1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2004, 2005 5 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 6 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 7 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 /*- 34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/namei.h> 54 #include <sys/linker.h> 55 #include <sys/firmware.h> 56 #include <sys/taskqueue.h> 57 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 #include <dev/pci/pcireg.h> 63 #include <dev/pci/pcivar.h> 64 65 #include <net/bpf.h> 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_arp.h> 69 #include <net/ethernet.h> 70 #include <net/if_dl.h> 71 #include <net/if_media.h> 72 #include <net/if_types.h> 73 74 #include <net80211/ieee80211_var.h> 75 #include <net80211/ieee80211_radiotap.h> 76 #include <net80211/ieee80211_input.h> 77 #include <net80211/ieee80211_regdomain.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip.h> 83 #include <netinet/if_ether.h> 84 85 #include <dev/iwi/if_iwireg.h> 86 #include <dev/iwi/if_iwivar.h> 87 #include <dev/iwi/if_iwi_ioctl.h> 88 89 #define IWI_DEBUG 90 #ifdef IWI_DEBUG 91 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 92 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 93 int iwi_debug = 0; 94 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 95 96 static const char *iwi_fw_states[] = { 97 "IDLE", /* IWI_FW_IDLE */ 98 "LOADING", /* IWI_FW_LOADING */ 99 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 100 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 101 "SCANNING", /* IWI_FW_SCANNING */ 102 }; 103 #else 104 #define DPRINTF(x) 105 #define DPRINTFN(n, x) 106 #endif 107 108 MODULE_DEPEND(iwi, pci, 1, 1, 1); 109 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 110 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 111 112 enum { 113 IWI_LED_TX, 114 IWI_LED_RX, 115 IWI_LED_POLL, 116 }; 117 118 struct iwi_ident { 119 uint16_t vendor; 120 uint16_t device; 121 const char *name; 122 }; 123 124 static const struct iwi_ident iwi_ident_table[] = { 125 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 126 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 127 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 128 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 129 130 { 0, 0, NULL } 131 }; 132 133 static const uint8_t def_chan_5ghz_band1[] = 134 { 36, 40, 44, 48, 52, 56, 60, 64 }; 135 static const uint8_t def_chan_5ghz_band2[] = 136 { 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 }; 137 static const uint8_t def_chan_5ghz_band3[] = 138 { 149, 153, 157, 161, 165 }; 139 140 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 141 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 142 const uint8_t [IEEE80211_ADDR_LEN], 143 const uint8_t [IEEE80211_ADDR_LEN]); 144 static void iwi_vap_delete(struct ieee80211vap *); 145 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 146 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 147 int); 148 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 149 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 150 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 151 int, bus_addr_t, bus_addr_t); 152 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 153 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 154 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 155 int); 156 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 157 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 158 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 159 const uint8_t [IEEE80211_ADDR_LEN]); 160 static void iwi_node_free(struct ieee80211_node *); 161 static void iwi_media_status(if_t, struct ifmediareq *); 162 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 163 static void iwi_wme_init(struct iwi_softc *); 164 static int iwi_wme_setparams(struct iwi_softc *); 165 static int iwi_wme_update(struct ieee80211com *); 166 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 167 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 168 struct iwi_frame *); 169 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 170 static void iwi_rx_intr(struct iwi_softc *); 171 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 172 static void iwi_intr(void *); 173 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 174 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [IEEE80211_ADDR_LEN], int); 175 static int iwi_tx_start(struct iwi_softc *, struct mbuf *, 176 struct ieee80211_node *, int); 177 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 178 const struct ieee80211_bpf_params *); 179 static void iwi_start(struct iwi_softc *); 180 static int iwi_transmit(struct ieee80211com *, struct mbuf *); 181 static void iwi_watchdog(void *); 182 static int iwi_ioctl(struct ieee80211com *, u_long, void *); 183 static void iwi_parent(struct ieee80211com *); 184 static void iwi_stop_master(struct iwi_softc *); 185 static int iwi_reset(struct iwi_softc *); 186 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 187 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 188 static void iwi_release_fw_dma(struct iwi_softc *sc); 189 static int iwi_config(struct iwi_softc *); 190 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 191 static void iwi_put_firmware(struct iwi_softc *); 192 static void iwi_monitor_scan(void *, int); 193 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 194 static void iwi_scan_start(struct ieee80211com *); 195 static void iwi_scan_end(struct ieee80211com *); 196 static void iwi_set_channel(struct ieee80211com *); 197 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 198 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 199 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 200 static void iwi_disassoc(void *, int); 201 static int iwi_disassociate(struct iwi_softc *, int quiet); 202 static void iwi_init_locked(struct iwi_softc *); 203 static void iwi_init(void *); 204 static int iwi_init_fw_dma(struct iwi_softc *, int); 205 static void iwi_stop_locked(void *); 206 static void iwi_stop(struct iwi_softc *); 207 static void iwi_restart(void *, int); 208 static int iwi_getrfkill(struct iwi_softc *); 209 static void iwi_radio_on(void *, int); 210 static void iwi_radio_off(void *, int); 211 static void iwi_sysctlattach(struct iwi_softc *); 212 static void iwi_led_event(struct iwi_softc *, int); 213 static void iwi_ledattach(struct iwi_softc *); 214 static void iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t); 215 static void iwi_getradiocaps(struct ieee80211com *, int, int *, 216 struct ieee80211_channel []); 217 218 static int iwi_probe(device_t); 219 static int iwi_attach(device_t); 220 static int iwi_detach(device_t); 221 static int iwi_shutdown(device_t); 222 static int iwi_suspend(device_t); 223 static int iwi_resume(device_t); 224 225 static device_method_t iwi_methods[] = { 226 /* Device interface */ 227 DEVMETHOD(device_probe, iwi_probe), 228 DEVMETHOD(device_attach, iwi_attach), 229 DEVMETHOD(device_detach, iwi_detach), 230 DEVMETHOD(device_shutdown, iwi_shutdown), 231 DEVMETHOD(device_suspend, iwi_suspend), 232 DEVMETHOD(device_resume, iwi_resume), 233 234 DEVMETHOD_END 235 }; 236 237 static driver_t iwi_driver = { 238 "iwi", 239 iwi_methods, 240 sizeof (struct iwi_softc) 241 }; 242 243 DRIVER_MODULE(iwi, pci, iwi_driver, NULL, NULL); 244 245 MODULE_VERSION(iwi, 1); 246 247 static __inline uint8_t 248 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 249 { 250 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 251 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 252 } 253 254 static __inline uint32_t 255 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 256 { 257 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 258 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 259 } 260 261 static int 262 iwi_probe(device_t dev) 263 { 264 const struct iwi_ident *ident; 265 266 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 267 if (pci_get_vendor(dev) == ident->vendor && 268 pci_get_device(dev) == ident->device) { 269 device_set_desc(dev, ident->name); 270 return (BUS_PROBE_DEFAULT); 271 } 272 } 273 return ENXIO; 274 } 275 276 static int 277 iwi_attach(device_t dev) 278 { 279 struct iwi_softc *sc = device_get_softc(dev); 280 struct ieee80211com *ic = &sc->sc_ic; 281 uint16_t val; 282 int i, error; 283 284 sc->sc_dev = dev; 285 sc->sc_ledevent = ticks; 286 287 IWI_LOCK_INIT(sc); 288 mbufq_init(&sc->sc_snd, ifqmaxlen); 289 290 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 291 292 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 293 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 294 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 295 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); 296 TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc); 297 298 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 299 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 300 301 pci_write_config(dev, 0x41, 0, 1); 302 303 /* enable bus-mastering */ 304 pci_enable_busmaster(dev); 305 306 i = PCIR_BAR(0); 307 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 308 if (sc->mem == NULL) { 309 device_printf(dev, "could not allocate memory resource\n"); 310 goto fail; 311 } 312 313 sc->sc_st = rman_get_bustag(sc->mem); 314 sc->sc_sh = rman_get_bushandle(sc->mem); 315 316 i = 0; 317 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 318 RF_ACTIVE | RF_SHAREABLE); 319 if (sc->irq == NULL) { 320 device_printf(dev, "could not allocate interrupt resource\n"); 321 goto fail; 322 } 323 324 if (iwi_reset(sc) != 0) { 325 device_printf(dev, "could not reset adapter\n"); 326 goto fail; 327 } 328 329 /* 330 * Allocate rings. 331 */ 332 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 333 device_printf(dev, "could not allocate Cmd ring\n"); 334 goto fail; 335 } 336 337 for (i = 0; i < 4; i++) { 338 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 339 IWI_CSR_TX1_RIDX + i * 4, 340 IWI_CSR_TX1_WIDX + i * 4); 341 if (error != 0) { 342 device_printf(dev, "could not allocate Tx ring %d\n", 343 i+i); 344 goto fail; 345 } 346 } 347 348 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 349 device_printf(dev, "could not allocate Rx ring\n"); 350 goto fail; 351 } 352 353 iwi_wme_init(sc); 354 355 ic->ic_softc = sc; 356 ic->ic_name = device_get_nameunit(dev); 357 ic->ic_opmode = IEEE80211_M_STA; 358 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 359 360 /* set device capabilities */ 361 ic->ic_caps = 362 IEEE80211_C_STA /* station mode supported */ 363 | IEEE80211_C_IBSS /* IBSS mode supported */ 364 | IEEE80211_C_MONITOR /* monitor mode supported */ 365 | IEEE80211_C_PMGT /* power save supported */ 366 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 367 | IEEE80211_C_WPA /* 802.11i */ 368 | IEEE80211_C_WME /* 802.11e */ 369 #if 0 370 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 371 #endif 372 ; 373 374 /* read MAC address from EEPROM */ 375 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 376 ic->ic_macaddr[0] = val & 0xff; 377 ic->ic_macaddr[1] = val >> 8; 378 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 379 ic->ic_macaddr[2] = val & 0xff; 380 ic->ic_macaddr[3] = val >> 8; 381 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 382 ic->ic_macaddr[4] = val & 0xff; 383 ic->ic_macaddr[5] = val >> 8; 384 385 iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 386 ic->ic_channels); 387 388 ieee80211_ifattach(ic); 389 /* override default methods */ 390 ic->ic_node_alloc = iwi_node_alloc; 391 sc->sc_node_free = ic->ic_node_free; 392 ic->ic_node_free = iwi_node_free; 393 ic->ic_raw_xmit = iwi_raw_xmit; 394 ic->ic_scan_start = iwi_scan_start; 395 ic->ic_scan_end = iwi_scan_end; 396 ic->ic_set_channel = iwi_set_channel; 397 ic->ic_scan_curchan = iwi_scan_curchan; 398 ic->ic_scan_mindwell = iwi_scan_mindwell; 399 ic->ic_wme.wme_update = iwi_wme_update; 400 401 ic->ic_vap_create = iwi_vap_create; 402 ic->ic_vap_delete = iwi_vap_delete; 403 ic->ic_ioctl = iwi_ioctl; 404 ic->ic_transmit = iwi_transmit; 405 ic->ic_parent = iwi_parent; 406 ic->ic_getradiocaps = iwi_getradiocaps; 407 408 ieee80211_radiotap_attach(ic, 409 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 410 IWI_TX_RADIOTAP_PRESENT, 411 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 412 IWI_RX_RADIOTAP_PRESENT); 413 414 iwi_sysctlattach(sc); 415 iwi_ledattach(sc); 416 417 /* 418 * Hook our interrupt after all initialization is complete. 