1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004, 2005 5 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 6 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 7 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /*- 36 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 37 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 38 */ 39 40 #include <sys/param.h> 41 #include <sys/sysctl.h> 42 #include <sys/sockio.h> 43 #include <sys/mbuf.h> 44 #include <sys/kernel.h> 45 #include <sys/socket.h> 46 #include <sys/systm.h> 47 #include <sys/malloc.h> 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/module.h> 51 #include <sys/bus.h> 52 #include <sys/endian.h> 53 #include <sys/proc.h> 54 #include <sys/mount.h> 55 #include <sys/namei.h> 56 #include <sys/linker.h> 57 #include <sys/firmware.h> 58 #include <sys/taskqueue.h> 59 60 #include <machine/bus.h> 61 #include <machine/resource.h> 62 #include <sys/rman.h> 63 64 #include <dev/pci/pcireg.h> 65 #include <dev/pci/pcivar.h> 66 67 #include <net/bpf.h> 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_arp.h> 71 #include <net/ethernet.h> 72 #include <net/if_dl.h> 73 #include <net/if_media.h> 74 #include <net/if_types.h> 75 76 #include <net80211/ieee80211_var.h> 77 #include <net80211/ieee80211_radiotap.h> 78 #include <net80211/ieee80211_input.h> 79 #include <net80211/ieee80211_regdomain.h> 80 81 #include <netinet/in.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #include <netinet/if_ether.h> 86 87 #include <dev/iwi/if_iwireg.h> 88 #include <dev/iwi/if_iwivar.h> 89 #include <dev/iwi/if_iwi_ioctl.h> 90 91 #define IWI_DEBUG 92 #ifdef IWI_DEBUG 93 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 94 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 95 int iwi_debug = 0; 96 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 97 98 static const char *iwi_fw_states[] = { 99 "IDLE", /* IWI_FW_IDLE */ 100 "LOADING", /* IWI_FW_LOADING */ 101 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 102 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 103 "SCANNING", /* IWI_FW_SCANNING */ 104 }; 105 #else 106 #define DPRINTF(x) 107 #define DPRINTFN(n, x) 108 #endif 109 110 MODULE_DEPEND(iwi, pci, 1, 1, 1); 111 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 112 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 113 114 enum { 115 IWI_LED_TX, 116 IWI_LED_RX, 117 IWI_LED_POLL, 118 }; 119 120 struct iwi_ident { 121 uint16_t vendor; 122 uint16_t device; 123 const char *name; 124 }; 125 126 static const struct iwi_ident iwi_ident_table[] = { 127 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 128 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 129 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 130 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 131 132 { 0, 0, NULL } 133 }; 134 135 static const uint8_t def_chan_2ghz[] = 136 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 137 static const uint8_t def_chan_5ghz_band1[] = 138 { 36, 40, 44, 48, 52, 56, 60, 64 }; 139 static const uint8_t def_chan_5ghz_band2[] = 140 { 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 }; 141 static const uint8_t def_chan_5ghz_band3[] = 142 { 149, 153, 157, 161, 165 }; 143 144 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 145 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 146 const uint8_t [IEEE80211_ADDR_LEN], 147 const uint8_t [IEEE80211_ADDR_LEN]); 148 static void iwi_vap_delete(struct ieee80211vap *); 149 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 150 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 151 int); 152 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 153 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 154 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 155 int, bus_addr_t, bus_addr_t); 156 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 157 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 158 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 159 int); 160 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 161 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 162 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 163 const uint8_t [IEEE80211_ADDR_LEN]); 164 static void iwi_node_free(struct ieee80211_node *); 165 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 166 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 167 static void iwi_wme_init(struct iwi_softc *); 168 static int iwi_wme_setparams(struct iwi_softc *); 169 static int iwi_wme_update(struct ieee80211com *); 170 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 171 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 172 struct iwi_frame *); 173 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 174 static void iwi_rx_intr(struct iwi_softc *); 175 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 176 static void iwi_intr(void *); 177 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 178 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 179 static int iwi_tx_start(struct iwi_softc *, struct mbuf *, 180 struct ieee80211_node *, int); 181 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 182 const struct ieee80211_bpf_params *); 183 static void iwi_start(struct iwi_softc *); 184 static int iwi_transmit(struct ieee80211com *, struct mbuf *); 185 static void iwi_watchdog(void *); 186 static int iwi_ioctl(struct ieee80211com *, u_long, void *); 187 static void iwi_parent(struct ieee80211com *); 188 static void iwi_stop_master(struct iwi_softc *); 189 static int iwi_reset(struct iwi_softc *); 190 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 191 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 192 static void iwi_release_fw_dma(struct iwi_softc *sc); 193 static int iwi_config(struct iwi_softc *); 194 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 195 static void iwi_put_firmware(struct iwi_softc *); 196 static void iwi_monitor_scan(void *, int); 197 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 198 static void iwi_scan_start(struct ieee80211com *); 199 static void iwi_scan_end(struct ieee80211com *); 200 static void iwi_set_channel(struct ieee80211com *); 201 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 202 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 203 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 204 static void iwi_disassoc(void *, int); 205 static int iwi_disassociate(struct iwi_softc *, int quiet); 206 static void iwi_init_locked(struct iwi_softc *); 207 static void iwi_init(void *); 208 static int iwi_init_fw_dma(struct iwi_softc *, int); 209 static void iwi_stop_locked(void *); 210 static void iwi_stop(struct iwi_softc *); 211 static void iwi_restart(void *, int); 212 static int iwi_getrfkill(struct iwi_softc *); 213 static void iwi_radio_on(void *, int); 214 static void iwi_radio_off(void *, int); 215 static void iwi_sysctlattach(struct iwi_softc *); 216 static void iwi_led_event(struct iwi_softc *, int); 217 static void iwi_ledattach(struct iwi_softc *); 218 static void iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t); 219 static void iwi_getradiocaps(struct ieee80211com *, int, int *, 220 struct ieee80211_channel []); 221 222 static int iwi_probe(device_t); 223 static int iwi_attach(device_t); 224 static int iwi_detach(device_t); 225 static int iwi_shutdown(device_t); 226 static int iwi_suspend(device_t); 227 static int iwi_resume(device_t); 228 229 static device_method_t iwi_methods[] = { 230 /* Device interface */ 231 DEVMETHOD(device_probe, iwi_probe), 232 DEVMETHOD(device_attach, iwi_attach), 233 DEVMETHOD(device_detach, iwi_detach), 234 DEVMETHOD(device_shutdown, iwi_shutdown), 235 DEVMETHOD(device_suspend, iwi_suspend), 236 DEVMETHOD(device_resume, iwi_resume), 237 238 DEVMETHOD_END 239 }; 240 241 static driver_t iwi_driver = { 242 "iwi", 243 iwi_methods, 244 sizeof (struct iwi_softc) 245 }; 246 247 static devclass_t iwi_devclass; 248 249 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL); 250 251 MODULE_VERSION(iwi, 1); 252 253 static __inline uint8_t 254 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 255 { 256 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 257 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 258 } 259 260 static __inline uint32_t 261 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 262 { 263 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 264 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 265 } 266 267 static int 268 iwi_probe(device_t dev) 269 { 270 const struct iwi_ident *ident; 271 272 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 273 if (pci_get_vendor(dev) == ident->vendor && 274 pci_get_device(dev) == ident->device) { 275 device_set_desc(dev, ident->name); 276 return (BUS_PROBE_DEFAULT); 277 } 278 } 279 return ENXIO; 280 } 281 282 static int 283 iwi_attach(device_t dev) 284 { 285 struct iwi_softc *sc = device_get_softc(dev); 286 struct ieee80211com *ic = &sc->sc_ic; 287 uint16_t val; 288 int i, error; 289 290 sc->sc_dev = dev; 291 sc->sc_ledevent = ticks; 292 293 IWI_LOCK_INIT(sc); 294 mbufq_init(&sc->sc_snd, ifqmaxlen); 295 296 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 297 298 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 299 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 300 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 301 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); 302 TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc); 303 304 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 305 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 306 307 pci_write_config(dev, 0x41, 0, 1); 308 309 /* enable bus-mastering */ 310 pci_enable_busmaster(dev); 311 312 i = PCIR_BAR(0); 313 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 314 if (sc->mem == NULL) { 315 device_printf(dev, "could not allocate memory resource\n"); 316 goto fail; 317 } 318 319 sc->sc_st = rman_get_bustag(sc->mem); 320 sc->sc_sh = rman_get_bushandle(sc->mem); 321 322 i = 0; 323 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 324 RF_ACTIVE | RF_SHAREABLE); 325 if (sc->irq == NULL) { 326 device_printf(dev, "could not allocate interrupt resource\n"); 327 goto fail; 328 } 329 330 if (iwi_reset(sc) != 0) { 331 device_printf(dev, "could not reset adapter\n"); 332 goto fail; 333 } 334 335 /* 336 * Allocate rings. 337 */ 338 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 339 device_printf(dev, "could not allocate Cmd ring\n"); 340 goto fail; 341 } 342 343 for (i = 0; i < 4; i++) { 344 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 345 IWI_CSR_TX1_RIDX + i * 4, 346 IWI_CSR_TX1_WIDX + i * 4); 347 if (error != 0) { 348 device_printf(dev, "could not allocate Tx ring %d\n", 349 i+i); 350 goto fail; 351 } 352 } 353 354 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 355 device_printf(dev, "could not allocate Rx ring\n"); 356 goto fail; 357 } 358 359 iwi_wme_init(sc); 360 361 ic->ic_softc = sc; 362 ic->ic_name = device_get_nameunit(dev); 363 ic->ic_opmode = IEEE80211_M_STA; 364 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 365 366 /* set device capabilities */ 367 ic->ic_caps = 368 IEEE80211_C_STA /* station mode supported */ 369 | IEEE80211_C_IBSS /* IBSS mode supported */ 370 | IEEE80211_C_MONITOR /* monitor mode supported */ 371 | IEEE80211_C_PMGT /* power save supported */ 372 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 373 | IEEE80211_C_WPA /* 802.11i */ 374 | IEEE80211_C_WME /* 802.11e */ 375 #if 0 376 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 377 #endif 378 ; 379 380 /* read MAC address from EEPROM */ 381 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 382 ic->ic_macaddr[0] = val & 0xff; 383 ic->ic_macaddr[1] = val >> 8; 384 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 385 ic->ic_macaddr[2] = val & 0xff; 386 ic->ic_macaddr[3] = val >> 8; 387 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 388 ic->ic_macaddr[4] = val & 0xff; 389 ic->ic_macaddr[5] = val >> 8; 390 391 iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 392 ic->ic_channels); 393 394 ieee80211_ifattach(ic); 395 /* override default methods */ 396 ic->ic_node_alloc = iwi_node_alloc; 397 sc->sc_node_free = ic->ic_node_free; 398 ic->ic_node_free = iwi_node_free; 399 ic->ic_raw_xmit = iwi_raw_xmit; 400 ic->ic_scan_start = iwi_scan_start; 401 ic->ic_scan_end = iwi_scan_end; 402 ic->ic_set_channel = iwi_set_channel; 403 ic->ic_scan_curchan = iwi_scan_curchan; 404 ic->ic_scan_mindwell = iwi_scan_mindwell; 405 ic->ic_wme.wme_update = iwi_wme_update; 406 407 ic->ic_vap_create = iwi_vap_create; 408 ic->ic_vap_delete = iwi_vap_delete; 409 ic->ic_ioctl = iwi_ioctl; 410 ic->ic_transmit = iwi_transmit; 411 ic->ic_parent = iwi_parent; 412 ic->ic_getradiocaps = iwi_getradiocaps; 413 414 ieee80211_radiotap_attach(ic, 415 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 416 IWI_TX_RADIOTAP_PRESENT, 417 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 418 IWI_RX_RADIOTAP_PRESENT); 419 420 iwi_sysctlattach(sc); 421 iwi_ledattach(sc); 422 423 /* 424 * Hook our interrupt after all initialization is complete. 