = 1; 3415 sc->sc_ledoff = off; 3416 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3417 } 3418 3419 static void 3420 iwi_led_event(struct iwi_softc *sc, int event) 3421 { 3422 #define N(a) (sizeof(a)/sizeof(a[0])) 3423 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3424 static const struct { 3425 u_int rate; /* tx/rx iwi rate */ 3426 u_int16_t timeOn; /* LED on time (ms) */ 3427 u_int16_t timeOff; /* LED off time (ms) */ 3428 } blinkrates[] = { 3429 { IWI_RATE_OFDM54, 40, 10 }, 3430 { IWI_RATE_OFDM48, 44, 11 }, 3431 { IWI_RATE_OFDM36, 50, 13 }, 3432 { IWI_RATE_OFDM24, 57, 14 }, 3433 { IWI_RATE_OFDM18, 67, 16 }, 3434 { IWI_RATE_OFDM12, 80, 20 }, 3435 { IWI_RATE_DS11, 100, 25 }, 3436 { IWI_RATE_OFDM9, 133, 34 }, 3437 { IWI_RATE_OFDM6, 160, 40 }, 3438 { IWI_RATE_DS5, 200, 50 }, 3439 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3440 { IWI_RATE_DS2, 267, 66 }, 3441 { IWI_RATE_DS1, 400, 100 }, 3442 { 0, 500, 130 }, /* unknown rate/polling */ 3443 }; 3444 uint32_t txrate; 3445 int j = 0; /* XXX silence compiler */ 3446 3447 sc->sc_ledevent = ticks; /* time of last event */ 3448 if (sc->sc_blinking) /* don't interrupt active blink */ 3449 return; 3450 switch (event) { 3451 case IWI_LED_POLL: 3452 j = N(blinkrates)-1; 3453 break; 3454 case IWI_LED_TX: 3455 /* read current transmission rate from adapter */ 3456 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3457 if (blinkrates[sc->sc_txrix].rate != txrate) { 3458 for (j = 0; j < N(blinkrates)-1; j++) 3459 if (blinkrates[j].rate == txrate) 3460 break; 3461 sc->sc_txrix = j; 3462 } else 3463 j = sc->sc_txrix; 3464 break; 3465 case IWI_LED_RX: 3466 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3467 for (j = 0; j < N(blinkrates)-1; j++) 3468 if (blinkrates[j].rate == sc->sc_rxrate) 3469 break; 3470 sc->sc_rxrix = j; 3471 } else 3472 j = sc->sc_rxrix; 3473 break; 3474 } 3475 /* XXX beware of overflow */ 3476 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3477 (blinkrates[j].timeOff * hz) / 1000); 3478 #undef N 3479 } 3480 3481 static int 3482 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3483 { 3484 struct iwi_softc *sc = arg1; 3485 int softled = sc->sc_softled; 3486 int error; 3487 3488 error = sysctl_handle_int(oidp, &softled, 0, req); 3489 if (error || !req->newptr) 3490 return error; 3491 softled = (softled != 0); 3492 if (softled != sc->sc_softled) { 3493 if (softled) { 3494 uint32_t v = iwi_read_event(sc); 3495 v &= ~sc->sc_ledpin; 3496 iwi_write_event(sc, iwi_toggle_event(v)); 3497 } 3498 sc->sc_softled = softled; 3499 } 3500 return 0; 3501 } 3502 3503 static void 3504 iwi_ledattach(struct iwi_softc *sc) 3505 { 3506 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3507 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3508 3509 sc->sc_blinking = 0; 3510 sc->sc_ledstate = 1; 3511 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3512 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3513 3514 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3515 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3516 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3517 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3518 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3519 "pin setting to turn activity LED on"); 3520 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3521 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3522 "idle time for inactivity LED (ticks)"); 3523 /* XXX for debugging */ 3524 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3525 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3526 "NIC type from EEPROM"); 3527 3528 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3529 sc->sc_softled = 1; 3530 3531 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3532 if (sc->sc_nictype == 1) { 3533 /* 3534 * NB: led's are reversed. 