419 */ 420 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 421 NULL, iwi_intr, sc, &sc->sc_ih); 422 if (error != 0) { 423 device_printf(dev, "could not set up interrupt\n"); 424 goto fail; 425 } 426 427 if (bootverbose) 428 ieee80211_announce(ic); 429 430 return 0; 431 fail: 432 /* XXX fix */ 433 iwi_detach(dev); 434 return ENXIO; 435 } 436 437 static int 438 iwi_detach(device_t dev) 439 { 440 struct iwi_softc *sc = device_get_softc(dev); 441 struct ieee80211com *ic = &sc->sc_ic; 442 443 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 444 445 /* NB: do early to drain any pending tasks */ 446 ieee80211_draintask(ic, &sc->sc_radiontask); 447 ieee80211_draintask(ic, &sc->sc_radiofftask); 448 ieee80211_draintask(ic, &sc->sc_restarttask); 449 ieee80211_draintask(ic, &sc->sc_disassoctask); 450 ieee80211_draintask(ic, &sc->sc_monitortask); 451 452 iwi_stop(sc); 453 454 ieee80211_ifdetach(ic); 455 456 iwi_put_firmware(sc); 457 iwi_release_fw_dma(sc); 458 459 iwi_free_cmd_ring(sc, &sc->cmdq); 460 iwi_free_tx_ring(sc, &sc->txq[0]); 461 iwi_free_tx_ring(sc, &sc->txq[1]); 462 iwi_free_tx_ring(sc, &sc->txq[2]); 463 iwi_free_tx_ring(sc, &sc->txq[3]); 464 iwi_free_rx_ring(sc, &sc->rxq); 465 466 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 467 468 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 469 sc->mem); 470 471 delete_unrhdr(sc->sc_unr); 472 mbufq_drain(&sc->sc_snd); 473 474 IWI_LOCK_DESTROY(sc); 475 476 return 0; 477 } 478 479 static struct ieee80211vap * 480 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 481 enum ieee80211_opmode opmode, int flags, 482 const uint8_t bssid[IEEE80211_ADDR_LEN], 483 const uint8_t mac[IEEE80211_ADDR_LEN]) 484 { 485 struct iwi_softc *sc = ic->ic_softc; 486 struct iwi_vap *ivp; 487 struct ieee80211vap *vap; 488 int i; 489 490 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 491 return NULL; 492 /* 493 * Get firmware image (and possibly dma memory) on mode change. 494 */ 495 if (iwi_get_firmware(sc, opmode)) 496 return NULL; 497 /* allocate DMA memory for mapping firmware image */ 498 i = sc->fw_fw.size; 499 if (sc->fw_boot.size > i) 500 i = sc->fw_boot.size; 501 /* XXX do we dma the ucode as well ? */ 502 if (sc->fw_uc.size > i) 503 i = sc->fw_uc.size; 504 if (iwi_init_fw_dma(sc, i)) 505 return NULL; 506 507 ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 508 vap = &ivp->iwi_vap; 509 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 510 /* override the default, the setting comes from the linux driver */ 511 vap->iv_bmissthreshold = 24; 512 /* override with driver methods */ 513 ivp->iwi_newstate = vap->iv_newstate; 514 vap->iv_newstate = iwi_newstate; 515 516 /* complete setup */ 517 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status, 518 mac); 519 ic->ic_opmode = opmode; 520 return vap; 521 } 522 523 static void 524 iwi_vap_delete(struct ieee80211vap *vap) 525 { 526 struct iwi_vap *ivp = IWI_VAP(vap); 527 528 ieee80211_vap_detach(vap); 529 free(ivp, M_80211_VAP); 530 } 531 532 static void 533 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 534 { 535 if (error != 0) 536 return; 537 538 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 539 540 *(bus_addr_t *)arg = segs[0].ds_addr; 541 } 542 543 static int 544 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 545 { 546 int error; 547 548 ring->count = count; 549 ring->queued = 0; 550 ring->cur = ring->next = 0; 551 552 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 553 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 554 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 555 NULL, NULL, &ring->desc_dmat); 556 if (error != 0) { 557 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 558 goto fail; 559 } 560 561 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 562 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 563 if (error != 0) { 564 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 565 goto fail; 566 } 567 568 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 569 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 570 if (error != 0) { 571 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 572 goto fail; 573 } 574 575 return 0; 576 577 fail: iwi_free_cmd_ring(sc, ring); 578 return error; 579 } 580 581 static void 582 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 583 { 584 ring->queued = 0; 585 ring->cur = ring->next = 0; 586 } 587 588 static void 589 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 590 { 591 if (ring->desc != NULL) { 592 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 593 BUS_DMASYNC_POSTWRITE); 594 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 595 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 596 } 597 598 if (ring->desc_dmat != NULL) 599 bus_dma_tag_destroy(ring->desc_dmat); 600 } 601 602 static int 603 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 604 bus_addr_t csr_ridx, bus_addr_t csr_widx) 605 { 606 int i, error; 607 608 ring->count = count; 609 ring->queued = 0; 610 ring->cur = ring->next = 0; 611 ring->csr_ridx = csr_ridx; 612 ring->csr_widx = csr_widx; 613 614 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 615 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 616 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 617 NULL, &ring->desc_dmat); 618 if (error != 0) { 619 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 620 goto fail; 621 } 622 623 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 624 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 625 if (error != 0) { 626 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 627 goto fail; 628 } 629 630 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 631 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 632 if (error != 0) { 633 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 634 goto fail; 635 } 636 637 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 638 M_NOWAIT | M_ZERO); 639 if (ring->data == NULL) { 640 device_printf(sc->sc_dev, "could not allocate soft data\n"); 641 error = ENOMEM; 642 goto fail; 643 } 644 645 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 646 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 647 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 648 if (error != 0) { 649 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 650 goto fail; 651 } 652 653 for (i = 0; i < count; i++) { 654 error = bus_dmamap_create(ring->data_dmat, 0, 655 &ring->data[i].map); 656 if (error != 0) { 657 device_printf(sc->sc_dev, "could not create DMA map\n"); 658 goto fail; 659 } 660 } 661 662 return 0; 663 664 fail: iwi_free_tx_ring(sc, ring); 665 return error; 666 } 667 668 static void 669 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 670 { 671 struct iwi_tx_data *data; 672 int i; 673 674 for (i = 0; i < ring->count; i++) { 675 data = &ring->data[i]; 676 677 if (data->m != NULL) { 678 bus_dmamap_sync(ring->data_dmat, data->map, 679 BUS_DMASYNC_POSTWRITE); 680 bus_dmamap_unload(ring->data_dmat, data->map); 681 m_freem(data->m); 682 data->m = NULL; 683 } 684 685 if (data->ni != NULL) { 686 ieee80211_free_node(data->ni); 687 data->ni = NULL; 688 } 689 } 690 691 ring->queued = 0; 692 ring->cur = ring->next = 0; 693 } 694 695 static void 696 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 697 { 698 struct iwi_tx_data *data; 699 int i; 700 701 if (ring->desc != NULL) { 702 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 703 BUS_DMASYNC_POSTWRITE); 704 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 705 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 706 } 707 708 if (ring->desc_dmat != NULL) 709 bus_dma_tag_destroy(ring->desc_dmat); 710 711 if (ring->data != NULL) { 712 for (i = 0; i < ring->count; i++) { 713 data = &ring->data[i]; 714 715 if (data->m != NULL) { 716 bus_dmamap_sync(ring->data_dmat, data->map, 717 BUS_DMASYNC_POSTWRITE); 718 bus_dmamap_unload(ring->data_dmat, data->map); 719 m_freem(data->m); 720 } 721 722 if (data->ni != NULL) 723 ieee80211_free_node(data->ni); 724 725 if (data->map != NULL) 726 bus_dmamap_destroy(ring->data_dmat, data->map); 727 } 728 729 free(ring->data, M_DEVBUF); 730 } 731 732 if (ring->data_dmat != NULL) 733 bus_dma_tag_destroy(ring->data_dmat); 734 } 735 736 static int 737 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 738 { 739 struct iwi_rx_data *data; 740 int i, error; 741 742 ring->count = count; 743 ring->cur = 0; 744 745 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 746 M_NOWAIT | M_ZERO); 747 if (ring->data == NULL) { 748 device_printf(sc->sc_dev, "could not allocate soft data\n"); 749 error = ENOMEM; 750 goto fail; 751 } 752 753 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 754 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 755 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 756 if (error != 0) { 757 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 758 goto fail; 759 } 760 761 for (i = 0; i < count; i++) { 762 data = &ring->data[i]; 763 764 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 765 if (error != 0) { 766 device_printf(sc->sc_dev, "could not create DMA map\n"); 767 goto fail; 768 } 769 770 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 771 if (data->m == NULL) { 772 device_printf(sc->sc_dev, 773 "could not allocate rx mbuf\n"); 774 error = ENOMEM; 775 goto fail; 776 } 777 778 error = bus_dmamap_load(ring->data_dmat, data->map, 779 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 780 &data->physaddr, 0); 781 if (error != 0) { 782 device_printf(sc->sc_dev, 783 "could not load rx buf DMA map"); 784 goto fail; 785 } 786 787 data->reg = IWI_CSR_RX_BASE + i * 4; 788 } 789 790 return 0; 791 792 fail: iwi_free_rx_ring(sc, ring); 793 return error; 794 } 795 796 static void 797 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 798 { 799 ring->cur = 0; 800 } 801 802 static void 803 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 804 { 805 struct iwi_rx_data *data; 806 int i; 807 808 if (ring->data != NULL) { 809 for (i = 0; i < ring->count; i++) { 810 data = &ring->data[i]; 811 812 if (data->m != NULL) { 813 bus_dmamap_sync(ring->data_dmat, data->map, 814 BUS_DMASYNC_POSTREAD); 815 bus_dmamap_unload(ring->data_dmat, data->map); 816 m_freem(data->m); 817 } 818 819 if (data->map != NULL) 820 bus_dmamap_destroy(ring->data_dmat, data->map); 821 } 822 823 free(ring->data, M_DEVBUF); 824 } 825 826 if (ring->data_dmat != NULL) 827 bus_dma_tag_destroy(ring->data_dmat); 828 } 829 830 static int 831 iwi_shutdown(device_t dev) 832 { 833 struct iwi_softc *sc = device_get_softc(dev); 834 835 iwi_stop(sc); 836 iwi_put_firmware(sc); /* ??? XXX */ 837 838 return 0; 839 } 840 841 static int 842 iwi_suspend(device_t dev) 843 { 844 struct iwi_softc *sc = device_get_softc(dev); 845 struct ieee80211com *ic = &sc->sc_ic; 846 847 ieee80211_suspend_all(ic); 848 return 0; 849 } 850 851 static int 852 iwi_resume(device_t dev) 853 { 854 struct iwi_softc *sc = device_get_softc(dev); 855 struct ieee80211com *ic = &sc->sc_ic; 856 857 pci_write_config(dev, 0x41, 0, 1); 858 859 ieee80211_resume_all(ic); 860 return 0; 861 } 862 863 static struct ieee80211_node * 864 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 865 { 866 struct iwi_node *in; 867 868 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 869 if (in == NULL) 870 return NULL; 871 /* XXX assign sta table entry for adhoc */ 872 in->in_station = -1; 873 874 return &in->in_node; 875 } 876 877 static void 878 iwi_node_free(struct ieee80211_node *ni) 879 { 880 struct ieee80211com *ic = ni->ni_ic; 881 struct iwi_softc *sc = ic->ic_softc; 882 struct iwi_node *in = (struct iwi_node *)ni; 883 884 if (in->in_station != -1) { 885 DPRINTF(("%s mac %6D station %u\n", __func__, 886 ni->ni_macaddr, ":", in->in_station)); 887 free_unr(sc->sc_unr, in->in_station); 888 } 889 890 sc->sc_node_free(ni); 891 } 892 893 /* 894 * Convert h/w rate code to IEEE rate code. 895 */ 896 static int 897 iwi_cvtrate(int iwirate) 898 { 899 switch (iwirate) { 900 case IWI_RATE_DS1: return 2; 901 case IWI_RATE_DS2: return 4; 902 case IWI_RATE_DS5: return 11; 903 case IWI_RATE_DS11: return 22; 904 case IWI_RATE_OFDM6: return 12; 905 case IWI_RATE_OFDM9: return 18; 906 case IWI_RATE_OFDM12: return 24; 907 case IWI_RATE_OFDM18: return 36; 908 case IWI_RATE_OFDM24: return 48; 909 case IWI_RATE_OFDM36: return 72; 910 case IWI_RATE_OFDM48: return 96; 911 case IWI_RATE_OFDM54: return 108; 912 } 913 return 0; 914 } 915 916 /* 917 * The firmware automatically adapts the transmit speed. We report its current 918 * value here. 919 */ 920 static void 921 iwi_media_status(if_t ifp, struct ifmediareq *imr) 922 { 923 struct ieee80211vap *vap = if_getsoftc(ifp); 924 struct ieee80211com *ic = vap->iv_ic; 925 struct iwi_softc *sc = ic->ic_softc; 926 struct ieee80211_node *ni; 927 928 /* read current transmission rate from adapter */ 929 ni = ieee80211_ref_node(vap->iv_bss); 930 ni->ni_txrate = 931 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 932 ieee80211_free_node(ni); 933 ieee80211_media_status(ifp, imr); 934 } 935 936 static int 937 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 938 { 939 struct iwi_vap *ivp = IWI_VAP(vap); 940 struct ieee80211com *ic = vap->iv_ic; 941 struct iwi_softc *sc = ic->ic_softc; 942 IWI_LOCK_DECL; 943 944 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 945 ieee80211_state_name[vap->iv_state], 946 ieee80211_state_name[nstate], sc->flags)); 947 948 IEEE80211_UNLOCK(ic); 949 IWI_LOCK(sc); 950 switch (nstate) { 951 case IEEE80211_S_INIT: 952 /* 953 * NB: don't try to do this if iwi_stop_master has 954 * shutdown the firmware and disabled interrupts. 