425 */ 426 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 427 NULL, iwi_intr, sc, &sc->sc_ih); 428 if (error != 0) { 429 device_printf(dev, "could not set up interrupt\n"); 430 goto fail; 431 } 432 433 if (bootverbose) 434 ieee80211_announce(ic); 435 436 return 0; 437 fail: 438 /* XXX fix */ 439 iwi_detach(dev); 440 return ENXIO; 441 } 442 443 static int 444 iwi_detach(device_t dev) 445 { 446 struct iwi_softc *sc = device_get_softc(dev); 447 struct ieee80211com *ic = &sc->sc_ic; 448 449 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 450 451 /* NB: do early to drain any pending tasks */ 452 ieee80211_draintask(ic, &sc->sc_radiontask); 453 ieee80211_draintask(ic, &sc->sc_radiofftask); 454 ieee80211_draintask(ic, &sc->sc_restarttask); 455 ieee80211_draintask(ic, &sc->sc_disassoctask); 456 ieee80211_draintask(ic, &sc->sc_monitortask); 457 458 iwi_stop(sc); 459 460 ieee80211_ifdetach(ic); 461 462 iwi_put_firmware(sc); 463 iwi_release_fw_dma(sc); 464 465 iwi_free_cmd_ring(sc, &sc->cmdq); 466 iwi_free_tx_ring(sc, &sc->txq[0]); 467 iwi_free_tx_ring(sc, &sc->txq[1]); 468 iwi_free_tx_ring(sc, &sc->txq[2]); 469 iwi_free_tx_ring(sc, &sc->txq[3]); 470 iwi_free_rx_ring(sc, &sc->rxq); 471 472 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 473 474 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 475 sc->mem); 476 477 delete_unrhdr(sc->sc_unr); 478 mbufq_drain(&sc->sc_snd); 479 480 IWI_LOCK_DESTROY(sc); 481 482 return 0; 483 } 484 485 static struct ieee80211vap * 486 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 487 enum ieee80211_opmode opmode, int flags, 488 const uint8_t bssid[IEEE80211_ADDR_LEN], 489 const uint8_t mac[IEEE80211_ADDR_LEN]) 490 { 491 struct iwi_softc *sc = ic->ic_softc; 492 struct iwi_vap *ivp; 493 struct ieee80211vap *vap; 494 int i; 495 496 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 497 return NULL; 498 /* 499 * Get firmware image (and possibly dma memory) on mode change. 500 */ 501 if (iwi_get_firmware(sc, opmode)) 502 return NULL; 503 /* allocate DMA memory for mapping firmware image */ 504 i = sc->fw_fw.size; 505 if (sc->fw_boot.size > i) 506 i = sc->fw_boot.size; 507 /* XXX do we dma the ucode as well ? */ 508 if (sc->fw_uc.size > i) 509 i = sc->fw_uc.size; 510 if (iwi_init_fw_dma(sc, i)) 511 return NULL; 512 513 ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 514 vap = &ivp->iwi_vap; 515 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 516 /* override the default, the setting comes from the linux driver */ 517 vap->iv_bmissthreshold = 24; 518 /* override with driver methods */ 519 ivp->iwi_newstate = vap->iv_newstate; 520 vap->iv_newstate = iwi_newstate; 521 522 /* complete setup */ 523 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status, 524 mac); 525 ic->ic_opmode = opmode; 526 return vap; 527 } 528 529 static void 530 iwi_vap_delete(struct ieee80211vap *vap) 531 { 532 struct iwi_vap *ivp = IWI_VAP(vap); 533 534 ieee80211_vap_detach(vap); 535 free(ivp, M_80211_VAP); 536 } 537 538 static void 539 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 540 { 541 if (error != 0) 542 return; 543 544 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 545 546 *(bus_addr_t *)arg = segs[0].ds_addr; 547 } 548 549 static int 550 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 551 { 552 int error; 553 554 ring->count = count; 555 ring->queued = 0; 556 ring->cur = ring->next = 0; 557 558 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 559 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 560 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 561 NULL, NULL, &ring->desc_dmat); 562 if (error != 0) { 563 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 564 goto fail; 565 } 566 567 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 568 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 569 if (error != 0) { 570 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 571 goto fail; 572 } 573 574 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 575 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 576 if (error != 0) { 577 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 578 goto fail; 579 } 580 581 return 0; 582 583 fail: iwi_free_cmd_ring(sc, ring); 584 return error; 585 } 586 587 static void 588 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 589 { 590 ring->queued = 0; 591 ring->cur = ring->next = 0; 592 } 593 594 static void 595 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 596 { 597 if (ring->desc != NULL) { 598 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 599 BUS_DMASYNC_POSTWRITE); 600 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 601 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 602 } 603 604 if (ring->desc_dmat != NULL) 605 bus_dma_tag_destroy(ring->desc_dmat); 606 } 607 608 static int 609 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 610 bus_addr_t csr_ridx, bus_addr_t csr_widx) 611 { 612 int i, error; 613 614 ring->count = count; 615 ring->queued = 0; 616 ring->cur = ring->next = 0; 617 ring->csr_ridx = csr_ridx; 618 ring->csr_widx = csr_widx; 619 620 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 621 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 622 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 623 NULL, &ring->desc_dmat); 624 if (error != 0) { 625 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 626 goto fail; 627 } 628 629 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 630 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 631 if (error != 0) { 632 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 633 goto fail; 634 } 635 636 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 637 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 638 if (error != 0) { 639 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 640 goto fail; 641 } 642 643 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 644 M_NOWAIT | M_ZERO); 645 if (ring->data == NULL) { 646 device_printf(sc->sc_dev, "could not allocate soft data\n"); 647 error = ENOMEM; 648 goto fail; 649 } 650 651 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 652 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 653 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 654 if (error != 0) { 655 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 656 goto fail; 657 } 658 659 for (i = 0; i < count; i++) { 660 error = bus_dmamap_create(ring->data_dmat, 0, 661 &ring->data[i].map); 662 if (error != 0) { 663 device_printf(sc->sc_dev, "could not create DMA map\n"); 664 goto fail; 665 } 666 } 667 668 return 0; 669 670 fail: iwi_free_tx_ring(sc, ring); 671 return error; 672 } 673 674 static void 675 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 676 { 677 struct iwi_tx_data *data; 678 int i; 679 680 for (i = 0; i < ring->count; i++) { 681 data = &ring->data[i]; 682 683 if (data->m != NULL) { 684 bus_dmamap_sync(ring->data_dmat, data->map, 685 BUS_DMASYNC_POSTWRITE); 686 bus_dmamap_unload(ring->data_dmat, data->map); 687 m_freem(data->m); 688 data->m = NULL; 689 } 690 691 if (data->ni != NULL) { 692 ieee80211_free_node(data->ni); 693 data->ni = NULL; 694 } 695 } 696 697 ring->queued = 0; 698 ring->cur = ring->next = 0; 699 } 700 701 static void 702 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 703 { 704 struct iwi_tx_data *data; 705 int i; 706 707 if (ring->desc != NULL) { 708 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 709 BUS_DMASYNC_POSTWRITE); 710 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 711 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 712 } 713 714 if (ring->desc_dmat != NULL) 715 bus_dma_tag_destroy(ring->desc_dmat); 716 717 if (ring->data != NULL) { 718 for (i = 0; i < ring->count; i++) { 719 data = &ring->data[i]; 720 721 if (data->m != NULL) { 722 bus_dmamap_sync(ring->data_dmat, data->map, 723 BUS_DMASYNC_POSTWRITE); 724 bus_dmamap_unload(ring->data_dmat, data->map); 725 m_freem(data->m); 726 } 727 728 if (data->ni != NULL) 729 ieee80211_free_node(data->ni); 730 731 if (data->map != NULL) 732 bus_dmamap_destroy(ring->data_dmat, data->map); 733 } 734 735 free(ring->data, M_DEVBUF); 736 } 737 738 if (ring->data_dmat != NULL) 739 bus_dma_tag_destroy(ring->data_dmat); 740 } 741 742 static int 743 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 744 { 745 struct iwi_rx_data *data; 746 int i, error; 747 748 ring->count = count; 749 ring->cur = 0; 750 751 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 752 M_NOWAIT | M_ZERO); 753 if (ring->data == NULL) { 754 device_printf(sc->sc_dev, "could not allocate soft data\n"); 755 error = ENOMEM; 756 goto fail; 757 } 758 759 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 760 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 761 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 762 if (error != 0) { 763 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 764 goto fail; 765 } 766 767 for (i = 0; i < count; i++) { 768 data = &ring->data[i]; 769 770 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 771 if (error != 0) { 772 device_printf(sc->sc_dev, "could not create DMA map\n"); 773 goto fail; 774 } 775 776 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 777 if (data->m == NULL) { 778 device_printf(sc->sc_dev, 779 "could not allocate rx mbuf\n"); 780 error = ENOMEM; 781 goto fail; 782 } 783 784 error = bus_dmamap_load(ring->data_dmat, data->map, 785 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 786 &data->physaddr, 0); 787 if (error != 0) { 788 device_printf(sc->sc_dev, 789 "could not load rx buf DMA map"); 790 goto fail; 791 } 792 793 data->reg = IWI_CSR_RX_BASE + i * 4; 794 } 795 796 return 0; 797 798 fail: iwi_free_rx_ring(sc, ring); 799 return error; 800 } 801 802 static void 803 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 804 { 805 ring->cur = 0; 806 } 807 808 static void 809 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 810 { 811 struct iwi_rx_data *data; 812 int i; 813 814 if (ring->data != NULL) { 815 for (i = 0; i < ring->count; i++) { 816 data = &ring->data[i]; 817 818 if (data->m != NULL) { 819 bus_dmamap_sync(ring->data_dmat, data->map, 820 BUS_DMASYNC_POSTREAD); 821 bus_dmamap_unload(ring->data_dmat, data->map); 822 m_freem(data->m); 823 } 824 825 if (data->map != NULL) 826 bus_dmamap_destroy(ring->data_dmat, data->map); 827 } 828 829 free(ring->data, M_DEVBUF); 830 } 831 832 if (ring->data_dmat != NULL) 833 bus_dma_tag_destroy(ring->data_dmat); 834 } 835 836 static int 837 iwi_shutdown(device_t dev) 838 { 839 struct iwi_softc *sc = device_get_softc(dev); 840 841 iwi_stop(sc); 842 iwi_put_firmware(sc); /* ??? XXX */ 843 844 return 0; 845 } 846 847 static int 848 iwi_suspend(device_t dev) 849 { 850 struct iwi_softc *sc = device_get_softc(dev); 851 struct ieee80211com *ic = &sc->sc_ic; 852 853 ieee80211_suspend_all(ic); 854 return 0; 855 } 856 857 static int 858 iwi_resume(device_t dev) 859 { 860 struct iwi_softc *sc = device_get_softc(dev); 861 struct ieee80211com *ic = &sc->sc_ic; 862 863 pci_write_config(dev, 0x41, 0, 1); 864 865 ieee80211_resume_all(ic); 866 return 0; 867 } 868 869 static struct ieee80211_node * 870 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 871 { 872 struct iwi_node *in; 873 874 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 875 if (in == NULL) 876 return NULL; 877 /* XXX assign sta table entry for adhoc */ 878 in->in_station = -1; 879 880 return &in->in_node; 881 } 882 883 static void 884 iwi_node_free(struct ieee80211_node *ni) 885 { 886 struct ieee80211com *ic = ni->ni_ic; 