3535 */ 3536 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3537 } 3538 } 3539 3540 static void 3541 iwi_ops(void *arg0, int npending) 3542 { 3543 static const char *opnames[] = { 3544 [IWI_CMD_FREE] = "FREE", 3545 [IWI_SCAN_START] = "SCAN_START", 3546 [IWI_SET_CHANNEL] = "SET_CHANNEL", 3547 [IWI_AUTH] = "AUTH", 3548 [IWI_ASSOC] = "ASSOC", 3549 [IWI_DISASSOC] = "DISASSOC", 3550 [IWI_SCAN_CURCHAN] = "SCAN_CURCHAN", 3551 [IWI_SCAN_ALLCHAN] = "SCAN_ALLCHAN", 3552 [IWI_SET_WME] = "SET_WME", 3553 }; 3554 struct iwi_softc *sc = arg0; 3555 struct ifnet *ifp = sc->sc_ifp; 3556 struct ieee80211com *ic = ifp->if_l2com; 3557 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3558 IWI_LOCK_DECL; 3559 int cmd; 3560 unsigned long arg; 3561 3562 again: 3563 IWI_CMD_LOCK(sc); 3564 cmd = sc->sc_cmd[sc->sc_cmd_cur]; 3565 if (cmd == IWI_CMD_FREE) { 3566 /* No more commands to process */ 3567 IWI_CMD_UNLOCK(sc); 3568 return; 3569 } 3570 arg = sc->sc_arg[sc->sc_cmd_cur]; 3571 sc->sc_cmd[sc->sc_cmd_cur] = IWI_CMD_FREE; /* free the slot */ 3572 sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % IWI_CMD_MAXOPS; 3573 IWI_CMD_UNLOCK(sc); 3574 3575 IWI_LOCK(sc); 3576 while (sc->fw_state != IWI_FW_IDLE || (sc->flags & IWI_FLAG_BUSY)) { 3577 msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz/10); 3578 } 3579 3580 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3581 IWI_UNLOCK(sc); 3582 return; 3583 } 3584 3585 DPRINTF(("%s: %s arg %lu\n", __func__, opnames[cmd], arg)); 3586 switch (cmd) { 3587 case IWI_AUTH: 3588 case IWI_ASSOC: 3589 if (cmd == IWI_AUTH) 3590 vap->iv_state = IEEE80211_S_AUTH; 3591 else 3592 vap->iv_state = IEEE80211_S_ASSOC; 3593 iwi_auth_and_assoc(sc, vap); 3594 /* NB: completion done in iwi_notification_intr */ 3595 break; 3596 case IWI_DISASSOC: 3597 iwi_disassociate(sc, 0); 3598 break; 3599 case IWI_SET_WME: 3600 if (vap->iv_state == IEEE80211_S_RUN) 3601 (void) iwi_wme_setparams(sc, ic); 3602 break; 3603 case IWI_SCAN_START: 3604 sc->flags |= IWI_FLAG_CHANNEL_SCAN; 3605 break; 3606 case IWI_SCAN_CURCHAN: 3607 case IWI_SCAN_ALLCHAN: 3608 if (!(sc->flags & IWI_FLAG_CHANNEL_SCAN)) { 3609 DPRINTF(("%s: ic_scan_curchan while not scanning\n", 3610 __func__)); 3611 goto done; 3612 } 3613 if (iwi_scanchan(sc, arg, cmd)) 3614 ieee80211_cancel_scan(vap); 3615 break; 3616 } 3617 done: 3618 IWI_UNLOCK(sc); 3619 3620 /* Take another pass */ 3621 goto again; 3622 } 3623 3624 static int 3625 iwi_queue_cmd(struct iwi_softc *sc, int cmd, unsigned long arg) 3626 { 3627 IWI_CMD_LOCK(sc); 3628 if (sc->sc_cmd[sc->sc_cmd_next] != 0) { 3629 IWI_CMD_UNLOCK(sc); 3630 DPRINTF(("%s: command %d dropped\n", __func__, cmd)); 3631 return (EBUSY); 3632 } 3633 3634 sc->sc_cmd[sc->sc_cmd_next] = cmd; 3635 sc->sc_arg[sc->sc_cmd_next] = arg; 3636 sc->sc_cmd_next = (sc->sc_cmd_next + 1) % IWI_CMD_MAXOPS; 3637 taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask); 3638 IWI_CMD_UNLOCK(sc); 3639 return (0); 3640 } 3641 3642 static void 3643 iwi_scan_start(struct ieee80211com *ic) 3644 { 3645 struct ifnet *ifp = ic->ic_ifp; 3646 struct iwi_softc *sc = ifp->if_softc; 3647 3648 iwi_queue_cmd(sc, IWI_SCAN_START, 0); 3649 } 3650 3651 static void 3652 iwi_set_channel(struct ieee80211com *ic) 3653 { 3654 struct ifnet *ifp = ic->ic_ifp; 3655 struct iwi_softc *sc = ifp->if_softc; 3656 if (sc->fw_state == IWI_FW_IDLE) 3657 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3658 } 3659 3660 static void 3661 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3662 { 3663 struct ieee80211vap *vap = ss->ss_vap; 3664 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3665 struct iwi_softc *sc = ifp->if_softc; 3666 3667 iwi_queue_cmd(sc, IWI_SCAN_CURCHAN, maxdwell); 3668 } 3669 3670 #if 0 3671 static void 3672 iwi_scan_allchan(struct ieee80211com *ic, unsigned long maxdwell) 3673 { 3674 struct ifnet *ifp = ic->ic_ifp; 3675 struct iwi_softc *sc = ifp->if_softc; 3676 3677 iwi_queue_cmd(sc, IWI_SCAN_ALLCHAN, maxdwell); 3678 } 3679 #endif 3680 3681 static void 3682 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3683 { 3684 /* NB: don't try to abort scan; wait for firmware to finish */ 3685 } 3686 3687 static void 3688 iwi_scan_end(struct ieee80211com *ic) 3689 { 3690 struct ifnet *ifp = ic->ic_ifp; 3691 struct iwi_softc *sc = ifp->if_softc; 3692 3693 taskqueue_enqueue(sc->sc_tq2, &sc->sc_scanaborttask); 3694 } 3695