955 */ 956 if (vap->iv_state == IEEE80211_S_RUN && 957 (sc->flags & IWI_FLAG_FW_INITED)) 958 iwi_disassociate(sc, 0); 959 break; 960 case IEEE80211_S_AUTH: 961 iwi_auth_and_assoc(sc, vap); 962 break; 963 case IEEE80211_S_RUN: 964 if (vap->iv_opmode == IEEE80211_M_IBSS && 965 vap->iv_state == IEEE80211_S_SCAN) { 966 /* 967 * XXX when joining an ibss network we are called 968 * with a SCAN -> RUN transition on scan complete. 969 * Use that to call iwi_auth_and_assoc. On completing 970 * the join we are then called again with an 971 * AUTH -> RUN transition and we want to do nothing. 972 * This is all totally bogus and needs to be redone. 973 */ 974 iwi_auth_and_assoc(sc, vap); 975 } else if (vap->iv_opmode == IEEE80211_M_MONITOR) 976 ieee80211_runtask(ic, &sc->sc_monitortask); 977 break; 978 case IEEE80211_S_ASSOC: 979 /* 980 * If we are transitioning from AUTH then just wait 981 * for the ASSOC status to come back from the firmware. 982 * Otherwise we need to issue the association request. 983 */ 984 if (vap->iv_state == IEEE80211_S_AUTH) 985 break; 986 iwi_auth_and_assoc(sc, vap); 987 break; 988 default: 989 break; 990 } 991 IWI_UNLOCK(sc); 992 IEEE80211_LOCK(ic); 993 return ivp->iwi_newstate(vap, nstate, arg); 994 } 995 996 /* 997 * WME parameters coming from IEEE 802.11e specification. These values are 998 * already declared in ieee80211_proto.c, but they are static so they can't 999 * be reused here. 1000 */ 1001 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1002 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1003 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1004 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1005 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1006 }; 1007 1008 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1009 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1010 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1011 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1012 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1013 }; 1014 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1015 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1016 1017 static void 1018 iwi_wme_init(struct iwi_softc *sc) 1019 { 1020 const struct wmeParams *wmep; 1021 int ac; 1022 1023 memset(sc->wme, 0, sizeof sc->wme); 1024 for (ac = 0; ac < WME_NUM_AC; ac++) { 1025 /* set WME values for CCK modulation */ 1026 wmep = &iwi_wme_cck_params[ac]; 1027 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1028 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1029 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1030 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1031 sc->wme[1].acm[ac] = wmep->wmep_acm; 1032 1033 /* set WME values for OFDM modulation */ 1034 wmep = &iwi_wme_ofdm_params[ac]; 1035 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1036 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1037 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1038 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1039 sc->wme[2].acm[ac] = wmep->wmep_acm; 1040 } 1041 } 1042 1043 static int 1044 iwi_wme_setparams(struct iwi_softc *sc) 1045 { 1046 struct ieee80211com *ic = &sc->sc_ic; 1047 struct chanAccParams chp; 1048 const struct wmeParams *wmep; 1049 int ac; 1050 1051 ieee80211_wme_ic_getparams(ic, &chp); 1052 1053 for (ac = 0; ac < WME_NUM_AC; ac++) { 1054 /* set WME values for current operating mode */ 1055 wmep = &chp.cap_wmeParams[ac]; 1056 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1057 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1058 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1059 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1060 sc->wme[0].acm[ac] = wmep->wmep_acm; 1061 } 1062 1063 DPRINTF(("Setting WME parameters\n")); 1064 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1065 } 1066 #undef IWI_USEC 1067 #undef IWI_EXP2 1068 1069 static int 1070 iwi_wme_update(struct ieee80211com *ic) 1071 { 1072 struct iwi_softc *sc = ic->ic_softc; 1073 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1074 IWI_LOCK_DECL; 1075 1076 /* 1077 * We may be called to update the WME parameters in 1078 * the adapter at various places. If we're already 1079 * associated then initiate the request immediately; 1080 * otherwise we assume the params will get sent down 1081 * to the adapter as part of the work iwi_auth_and_assoc 1082 * does. 1083 */ 1084 if (vap->iv_state == IEEE80211_S_RUN) { 1085 IWI_LOCK(sc); 1086 iwi_wme_setparams(sc); 1087 IWI_UNLOCK(sc); 1088 } 1089 return (0); 1090 } 1091 1092 static int 1093 iwi_wme_setie(struct iwi_softc *sc) 1094 { 1095 struct ieee80211_wme_info wme; 1096 1097 memset(&wme, 0, sizeof wme); 1098 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1099 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1100 wme.wme_oui[0] = 0x00; 1101 wme.wme_oui[1] = 0x50; 1102 wme.wme_oui[2] = 0xf2; 1103 wme.wme_type = WME_OUI_TYPE; 1104 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1105 wme.wme_version = WME_VERSION; 1106 wme.wme_info = 0; 1107 1108 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1109 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1110 } 1111 1112 /* 1113 * Read 16 bits at address 'addr' from the serial EEPROM. 1114 */ 1115 static uint16_t 1116 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1117 { 1118 uint32_t tmp; 1119 uint16_t val; 1120 int n; 1121 1122 /* clock C once before the first command */ 1123 IWI_EEPROM_CTL(sc, 0); 1124 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1125 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1126 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1127 1128 /* write start bit (1) */ 1129 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1130 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1131 1132 /* write READ opcode (10) */ 1133 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1134 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1135 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1136 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1137 1138 /* write address A7-A0 */ 1139 for (n = 7; n >= 0; n--) { 1140 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1141 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1142 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1143 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1144 } 1145 1146 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1147 1148 /* read data Q15-Q0 */ 1149 val = 0; 1150 for (n = 15; n >= 0; n--) { 1151 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1152 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1153 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1154 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1155 } 1156 1157 IWI_EEPROM_CTL(sc, 0); 1158 1159 /* clear Chip Select and clock C */ 1160 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1161 IWI_EEPROM_CTL(sc, 0); 1162 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1163 1164 return val; 1165 } 1166 1167 static void 1168 iwi_setcurchan(struct iwi_softc *sc, int chan) 1169 { 1170 struct ieee80211com *ic = &sc->sc_ic; 1171 1172 sc->curchan = chan; 1173 ieee80211_radiotap_chan_change(ic); 1174 } 1175 1176 static void 1177 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1178 struct iwi_frame *frame) 1179 { 1180 struct ieee80211com *ic = &sc->sc_ic; 1181 struct mbuf *mnew, *m; 1182 struct ieee80211_node *ni; 1183 int type, error, framelen; 1184 int8_t rssi, nf; 1185 IWI_LOCK_DECL; 1186 1187 framelen = le16toh(frame->len); 1188 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1189 /* 1190 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1191 * out of bounds; need to figure out how to limit 1192 * frame size in the firmware 1193 */ 1194 /* XXX stat */ 1195 DPRINTFN(1, 1196 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1197 le16toh(frame->len), frame->chan, frame->rssi, 1198 frame->rssi_dbm)); 1199 return; 1200 } 1201 1202 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1203 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1204 1205 if (frame->chan != sc->curchan) 1206 iwi_setcurchan(sc, frame->chan); 1207 1208 /* 1209 * Try to allocate a new mbuf for this ring element and load it before 1210 * processing the current mbuf. If the ring element cannot be loaded, 1211 * drop the received packet and reuse the old mbuf. In the unlikely 1212 * case that the old mbuf can't be reloaded either, explicitly panic. 1213 */ 1214 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1215 if (mnew == NULL) { 1216 counter_u64_add(ic->ic_ierrors, 1); 1217 return; 1218 } 1219 1220 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1221 1222 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1223 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1224 0); 1225 if (error != 0) { 1226 m_freem(mnew); 1227 1228 /* try to reload the old mbuf */ 1229 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1230 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1231 &data->physaddr, 0); 1232 if (error != 0) { 1233 /* very unlikely that it will fail... */ 1234 panic("%s: could not load old rx mbuf", 1235 device_get_name(sc->sc_dev)); 1236 } 1237 counter_u64_add(ic->ic_ierrors, 1); 1238 return; 1239 } 1240 1241 /* 1242 * New mbuf successfully loaded, update Rx ring and continue 1243 * processing. 1244 */ 1245 m = data->m; 1246 data->m = mnew; 1247 CSR_WRITE_4(sc, data->reg, data->physaddr); 1248 1249 /* finalize mbuf */ 1250 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1251 sizeof (struct iwi_frame) + framelen; 1252 1253 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1254 1255 rssi = frame->rssi_dbm; 1256 nf = -95; 1257 if (ieee80211_radiotap_active(ic)) { 1258 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1259 1260 tap->wr_flags = 0; 1261 tap->wr_antsignal = rssi; 1262 tap->wr_antnoise = nf; 1263 tap->wr_rate = iwi_cvtrate(frame->rate); 1264 tap->wr_antenna = frame->antenna; 1265 } 1266 IWI_UNLOCK(sc); 1267 1268 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1269 if (ni != NULL) { 1270 type = ieee80211_input(ni, m, rssi, nf); 1271 ieee80211_free_node(ni); 1272 } else 1273 type = ieee80211_input_all(ic, m, rssi, nf); 1274 1275 IWI_LOCK(sc); 1276 if (sc->sc_softled) { 1277 /* 1278 * Blink for any data frame. Otherwise do a 1279 * heartbeat-style blink when idle. The latter 1280 * is mainly for station mode where we depend on 1281 * periodic beacon frames to trigger the poll event. 1282 */ 1283 if (type == IEEE80211_FC0_TYPE_DATA) { 1284 sc->sc_rxrate = frame->rate; 1285 iwi_led_event(sc, IWI_LED_RX); 1286 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1287 iwi_led_event(sc, IWI_LED_POLL); 1288 } 1289 } 1290 1291 /* 1292 * Check for an association response frame to see if QoS 1293 * has been negotiated. We parse just enough to figure 1294 * out if we're supposed to use QoS. The proper solution 1295 * is to pass the frame up so ieee80211_input can do the 1296 * work but that's made hard by how things currently are 1297 * done in the driver. 1298 */ 1299 static void 1300 iwi_checkforqos(struct ieee80211vap *vap, 1301 const struct ieee80211_frame *wh, int len) 1302 { 1303 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1304 const uint8_t *frm, *efrm, *wme; 1305 struct ieee80211_node *ni; 1306 uint16_t capinfo, associd; 1307 1308 /* NB: +8 for capinfo, status, associd, and first ie */ 1309 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1310 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1311 return; 1312 /* 1313 * asresp frame format 1314 * [2] capability information 1315 * [2] status 1316 * [2] association ID 1317 * [tlv] supported rates 1318 * [tlv] extended supported rates 1319 * [tlv] WME 1320 */ 1321 frm = (const uint8_t *)&wh[1]; 1322 efrm = ((const uint8_t *) wh) + len; 1323 1324 capinfo = le16toh(*(const uint16_t *)frm); 1325 frm += 2; 1326 /* status */ 1327 frm += 2; 1328 associd = le16toh(*(const uint16_t *)frm); 1329 frm += 2; 1330 1331 wme = NULL; 1332 while (efrm - frm > 1) { 1333 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); 1334 switch (*frm) { 1335 case IEEE80211_ELEMID_VENDOR: 1336 if (iswmeoui(frm)) 1337 wme = frm; 1338 break; 1339 } 1340 frm += frm[1] + 2; 1341 } 1342 1343 ni = ieee80211_ref_node(vap->iv_bss); 1344 ni->ni_capinfo = capinfo; 1345 ni->ni_associd = associd & 0x3fff; 1346 if (wme != NULL) 1347 ni->ni_flags |= IEEE80211_NODE_QOS; 1348 else 1349 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1350 ieee80211_free_node(ni); 1351 #undef SUBTYPE 1352 } 1353 1354 static void 1355 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif) 1356 { 1357 struct iwi_notif_link_quality *lq; 1358 int len; 1359 1360 len = le16toh(notif->len); 1361 1362 DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n", 1363 notif->type, 1364 len, 1365 sizeof(struct iwi_notif_link_quality) 1366 )); 1367 1368 /* enforce length */ 1369 if (len != sizeof(struct iwi_notif_link_quality)) { 1370 DPRINTFN(5, ("Notification: (%u) too short (%d)\n", 1371 notif->type, 1372 len)); 1373 return; 1374 } 1375 1376 lq = (struct iwi_notif_link_quality *)(notif + 1); 1377 memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual)); 1378 sc->sc_linkqual_valid = 1; 1379 } 1380 1381 /* 1382 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1383 */ 1384 1385 static void 1386 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1387 { 1388 struct ieee80211com *ic = &sc->sc_ic; 1389 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1390 struct iwi_notif_scan_channel *chan; 1391 struct iwi_notif_scan_complete *scan; 1392 struct iwi_notif_authentication *auth; 1393 struct iwi_notif_association *assoc; 1394 struct iwi_notif_beacon_state *beacon; 1395 1396 switch (notif->type) { 1397 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1398 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1399 1400 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1401 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1402 1403 /* Reset the timer, the scan is still going */ 1404 sc->sc_state_timer = 3; 1405 break; 1406 1407 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1408 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1409 1410 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1411 scan->status)); 1412 1413 IWI_STATE_END(sc, IWI_FW_SCANNING); 1414 1415 /* 1416 * Monitor mode works by doing a passive scan to set 1417 * the channel and enable rx. Because we don't want 1418 * to abort a scan lest the firmware crash we scan 1419 * for a short period of time and automatically restart 1420 * the scan when notified the sweep has completed. 