887 struct iwi_softc *sc = ic->ic_softc; 888 struct iwi_node *in = (struct iwi_node *)ni; 889 890 if (in->in_station != -1) { 891 DPRINTF(("%s mac %6D station %u\n", __func__, 892 ni->ni_macaddr, ":", in->in_station)); 893 free_unr(sc->sc_unr, in->in_station); 894 } 895 896 sc->sc_node_free(ni); 897 } 898 899 /* 900 * Convert h/w rate code to IEEE rate code. 901 */ 902 static int 903 iwi_cvtrate(int iwirate) 904 { 905 switch (iwirate) { 906 case IWI_RATE_DS1: return 2; 907 case IWI_RATE_DS2: return 4; 908 case IWI_RATE_DS5: return 11; 909 case IWI_RATE_DS11: return 22; 910 case IWI_RATE_OFDM6: return 12; 911 case IWI_RATE_OFDM9: return 18; 912 case IWI_RATE_OFDM12: return 24; 913 case IWI_RATE_OFDM18: return 36; 914 case IWI_RATE_OFDM24: return 48; 915 case IWI_RATE_OFDM36: return 72; 916 case IWI_RATE_OFDM48: return 96; 917 case IWI_RATE_OFDM54: return 108; 918 } 919 return 0; 920 } 921 922 /* 923 * The firmware automatically adapts the transmit speed. We report its current 924 * value here. 925 */ 926 static void 927 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 928 { 929 struct ieee80211vap *vap = ifp->if_softc; 930 struct ieee80211com *ic = vap->iv_ic; 931 struct iwi_softc *sc = ic->ic_softc; 932 struct ieee80211_node *ni; 933 934 /* read current transmission rate from adapter */ 935 ni = ieee80211_ref_node(vap->iv_bss); 936 ni->ni_txrate = 937 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 938 ieee80211_free_node(ni); 939 ieee80211_media_status(ifp, imr); 940 } 941 942 static int 943 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 944 { 945 struct iwi_vap *ivp = IWI_VAP(vap); 946 struct ieee80211com *ic = vap->iv_ic; 947 struct iwi_softc *sc = ic->ic_softc; 948 IWI_LOCK_DECL; 949 950 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 951 ieee80211_state_name[vap->iv_state], 952 ieee80211_state_name[nstate], sc->flags)); 953 954 IEEE80211_UNLOCK(ic); 955 IWI_LOCK(sc); 956 switch (nstate) { 957 case IEEE80211_S_INIT: 958 /* 959 * NB: don't try to do this if iwi_stop_master has 960 * shutdown the firmware and disabled interrupts. 961 */ 962 if (vap->iv_state == IEEE80211_S_RUN && 963 (sc->flags & IWI_FLAG_FW_INITED)) 964 iwi_disassociate(sc, 0); 965 break; 966 case IEEE80211_S_AUTH: 967 iwi_auth_and_assoc(sc, vap); 968 break; 969 case IEEE80211_S_RUN: 970 if (vap->iv_opmode == IEEE80211_M_IBSS && 971 vap->iv_state == IEEE80211_S_SCAN) { 972 /* 973 * XXX when joining an ibss network we are called 974 * with a SCAN -> RUN transition on scan complete. 975 * Use that to call iwi_auth_and_assoc. On completing 976 * the join we are then called again with an 977 * AUTH -> RUN transition and we want to do nothing. 978 * This is all totally bogus and needs to be redone. 979 */ 980 iwi_auth_and_assoc(sc, vap); 981 } else if (vap->iv_opmode == IEEE80211_M_MONITOR) 982 ieee80211_runtask(ic, &sc->sc_monitortask); 983 break; 984 case IEEE80211_S_ASSOC: 985 /* 986 * If we are transitioning from AUTH then just wait 987 * for the ASSOC status to come back from the firmware. 988 * Otherwise we need to issue the association request. 989 */ 990 if (vap->iv_state == IEEE80211_S_AUTH) 991 break; 992 iwi_auth_and_assoc(sc, vap); 993 break; 994 default: 995 break; 996 } 997 IWI_UNLOCK(sc); 998 IEEE80211_LOCK(ic); 999 return ivp->iwi_newstate(vap, nstate, arg); 1000 } 1001 1002 /* 1003 * WME parameters coming from IEEE 802.11e specification. These values are 1004 * already declared in ieee80211_proto.c, but they are static so they can't 1005 * be reused here. 1006 */ 1007 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1008 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1009 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1010 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1011 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1012 }; 1013 1014 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1015 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1016 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1017 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1018 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1019 }; 1020 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1021 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1022 1023 static void 1024 iwi_wme_init(struct iwi_softc *sc) 1025 { 1026 const struct wmeParams *wmep; 1027 int ac; 1028 1029 memset(sc->wme, 0, sizeof sc->wme); 1030 for (ac = 0; ac < WME_NUM_AC; ac++) { 1031 /* set WME values for CCK modulation */ 1032 wmep = &iwi_wme_cck_params[ac]; 1033 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1034 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1035 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1036 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1037 sc->wme[1].acm[ac] = wmep->wmep_acm; 1038 1039 /* set WME values for OFDM modulation */ 1040 wmep = &iwi_wme_ofdm_params[ac]; 1041 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1042 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1043 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1044 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1045 sc->wme[2].acm[ac] = wmep->wmep_acm; 1046 } 1047 } 1048 1049 static int 1050 iwi_wme_setparams(struct iwi_softc *sc) 1051 { 1052 struct ieee80211com *ic = &sc->sc_ic; 1053 struct chanAccParams chp; 1054 const struct wmeParams *wmep; 1055 int ac; 1056 1057 ieee80211_wme_ic_getparams(ic, &chp); 1058 1059 for (ac = 0; ac < WME_NUM_AC; ac++) { 1060 /* set WME values for current operating mode */ 1061 wmep = &chp.cap_wmeParams[ac]; 1062 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1063 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1064 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1065 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1066 sc->wme[0].acm[ac] = wmep->wmep_acm; 1067 } 1068 1069 DPRINTF(("Setting WME parameters\n")); 1070 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1071 } 1072 #undef IWI_USEC 1073 #undef IWI_EXP2 1074 1075 static int 1076 iwi_wme_update(struct ieee80211com *ic) 1077 { 1078 struct iwi_softc *sc = ic->ic_softc; 1079 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1080 IWI_LOCK_DECL; 1081 1082 /* 1083 * We may be called to update the WME parameters in 1084 * the adapter at various places. If we're already 1085 * associated then initiate the request immediately; 1086 * otherwise we assume the params will get sent down 1087 * to the adapter as part of the work iwi_auth_and_assoc 1088 * does. 1089 */ 1090 if (vap->iv_state == IEEE80211_S_RUN) { 1091 IWI_LOCK(sc); 1092 iwi_wme_setparams(sc); 1093 IWI_UNLOCK(sc); 1094 } 1095 return (0); 1096 } 1097 1098 static int 1099 iwi_wme_setie(struct iwi_softc *sc) 1100 { 1101 struct ieee80211_wme_info wme; 1102 1103 memset(&wme, 0, sizeof wme); 1104 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1105 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1106 wme.wme_oui[0] = 0x00; 1107 wme.wme_oui[1] = 0x50; 1108 wme.wme_oui[2] = 0xf2; 1109 wme.wme_type = WME_OUI_TYPE; 1110 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1111 wme.wme_version = WME_VERSION; 1112 wme.wme_info = 0; 1113 1114 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1115 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1116 } 1117 1118 /* 1119 * Read 16 bits at address 'addr' from the serial EEPROM. 1120 */ 1121 static uint16_t 1122 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1123 { 1124 uint32_t tmp; 1125 uint16_t val; 1126 int n; 1127 1128 /* clock C once before the first command */ 1129 IWI_EEPROM_CTL(sc, 0); 1130 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1131 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1132 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1133 1134 /* write start bit (1) */ 1135 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1136 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1137 1138 /* write READ opcode (10) */ 1139 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1140 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1141 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1142 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1143 1144 /* write address A7-A0 */ 1145 for (n = 7; n >= 0; n--) { 1146 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1147 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1148 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1149 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1150 } 1151 1152 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1153 1154 /* read data Q15-Q0 */ 1155 val = 0; 1156 for (n = 15; n >= 0; n--) { 1157 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1158 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1159 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1160 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1161 } 1162 1163 IWI_EEPROM_CTL(sc, 0); 1164 1165 /* clear Chip Select and clock C */ 1166 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1167 IWI_EEPROM_CTL(sc, 0); 1168 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1169 1170 return val; 1171 } 1172 1173 static void 1174 iwi_setcurchan(struct iwi_softc *sc, int chan) 1175 { 1176 struct ieee80211com *ic = &sc->sc_ic; 1177 1178 sc->curchan = chan; 1179 ieee80211_radiotap_chan_change(ic); 1180 } 1181 1182 static void 1183 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1184 struct iwi_frame *frame) 1185 { 1186 struct ieee80211com *ic = &sc->sc_ic; 1187 struct mbuf *mnew, *m; 1188 struct ieee80211_node *ni; 1189 int type, error, framelen; 1190 int8_t rssi, nf; 1191 IWI_LOCK_DECL; 1192 1193 framelen = le16toh(frame->len); 1194 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1195 /* 1196 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1197 * out of bounds; need to figure out how to limit 1198 * frame size in the firmware 1199 */ 1200 /* XXX stat */ 1201 DPRINTFN(1, 1202 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1203 le16toh(frame->len), frame->chan, frame->rssi, 1204 frame->rssi_dbm)); 1205 return; 1206 } 1207 1208 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1209 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1210 1211 if (frame->chan != sc->curchan) 1212 iwi_setcurchan(sc, frame->chan); 1213 1214 /* 1215 * Try to allocate a new mbuf for this ring element and load it before 1216 * processing the current mbuf. If the ring element cannot be loaded, 1217 * drop the received packet and reuse the old mbuf. In the unlikely 1218 * case that the old mbuf can't be reloaded either, explicitly panic. 1219 */ 1220 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1221 if (mnew == NULL) { 1222 counter_u64_add(ic->ic_ierrors, 1); 1223 return; 1224 } 1225 1226 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1227 1228 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1229 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1230 0); 1231 if (error != 0) { 1232 m_freem(mnew); 1233 1234 /* try to reload the old mbuf */ 1235 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1236 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1237 &data->physaddr, 0); 1238 if (error != 0) { 1239 /* very unlikely that it will fail... */ 1240 panic("%s: could not load old rx mbuf", 1241 device_get_name(sc->sc_dev)); 1242 } 1243 counter_u64_add(ic->ic_ierrors, 1); 1244 return; 1245 } 1246 1247 /* 1248 * New mbuf successfully loaded, update Rx ring and continue 1249 * processing. 1250 */ 1251 m = data->m; 1252 data->m = mnew; 1253 CSR_WRITE_4(sc, data->reg, data->physaddr); 1254 1255 /* finalize mbuf */ 1256 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1257 sizeof (struct iwi_frame) + framelen; 1258 1259 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1260 1261 rssi = frame->rssi_dbm; 1262 nf = -95; 1263 if (ieee80211_radiotap_active(ic)) { 1264 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1265 1266 tap->wr_flags = 0; 1267 tap->wr_antsignal = rssi; 1268 tap->wr_antnoise = nf; 1269 tap->wr_rate = iwi_cvtrate(frame->rate); 1270 tap->wr_antenna = frame->antenna; 1271 } 1272 IWI_UNLOCK(sc); 1273 1274 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1275 if (ni != NULL) { 1276 type = ieee80211_input(ni, m, rssi, nf); 1277 ieee80211_free_node(ni); 1278 } else 1279 type = ieee80211_input_all(ic, m, rssi, nf); 1280 1281 IWI_LOCK(sc); 1282 if (sc->sc_softled) { 1283 /* 1284 * Blink for any data frame. Otherwise do a 1285 * heartbeat-style blink when idle. The latter 1286 * is mainly for station mode where we depend on 1287 * periodic beacon frames to trigger the poll event. 