1421 */ 1422 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1423 ieee80211_runtask(ic, &sc->sc_monitortask); 1424 break; 1425 } 1426 1427 if (scan->status == IWI_SCAN_COMPLETED) { 1428 /* NB: don't need to defer, net80211 does it for us */ 1429 ieee80211_scan_next(vap); 1430 } 1431 break; 1432 1433 case IWI_NOTIF_TYPE_AUTHENTICATION: 1434 auth = (struct iwi_notif_authentication *)(notif + 1); 1435 switch (auth->state) { 1436 case IWI_AUTH_SUCCESS: 1437 DPRINTFN(2, ("Authentication succeeeded\n")); 1438 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1439 break; 1440 case IWI_AUTH_FAIL: 1441 /* 1442 * These are delivered as an unsolicited deauth 1443 * (e.g. due to inactivity) or in response to an 1444 * associate request. 1445 */ 1446 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1447 if (vap->iv_state != IEEE80211_S_RUN) { 1448 DPRINTFN(2, ("Authentication failed\n")); 1449 vap->iv_stats.is_rx_auth_fail++; 1450 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1451 } else { 1452 DPRINTFN(2, ("Deauthenticated\n")); 1453 vap->iv_stats.is_rx_deauth++; 1454 } 1455 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1456 break; 1457 case IWI_AUTH_SENT_1: 1458 case IWI_AUTH_RECV_2: 1459 case IWI_AUTH_SEQ1_PASS: 1460 break; 1461 case IWI_AUTH_SEQ1_FAIL: 1462 DPRINTFN(2, ("Initial authentication handshake failed; " 1463 "you probably need shared key\n")); 1464 vap->iv_stats.is_rx_auth_fail++; 1465 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1466 /* XXX retry shared key when in auto */ 1467 break; 1468 default: 1469 device_printf(sc->sc_dev, 1470 "unknown authentication state %u\n", auth->state); 1471 break; 1472 } 1473 break; 1474 1475 case IWI_NOTIF_TYPE_ASSOCIATION: 1476 assoc = (struct iwi_notif_association *)(notif + 1); 1477 switch (assoc->state) { 1478 case IWI_AUTH_SUCCESS: 1479 /* re-association, do nothing */ 1480 break; 1481 case IWI_ASSOC_SUCCESS: 1482 DPRINTFN(2, ("Association succeeded\n")); 1483 sc->flags |= IWI_FLAG_ASSOCIATED; 1484 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1485 iwi_checkforqos(vap, 1486 (const struct ieee80211_frame *)(assoc+1), 1487 le16toh(notif->len) - sizeof(*assoc) - 1); 1488 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1489 break; 1490 case IWI_ASSOC_INIT: 1491 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1492 switch (sc->fw_state) { 1493 case IWI_FW_ASSOCIATING: 1494 DPRINTFN(2, ("Association failed\n")); 1495 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1496 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1497 break; 1498 1499 case IWI_FW_DISASSOCIATING: 1500 DPRINTFN(2, ("Dissassociated\n")); 1501 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1502 vap->iv_stats.is_rx_disassoc++; 1503 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1504 break; 1505 } 1506 break; 1507 default: 1508 device_printf(sc->sc_dev, 1509 "unknown association state %u\n", assoc->state); 1510 break; 1511 } 1512 break; 1513 1514 case IWI_NOTIF_TYPE_BEACON: 1515 /* XXX check struct length */ 1516 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1517 1518 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1519 beacon->state, le32toh(beacon->number))); 1520 1521 if (beacon->state == IWI_BEACON_MISS) { 1522 /* 1523 * The firmware notifies us of every beacon miss 1524 * so we need to track the count against the 1525 * configured threshold before notifying the 1526 * 802.11 layer. 1527 * XXX try to roam, drop assoc only on much higher count 1528 */ 1529 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1530 DPRINTF(("Beacon miss: %u >= %u\n", 1531 le32toh(beacon->number), 1532 vap->iv_bmissthreshold)); 1533 vap->iv_stats.is_beacon_miss++; 1534 /* 1535 * It's pointless to notify the 802.11 layer 1536 * as it'll try to send a probe request (which 1537 * we'll discard) and then timeout and drop us 1538 * into scan state. Instead tell the firmware 1539 * to disassociate and then on completion we'll 1540 * kick the state machine to scan. 1541 */ 1542 ieee80211_runtask(ic, &sc->sc_disassoctask); 1543 } 1544 } 1545 break; 1546 1547 case IWI_NOTIF_TYPE_CALIBRATION: 1548 case IWI_NOTIF_TYPE_NOISE: 1549 /* XXX handle? */ 1550 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1551 break; 1552 case IWI_NOTIF_TYPE_LINK_QUALITY: 1553 iwi_notif_link_quality(sc, notif); 1554 break; 1555 1556 default: 1557 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1558 notif->type, notif->flags, le16toh(notif->len))); 1559 break; 1560 } 1561 } 1562 1563 static void 1564 iwi_rx_intr(struct iwi_softc *sc) 1565 { 1566 struct iwi_rx_data *data; 1567 struct iwi_hdr *hdr; 1568 uint32_t hw; 1569 1570 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1571 1572 for (; sc->rxq.cur != hw;) { 1573 data = &sc->rxq.data[sc->rxq.cur]; 1574 1575 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1576 BUS_DMASYNC_POSTREAD); 1577 1578 hdr = mtod(data->m, struct iwi_hdr *); 1579 1580 switch (hdr->type) { 1581 case IWI_HDR_TYPE_FRAME: 1582 iwi_frame_intr(sc, data, sc->rxq.cur, 1583 (struct iwi_frame *)(hdr + 1)); 1584 break; 1585 1586 case IWI_HDR_TYPE_NOTIF: 1587 iwi_notification_intr(sc, 1588 (struct iwi_notif *)(hdr + 1)); 1589 break; 1590 1591 default: 1592 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1593 hdr->type); 1594 } 1595 1596 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1597 1598 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1599 } 1600 1601 /* tell the firmware what we have processed */ 1602 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1603 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1604 } 1605 1606 static void 1607 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1608 { 1609 struct iwi_tx_data *data; 1610 uint32_t hw; 1611 1612 hw = CSR_READ_4(sc, txq->csr_ridx); 1613 1614 while (txq->next != hw) { 1615 data = &txq->data[txq->next]; 1616 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1617 bus_dmamap_sync(txq->data_dmat, data->map, 1618 BUS_DMASYNC_POSTWRITE); 1619 bus_dmamap_unload(txq->data_dmat, data->map); 1620 ieee80211_tx_complete(data->ni, data->m, 0); 1621 data->ni = NULL; 1622 data->m = NULL; 1623 txq->queued--; 1624 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1625 } 1626 sc->sc_tx_timer = 0; 1627 if (sc->sc_softled) 1628 iwi_led_event(sc, IWI_LED_TX); 1629 iwi_start(sc); 1630 } 1631 1632 static void 1633 iwi_fatal_error_intr(struct iwi_softc *sc) 1634 { 1635 struct ieee80211com *ic = &sc->sc_ic; 1636 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1637 1638 device_printf(sc->sc_dev, "firmware error\n"); 1639 if (vap != NULL) 1640 ieee80211_cancel_scan(vap); 1641 ieee80211_runtask(ic, &sc->sc_restarttask); 1642 1643 sc->flags &= ~IWI_FLAG_BUSY; 1644 sc->sc_busy_timer = 0; 1645 wakeup(sc); 1646 } 1647 1648 static void 1649 iwi_radio_off_intr(struct iwi_softc *sc) 1650 { 1651 1652 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask); 1653 } 1654 1655 static void 1656 iwi_intr(void *arg) 1657 { 1658 struct iwi_softc *sc = arg; 1659 uint32_t r; 1660 IWI_LOCK_DECL; 1661 1662 IWI_LOCK(sc); 1663 1664 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1665 IWI_UNLOCK(sc); 1666 return; 1667 } 1668 1669 /* acknowledge interrupts */ 1670 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1671 1672 if (r & IWI_INTR_FATAL_ERROR) { 1673 iwi_fatal_error_intr(sc); 1674 goto done; 1675 } 1676 1677 if (r & IWI_INTR_FW_INITED) { 1678 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1679 wakeup(sc); 1680 } 1681 1682 if (r & IWI_INTR_RADIO_OFF) 1683 iwi_radio_off_intr(sc); 1684 1685 if (r & IWI_INTR_CMD_DONE) { 1686 sc->flags &= ~IWI_FLAG_BUSY; 1687 sc->sc_busy_timer = 0; 1688 wakeup(sc); 1689 } 1690 1691 if (r & IWI_INTR_TX1_DONE) 1692 iwi_tx_intr(sc, &sc->txq[0]); 1693 1694 if (r & IWI_INTR_TX2_DONE) 1695 iwi_tx_intr(sc, &sc->txq[1]); 1696 1697 if (r & IWI_INTR_TX3_DONE) 1698 iwi_tx_intr(sc, &sc->txq[2]); 1699 1700 if (r & IWI_INTR_TX4_DONE) 1701 iwi_tx_intr(sc, &sc->txq[3]); 1702 1703 if (r & IWI_INTR_RX_DONE) 1704 iwi_rx_intr(sc); 1705 1706 if (r & IWI_INTR_PARITY_ERROR) { 1707 /* XXX rate-limit */ 1708 device_printf(sc->sc_dev, "parity error\n"); 1709 } 1710 done: 1711 IWI_UNLOCK(sc); 1712 } 1713 1714 static int 1715 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1716 { 1717 struct iwi_cmd_desc *desc; 1718 1719 IWI_LOCK_ASSERT(sc); 1720 1721 if (sc->flags & IWI_FLAG_BUSY) { 1722 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1723 __func__, type); 1724 return EAGAIN; 1725 } 1726 sc->flags |= IWI_FLAG_BUSY; 1727 sc->sc_busy_timer = 2; 1728 1729 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1730 1731 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1732 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1733 desc->type = type; 1734 desc->len = len; 1735 memcpy(desc->data, data, len); 1736 1737 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1738 BUS_DMASYNC_PREWRITE); 1739 1740 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1741 type, len)); 1742 1743 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1744 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1745 1746 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1747 } 1748 1749 static void 1750 iwi_write_ibssnode(struct iwi_softc *sc, 1751 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1752 { 1753 struct iwi_ibssnode node; 1754 1755 /* write node information into NIC memory */ 1756 memset(&node, 0, sizeof node); 1757 IEEE80211_ADDR_COPY(node.bssid, addr); 1758 1759 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1760 1761 CSR_WRITE_REGION_1(sc, 1762 IWI_CSR_NODE_BASE + entry * sizeof node, 1763 (uint8_t *)&node, sizeof node); 1764 } 1765 1766 static int 1767 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1768 int ac) 1769 { 1770 struct ieee80211vap *vap = ni->ni_vap; 1771 struct iwi_node *in = (struct iwi_node *)ni; 1772 const struct ieee80211_frame *wh; 1773 struct ieee80211_key *k; 1774 struct iwi_tx_ring *txq = &sc->txq[ac]; 1775 struct iwi_tx_data *data; 1776 struct iwi_tx_desc *desc; 1777 struct mbuf *mnew; 1778 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1779 int error, nsegs, hdrlen, i; 1780 int ismcast, flags, xflags, staid; 1781 1782 IWI_LOCK_ASSERT(sc); 1783 wh = mtod(m0, const struct ieee80211_frame *); 1784 /* NB: only data frames use this path */ 1785 hdrlen = ieee80211_hdrsize(wh); 1786 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1787 flags = xflags = 0; 1788 1789 if (!ismcast) 1790 flags |= IWI_DATA_FLAG_NEED_ACK; 1791 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1792 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1793 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1794 xflags |= IWI_DATA_XFLAG_QOS; 1795 if (ieee80211_wme_vap_ac_is_noack(vap, ac)) 1796 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1797 } 1798 1799 /* 1800 * This is only used in IBSS mode where the firmware expect an index 1801 * in a h/w table instead of a destination address. 1802 */ 1803 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1804 if (!ismcast) { 1805 if (in->in_station == -1) { 1806 in->in_station = alloc_unr(sc->sc_unr); 1807 if (in->in_station == -1) { 1808 /* h/w table is full */ 1809 if_inc_counter(ni->ni_vap->iv_ifp, 1810 IFCOUNTER_OERRORS, 1); 1811 m_freem(m0); 1812 ieee80211_free_node(ni); 1813 return 0; 1814 } 1815 iwi_write_ibssnode(sc, 1816 ni->ni_macaddr, in->in_station); 1817 } 1818 staid = in->in_station; 1819 } else { 1820 /* 1821 * Multicast addresses have no associated node 1822 * so there will be no station entry. We reserve 1823 * entry 0 for one mcast address and use that. 1824 * If there are many being used this will be 1825 * expensive and we'll need to do a better job 1826 * but for now this handles the broadcast case. 1827 */ 1828 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1829 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1830 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1831 } 1832 staid = 0; 1833 } 1834 } else 1835 staid = 0; 1836 1837 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1838 k = ieee80211_crypto_encap(ni, m0); 1839 if (k == NULL) { 1840 m_freem(m0); 1841 return ENOBUFS; 1842 } 1843 1844 /* packet header may have moved, reset our local pointer */ 1845 wh = mtod(m0, struct ieee80211_frame *); 1846 } 1847 1848 if (ieee80211_radiotap_active_vap(vap)) { 1849 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1850 1851 tap->wt_flags = 0; 1852 1853 ieee80211_radiotap_tx(vap, m0); 1854 } 1855 1856 data = &txq->data[txq->cur]; 1857 desc = &txq->desc[txq->cur]; 1858 1859 /* save and trim IEEE802.11 header */ 1860 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1861 m_adj(m0, hdrlen); 1862 1863 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1864 &nsegs, 0); 1865 if (error != 0 && error != EFBIG) { 1866 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1867 error); 1868 m_freem(m0); 1869 return error; 1870 } 1871 if (error != 0) { 1872 mnew = m_defrag(m0, M_NOWAIT); 1873 if (mnew == NULL) { 1874 device_printf(sc->sc_dev, 1875 "could not defragment mbuf\n"); 1876 m_freem(m0); 1877 return ENOBUFS; 1878 } 1879 m0 = mnew; 1880 1881 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1882 m0, segs, &nsegs, 0); 1883 if (error != 0) { 1884 device_printf(sc->sc_dev, 1885 "could not map mbuf (error %d)\n", error); 1886 m_freem(m0); 1887 return error; 1888 } 1889 } 1890 1891 data->m = m0; 1892 data->ni = ni; 1893 1894 desc->hdr.type = IWI_HDR_TYPE_DATA; 1895 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1896 desc->station = staid; 1897 desc->cmd = IWI_DATA_CMD_TX; 1898 desc->len = htole16(m0->m_pkthdr.len); 1899 desc->flags = flags; 1900 desc->xflags = xflags; 1901 1902 #if 0 1903 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1904 desc->wep_txkey = vap->iv_def_txkey; 1905 else 1906 #endif 1907 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1908 1909 desc->nseg = htole32(nsegs); 1910 for (i = 0; i < nsegs; i++) { 1911 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1912 desc->seg_len[i] = htole16(segs[i].ds_len); 1913 } 1914 1915 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1916 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1917 1918 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1919 ac, txq->cur, le16toh(desc->len), nsegs)); 1920 1921 txq->queued++; 1922 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1923 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1924 1925 return 0; 1926 } 1927 1928 static int 1929 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1930 const struct ieee80211_bpf_params *params) 1931 { 1932 /* no support; just discard */ 1933 m_freem(m); 1934 ieee80211_free_node(ni); 1935 return 0; 1936 } 1937 1938 static int 1939 iwi_transmit(struct ieee80211com *ic, struct mbuf *m) 1940 { 1941 struct iwi_softc *sc = ic->ic_softc; 1942 int error; 1943 IWI_LOCK_DECL; 1944 1945 IWI_LOCK(sc); 1946 if (!sc->sc_running) { 1947 IWI_UNLOCK(sc); 1948 return (ENXIO); 1949 } 1950 error = mbufq_enqueue(&sc->sc_snd, m); 1951 if (error) { 1952 IWI_UNLOCK(sc); 1953 return (error); 1954 } 1955 iwi_start(sc); 1956 IWI_UNLOCK(sc); 1957 return (0); 1958 } 1959 1960 static void 1961 iwi_start(struct iwi_softc *sc) 1962 { 1963 struct mbuf *m; 1964 struct ieee80211_node *ni; 1965 int ac; 1966 1967 IWI_LOCK_ASSERT(sc); 1968 1969 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1970 ac = M_WME_GETAC(m); 1971 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1972 /* there is no place left in this ring; tail drop */ 1973 /* XXX tail drop */ 1974 mbufq_prepend(&sc->sc_snd, m); 1975 break; 1976 } 1977 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1978 if (iwi_tx_start(sc, m, ni, ac) != 0) { 1979 if_inc_counter(ni->ni_vap->iv_ifp, 1980 IFCOUNTER_OERRORS, 1); 1981 ieee80211_free_node(ni); 1982 break; 1983 } 1984 sc->sc_tx_timer = 5; 1985 } 1986 } 1987 1988 static void 1989 iwi_watchdog(void *arg) 1990 { 1991 struct iwi_softc *sc = arg; 1992 struct ieee80211com *ic = &sc->sc_ic; 1993 1994 IWI_LOCK_ASSERT(sc); 1995 1996 if (sc->sc_tx_timer > 0) { 1997 if (--sc->sc_tx_timer == 0) { 1998 device_printf(sc->sc_dev, "device timeout\n"); 1999 counter_u64_add(ic->ic_oerrors, 1); 2000 ieee80211_runtask(ic, &sc->sc_restarttask); 2001 } 2002 } 2003 if (sc->sc_state_timer > 0) { 2004 if (--sc->sc_state_timer == 0) { 2005 device_printf(sc->sc_dev, 2006 "firmware stuck in state %d, resetting\n", 2007 sc->fw_state); 2008 if (sc->fw_state == IWI_FW_SCANNING) 2009 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2010 ieee80211_runtask(ic, &sc->sc_restarttask); 2011 sc->sc_state_timer = 3; 2012 } 2013 } 2014 if (sc->sc_busy_timer > 0) { 2015 if (--sc->sc_busy_timer == 0) { 2016 device_printf(sc->sc_dev, 2017 "firmware command timeout, resetting\n"); 2018 ieee80211_runtask(ic, &sc->sc_restarttask); 2019 } 2020 } 2021 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2022 } 2023 2024 static void 2025 iwi_parent(struct ieee80211com *ic) 2026 { 2027 struct iwi_softc *sc = ic->ic_softc; 2028 int startall = 0; 2029 IWI_LOCK_DECL; 2030 2031 IWI_LOCK(sc); 2032 if (ic->ic_nrunning > 0) { 2033 if (!sc->sc_running) { 2034 iwi_init_locked(sc); 2035 startall = 1; 2036 } 2037 } else if (sc->sc_running) 2038 iwi_stop_locked(sc); 2039 IWI_UNLOCK(sc); 2040 if (startall) 2041 ieee80211_start_all(ic); 2042 } 2043 2044 static int 2045 iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 2046 { 2047 struct ifreq *ifr = data; 2048 struct iwi_softc *sc = ic->ic_softc; 2049 int error; 2050 IWI_LOCK_DECL; 2051 2052 IWI_LOCK(sc); 2053 switch (cmd) { 2054 case SIOCGIWISTATS: 2055 /* XXX validate permissions/memory/etc? */ 2056 error = copyout(&sc->sc_linkqual, ifr_data_get_ptr(ifr), 2057 sizeof(struct iwi_notif_link_quality)); 2058 break; 2059 case SIOCZIWISTATS: 2060 memset(&sc->sc_linkqual, 0, 2061 sizeof(struct iwi_notif_link_quality)); 2062 error = 0; 2063 break; 2064 default: 2065 error = ENOTTY; 2066 break; 2067 } 2068 IWI_UNLOCK(sc); 2069 2070 return (error); 2071 } 2072 2073 static void 2074 iwi_stop_master(struct iwi_softc *sc) 2075 { 2076 uint32_t tmp; 2077 int ntries; 2078 2079 /* disable interrupts */ 2080 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2081 2082 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2083 for (ntries = 0; ntries < 5; ntries++) { 2084 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2085 break; 2086 DELAY(10); 2087 } 2088 if (ntries == 5) 2089 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2090 2091 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2092 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2093 2094 sc->flags &= ~IWI_FLAG_FW_INITED; 2095 } 2096 2097 static int 2098 iwi_reset(struct iwi_softc *sc) 2099 { 2100 uint32_t tmp; 2101 int i, ntries; 2102 2103 iwi_stop_master(sc); 2104 2105 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2106 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2107 2108 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2109 2110 /* wait for clock stabilization */ 2111 for (ntries = 0; ntries < 1000; ntries++) { 2112 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2113 break; 2114 DELAY(200); 2115 } 2116 if (ntries == 1000) { 2117 device_printf(sc->sc_dev, 2118 "timeout waiting for clock stabilization\n"); 2119 return EIO; 2120 } 2121 2122 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2123 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2124 2125 DELAY(10); 2126 2127 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2128 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2129 2130 /* clear NIC memory */ 2131 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2132 for (i = 0; i < 0xc000; i++) 2133 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2134 2135 return 0; 2136 } 2137 2138 static const struct iwi_firmware_ohdr * 2139 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2140 { 2141 const struct firmware *fp = fw->fp; 2142 const struct iwi_firmware_ohdr *hdr; 2143 2144 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2145 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2146 return NULL; 2147 } 2148 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2149 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2150 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2151 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2152 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2153 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2154 IWI_FW_REQ_MINOR); 2155 return NULL; 2156 } 2157 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2158 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2159 fw->name = fp->name; 2160 return hdr; 2161 } 2162 2163 static const struct iwi_firmware_ohdr * 2164 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2165 { 2166 const struct iwi_firmware_ohdr *hdr; 2167 2168 hdr = iwi_setup_ofw(sc, fw); 2169 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2170 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2171 fw->name); 2172 hdr = NULL; 2173 } 2174 return hdr; 2175 } 2176 2177 static void 2178 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2179 struct iwi_fw *uc, const char *ucname) 2180 { 2181 if (fw->fp == NULL) 2182 fw->fp = firmware_get(fwname); 2183 /* NB: pre-3.0 ucode is packaged separately */ 2184 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2185 uc->fp = firmware_get(ucname); 2186 } 2187 2188 /* 2189 * Get the required firmware images if not already loaded. 2190 * Note that we hold firmware images so long as the device 2191 * is marked up in case we need to reload them on device init. 2192 * This is necessary because we re-init the device sometimes 2193 * from a context where we cannot read from the filesystem 2194 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2195 * XXX return 0 on success, 1 on error. 2196 * 2197 * NB: the order of get'ing and put'ing images here is 2198 * intentional to support handling firmware images bundled 2199 * by operating mode and/or all together in one file with 2200 * the boot firmware as "master". 2201 */ 2202 static int 2203 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2204 { 2205 const struct iwi_firmware_hdr *hdr; 2206 const struct firmware *fp; 2207 2208 /* invalidate cached firmware on mode change */ 2209 if (sc->fw_mode != opmode) 2210 iwi_put_firmware(sc); 2211 2212 switch (opmode) { 2213 case IEEE80211_M_STA: 2214 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2215 break; 2216 case IEEE80211_M_IBSS: 2217 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2218 break; 2219 case IEEE80211_M_MONITOR: 2220 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2221 &sc->fw_uc, "iwi_ucode_monitor"); 2222 break; 2223 default: 2224 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 2225 return EINVAL; 2226 } 2227 fp = sc->fw_fw.fp; 2228 if (fp == NULL) { 2229 device_printf(sc->sc_dev, "could not load firmware\n"); 2230 goto bad; 2231 } 2232 if (fp->version < 300) { 2233 /* 2234 * Firmware prior to 3.0 was packaged as separate 2235 * boot, firmware, and ucode images. Verify the 2236 * ucode image was read in, retrieve the boot image 2237 * if needed, and check version stamps for consistency. 2238 * The version stamps in the data are also checked 2239 * above; this is a bit paranoid but is a cheap 2240 * safeguard against mis-packaging. 2241 */ 2242 if (sc->fw_uc.fp == NULL) { 2243 device_printf(sc->sc_dev, "could not load ucode\n"); 2244 goto bad; 2245 } 2246 if (sc->fw_boot.fp == NULL) { 2247 sc->fw_boot.fp = firmware_get("iwi_boot"); 2248 if (sc->fw_boot.fp == NULL) { 2249 device_printf(sc->sc_dev, 2250 "could not load boot firmware\n"); 2251 goto bad; 2252 } 2253 } 2254 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2255 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2256 device_printf(sc->sc_dev, 2257 "firmware version mismatch: " 2258 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2259 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2260 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2261 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2262 ); 2263 goto bad; 2264 } 2265 /* 2266 * Check and setup each image. 2267 */ 2268 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2269 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2270 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2271 goto bad; 2272 } else { 2273 /* 2274 * Check and setup combined image. 