1288 */ 1289 if (type == IEEE80211_FC0_TYPE_DATA) { 1290 sc->sc_rxrate = frame->rate; 1291 iwi_led_event(sc, IWI_LED_RX); 1292 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1293 iwi_led_event(sc, IWI_LED_POLL); 1294 } 1295 } 1296 1297 /* 1298 * Check for an association response frame to see if QoS 1299 * has been negotiated. We parse just enough to figure 1300 * out if we're supposed to use QoS. The proper solution 1301 * is to pass the frame up so ieee80211_input can do the 1302 * work but that's made hard by how things currently are 1303 * done in the driver. 1304 */ 1305 static void 1306 iwi_checkforqos(struct ieee80211vap *vap, 1307 const struct ieee80211_frame *wh, int len) 1308 { 1309 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1310 const uint8_t *frm, *efrm, *wme; 1311 struct ieee80211_node *ni; 1312 uint16_t capinfo, status, associd; 1313 1314 /* NB: +8 for capinfo, status, associd, and first ie */ 1315 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1316 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1317 return; 1318 /* 1319 * asresp frame format 1320 * [2] capability information 1321 * [2] status 1322 * [2] association ID 1323 * [tlv] supported rates 1324 * [tlv] extended supported rates 1325 * [tlv] WME 1326 */ 1327 frm = (const uint8_t *)&wh[1]; 1328 efrm = ((const uint8_t *) wh) + len; 1329 1330 capinfo = le16toh(*(const uint16_t *)frm); 1331 frm += 2; 1332 status = le16toh(*(const uint16_t *)frm); 1333 frm += 2; 1334 associd = le16toh(*(const uint16_t *)frm); 1335 frm += 2; 1336 1337 wme = NULL; 1338 while (efrm - frm > 1) { 1339 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); 1340 switch (*frm) { 1341 case IEEE80211_ELEMID_VENDOR: 1342 if (iswmeoui(frm)) 1343 wme = frm; 1344 break; 1345 } 1346 frm += frm[1] + 2; 1347 } 1348 1349 ni = ieee80211_ref_node(vap->iv_bss); 1350 ni->ni_capinfo = capinfo; 1351 ni->ni_associd = associd & 0x3fff; 1352 if (wme != NULL) 1353 ni->ni_flags |= IEEE80211_NODE_QOS; 1354 else 1355 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1356 ieee80211_free_node(ni); 1357 #undef SUBTYPE 1358 } 1359 1360 static void 1361 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif) 1362 { 1363 struct iwi_notif_link_quality *lq; 1364 int len; 1365 1366 len = le16toh(notif->len); 1367 1368 DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n", 1369 notif->type, 1370 len, 1371 sizeof(struct iwi_notif_link_quality) 1372 )); 1373 1374 /* enforce length */ 1375 if (len != sizeof(struct iwi_notif_link_quality)) { 1376 DPRINTFN(5, ("Notification: (%u) too short (%d)\n", 1377 notif->type, 1378 len)); 1379 return; 1380 } 1381 1382 lq = (struct iwi_notif_link_quality *)(notif + 1); 1383 memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual)); 1384 sc->sc_linkqual_valid = 1; 1385 } 1386 1387 /* 1388 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1389 */ 1390 1391 static void 1392 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1393 { 1394 struct ieee80211com *ic = &sc->sc_ic; 1395 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1396 struct iwi_notif_scan_channel *chan; 1397 struct iwi_notif_scan_complete *scan; 1398 struct iwi_notif_authentication *auth; 1399 struct iwi_notif_association *assoc; 1400 struct iwi_notif_beacon_state *beacon; 1401 1402 switch (notif->type) { 1403 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1404 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1405 1406 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1407 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1408 1409 /* Reset the timer, the scan is still going */ 1410 sc->sc_state_timer = 3; 1411 break; 1412 1413 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1414 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1415 1416 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1417 scan->status)); 1418 1419 IWI_STATE_END(sc, IWI_FW_SCANNING); 1420 1421 /* 1422 * Monitor mode works by doing a passive scan to set 1423 * the channel and enable rx. Because we don't want 1424 * to abort a scan lest the firmware crash we scan 1425 * for a short period of time and automatically restart 1426 * the scan when notified the sweep has completed. 1427 */ 1428 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1429 ieee80211_runtask(ic, &sc->sc_monitortask); 1430 break; 1431 } 1432 1433 if (scan->status == IWI_SCAN_COMPLETED) { 1434 /* NB: don't need to defer, net80211 does it for us */ 1435 ieee80211_scan_next(vap); 1436 } 1437 break; 1438 1439 case IWI_NOTIF_TYPE_AUTHENTICATION: 1440 auth = (struct iwi_notif_authentication *)(notif + 1); 1441 switch (auth->state) { 1442 case IWI_AUTH_SUCCESS: 1443 DPRINTFN(2, ("Authentication succeeeded\n")); 1444 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1445 break; 1446 case IWI_AUTH_FAIL: 1447 /* 1448 * These are delivered as an unsolicited deauth 1449 * (e.g. due to inactivity) or in response to an 1450 * associate request. 1451 */ 1452 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1453 if (vap->iv_state != IEEE80211_S_RUN) { 1454 DPRINTFN(2, ("Authentication failed\n")); 1455 vap->iv_stats.is_rx_auth_fail++; 1456 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1457 } else { 1458 DPRINTFN(2, ("Deauthenticated\n")); 1459 vap->iv_stats.is_rx_deauth++; 1460 } 1461 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1462 break; 1463 case IWI_AUTH_SENT_1: 1464 case IWI_AUTH_RECV_2: 1465 case IWI_AUTH_SEQ1_PASS: 1466 break; 1467 case IWI_AUTH_SEQ1_FAIL: 1468 DPRINTFN(2, ("Initial authentication handshake failed; " 1469 "you probably need shared key\n")); 1470 vap->iv_stats.is_rx_auth_fail++; 1471 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1472 /* XXX retry shared key when in auto */ 1473 break; 1474 default: 1475 device_printf(sc->sc_dev, 1476 "unknown authentication state %u\n", auth->state); 1477 break; 1478 } 1479 break; 1480 1481 case IWI_NOTIF_TYPE_ASSOCIATION: 1482 assoc = (struct iwi_notif_association *)(notif + 1); 1483 switch (assoc->state) { 1484 case IWI_AUTH_SUCCESS: 1485 /* re-association, do nothing */ 1486 break; 1487 case IWI_ASSOC_SUCCESS: 1488 DPRINTFN(2, ("Association succeeded\n")); 1489 sc->flags |= IWI_FLAG_ASSOCIATED; 1490 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1491 iwi_checkforqos(vap, 1492 (const struct ieee80211_frame *)(assoc+1), 1493 le16toh(notif->len) - sizeof(*assoc) - 1); 1494 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1495 break; 1496 case IWI_ASSOC_INIT: 1497 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1498 switch (sc->fw_state) { 1499 case IWI_FW_ASSOCIATING: 1500 DPRINTFN(2, ("Association failed\n")); 1501 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1502 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1503 break; 1504 1505 case IWI_FW_DISASSOCIATING: 1506 DPRINTFN(2, ("Dissassociated\n")); 1507 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1508 vap->iv_stats.is_rx_disassoc++; 1509 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1510 break; 1511 } 1512 break; 1513 default: 1514 device_printf(sc->sc_dev, 1515 "unknown association state %u\n", assoc->state); 1516 break; 1517 } 1518 break; 1519 1520 case IWI_NOTIF_TYPE_BEACON: 1521 /* XXX check struct length */ 1522 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1523 1524 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1525 beacon->state, le32toh(beacon->number))); 1526 1527 if (beacon->state == IWI_BEACON_MISS) { 1528 /* 1529 * The firmware notifies us of every beacon miss 1530 * so we need to track the count against the 1531 * configured threshold before notifying the 1532 * 802.11 layer. 1533 * XXX try to roam, drop assoc only on much higher count 1534 */ 1535 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1536 DPRINTF(("Beacon miss: %u >= %u\n", 1537 le32toh(beacon->number), 1538 vap->iv_bmissthreshold)); 1539 vap->iv_stats.is_beacon_miss++; 1540 /* 1541 * It's pointless to notify the 802.11 layer 1542 * as it'll try to send a probe request (which 1543 * we'll discard) and then timeout and drop us 1544 * into scan state. Instead tell the firmware 1545 * to disassociate and then on completion we'll 1546 * kick the state machine to scan. 1547 */ 1548 ieee80211_runtask(ic, &sc->sc_disassoctask); 1549 } 1550 } 1551 break; 1552 1553 case IWI_NOTIF_TYPE_CALIBRATION: 1554 case IWI_NOTIF_TYPE_NOISE: 1555 /* XXX handle? */ 1556 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1557 break; 1558 case IWI_NOTIF_TYPE_LINK_QUALITY: 1559 iwi_notif_link_quality(sc, notif); 1560 break; 1561 1562 default: 1563 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1564 notif->type, notif->flags, le16toh(notif->len))); 1565 break; 1566 } 1567 } 1568 1569 static void 1570 iwi_rx_intr(struct iwi_softc *sc) 1571 { 1572 struct iwi_rx_data *data; 1573 struct iwi_hdr *hdr; 1574 uint32_t hw; 1575 1576 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1577 1578 for (; sc->rxq.cur != hw;) { 1579 data = &sc->rxq.data[sc->rxq.cur]; 1580 1581 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1582 BUS_DMASYNC_POSTREAD); 1583 1584 hdr = mtod(data->m, struct iwi_hdr *); 1585 1586 switch (hdr->type) { 1587 case IWI_HDR_TYPE_FRAME: 1588 iwi_frame_intr(sc, data, sc->rxq.cur, 1589 (struct iwi_frame *)(hdr + 1)); 1590 break; 1591 1592 case IWI_HDR_TYPE_NOTIF: 1593 iwi_notification_intr(sc, 1594 (struct iwi_notif *)(hdr + 1)); 1595 break; 1596 1597 default: 1598 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1599 hdr->type); 1600 } 1601 1602 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1603 1604 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1605 } 1606 1607 /* tell the firmware what we have processed */ 1608 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1609 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1610 } 1611 1612 static void 1613 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1614 { 1615 struct iwi_tx_data *data; 1616 uint32_t hw; 1617 1618 hw = CSR_READ_4(sc, txq->csr_ridx); 1619 1620 while (txq->next != hw) { 1621 data = &txq->data[txq->next]; 1622 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1623 bus_dmamap_sync(txq->data_dmat, data->map, 1624 BUS_DMASYNC_POSTWRITE); 1625 bus_dmamap_unload(txq->data_dmat, data->map); 1626 ieee80211_tx_complete(data->ni, data->m, 0); 1627 data->ni = NULL; 1628 data->m = NULL; 1629 txq->queued--; 1630 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1631 } 1632 sc->sc_tx_timer = 0; 1633 if (sc->sc_softled) 1634 iwi_led_event(sc, IWI_LED_TX); 1635 iwi_start(sc); 1636 } 1637 1638 static void 1639 iwi_fatal_error_intr(struct iwi_softc *sc) 1640 { 1641 struct ieee80211com *ic = &sc->sc_ic; 1642 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1643 1644 device_printf(sc->sc_dev, "firmware error\n"); 1645 if (vap != NULL) 1646 ieee80211_cancel_scan(vap); 1647 ieee80211_runtask(ic, &sc->sc_restarttask); 1648 1649 sc->flags &= ~IWI_FLAG_BUSY; 1650 sc->sc_busy_timer = 0; 1651 wakeup(sc); 1652 } 1653 1654 static void 1655 iwi_radio_off_intr(struct iwi_softc *sc) 1656 { 1657 1658 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask); 1659 } 1660 1661 static void 1662 iwi_intr(void *arg) 1663 { 1664 struct iwi_softc *sc = arg; 1665 uint32_t r; 1666 IWI_LOCK_DECL; 1667 1668 IWI_LOCK(sc); 1669 1670 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1671 IWI_UNLOCK(sc); 1672 return; 1673 } 1674 1675 /* acknowledge interrupts */ 1676 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1677 1678 if (r & IWI_INTR_FATAL_ERROR) { 1679 iwi_fatal_error_intr(sc); 1680 goto done; 1681 } 1682 1683 if (r & IWI_INTR_FW_INITED) { 1684 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1685 wakeup(sc); 1686 } 1687 1688 if (r & IWI_INTR_RADIO_OFF) 1689 iwi_radio_off_intr(sc); 1690 1691 if (r & IWI_INTR_CMD_DONE) { 1692 sc->flags &= ~IWI_FLAG_BUSY; 1693 sc->sc_busy_timer = 0; 1694 wakeup(sc); 1695 } 1696 1697 if (r & IWI_INTR_TX1_DONE) 1698 iwi_tx_intr(sc, &sc->txq[0]); 1699 1700 if (r & IWI_INTR_TX2_DONE) 1701 iwi_tx_intr(sc, &sc->txq[1]); 1702 1703 if (r & IWI_INTR_TX3_DONE) 