2275 */ 2276 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2277 device_printf(sc->sc_dev, "image '%s' too small\n", 2278 fp->name); 2279 goto bad; 2280 } 2281 hdr = (const struct iwi_firmware_hdr *)fp->data; 2282 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2283 + le32toh(hdr->fsize)) { 2284 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2285 fp->name); 2286 goto bad; 2287 } 2288 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2289 sc->fw_boot.size = le32toh(hdr->bsize); 2290 sc->fw_boot.name = fp->name; 2291 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2292 sc->fw_uc.size = le32toh(hdr->usize); 2293 sc->fw_uc.name = fp->name; 2294 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2295 sc->fw_fw.size = le32toh(hdr->fsize); 2296 sc->fw_fw.name = fp->name; 2297 } 2298 #if 0 2299 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2300 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2301 #endif 2302 2303 sc->fw_mode = opmode; 2304 return 0; 2305 bad: 2306 iwi_put_firmware(sc); 2307 return 1; 2308 } 2309 2310 static void 2311 iwi_put_fw(struct iwi_fw *fw) 2312 { 2313 if (fw->fp != NULL) { 2314 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2315 fw->fp = NULL; 2316 } 2317 fw->data = NULL; 2318 fw->size = 0; 2319 fw->name = NULL; 2320 } 2321 2322 /* 2323 * Release any cached firmware images. 2324 */ 2325 static void 2326 iwi_put_firmware(struct iwi_softc *sc) 2327 { 2328 iwi_put_fw(&sc->fw_uc); 2329 iwi_put_fw(&sc->fw_fw); 2330 iwi_put_fw(&sc->fw_boot); 2331 } 2332 2333 static int 2334 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2335 { 2336 uint32_t tmp; 2337 const uint16_t *w; 2338 const char *uc = fw->data; 2339 size_t size = fw->size; 2340 int i, ntries, error; 2341 2342 IWI_LOCK_ASSERT(sc); 2343 error = 0; 2344 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2345 IWI_RST_STOP_MASTER); 2346 for (ntries = 0; ntries < 5; ntries++) { 2347 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2348 break; 2349 DELAY(10); 2350 } 2351 if (ntries == 5) { 2352 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2353 error = EIO; 2354 goto fail; 2355 } 2356 2357 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2358 DELAY(5000); 2359 2360 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2361 tmp &= ~IWI_RST_PRINCETON_RESET; 2362 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2363 2364 DELAY(5000); 2365 MEM_WRITE_4(sc, 0x3000e0, 0); 2366 DELAY(1000); 2367 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2368 DELAY(1000); 2369 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2370 DELAY(1000); 2371 MEM_WRITE_1(sc, 0x200000, 0x00); 2372 MEM_WRITE_1(sc, 0x200000, 0x40); 2373 DELAY(1000); 2374 2375 /* write microcode into adapter memory */ 2376 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2377 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2378 2379 MEM_WRITE_1(sc, 0x200000, 0x00); 2380 MEM_WRITE_1(sc, 0x200000, 0x80); 2381 2382 /* wait until we get an answer */ 2383 for (ntries = 0; ntries < 100; ntries++) { 2384 if (MEM_READ_1(sc, 0x200000) & 1) 2385 break; 2386 DELAY(100); 2387 } 2388 if (ntries == 100) { 2389 device_printf(sc->sc_dev, 2390 "timeout waiting for ucode to initialize\n"); 2391 error = EIO; 2392 goto fail; 2393 } 2394 2395 /* read the answer or the firmware will not initialize properly */ 2396 for (i = 0; i < 7; i++) 2397 MEM_READ_4(sc, 0x200004); 2398 2399 MEM_WRITE_1(sc, 0x200000, 0x00); 2400 2401 fail: 2402 return error; 2403 } 2404 2405 /* macro to handle unaligned little endian data in firmware image */ 2406 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2407 2408 static int 2409 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2410 { 2411 u_char *p, *end; 2412 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2413 int ntries, error; 2414 2415 IWI_LOCK_ASSERT(sc); 2416 2417 /* copy firmware image to DMA memory */ 2418 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2419 2420 /* make sure the adapter will get up-to-date values */ 2421 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2422 2423 /* tell the adapter where the command blocks are stored */ 2424 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2425 2426 /* 2427 * Store command blocks into adapter's internal memory using register 2428 * indirections. The adapter will read the firmware image through DMA 2429 * using information stored in command blocks. 2430 */ 2431 src = sc->fw_physaddr; 2432 p = sc->fw_virtaddr; 2433 end = p + fw->size; 2434 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2435 2436 while (p < end) { 2437 dst = GETLE32(p); p += 4; src += 4; 2438 len = GETLE32(p); p += 4; src += 4; 2439 p += len; 2440 2441 while (len > 0) { 2442 mlen = min(len, IWI_CB_MAXDATALEN); 2443 2444 ctl = IWI_CB_DEFAULT_CTL | mlen; 2445 sum = ctl ^ src ^ dst; 2446 2447 /* write a command block */ 2448 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2449 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2450 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2451 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2452 2453 src += mlen; 2454 dst += mlen; 2455 len -= mlen; 2456 } 2457 } 2458 2459 /* write a fictive final command block (sentinel) */ 2460 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2461 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2462 2463 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2464 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2465 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2466 2467 /* tell the adapter to start processing command blocks */ 2468 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2469 2470 /* wait until the adapter reaches the sentinel */ 2471 for (ntries = 0; ntries < 400; ntries++) { 2472 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2473 break; 2474 DELAY(100); 2475 } 2476 /* sync dma, just in case */ 2477 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2478 if (ntries == 400) { 2479 device_printf(sc->sc_dev, 2480 "timeout processing command blocks for %s firmware\n", 2481 fw->name); 2482 return EIO; 2483 } 2484 2485 /* we're done with command blocks processing */ 2486 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2487 2488 /* allow interrupts so we know when the firmware is ready */ 2489 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2490 2491 /* tell the adapter to initialize the firmware */ 2492 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2493 2494 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2495 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2496 2497 /* wait at most one second for firmware initialization to complete */ 2498 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2499 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2500 "initialization to complete\n", fw->name); 2501 } 2502 2503 return error; 2504 } 2505 2506 static int 2507 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2508 { 2509 uint32_t data; 2510 2511 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2512 /* XXX set more fine-grained operation */ 2513 data = htole32(IWI_POWER_MODE_MAX); 2514 } else 2515 data = htole32(IWI_POWER_MODE_CAM); 2516 2517 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2518 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2519 } 2520 2521 static int 2522 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2523 { 2524 struct iwi_wep_key wepkey; 2525 struct ieee80211_key *wk; 2526 int error, i; 2527 2528 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2529 wk = &vap->iv_nw_keys[i]; 2530 2531 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2532 wepkey.idx = i; 2533 wepkey.len = wk->wk_keylen; 2534 memset(wepkey.key, 0, sizeof wepkey.key); 2535 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2536 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2537 wepkey.len)); 2538 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2539 sizeof wepkey); 2540 if (error != 0) 2541 return error; 2542 } 2543 return 0; 2544 } 2545 2546 static int 2547 iwi_set_rateset(struct iwi_softc *sc, const struct ieee80211_rateset *net_rs, 2548 int mode, int type) 2549 { 2550 struct iwi_rateset rs; 2551 2552 memset(&rs, 0, sizeof(rs)); 2553 rs.mode = mode; 2554 rs.type = type; 2555 rs.nrates = net_rs->rs_nrates; 2556 if (rs.nrates > nitems(rs.rates)) { 2557 DPRINTF(("Truncating negotiated rate set from %u\n", 2558 rs.nrates)); 2559 rs.nrates = nitems(rs.rates); 2560 } 2561 memcpy(rs.rates, net_rs->rs_rates, rs.nrates); 2562 DPRINTF(("Setting .11%c%s %s rates (%u)\n", 2563 mode == IWI_MODE_11A ? 'a' : 'b', 2564 mode == IWI_MODE_11G ? "g" : "", 2565 type == IWI_RATESET_TYPE_SUPPORTED ? "supported" : "negotiated", 2566 rs.nrates)); 2567 2568 return (iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof(rs))); 2569 } 2570 2571 static int 2572 iwi_config(struct iwi_softc *sc) 2573 { 2574 struct ieee80211com *ic = &sc->sc_ic; 2575 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2576 struct iwi_configuration config; 2577 struct iwi_txpower power; 2578 uint8_t *macaddr; 2579 uint32_t data; 2580 int error, i; 2581 2582 IWI_LOCK_ASSERT(sc); 2583 2584 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; 2585 DPRINTF(("Setting MAC address to %6D\n", macaddr, ":")); 2586 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, macaddr, 2587 IEEE80211_ADDR_LEN); 2588 if (error != 0) 2589 return error; 2590 2591 memset(&config, 0, sizeof config); 2592 config.bluetooth_coexistence = sc->bluetooth; 2593 config.silence_threshold = 0x1e; 2594 config.antenna = sc->antenna; 2595 config.multicast_enabled = 1; 2596 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2597 config.disable_unicast_decryption = 1; 2598 config.disable_multicast_decryption = 1; 2599 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2600 config.allow_invalid_frames = 1; 2601 config.allow_beacon_and_probe_resp = 1; 2602 config.allow_mgt = 1; 2603 } 2604 DPRINTF(("Configuring adapter\n")); 2605 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2606 if (error != 0) 2607 return error; 2608 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2609 power.mode = IWI_MODE_11B; 2610 power.nchan = 11; 2611 for (i = 0; i < 11; i++) { 2612 power.chan[i].chan = i + 1; 2613 power.chan[i].power = IWI_TXPOWER_MAX; 2614 } 2615 DPRINTF(("Setting .11b channels tx power\n")); 2616 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2617 if (error != 0) 2618 return error; 2619 2620 power.mode = IWI_MODE_11G; 2621 DPRINTF(("Setting .11g channels tx power\n")); 2622 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2623 if (error != 0) 2624 return error; 2625 } 2626 2627 error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11G], 2628 IWI_MODE_11G, IWI_RATESET_TYPE_SUPPORTED); 2629 if (error != 0) 2630 return error; 2631 2632 error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11A], 2633 IWI_MODE_11A, IWI_RATESET_TYPE_SUPPORTED); 2634 if (error != 0) 2635 return error; 2636 2637 data = htole32(arc4random()); 2638 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2639 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2640 if (error != 0) 2641 return error; 2642 2643 /* enable adapter */ 2644 DPRINTF(("Enabling adapter\n")); 2645 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2646 } 2647 2648 static __inline void 2649 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2650 { 2651 uint8_t *st = &scan->scan_type[ix / 2]; 2652 if (ix % 2) 2653 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2654 else 2655 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2656 } 2657 2658 static int 2659 scan_type(const struct ieee80211_scan_state *ss, 2660 const struct ieee80211_channel *chan) 2661 { 2662 /* We can only set one essid for a directed scan */ 2663 if (ss->ss_nssid != 0) 2664 return IWI_SCAN_TYPE_BDIRECTED; 2665 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2666 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2667 return IWI_SCAN_TYPE_BROADCAST; 2668 return IWI_SCAN_TYPE_PASSIVE; 2669 } 2670 2671 static __inline int 2672 scan_band(const struct ieee80211_channel *c) 2673 { 2674 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2675 } 2676 2677 static void 2678 iwi_monitor_scan(void *arg, int npending) 2679 { 2680 struct iwi_softc *sc = arg; 2681 IWI_LOCK_DECL; 2682 2683 IWI_LOCK(sc); 2684 (void) iwi_scanchan(sc, 2000, 0); 2685 IWI_UNLOCK(sc); 2686 } 2687 2688 /* 2689 * Start a scan on the current channel or all channels. 2690 */ 2691 static int 2692 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) 2693 { 2694 struct ieee80211com *ic = &sc->sc_ic; 2695 struct ieee80211_channel *chan; 2696 struct ieee80211_scan_state *ss; 2697 struct iwi_scan_ext scan; 2698 int error = 0; 2699 2700 IWI_LOCK_ASSERT(sc); 2701 if (sc->fw_state == IWI_FW_SCANNING) { 2702 /* 2703 * This should not happen as we only trigger scan_next after 2704 * completion 2705 */ 2706 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2707 return (EBUSY); 2708 } 2709 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2710 2711 ss = ic->ic_scan; 2712 2713 memset(&scan, 0, sizeof scan); 2714 scan.full_scan_index = htole32(++sc->sc_scangen); 2715 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2716 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2717 /* 2718 * Use very short dwell times for when we send probe request 2719 * frames. Without this bg scans hang. Ideally this should 2720 * be handled with early-termination as done by net80211 but 2721 * that's not feasible (aborting a scan is problematic). 2722 */ 2723 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2724 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2725 } else { 2726 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2727 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2728 } 2729 2730 /* We can only set one essid for a directed scan */ 2731 if (ss->ss_nssid != 0) { 2732 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2733 ss->ss_ssid[0].len); 2734 if (error) 2735 return (error); 2736 } 2737 2738 if (allchan) { 2739 int i, next, band, b, bstart; 2740 /* 2741 * Convert scan list to run-length encoded channel list 2742 * the firmware requires (preserving the order setup by 2743 * net80211). The first entry in each run specifies the 2744 * band and the count of items in the run. 2745 */ 2746 next = 0; /* next open slot */ 2747 bstart = 0; /* NB: not needed, silence compiler */ 2748 band = -1; /* NB: impossible value */ 2749 KASSERT(ss->ss_last > 0, ("no channels")); 2750 for (i = 0; i < ss->ss_last; i++) { 2751 chan = ss->ss_chans[i]; 2752 b = scan_band(chan); 2753 if (b != band) { 2754 if (band != -1) 2755 scan.channels[bstart] = 2756 (next - bstart) | band; 2757 /* NB: this allocates a slot for the run-len */ 2758 band = b, bstart = next++; 2759 } 2760 if (next >= IWI_SCAN_CHANNELS) { 2761 DPRINTF(("truncating scan list\n")); 2762 break; 2763 } 2764 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2765 set_scan_type(&scan, next, scan_type(ss, chan)); 2766 next++; 2767 } 2768 scan.channels[bstart] = (next - bstart) | band; 2769 } else { 2770 /* Scan the current channel only */ 2771 chan = ic->ic_curchan; 2772 scan.channels[0] = 1 | scan_band(chan); 2773 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2774 set_scan_type(&scan, 1, scan_type(ss, chan)); 2775 } 2776 #ifdef IWI_DEBUG 2777 if (iwi_debug > 0) { 2778 static const char *scantype[8] = 2779 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2780 int i; 2781 printf("Scan request: index %u dwell %d/%d/%d\n" 2782 , le32toh(scan.full_scan_index) 2783 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2784 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2785 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2786 ); 2787 i = 0; 2788 do { 2789 int run = scan.channels[i]; 2790 if (run == 0) 2791 break; 2792 printf("Scan %d %s channels:", run & 0x3f, 2793 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2794 for (run &= 0x3f, i++; run > 0; run--, i++) { 2795 uint8_t type = scan.scan_type[i/2]; 2796 printf(" %u/%s", scan.channels[i], 2797 scantype[(i & 1 ? type : type>>4) & 7]); 2798 } 2799 printf("\n"); 2800 } while (i < IWI_SCAN_CHANNELS); 2801 } 2802 #endif 2803 2804 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2805 } 2806 2807 static int 2808 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2809 { 2810 struct iwi_sensitivity sens; 2811 2812 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2813 2814 memset(&sens, 0, sizeof sens); 2815 sens.rssi = htole16(rssi_dbm); 2816 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2817 } 2818 2819 static int 2820 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2821 { 2822 struct ieee80211com *ic = vap->iv_ic; 2823 if_t ifp = vap->iv_ifp; 2824 struct ieee80211_node *ni; 2825 struct iwi_configuration config; 2826 struct iwi_associate *assoc = &sc->assoc; 2827 uint16_t capinfo; 2828 uint32_t data; 2829 int error, mode; 2830 2831 IWI_LOCK_ASSERT(sc); 2832 2833 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2834 DPRINTF(("Already associated\n")); 2835 return (-1); 2836 } 2837 2838 ni = ieee80211_ref_node(vap->iv_bss); 2839 2840 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2841 error = 0; 2842 mode = 0; 2843 2844 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2845 mode = IWI_MODE_11A; 2846 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2847 mode = IWI_MODE_11G; 2848 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2849 mode = IWI_MODE_11B; 2850 2851 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2852 memset(&config, 0, sizeof config); 2853 config.bluetooth_coexistence = sc->bluetooth; 2854 config.antenna = sc->antenna; 2855 config.multicast_enabled = 1; 2856 if (mode == IWI_MODE_11G) 2857 config.use_protection = 1; 2858 config.answer_pbreq = 2859 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2860 config.disable_unicast_decryption = 1; 2861 config.disable_multicast_decryption = 1; 2862 DPRINTF(("Configuring adapter\n")); 2863 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2864 if (error != 0) 2865 goto done; 2866 } 2867 2868 #ifdef IWI_DEBUG 2869 if (iwi_debug > 0) { 2870 printf("Setting ESSID to "); 2871 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2872 printf("\n"); 2873 } 2874 #endif 2875 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2876 if (error != 0) 2877 goto done; 2878 2879 error = iwi_setpowermode(sc, vap); 2880 if (error != 0) 2881 goto done; 2882 2883 data = htole32(vap->iv_rtsthreshold); 2884 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2885 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2886 if (error != 0) 2887 goto done; 2888 2889 data = htole32(vap->iv_fragthreshold); 2890 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2891 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2892 if (error != 0) 2893 goto done; 2894 2895 /* the rate set has already been "negotiated" */ 2896 error = iwi_set_rateset(sc, &ni->ni_rates, mode, 2897 IWI_RATESET_TYPE_NEGOTIATED); 2898 if (error != 0) 2899 goto done; 2900 2901 memset(assoc, 0, sizeof *assoc); 2902 2903 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2904 /* NB: don't treat WME setup as failure */ 2905 if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0) 2906 assoc->policy |= htole16(IWI_POLICY_WME); 2907 /* XXX complain on failure? */ 2908 } 2909 2910 if (vap->iv_appie_wpa != NULL) { 2911 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2912 2913 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2914 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2915 if (error != 0) 2916 goto done; 2917 } 2918 2919 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2920 if (error != 0) 2921 goto done; 2922 2923 assoc->mode = mode; 2924 assoc->chan = ic->ic_curchan->ic_ieee; 2925 /* 2926 * NB: do not arrange for shared key auth w/o privacy 2927 * (i.e. a wep key); it causes a firmware error. 2928 */ 2929 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2930 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2931 assoc->auth = IWI_AUTH_SHARED; 2932 /* 2933 * It's possible to have privacy marked but no default 2934 * key setup. This typically is due to a user app bug 2935 * but if we blindly grab the key the firmware will 2936 * barf so avoid it for now. 2937 */ 2938 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2939 assoc->auth |= vap->iv_def_txkey << 4; 2940 2941 error = iwi_setwepkeys(sc, vap); 2942 if (error != 0) 2943 goto done; 2944 } 2945 if (vap->iv_flags & IEEE80211_F_WPA) 2946 assoc->policy |= htole16(IWI_POLICY_WPA); 2947 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2948 assoc->type = IWI_HC_IBSS_START; 2949 else 2950 assoc->type = IWI_HC_ASSOC; 2951 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2952 2953 if (vap->iv_opmode == IEEE80211_M_IBSS) 2954 capinfo = IEEE80211_CAPINFO_IBSS; 2955 else 2956 capinfo = IEEE80211_CAPINFO_ESS; 2957 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2958 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2959 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2960 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2961 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2962 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2963 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2964 assoc->capinfo = htole16(capinfo); 2965 2966 assoc->lintval = htole16(ic->ic_lintval); 2967 assoc->intval = htole16(ni->ni_intval); 2968 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2969 if (vap->iv_opmode == IEEE80211_M_IBSS) 2970 IEEE80211_ADDR_COPY(assoc->dst, if_getbroadcastaddr(ifp)); 2971 else 2972 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2973 2974 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2975 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2976 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2977 assoc->bssid, ":", assoc->dst, ":", 2978 assoc->chan, le16toh(assoc->policy), assoc->auth, 2979 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2980 le16toh(assoc->intval))); 2981 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2982 done: 2983 ieee80211_free_node(ni); 2984 if (error) 2985 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2986 2987 return (error); 2988 } 2989 2990 static void 2991 iwi_disassoc(void *arg, int pending) 2992 { 2993 struct iwi_softc *sc = arg; 2994 IWI_LOCK_DECL; 2995 2996 IWI_LOCK(sc); 2997 iwi_disassociate(sc, 0); 2998 IWI_UNLOCK(sc); 2999 } 3000 3001 static int 3002 iwi_disassociate(struct iwi_softc *sc, int quiet) 3003 { 3004 struct iwi_associate *assoc = &sc->assoc; 3005 3006 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 3007 DPRINTF(("Not associated\n")); 3008 return (-1); 3009 } 3010 3011 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3012 3013 if (quiet) 3014 assoc->type = IWI_HC_DISASSOC_QUIET; 3015 else 3016 assoc->type = IWI_HC_DISASSOC; 3017 3018 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3019 assoc->bssid, ":", assoc->chan)); 3020 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3021 } 3022 3023 /* 3024 * release dma resources for the firmware 3025 */ 3026 static void 3027 iwi_release_fw_dma(struct iwi_softc *sc) 3028 { 3029 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3030 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3031 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3032 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3033 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3034 bus_dma_tag_destroy(sc->fw_dmat); 3035 3036 sc->fw_flags = 0; 3037 sc->fw_dma_size = 0; 3038 sc->fw_dmat = NULL; 3039 sc->fw_map = NULL; 3040 sc->fw_physaddr = 0; 3041 sc->fw_virtaddr = NULL; 3042 } 3043 3044 /* 3045 * allocate the dma descriptor for the firmware. 3046 * Return 0 on success, 1 on error. 3047 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3048 */ 3049 static int 3050 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3051 { 3052 if (sc->fw_dma_size >= size) 3053 return 0; 3054 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3055 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3056 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3057 device_printf(sc->sc_dev, 3058 "could not create firmware DMA tag\n"); 3059 goto error; 3060 } 3061 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3062 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3063 &sc->fw_map) != 0) { 3064 device_printf(sc->sc_dev, 3065 "could not allocate firmware DMA memory\n"); 3066 goto error; 3067 } 3068 sc->fw_flags |= IWI_FW_HAVE_MAP; 3069 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3070 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3071 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3072 goto error; 3073 } 3074 sc->fw_flags |= IWI_FW_HAVE_PHY; 3075 sc->fw_dma_size = size; 3076 return 0; 3077 3078 error: 3079 iwi_release_fw_dma(sc); 3080 return 1; 3081 } 3082 3083 static void 3084 iwi_init_locked(struct iwi_softc *sc) 3085 { 3086 struct iwi_rx_data *data; 3087 int i; 3088 3089 IWI_LOCK_ASSERT(sc); 3090 3091 if (sc->fw_state == IWI_FW_LOADING) { 3092 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3093 return; /* XXX: condvar? */ 3094 } 3095 3096 iwi_stop_locked(sc); 3097 3098 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3099 3100 if (iwi_reset(sc) != 0) { 3101 device_printf(sc->sc_dev, "could not reset adapter\n"); 3102 goto fail; 3103 } 3104 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3105 device_printf(sc->sc_dev, 3106 "could not load boot firmware %s\n", sc->fw_boot.name); 3107 goto fail; 3108 } 3109 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3110 device_printf(sc->sc_dev, 3111 "could not load microcode %s\n", sc->fw_uc.name); 3112 goto fail; 3113 } 3114 3115 iwi_stop_master(sc); 3116 3117 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3118 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3119 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3120 3121 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3122 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3123 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3124 3125 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3126 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3127 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3128 3129 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3130 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3131 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3132 3133 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3134 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3135 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3136 3137 for (i = 0; i < sc->rxq.count; i++) { 3138 data = &sc->rxq.data[i]; 3139 CSR_WRITE_4(sc, data->reg, data->physaddr); 3140 } 