1704 iwi_tx_intr(sc, &sc->txq[2]); 1705 1706 if (r & IWI_INTR_TX4_DONE) 1707 iwi_tx_intr(sc, &sc->txq[3]); 1708 1709 if (r & IWI_INTR_RX_DONE) 1710 iwi_rx_intr(sc); 1711 1712 if (r & IWI_INTR_PARITY_ERROR) { 1713 /* XXX rate-limit */ 1714 device_printf(sc->sc_dev, "parity error\n"); 1715 } 1716 done: 1717 IWI_UNLOCK(sc); 1718 } 1719 1720 static int 1721 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1722 { 1723 struct iwi_cmd_desc *desc; 1724 1725 IWI_LOCK_ASSERT(sc); 1726 1727 if (sc->flags & IWI_FLAG_BUSY) { 1728 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1729 __func__, type); 1730 return EAGAIN; 1731 } 1732 sc->flags |= IWI_FLAG_BUSY; 1733 sc->sc_busy_timer = 2; 1734 1735 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1736 1737 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1738 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1739 desc->type = type; 1740 desc->len = len; 1741 memcpy(desc->data, data, len); 1742 1743 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1744 BUS_DMASYNC_PREWRITE); 1745 1746 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1747 type, len)); 1748 1749 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1750 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1751 1752 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1753 } 1754 1755 static void 1756 iwi_write_ibssnode(struct iwi_softc *sc, 1757 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1758 { 1759 struct iwi_ibssnode node; 1760 1761 /* write node information into NIC memory */ 1762 memset(&node, 0, sizeof node); 1763 IEEE80211_ADDR_COPY(node.bssid, addr); 1764 1765 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1766 1767 CSR_WRITE_REGION_1(sc, 1768 IWI_CSR_NODE_BASE + entry * sizeof node, 1769 (uint8_t *)&node, sizeof node); 1770 } 1771 1772 static int 1773 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1774 int ac) 1775 { 1776 struct ieee80211vap *vap = ni->ni_vap; 1777 struct iwi_node *in = (struct iwi_node *)ni; 1778 const struct ieee80211_frame *wh; 1779 struct ieee80211_key *k; 1780 struct iwi_tx_ring *txq = &sc->txq[ac]; 1781 struct iwi_tx_data *data; 1782 struct iwi_tx_desc *desc; 1783 struct mbuf *mnew; 1784 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1785 int error, nsegs, hdrlen, i; 1786 int ismcast, flags, xflags, staid; 1787 1788 IWI_LOCK_ASSERT(sc); 1789 wh = mtod(m0, const struct ieee80211_frame *); 1790 /* NB: only data frames use this path */ 1791 hdrlen = ieee80211_hdrsize(wh); 1792 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1793 flags = xflags = 0; 1794 1795 if (!ismcast) 1796 flags |= IWI_DATA_FLAG_NEED_ACK; 1797 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1798 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1799 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1800 xflags |= IWI_DATA_XFLAG_QOS; 1801 if (ieee80211_wme_vap_ac_is_noack(vap, ac)) 1802 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1803 } 1804 1805 /* 1806 * This is only used in IBSS mode where the firmware expect an index 1807 * in a h/w table instead of a destination address. 1808 */ 1809 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1810 if (!ismcast) { 1811 if (in->in_station == -1) { 1812 in->in_station = alloc_unr(sc->sc_unr); 1813 if (in->in_station == -1) { 1814 /* h/w table is full */ 1815 if_inc_counter(ni->ni_vap->iv_ifp, 1816 IFCOUNTER_OERRORS, 1); 1817 m_freem(m0); 1818 ieee80211_free_node(ni); 1819 return 0; 1820 } 1821 iwi_write_ibssnode(sc, 1822 ni->ni_macaddr, in->in_station); 1823 } 1824 staid = in->in_station; 1825 } else { 1826 /* 1827 * Multicast addresses have no associated node 1828 * so there will be no station entry. We reserve 1829 * entry 0 for one mcast address and use that. 1830 * If there are many being used this will be 1831 * expensive and we'll need to do a better job 1832 * but for now this handles the broadcast case. 1833 */ 1834 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1835 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1836 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1837 } 1838 staid = 0; 1839 } 1840 } else 1841 staid = 0; 1842 1843 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1844 k = ieee80211_crypto_encap(ni, m0); 1845 if (k == NULL) { 1846 m_freem(m0); 1847 return ENOBUFS; 1848 } 1849 1850 /* packet header may have moved, reset our local pointer */ 1851 wh = mtod(m0, struct ieee80211_frame *); 1852 } 1853 1854 if (ieee80211_radiotap_active_vap(vap)) { 1855 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1856 1857 tap->wt_flags = 0; 1858 1859 ieee80211_radiotap_tx(vap, m0); 1860 } 1861 1862 data = &txq->data[txq->cur]; 1863 desc = &txq->desc[txq->cur]; 1864 1865 /* save and trim IEEE802.11 header */ 1866 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1867 m_adj(m0, hdrlen); 1868 1869 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1870 &nsegs, 0); 1871 if (error != 0 && error != EFBIG) { 1872 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1873 error); 1874 m_freem(m0); 1875 return error; 1876 } 1877 if (error != 0) { 1878 mnew = m_defrag(m0, M_NOWAIT); 1879 if (mnew == NULL) { 1880 device_printf(sc->sc_dev, 1881 "could not defragment mbuf\n"); 1882 m_freem(m0); 1883 return ENOBUFS; 1884 } 1885 m0 = mnew; 1886 1887 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1888 m0, segs, &nsegs, 0); 1889 if (error != 0) { 1890 device_printf(sc->sc_dev, 1891 "could not map mbuf (error %d)\n", error); 1892 m_freem(m0); 1893 return error; 1894 } 1895 } 1896 1897 data->m = m0; 1898 data->ni = ni; 1899 1900 desc->hdr.type = IWI_HDR_TYPE_DATA; 1901 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1902 desc->station = staid; 1903 desc->cmd = IWI_DATA_CMD_TX; 1904 desc->len = htole16(m0->m_pkthdr.len); 1905 desc->flags = flags; 1906 desc->xflags = xflags; 1907 1908 #if 0 1909 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1910 desc->wep_txkey = vap->iv_def_txkey; 1911 else 1912 #endif 1913 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1914 1915 desc->nseg = htole32(nsegs); 1916 for (i = 0; i < nsegs; i++) { 1917 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1918 desc->seg_len[i] = htole16(segs[i].ds_len); 1919 } 1920 1921 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1922 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1923 1924 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1925 ac, txq->cur, le16toh(desc->len), nsegs)); 1926 1927 txq->queued++; 1928 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1929 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1930 1931 return 0; 1932 } 1933 1934 static int 1935 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1936 const struct ieee80211_bpf_params *params) 1937 { 1938 /* no support; just discard */ 1939 m_freem(m); 1940 ieee80211_free_node(ni); 1941 return 0; 1942 } 1943 1944 static int 1945 iwi_transmit(struct ieee80211com *ic, struct mbuf *m) 1946 { 1947 struct iwi_softc *sc = ic->ic_softc; 1948 int error; 1949 IWI_LOCK_DECL; 1950 1951 IWI_LOCK(sc); 1952 if (!sc->sc_running) { 1953 IWI_UNLOCK(sc); 1954 return (ENXIO); 1955 } 1956 error = mbufq_enqueue(&sc->sc_snd, m); 1957 if (error) { 1958 IWI_UNLOCK(sc); 1959 return (error); 1960 } 1961 iwi_start(sc); 1962 IWI_UNLOCK(sc); 1963 return (0); 1964 } 1965 1966 static void 1967 iwi_start(struct iwi_softc *sc) 1968 { 1969 struct mbuf *m; 1970 struct ieee80211_node *ni; 1971 int ac; 1972 1973 IWI_LOCK_ASSERT(sc); 1974 1975 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1976 ac = M_WME_GETAC(m); 1977 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1978 /* there is no place left in this ring; tail drop */ 1979 /* XXX tail drop */ 1980 mbufq_prepend(&sc->sc_snd, m); 1981 break; 1982 } 1983 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1984 if (iwi_tx_start(sc, m, ni, ac) != 0) { 1985 if_inc_counter(ni->ni_vap->iv_ifp, 1986 IFCOUNTER_OERRORS, 1); 1987 ieee80211_free_node(ni); 1988 break; 1989 } 1990 sc->sc_tx_timer = 5; 1991 } 1992 } 1993 1994 static void 1995 iwi_watchdog(void *arg) 1996 { 1997 struct iwi_softc *sc = arg; 1998 struct ieee80211com *ic = &sc->sc_ic; 1999 2000 IWI_LOCK_ASSERT(sc); 2001 2002 if (sc->sc_tx_timer > 0) { 2003 if (--sc->sc_tx_timer == 0) { 2004 device_printf(sc->sc_dev, "device timeout\n"); 2005 counter_u64_add(ic->ic_oerrors, 1); 2006 ieee80211_runtask(ic, &sc->sc_restarttask); 2007 } 2008 } 2009 if (sc->sc_state_timer > 0) { 2010 if (--sc->sc_state_timer == 0) { 2011 device_printf(sc->sc_dev, 2012 "firmware stuck in state %d, resetting\n", 2013 sc->fw_state); 2014 if (sc->fw_state == IWI_FW_SCANNING) 2015 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2016 ieee80211_runtask(ic, &sc->sc_restarttask); 2017 sc->sc_state_timer = 3; 2018 } 2019 } 2020 if (sc->sc_busy_timer > 0) { 2021 if (--sc->sc_busy_timer == 0) { 2022 device_printf(sc->sc_dev, 2023 "firmware command timeout, resetting\n"); 2024 ieee80211_runtask(ic, &sc->sc_restarttask); 2025 } 2026 } 2027 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2028 } 2029 2030 static void 2031 iwi_parent(struct ieee80211com *ic) 2032 { 2033 struct iwi_softc *sc = ic->ic_softc; 2034 int startall = 0; 2035 IWI_LOCK_DECL; 2036 2037 IWI_LOCK(sc); 2038 if (ic->ic_nrunning > 0) { 2039 if (!sc->sc_running) { 2040 iwi_init_locked(sc); 2041 startall = 1; 2042 } 2043 } else if (sc->sc_running) 2044 iwi_stop_locked(sc); 2045 IWI_UNLOCK(sc); 2046 if (startall) 2047 ieee80211_start_all(ic); 2048 } 2049 2050 static int 2051 iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 2052 { 2053 struct ifreq *ifr = data; 2054 struct iwi_softc *sc = ic->ic_softc; 2055 int error; 2056 IWI_LOCK_DECL; 2057 2058 IWI_LOCK(sc); 2059 switch (cmd) { 2060 case SIOCGIWISTATS: 2061 /* XXX validate permissions/memory/etc? */ 2062 error = copyout(&sc->sc_linkqual, ifr_data_get_ptr(ifr), 2063 sizeof(struct iwi_notif_link_quality)); 2064 break; 2065 case SIOCZIWISTATS: 2066 memset(&sc->sc_linkqual, 0, 2067 sizeof(struct iwi_notif_link_quality)); 2068 error = 0; 2069 break; 2070 default: 2071 error = ENOTTY; 2072 break; 2073 } 2074 IWI_UNLOCK(sc); 2075 2076 return (error); 2077 } 2078 2079 static void 2080 iwi_stop_master(struct iwi_softc *sc) 2081 { 2082 uint32_t tmp; 2083 int ntries; 2084 2085 /* disable interrupts */ 2086 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2087 2088 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2089 for (ntries = 0; ntries < 5; ntries++) { 2090 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2091 break; 2092 DELAY(10); 2093 } 2094 if (ntries == 5) 2095 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2096 2097 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2098 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2099 2100 sc->flags &= ~IWI_FLAG_FW_INITED; 2101 } 2102 2103 static int 2104 iwi_reset(struct iwi_softc *sc) 2105 { 2106 uint32_t tmp; 2107 int i, ntries; 2108 2109 iwi_stop_master(sc); 2110 2111 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2112 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2113 2114 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2115 2116 /* wait for clock stabilization */ 2117 for (ntries = 0; ntries < 1000; ntries++) { 2118 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2119 break; 2120 DELAY(200); 2121 } 2122 if (ntries == 1000) { 2123 device_printf(sc->sc_dev, 2124 "timeout waiting for clock stabilization\n"); 2125 return EIO; 2126 } 2127 2128 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2129 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2130 2131 DELAY(10); 2132 2133 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2134 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2135 2136 /* clear NIC memory */ 2137 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2138 for (i = 0; i < 0xc000; i++) 2139 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2140 2141 return 0; 2142 } 2143 2144 static const struct iwi_firmware_ohdr * 2145 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2146 { 2147 const struct firmware *fp = fw->fp; 2148 const struct iwi_firmware_ohdr *hdr; 2149 2150 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2151 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2152 return NULL; 2153 } 2154 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2155 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2156 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2157 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2158 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2159 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2160 IWI_FW_REQ_MINOR); 2161 return NULL; 2162 } 2163 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2164 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2165 fw->name = fp->name; 2166 return hdr; 2167 } 2168 2169 static const struct iwi_firmware_ohdr * 2170 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2171 { 2172 const struct iwi_firmware_ohdr *hdr; 2173 2174 hdr = iwi_setup_ofw(sc, fw); 2175 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2176 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2177 fw->name); 2178 hdr = NULL; 2179 } 2180 return hdr; 2181 } 2182 2183 static void 2184 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2185 struct iwi_fw *uc, const char *ucname) 2186 { 2187 if (fw->fp == NULL) 2188 fw->fp = firmware_get(fwname); 2189 /* NB: pre-3.0 ucode is packaged separately */ 2190 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2191 uc->fp = firmware_get(ucname); 2192 } 2193 2194 /* 2195 * Get the required firmware images if not already loaded. 