3141 3142 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3143 3144 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3145 device_printf(sc->sc_dev, 3146 "could not load main firmware %s\n", sc->fw_fw.name); 3147 goto fail; 3148 } 3149 sc->flags |= IWI_FLAG_FW_INITED; 3150 3151 IWI_STATE_END(sc, IWI_FW_LOADING); 3152 3153 if (iwi_config(sc) != 0) { 3154 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3155 goto fail2; 3156 } 3157 3158 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3159 sc->sc_running = 1; 3160 return; 3161 fail: 3162 IWI_STATE_END(sc, IWI_FW_LOADING); 3163 fail2: 3164 iwi_stop_locked(sc); 3165 } 3166 3167 static void 3168 iwi_init(void *priv) 3169 { 3170 struct iwi_softc *sc = priv; 3171 struct ieee80211com *ic = &sc->sc_ic; 3172 IWI_LOCK_DECL; 3173 3174 IWI_LOCK(sc); 3175 iwi_init_locked(sc); 3176 IWI_UNLOCK(sc); 3177 3178 if (sc->sc_running) 3179 ieee80211_start_all(ic); 3180 } 3181 3182 static void 3183 iwi_stop_locked(void *priv) 3184 { 3185 struct iwi_softc *sc = priv; 3186 3187 IWI_LOCK_ASSERT(sc); 3188 3189 sc->sc_running = 0; 3190 3191 if (sc->sc_softled) { 3192 callout_stop(&sc->sc_ledtimer); 3193 sc->sc_blinking = 0; 3194 } 3195 callout_stop(&sc->sc_wdtimer); 3196 callout_stop(&sc->sc_rftimer); 3197 3198 iwi_stop_master(sc); 3199 3200 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3201 3202 /* reset rings */ 3203 iwi_reset_cmd_ring(sc, &sc->cmdq); 3204 iwi_reset_tx_ring(sc, &sc->txq[0]); 3205 iwi_reset_tx_ring(sc, &sc->txq[1]); 3206 iwi_reset_tx_ring(sc, &sc->txq[2]); 3207 iwi_reset_tx_ring(sc, &sc->txq[3]); 3208 iwi_reset_rx_ring(sc, &sc->rxq); 3209 3210 sc->sc_tx_timer = 0; 3211 sc->sc_state_timer = 0; 3212 sc->sc_busy_timer = 0; 3213 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3214 sc->fw_state = IWI_FW_IDLE; 3215 wakeup(sc); 3216 } 3217 3218 static void 3219 iwi_stop(struct iwi_softc *sc) 3220 { 3221 IWI_LOCK_DECL; 3222 3223 IWI_LOCK(sc); 3224 iwi_stop_locked(sc); 3225 IWI_UNLOCK(sc); 3226 } 3227 3228 static void 3229 iwi_restart(void *arg, int npending) 3230 { 3231 struct iwi_softc *sc = arg; 3232 3233 iwi_init(sc); 3234 } 3235 3236 /* 3237 * Return whether or not the radio is enabled in hardware 3238 * (i.e. the rfkill switch is "off"). 3239 */ 3240 static int 3241 iwi_getrfkill(struct iwi_softc *sc) 3242 { 3243 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3244 } 3245 3246 static void 3247 iwi_radio_on(void *arg, int pending) 3248 { 3249 struct iwi_softc *sc = arg; 3250 struct ieee80211com *ic = &sc->sc_ic; 3251 3252 device_printf(sc->sc_dev, "radio turned on\n"); 3253 3254 iwi_init(sc); 3255 ieee80211_notify_radio(ic, 1); 3256 } 3257 3258 static void 3259 iwi_rfkill_poll(void *arg) 3260 { 3261 struct iwi_softc *sc = arg; 3262 3263 IWI_LOCK_ASSERT(sc); 3264 3265 /* 3266 * Check for a change in rfkill state. We get an 3267 * interrupt when a radio is disabled but not when 3268 * it is enabled so we must poll for the latter. 3269 */ 3270 if (!iwi_getrfkill(sc)) { 3271 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask); 3272 return; 3273 } 3274 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3275 } 3276 3277 static void 3278 iwi_radio_off(void *arg, int pending) 3279 { 3280 struct iwi_softc *sc = arg; 3281 struct ieee80211com *ic = &sc->sc_ic; 3282 IWI_LOCK_DECL; 3283 3284 device_printf(sc->sc_dev, "radio turned off\n"); 3285 3286 ieee80211_notify_radio(ic, 0); 3287 3288 IWI_LOCK(sc); 3289 iwi_stop_locked(sc); 3290 iwi_rfkill_poll(sc); 3291 IWI_UNLOCK(sc); 3292 } 3293 3294 static int 3295 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3296 { 3297 struct iwi_softc *sc = arg1; 3298 uint32_t size, buf[128]; 3299 3300 memset(buf, 0, sizeof buf); 3301 3302 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3303 return SYSCTL_OUT(req, buf, sizeof buf); 3304 3305 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3306 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3307 3308 return SYSCTL_OUT(req, buf, size); 3309 } 3310 3311 static int 3312 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3313 { 3314 struct iwi_softc *sc = arg1; 3315 int val = !iwi_getrfkill(sc); 3316 3317 return SYSCTL_OUT(req, &val, sizeof val); 3318 } 3319 3320 /* 3321 * Add sysctl knobs. 3322 */ 3323 static void 3324 iwi_sysctlattach(struct iwi_softc *sc) 3325 { 3326 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3327 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3328 3329 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3330 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 3331 iwi_sysctl_radio, "I", 3332 "radio transmitter switch state (0=off, 1=on)"); 3333 3334 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3335 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 3336 iwi_sysctl_stats, "S", "statistics"); 3337 3338 sc->bluetooth = 0; 3339 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3340 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3341 3342 sc->antenna = IWI_ANTENNA_AUTO; 3343 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3344 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3345 } 3346 3347 /* 3348 * LED support. 3349 * 3350 * Different cards have different capabilities. Some have three 3351 * led's while others have only one. The linux ipw driver defines 3352 * led's for link state (associated or not), band (11a, 11g, 11b), 3353 * and for link activity. We use one led and vary the blink rate 3354 * according to the tx/rx traffic a la the ath driver. 3355 */ 3356 3357 static __inline uint32_t 3358 iwi_toggle_event(uint32_t r) 3359 { 3360 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3361 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3362 } 3363 3364 static uint32_t 3365 iwi_read_event(struct iwi_softc *sc) 3366 { 3367 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3368 } 3369 3370 static void 3371 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3372 { 3373 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3374 } 3375 3376 static void 3377 iwi_led_done(void *arg) 3378 { 3379 struct iwi_softc *sc = arg; 3380 3381 sc->sc_blinking = 0; 3382 } 3383 3384 /* 3385 * Turn the activity LED off: flip the pin and then set a timer so no 3386 * update will happen for the specified duration. 3387 */ 3388 static void 3389 iwi_led_off(void *arg) 3390 { 3391 struct iwi_softc *sc = arg; 3392 uint32_t v; 3393 3394 v = iwi_read_event(sc); 3395 v &= ~sc->sc_ledpin; 3396 iwi_write_event(sc, iwi_toggle_event(v)); 3397 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3398 } 3399 3400 /* 3401 * Blink the LED according to the specified on/off times. 3402 */ 3403 static void 3404 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3405 { 3406 uint32_t v; 3407 3408 v = iwi_read_event(sc); 3409 v |= sc->sc_ledpin; 3410 iwi_write_event(sc, iwi_toggle_event(v)); 3411 sc->sc_blinking = 1; 3412 sc->sc_ledoff = off; 3413 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3414 } 3415 3416 static void 3417 iwi_led_event(struct iwi_softc *sc, int event) 3418 { 3419 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3420 static const struct { 3421 u_int rate; /* tx/rx iwi rate */ 3422 u_int16_t timeOn; /* LED on time (ms) */ 3423 u_int16_t timeOff; /* LED off time (ms) */ 3424 } blinkrates[] = { 3425 { IWI_RATE_OFDM54, 40, 10 }, 3426 { IWI_RATE_OFDM48, 44, 11 }, 3427 { IWI_RATE_OFDM36, 50, 13 }, 3428 { IWI_RATE_OFDM24, 57, 14 }, 3429 { IWI_RATE_OFDM18, 67, 16 }, 3430 { IWI_RATE_OFDM12, 80, 20 }, 3431 { IWI_RATE_DS11, 100, 25 }, 3432 { IWI_RATE_OFDM9, 133, 34 }, 3433 { IWI_RATE_OFDM6, 160, 40 }, 3434 { IWI_RATE_DS5, 200, 50 }, 3435 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3436 { IWI_RATE_DS2, 267, 66 }, 3437 { IWI_RATE_DS1, 400, 100 }, 3438 { 0, 500, 130 }, /* unknown rate/polling */ 3439 }; 3440 uint32_t txrate; 3441 int j = 0; /* XXX silence compiler */ 3442 3443 sc->sc_ledevent = ticks; /* time of last event */ 3444 if (sc->sc_blinking) /* don't interrupt active blink */ 3445 return; 3446 switch (event) { 3447 case IWI_LED_POLL: 3448 j = nitems(blinkrates)-1; 3449 break; 3450 case IWI_LED_TX: 3451 /* read current transmission rate from adapter */ 3452 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3453 if (blinkrates[sc->sc_txrix].rate != txrate) { 3454 for (j = 0; j < nitems(blinkrates)-1; j++) 3455 if (blinkrates[j].rate == txrate) 3456 break; 3457 sc->sc_txrix = j; 3458 } else 3459 j = sc->sc_txrix; 3460 break; 3461 case IWI_LED_RX: 3462 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3463 for (j = 0; j < nitems(blinkrates)-1; j++) 3464 if (blinkrates[j].rate == sc->sc_rxrate) 3465 break; 3466 sc->sc_rxrix = j; 3467 } else 3468 j = sc->sc_rxrix; 3469 break; 3470 } 3471 /* XXX beware of overflow */ 3472 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3473 (blinkrates[j].timeOff * hz) / 1000); 3474 } 3475 3476 static int 3477 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3478 { 3479 struct iwi_softc *sc = arg1; 3480 int softled = sc->sc_softled; 3481 int error; 3482 3483 error = sysctl_handle_int(oidp, &softled, 0, req); 3484 if (error || !req->newptr) 3485 return error; 3486 softled = (softled != 0); 3487 if (softled != sc->sc_softled) { 3488 if (softled) { 3489 uint32_t v = iwi_read_event(sc); 3490 v &= ~sc->sc_ledpin; 3491 iwi_write_event(sc, iwi_toggle_event(v)); 3492 } 3493 sc->sc_softled = softled; 3494 } 3495 return 0; 3496 } 3497 3498 static void 3499 iwi_ledattach(struct iwi_softc *sc) 3500 { 3501 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3502 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3503 3504 sc->sc_blinking = 0; 3505 sc->sc_ledstate = 1; 3506 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3507 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3508 3509 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3510 "softled", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 3511 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3512 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3513 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3514 "pin setting to turn activity LED on"); 3515 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3516 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3517 "idle time for inactivity LED (ticks)"); 3518 /* XXX for debugging */ 3519 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3520 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3521 "NIC type from EEPROM"); 3522 3523 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3524 sc->sc_softled = 1; 3525 3526 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3527 if (sc->sc_nictype == 1) { 3528 /* 3529 * NB: led's are reversed. 3530 */ 3531 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3532 } 3533 } 3534 3535 static void 3536 iwi_scan_start(struct ieee80211com *ic) 3537 { 3538 /* ignore */ 3539 } 3540 3541 static void 3542 iwi_set_channel(struct ieee80211com *ic) 3543 { 3544 struct iwi_softc *sc = ic->ic_softc; 3545 3546 if (sc->fw_state == IWI_FW_IDLE) 3547 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3548 } 3549 3550 static void 3551 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3552 { 3553 struct ieee80211vap *vap = ss->ss_vap; 3554 struct iwi_softc *sc = vap->iv_ic->ic_softc; 3555 IWI_LOCK_DECL; 3556 3557 IWI_LOCK(sc); 3558 if (iwi_scanchan(sc, maxdwell, 0)) 3559 ieee80211_cancel_scan(vap); 3560 IWI_UNLOCK(sc); 3561 } 3562 3563 static void 3564 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3565 { 3566 /* NB: don't try to abort scan; wait for firmware to finish */ 3567 } 3568 3569 static void 3570 iwi_scan_end(struct ieee80211com *ic) 3571 { 3572 struct iwi_softc *sc = ic->ic_softc; 3573 IWI_LOCK_DECL; 3574 3575 IWI_LOCK(sc); 3576 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 3577 /* NB: make sure we're still scanning */ 3578 if (sc->fw_state == IWI_FW_SCANNING) 3579 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 3580 IWI_UNLOCK(sc); 3581 } 3582 3583 static void 3584 iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz) 3585 { 3586 struct iwi_softc *sc = ic->ic_softc; 3587 device_t dev = sc->sc_dev; 3588 3589 memset(bands, 0, bands_sz); 3590 setbit(bands, IEEE80211_MODE_11B); 3591 setbit(bands, IEEE80211_MODE_11G); 3592 if (pci_get_device(dev) >= 0x4223) 3593 setbit(bands, IEEE80211_MODE_11A); 3594 } 3595 3596 static void 3597 iwi_getradiocaps(struct ieee80211com *ic, 3598 int maxchans, int *nchans, struct ieee80211_channel chans[]) 3599 { 3600 uint8_t bands[IEEE80211_MODE_BYTES]; 3601 3602 iwi_collect_bands(ic, bands, sizeof(bands)); 3603 *nchans = 0; 3604 if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G)) 3605 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, 3606 bands, 0); 3607 if (isset(bands, IEEE80211_MODE_11A)) { 3608 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3609 def_chan_5ghz_band1, nitems(def_chan_5ghz_band1), 3610 bands, 0); 3611 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3612 def_chan_5ghz_band2, nitems(def_chan_5ghz_band2), 3613 bands, 0); 3614 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3615 def_chan_5ghz_band3, nitems(def_chan_5ghz_band3), 3616 bands, 0); 3617 } 3618 } 3619