2196 * Note that we hold firmware images so long as the device 2197 * is marked up in case we need to reload them on device init. 2198 * This is necessary because we re-init the device sometimes 2199 * from a context where we cannot read from the filesystem 2200 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2201 * XXX return 0 on success, 1 on error. 2202 * 2203 * NB: the order of get'ing and put'ing images here is 2204 * intentional to support handling firmware images bundled 2205 * by operating mode and/or all together in one file with 2206 * the boot firmware as "master". 2207 */ 2208 static int 2209 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2210 { 2211 const struct iwi_firmware_hdr *hdr; 2212 const struct firmware *fp; 2213 2214 /* invalidate cached firmware on mode change */ 2215 if (sc->fw_mode != opmode) 2216 iwi_put_firmware(sc); 2217 2218 switch (opmode) { 2219 case IEEE80211_M_STA: 2220 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2221 break; 2222 case IEEE80211_M_IBSS: 2223 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2224 break; 2225 case IEEE80211_M_MONITOR: 2226 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2227 &sc->fw_uc, "iwi_ucode_monitor"); 2228 break; 2229 default: 2230 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 2231 return EINVAL; 2232 } 2233 fp = sc->fw_fw.fp; 2234 if (fp == NULL) { 2235 device_printf(sc->sc_dev, "could not load firmware\n"); 2236 goto bad; 2237 } 2238 if (fp->version < 300) { 2239 /* 2240 * Firmware prior to 3.0 was packaged as separate 2241 * boot, firmware, and ucode images. Verify the 2242 * ucode image was read in, retrieve the boot image 2243 * if needed, and check version stamps for consistency. 2244 * The version stamps in the data are also checked 2245 * above; this is a bit paranoid but is a cheap 2246 * safeguard against mis-packaging. 2247 */ 2248 if (sc->fw_uc.fp == NULL) { 2249 device_printf(sc->sc_dev, "could not load ucode\n"); 2250 goto bad; 2251 } 2252 if (sc->fw_boot.fp == NULL) { 2253 sc->fw_boot.fp = firmware_get("iwi_boot"); 2254 if (sc->fw_boot.fp == NULL) { 2255 device_printf(sc->sc_dev, 2256 "could not load boot firmware\n"); 2257 goto bad; 2258 } 2259 } 2260 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2261 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2262 device_printf(sc->sc_dev, 2263 "firmware version mismatch: " 2264 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2265 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2266 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2267 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2268 ); 2269 goto bad; 2270 } 2271 /* 2272 * Check and setup each image. 2273 */ 2274 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2275 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2276 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2277 goto bad; 2278 } else { 2279 /* 2280 * Check and setup combined image. 2281 */ 2282 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2283 device_printf(sc->sc_dev, "image '%s' too small\n", 2284 fp->name); 2285 goto bad; 2286 } 2287 hdr = (const struct iwi_firmware_hdr *)fp->data; 2288 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2289 + le32toh(hdr->fsize)) { 2290 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2291 fp->name); 2292 goto bad; 2293 } 2294 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2295 sc->fw_boot.size = le32toh(hdr->bsize); 2296 sc->fw_boot.name = fp->name; 2297 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2298 sc->fw_uc.size = le32toh(hdr->usize); 2299 sc->fw_uc.name = fp->name; 2300 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2301 sc->fw_fw.size = le32toh(hdr->fsize); 2302 sc->fw_fw.name = fp->name; 2303 } 2304 #if 0 2305 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2306 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2307 #endif 2308 2309 sc->fw_mode = opmode; 2310 return 0; 2311 bad: 2312 iwi_put_firmware(sc); 2313 return 1; 2314 } 2315 2316 static void 2317 iwi_put_fw(struct iwi_fw *fw) 2318 { 2319 if (fw->fp != NULL) { 2320 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2321 fw->fp = NULL; 2322 } 2323 fw->data = NULL; 2324 fw->size = 0; 2325 fw->name = NULL; 2326 } 2327 2328 /* 2329 * Release any cached firmware images. 2330 */ 2331 static void 2332 iwi_put_firmware(struct iwi_softc *sc) 2333 { 2334 iwi_put_fw(&sc->fw_uc); 2335 iwi_put_fw(&sc->fw_fw); 2336 iwi_put_fw(&sc->fw_boot); 2337 } 2338 2339 static int 2340 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2341 { 2342 uint32_t tmp; 2343 const uint16_t *w; 2344 const char *uc = fw->data; 2345 size_t size = fw->size; 2346 int i, ntries, error; 2347 2348 IWI_LOCK_ASSERT(sc); 2349 error = 0; 2350 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2351 IWI_RST_STOP_MASTER); 2352 for (ntries = 0; ntries < 5; ntries++) { 2353 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2354 break; 2355 DELAY(10); 2356 } 2357 if (ntries == 5) { 2358 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2359 error = EIO; 2360 goto fail; 2361 } 2362 2363 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2364 DELAY(5000); 2365 2366 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2367 tmp &= ~IWI_RST_PRINCETON_RESET; 2368 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2369 2370 DELAY(5000); 2371 MEM_WRITE_4(sc, 0x3000e0, 0); 2372 DELAY(1000); 2373 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2374 DELAY(1000); 2375 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2376 DELAY(1000); 2377 MEM_WRITE_1(sc, 0x200000, 0x00); 2378 MEM_WRITE_1(sc, 0x200000, 0x40); 2379 DELAY(1000); 2380 2381 /* write microcode into adapter memory */ 2382 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2383 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2384 2385 MEM_WRITE_1(sc, 0x200000, 0x00); 2386 MEM_WRITE_1(sc, 0x200000, 0x80); 2387 2388 /* wait until we get an answer */ 2389 for (ntries = 0; ntries < 100; ntries++) { 2390 if (MEM_READ_1(sc, 0x200000) & 1) 2391 break; 2392 DELAY(100); 2393 } 2394 if (ntries == 100) { 2395 device_printf(sc->sc_dev, 2396 "timeout waiting for ucode to initialize\n"); 2397 error = EIO; 2398 goto fail; 2399 } 2400 2401 /* read the answer or the firmware will not initialize properly */ 2402 for (i = 0; i < 7; i++) 2403 MEM_READ_4(sc, 0x200004); 2404 2405 MEM_WRITE_1(sc, 0x200000, 0x00); 2406 2407 fail: 2408 return error; 2409 } 2410 2411 /* macro to handle unaligned little endian data in firmware image */ 2412 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2413 2414 static int 2415 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2416 { 2417 u_char *p, *end; 2418 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2419 int ntries, error; 2420 2421 IWI_LOCK_ASSERT(sc); 2422 2423 /* copy firmware image to DMA memory */ 2424 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2425 2426 /* make sure the adapter will get up-to-date values */ 2427 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2428 2429 /* tell the adapter where the command blocks are stored */ 2430 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2431 2432 /* 2433 * Store command blocks into adapter's internal memory using register 2434 * indirections. The adapter will read the firmware image through DMA 2435 * using information stored in command blocks. 2436 */ 2437 src = sc->fw_physaddr; 2438 p = sc->fw_virtaddr; 2439 end = p + fw->size; 2440 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2441 2442 while (p < end) { 2443 dst = GETLE32(p); p += 4; src += 4; 2444 len = GETLE32(p); p += 4; src += 4; 2445 p += len; 2446 2447 while (len > 0) { 2448 mlen = min(len, IWI_CB_MAXDATALEN); 2449 2450 ctl = IWI_CB_DEFAULT_CTL | mlen; 2451 sum = ctl ^ src ^ dst; 2452 2453 /* write a command block */ 2454 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2455 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2456 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2457 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2458 2459 src += mlen; 2460 dst += mlen; 2461 len -= mlen; 2462 } 2463 } 2464 2465 /* write a fictive final command block (sentinel) */ 2466 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2467 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2468 2469 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2470 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2471 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2472 2473 /* tell the adapter to start processing command blocks */ 2474 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2475 2476 /* wait until the adapter reaches the sentinel */ 2477 for (ntries = 0; ntries < 400; ntries++) { 2478 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2479 break; 2480 DELAY(100); 2481 } 2482 /* sync dma, just in case */ 2483 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2484 if (ntries == 400) { 2485 device_printf(sc->sc_dev, 2486 "timeout processing command blocks for %s firmware\n", 2487 fw->name); 2488 return EIO; 2489 } 2490 2491 /* we're done with command blocks processing */ 2492 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2493 2494 /* allow interrupts so we know when the firmware is ready */ 2495 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2496 2497 /* tell the adapter to initialize the firmware */ 2498 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2499 2500 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2501 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2502 2503 /* wait at most one second for firmware initialization to complete */ 2504 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2505 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2506 "initialization to complete\n", fw->name); 2507 } 2508 2509 return error; 2510 } 2511 2512 static int 2513 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2514 { 2515 uint32_t data; 2516 2517 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2518 /* XXX set more fine-grained operation */ 2519 data = htole32(IWI_POWER_MODE_MAX); 2520 } else 2521 data = htole32(IWI_POWER_MODE_CAM); 2522 2523 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2524 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2525 } 2526 2527 static int 2528 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2529 { 2530 struct iwi_wep_key wepkey; 2531 struct ieee80211_key *wk; 2532 int error, i; 2533 2534 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2535 wk = &vap->iv_nw_keys[i]; 2536 2537 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2538 wepkey.idx = i; 2539 wepkey.len = wk->wk_keylen; 2540 memset(wepkey.key, 0, sizeof wepkey.key); 2541 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2542 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2543 wepkey.len)); 2544 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2545 sizeof wepkey); 2546 if (error != 0) 2547 return error; 2548 } 2549 return 0; 2550 } 2551 2552 static int 2553 iwi_set_rateset(struct iwi_softc *sc, const struct ieee80211_rateset *net_rs, 2554 int mode, int type) 2555 { 2556 struct iwi_rateset rs; 2557 2558 memset(&rs, 0, sizeof(rs)); 2559 rs.mode = mode; 2560 rs.type = type; 2561 rs.nrates = net_rs->rs_nrates; 2562 if (rs.nrates > nitems(rs.rates)) { 2563 DPRINTF(("Truncating negotiated rate set from %u\n", 2564 rs.nrates)); 2565 rs.nrates = nitems(rs.rates); 2566 } 2567 memcpy(rs.rates, net_rs->rs_rates, rs.nrates); 2568 DPRINTF(("Setting .11%c%s %s rates (%u)\n", 2569 mode == IWI_MODE_11A ? 'a' : 'b', 2570 mode == IWI_MODE_11G ? "g" : "", 2571 type == IWI_RATESET_TYPE_SUPPORTED ? "supported" : "negotiated", 2572 rs.nrates)); 2573 2574 return (iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof(rs))); 2575 } 2576 2577 static int 2578 iwi_config(struct iwi_softc *sc) 2579 { 2580 struct ieee80211com *ic = &sc->sc_ic; 2581 struct iwi_configuration config; 2582 struct iwi_txpower power; 2583 uint32_t data; 2584 int error, i; 2585 2586 IWI_LOCK_ASSERT(sc); 2587 2588 DPRINTF(("Setting MAC address to %6D\n", ic->ic_macaddr, ":")); 2589 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_macaddr, 2590 IEEE80211_ADDR_LEN); 2591 if (error != 0) 2592 return error; 2593 2594 memset(&config, 0, sizeof config); 2595 config.bluetooth_coexistence = sc->bluetooth; 2596 config.silence_threshold = 0x1e; 2597 config.antenna = sc->antenna; 2598 config.multicast_enabled = 1; 2599 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2600 config.disable_unicast_decryption = 1; 2601 config.disable_multicast_decryption = 1; 2602 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2603 config.allow_invalid_frames = 1; 2604 config.allow_beacon_and_probe_resp = 1; 2605 config.allow_mgt = 1; 2606 } 2607 DPRINTF(("Configuring adapter\n")); 2608 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2609 if (error != 0) 2610 return error; 2611 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2612 power.mode = IWI_MODE_11B; 2613 power.nchan = 11; 2614 for (i = 0; i < 11; i++) { 2615 power.chan[i].chan = i + 1; 2616 power.chan[i].power = IWI_TXPOWER_MAX; 2617 } 2618 DPRINTF(("Setting .11b channels tx power\n")); 2619 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2620 if (error != 0) 2621 return error; 2622 2623 power.mode = IWI_MODE_11G; 2624 DPRINTF(("Setting .11g channels tx power\n")); 2625 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2626 if (error != 0) 2627 return error; 2628 } 2629 2630 error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11G], 2631 IWI_MODE_11G, IWI_RATESET_TYPE_SUPPORTED); 2632 if (error != 0) 2633 return error; 2634 2635 error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11A], 2636 IWI_MODE_11A, IWI_RATESET_TYPE_SUPPORTED); 2637 if (error != 0) 2638 return error; 2639 2640 data = htole32(arc4random()); 2641 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2642 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2643 if (error != 0) 2644 return error; 2645 2646 /* enable adapter */ 2647 DPRINTF(("Enabling adapter\n")); 2648 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2649 } 2650 2651 static __inline void 2652 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2653 { 2654 uint8_t *st = &scan->scan_type[ix / 2]; 2655 if (ix % 2) 2656 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2657 else 2658 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2659 } 2660 2661 static int 2662 scan_type(const struct ieee80211_scan_state *ss, 2663 const struct ieee80211_channel *chan) 2664 { 2665 /* We can only set one essid for a directed scan */ 2666 if (ss->ss_nssid != 0) 2667 return IWI_SCAN_TYPE_BDIRECTED; 2668 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2669 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2670 return IWI_SCAN_TYPE_BROADCAST; 2671 return IWI_SCAN_TYPE_PASSIVE; 2672 } 2673 2674 static __inline int 2675 scan_band(const struct ieee80211_channel *c) 2676 { 2677 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2678 } 2679 2680 static void 2681 iwi_monitor_scan(void *arg, int npending) 2682 { 2683 struct iwi_softc *sc = arg; 2684 IWI_LOCK_DECL; 2685 2686 IWI_LOCK(sc); 2687 (void) iwi_scanchan(sc, 2000, 0); 2688 IWI_UNLOCK(sc); 2689 } 2690 2691 /* 2692 * Start a scan on the current channel or all channels. 2693 */ 2694 static int 2695 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) 2696 { 2697 struct ieee80211com *ic = &sc->sc_ic; 2698 struct ieee80211_channel *chan; 2699 struct ieee80211_scan_state *ss; 2700 struct iwi_scan_ext scan; 2701 int error = 0; 2702 2703 IWI_LOCK_ASSERT(sc); 2704 if (sc->fw_state == IWI_FW_SCANNING) { 2705 /* 2706 * This should not happen as we only trigger scan_next after 2707 * completion 2708 */ 2709 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2710 return (EBUSY); 2711 } 2712 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2713 2714 ss = ic->ic_scan; 2715 2716 memset(&scan, 0, sizeof scan); 2717 scan.full_scan_index = htole32(++sc->sc_scangen); 2718 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2719 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2720 /* 2721 * Use very short dwell times for when we send probe request 2722 * frames. Without this bg scans hang. Ideally this should 2723 * be handled with early-termination as done by net80211 but 2724 * that's not feasible (aborting a scan is problematic). 2725 */ 2726 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2727 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2728 } else { 2729 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2730 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2731 } 2732 2733 /* We can only set one essid for a directed scan */ 2734 if (ss->ss_nssid != 0) { 2735 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2736 ss->ss_ssid[0].len); 2737 if (error) 2738 return (error); 2739 } 2740 2741 if (allchan) { 2742 int i, next, band, b, bstart; 2743 /* 2744 * Convert scan list to run-length encoded channel list 2745 * the firmware requires (preserving the order setup by 2746 * net80211). The first entry in each run specifies the 2747 * band and the count of items in the run. 2748 */ 2749 next = 0; /* next open slot */ 2750 bstart = 0; /* NB: not needed, silence compiler */ 2751 band = -1; /* NB: impossible value */ 2752 KASSERT(ss->ss_last > 0, ("no channels")); 2753 for (i = 0; i < ss->ss_last; i++) { 2754 chan = ss->ss_chans[i]; 2755 b = scan_band(chan); 2756 if (b != band) { 2757 if (band != -1) 2758 scan.channels[bstart] = 2759 (next - bstart) | band; 2760 /* NB: this allocates a slot for the run-len */ 2761 band = b, bstart = next++; 2762 } 2763 if (next >= IWI_SCAN_CHANNELS) { 2764 DPRINTF(("truncating scan list\n")); 2765 break; 2766 } 2767 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2768 set_scan_type(&scan, next, scan_type(ss, chan)); 2769 next++; 2770 } 2771 scan.channels[bstart] = (next - bstart) | band; 2772 } else { 2773 /* Scan the current channel only */ 2774 chan = ic->ic_curchan; 2775 scan.channels[0] = 1 | scan_band(chan); 2776 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2777 set_scan_type(&scan, 1, scan_type(ss, chan)); 2778 } 2779 #ifdef IWI_DEBUG 2780 if (iwi_debug > 0) { 2781 static const char *scantype[8] = 2782 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2783 int i; 2784 printf("Scan request: index %u dwell %d/%d/%d\n" 2785 , le32toh(scan.full_scan_index) 2786 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2787 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2788 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2789 ); 2790 i = 0; 2791 do { 2792 int run = scan.channels[i]; 2793 if (run == 0) 2794 break; 2795 printf("Scan %d %s channels:", run & 0x3f, 2796 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2797 for (run &= 0x3f, i++; run > 0; run--, i++) { 2798 uint8_t type = scan.scan_type[i/2]; 2799 printf(" %u/%s", scan.channels[i], 2800 scantype[(i & 1 ? type : type>>4) & 7]); 2801 } 2802 printf("\n"); 2803 } while (i < IWI_SCAN_CHANNELS); 2804 } 2805 #endif 2806 2807 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2808 } 2809 2810 static int 2811 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2812 { 2813 struct iwi_sensitivity sens; 2814 2815 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2816 2817 memset(&sens, 0, sizeof sens); 2818 sens.rssi = htole16(rssi_dbm); 2819 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2820 } 2821 2822 static int 2823 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2824 { 2825 struct ieee80211com *ic = vap->iv_ic; 2826 struct ifnet *ifp = vap->iv_ifp; 2827 struct ieee80211_node *ni; 2828 struct iwi_configuration config; 2829 struct iwi_associate *assoc = &sc->assoc; 2830 uint16_t capinfo; 2831 uint32_t data; 2832 int error, mode; 2833 2834 IWI_LOCK_ASSERT(sc); 2835 2836 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2837 DPRINTF(("Already associated\n")); 2838 return (-1); 2839 } 2840 2841 ni = ieee80211_ref_node(vap->iv_bss); 2842 2843 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2844 error = 0; 2845 mode = 0; 2846 2847 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2848 mode = IWI_MODE_11A; 2849 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2850 mode = IWI_MODE_11G; 2851 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2852 mode = IWI_MODE_11B; 2853 2854 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2855 memset(&config, 0, sizeof config); 2856 config.bluetooth_coexistence = sc->bluetooth; 2857 config.antenna = sc->antenna; 2858 config.multicast_enabled = 1; 2859 if (mode == IWI_MODE_11G) 2860 config.use_protection = 1; 2861 config.answer_pbreq = 2862 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2863 config.disable_unicast_decryption = 1; 2864 config.disable_multicast_decryption = 1; 2865 DPRINTF(("Configuring adapter\n")); 2866 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2867 if (error != 0) 2868 goto done; 2869 } 2870 2871 #ifdef IWI_DEBUG 2872 if (iwi_debug > 0) { 2873 printf("Setting ESSID to "); 2874 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2875 printf("\n"); 2876 } 2877 #endif 2878 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2879 if (error != 0) 2880 goto done; 2881 2882 error = iwi_setpowermode(sc, vap); 2883 if (error != 0) 2884 goto done; 2885 2886 data = htole32(vap->iv_rtsthreshold); 2887 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2888 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2889 if (error != 0) 2890 goto done; 2891 2892 data = htole32(vap->iv_fragthreshold); 2893 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2894 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2895 if (error != 0) 2896 goto done; 2897 2898 /* the rate set has already been "negotiated" */ 2899 error = iwi_set_rateset(sc, &ni->ni_rates, mode, 2900 IWI_RATESET_TYPE_NEGOTIATED); 2901 if (error != 0) 2902 goto done; 2903 2904 memset(assoc, 0, sizeof *assoc); 2905 2906 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2907 /* NB: don't treat WME setup as failure */ 2908 if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0) 2909 assoc->policy |= htole16(IWI_POLICY_WME); 2910 /* XXX complain on failure? */ 2911 } 2912 2913 if (vap->iv_appie_wpa != NULL) { 2914 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2915 2916 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2917 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2918 if (error != 0) 2919 goto done; 2920 } 2921 2922 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2923 if (error != 0) 2924 goto done; 2925 2926 assoc->mode = mode; 2927 assoc->chan = ic->ic_curchan->ic_ieee; 2928 /* 2929 * NB: do not arrange for shared key auth w/o privacy 2930 * (i.e. a wep key); it causes a firmware error. 2931 */ 2932 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2933 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2934 assoc->auth = IWI_AUTH_SHARED; 2935 /* 2936 * It's possible to have privacy marked but no default 2937 * key setup. This typically is due to a user app bug 2938 * but if we blindly grab the key the firmware will 2939 * barf so avoid it for now. 2940 */ 2941 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2942 assoc->auth |= vap->iv_def_txkey << 4; 2943 2944 error = iwi_setwepkeys(sc, vap); 2945 if (error != 0) 2946 goto done; 2947 } 2948 if (vap->iv_flags & IEEE80211_F_WPA) 2949 assoc->policy |= htole16(IWI_POLICY_WPA); 2950 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2951 assoc->type = IWI_HC_IBSS_START; 2952 else 2953 assoc->type = IWI_HC_ASSOC; 2954 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2955 2956 if (vap->iv_opmode == IEEE80211_M_IBSS) 2957 capinfo = IEEE80211_CAPINFO_IBSS; 2958 else 2959 capinfo = IEEE80211_CAPINFO_ESS; 2960 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2961 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2962 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2963 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2964 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2965 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2966 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2967 assoc->capinfo = htole16(capinfo); 2968 2969 assoc->lintval = htole16(ic->ic_lintval); 2970 assoc->intval = htole16(ni->ni_intval); 2971 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2972 if (vap->iv_opmode == IEEE80211_M_IBSS) 2973 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 2974 else 2975 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2976 2977 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2978 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2979 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2980 assoc->bssid, ":", assoc->dst, ":", 2981 assoc->chan, le16toh(assoc->policy), assoc->auth, 2982 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2983 le16toh(assoc->intval))); 2984 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2985 done: 2986 ieee80211_free_node(ni); 2987 if (error) 2988 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2989 2990 return (error); 2991 } 2992 2993 static void 2994 iwi_disassoc(void *arg, int pending) 2995 { 2996 struct iwi_softc *sc = arg; 2997 IWI_LOCK_DECL; 2998 2999 IWI_LOCK(sc); 3000 iwi_disassociate(sc, 0); 3001 IWI_UNLOCK(sc); 3002 } 3003 3004 static int 3005 iwi_disassociate(struct iwi_softc *sc, int quiet) 3006 { 3007 struct iwi_associate *assoc = &sc->assoc; 3008 3009 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 3010 DPRINTF(("Not associated\n")); 3011 return (-1); 3012 } 3013 3014 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3015 3016 if (quiet) 3017 assoc->type = IWI_HC_DISASSOC_QUIET; 3018 else 3019 assoc->type = IWI_HC_DISASSOC; 3020 3021 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3022 assoc->bssid, ":", assoc->chan)); 3023 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3024 } 3025 3026 /* 3027 * release dma resources for the firmware 3028 */ 3029 static void 3030 iwi_release_fw_dma(struct iwi_softc *sc) 3031 { 3032 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3033 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3034 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3035 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3036 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3037 bus_dma_tag_destroy(sc->fw_dmat); 3038 3039 sc->fw_flags = 0; 3040 sc->fw_dma_size = 0; 3041 sc->fw_dmat = NULL; 3042 sc->fw_map = NULL; 3043 sc->fw_physaddr = 0; 3044 sc->fw_virtaddr = NULL; 3045 } 3046 3047 /* 3048 * allocate the dma descriptor for the firmware. 3049 * Return 0 on success, 1 on error. 3050 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3051 */ 3052 static int 3053 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3054 { 3055 if (sc->fw_dma_size >= size) 3056 return 0; 3057 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3058 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3059 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3060 device_printf(sc->sc_dev, 3061 "could not create firmware DMA tag\n"); 3062 goto error; 3063 } 3064 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3065 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3066 &sc->fw_map) != 0) { 3067 device_printf(sc->sc_dev, 3068 "could not allocate firmware DMA memory\n"); 3069 goto error; 3070 } 3071 sc->fw_flags |= IWI_FW_HAVE_MAP; 3072 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3073 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3074 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3075 goto error; 3076 } 3077 sc->fw_flags |= IWI_FW_HAVE_PHY; 3078 sc->fw_dma_size = size; 3079 return 0; 3080 3081 error: 3082 iwi_release_fw_dma(sc); 3083 return 1; 3084 } 3085 3086 static void 3087 iwi_init_locked(struct iwi_softc *sc) 3088 { 3089 struct iwi_rx_data *data; 3090 int i; 3091 3092 IWI_LOCK_ASSERT(sc); 3093 3094 if (sc->fw_state == IWI_FW_LOADING) { 3095 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3096 return; /* XXX: condvar? */ 3097 } 3098 3099 iwi_stop_locked(sc); 3100 3101 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3102 3103 if (iwi_reset(sc) != 0) { 3104 device_printf(sc->sc_dev, "could not reset adapter\n"); 3105 goto fail; 3106 } 3107 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3108 device_printf(sc->sc_dev, 3109 "could not load boot firmware %s\n", sc->fw_boot.name); 3110 goto fail; 3111 } 3112 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3113 device_printf(sc->sc_dev, 3114 "could not load microcode %s\n", sc->fw_uc.name); 3115 goto fail; 3116 } 3117 3118 iwi_stop_master(sc); 3119 3120 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3121 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3122 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3123 3124 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3125 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3126 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3127 3128 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3129 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3130 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3131 3132 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3133 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3134 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3135 3136 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3137 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3138 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3139 3140 for (i = 0; i < sc->rxq.count; i++) { 3141 data = &sc->rxq.data[i]; 3142 CSR_WRITE_4(sc, data->reg, data->physaddr); 3143 } 3144 3145 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3146 3147 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3148 device_printf(sc->sc_dev, 3149 "could not load main firmware %s\n", sc->fw_fw.name); 3150 goto fail; 3151 } 3152 sc->flags |= IWI_FLAG_FW_INITED; 3153 3154 IWI_STATE_END(sc, IWI_FW_LOADING); 3155 3156 if (iwi_config(sc) != 0) { 3157 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3158 goto fail2; 3159 } 3160 3161 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3162 sc->sc_running = 1; 3163 return; 3164 fail: 3165 IWI_STATE_END(sc, IWI_FW_LOADING); 3166 fail2: 3167 iwi_stop_locked(sc); 3168 } 3169 3170 static void 3171 iwi_init(void *priv) 3172 { 3173 struct iwi_softc *sc = priv; 3174 struct ieee80211com *ic = &sc->sc_ic; 3175 IWI_LOCK_DECL; 3176 3177 IWI_LOCK(sc); 3178 iwi_init_locked(sc); 3179 IWI_UNLOCK(sc); 3180 3181 if (sc->sc_running) 3182 ieee80211_start_all(ic); 3183 } 3184 3185 static void 3186 iwi_stop_locked(void *priv) 3187 { 3188 struct iwi_softc *sc = priv; 3189 3190 IWI_LOCK_ASSERT(sc); 3191 3192 sc->sc_running = 0; 3193 3194 if (sc->sc_softled) { 3195 callout_stop(&sc->sc_ledtimer); 3196 sc->sc_blinking = 0; 3197 } 3198 callout_stop(&sc->sc_wdtimer); 3199 callout_stop(&sc->sc_rftimer); 3200 3201 iwi_stop_master(sc); 3202 3203 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3204 3205 /* reset rings */ 3206 iwi_reset_cmd_ring(sc, &sc->cmdq); 3207 iwi_reset_tx_ring(sc, &sc->txq[0]); 3208 iwi_reset_tx_ring(sc, &sc->txq[1]); 3209 iwi_reset_tx_ring(sc, &sc->txq[2]); 3210 iwi_reset_tx_ring(sc, &sc->txq[3]); 3211 iwi_reset_rx_ring(sc, &sc->rxq); 3212 3213 sc->sc_tx_timer = 0; 3214 sc->sc_state_timer = 0; 3215 sc->sc_busy_timer = 0; 3216 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3217 sc->fw_state = IWI_FW_IDLE; 3218 wakeup(sc); 3219 } 3220 3221 static void 3222 iwi_stop(struct iwi_softc *sc) 3223 { 3224 IWI_LOCK_DECL; 3225 3226 IWI_LOCK(sc); 3227 iwi_stop_locked(sc); 3228 IWI_UNLOCK(sc); 3229 } 3230 3231 static void 3232 iwi_restart(void *arg, int npending) 3233 { 3234 struct iwi_softc *sc = arg; 3235 3236 iwi_init(sc); 3237 } 3238 3239 /* 3240 * Return whether or not the radio is enabled in hardware 3241 * (i.e. the rfkill switch is "off"). 3242 */ 3243 static int 3244 iwi_getrfkill(struct iwi_softc *sc) 3245 { 3246 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3247 } 3248 3249 static void 3250 iwi_radio_on(void *arg, int pending) 3251 { 3252 struct iwi_softc *sc = arg; 3253 struct ieee80211com *ic = &sc->sc_ic; 3254 3255 device_printf(sc->sc_dev, "radio turned on\n"); 3256 3257 iwi_init(sc); 3258 ieee80211_notify_radio(ic, 1); 3259 } 3260 3261 static void 3262 iwi_rfkill_poll(void *arg) 3263 { 3264 struct iwi_softc *sc = arg; 3265 3266 IWI_LOCK_ASSERT(sc); 3267 3268 /* 3269 * Check for a change in rfkill state. We get an 3270 * interrupt when a radio is disabled but not when 3271 * it is enabled so we must poll for the latter. 3272 */ 3273 if (!iwi_getrfkill(sc)) { 3274 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask); 3275 return; 3276 } 3277 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3278 } 3279 3280 static void 3281 iwi_radio_off(void *arg, int pending) 3282 { 3283 struct iwi_softc *sc = arg; 3284 struct ieee80211com *ic = &sc->sc_ic; 3285 IWI_LOCK_DECL; 3286 3287 device_printf(sc->sc_dev, "radio turned off\n"); 3288 3289 ieee80211_notify_radio(ic, 0); 3290 3291 IWI_LOCK(sc); 3292 iwi_stop_locked(sc); 3293 iwi_rfkill_poll(sc); 3294 IWI_UNLOCK(sc); 3295 } 3296 3297 static int 3298 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3299 { 3300 struct iwi_softc *sc = arg1; 3301 uint32_t size, buf[128]; 3302 3303 memset(buf, 0, sizeof buf); 3304 3305 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3306 return SYSCTL_OUT(req, buf, sizeof buf); 3307 3308 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3309 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3310 3311 return SYSCTL_OUT(req, buf, size); 3312 } 3313 3314 static int 3315 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3316 { 3317 struct iwi_softc *sc = arg1; 3318 int val = !iwi_getrfkill(sc); 3319 3320 return SYSCTL_OUT(req, &val, sizeof val); 3321 } 3322 3323 /* 3324 * Add sysctl knobs. 3325 */ 3326 static void 3327 iwi_sysctlattach(struct iwi_softc *sc) 3328 { 3329 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3330 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3331 3332 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3333 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3334 "radio transmitter switch state (0=off, 1=on)"); 3335 3336 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3337 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3338 "statistics"); 3339 3340 sc->bluetooth = 0; 3341 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3342 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3343 3344 sc->antenna = IWI_ANTENNA_AUTO; 3345 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3346 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3347 } 3348 3349 /* 3350 * LED support. 3351 * 3352 * Different cards have different capabilities. Some have three 3353 * led's while others have only one. The linux ipw driver defines 3354 * led's for link state (associated or not), band (11a, 11g, 11b), 3355 * and for link activity. We use one led and vary the blink rate 3356 * according to the tx/rx traffic a la the ath driver. 3357 */ 3358 3359 static __inline uint32_t 3360 iwi_toggle_event(uint32_t r) 3361 { 3362 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3363 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3364 } 3365 3366 static uint32_t 3367 iwi_read_event(struct iwi_softc *sc) 3368 { 3369 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3370 } 3371 3372 static void 3373 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3374 { 3375 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3376 } 3377 3378 static void 3379 iwi_led_done(void *arg) 3380 { 3381 struct iwi_softc *sc = arg; 3382 3383 sc->sc_blinking = 0; 3384 } 3385 3386 /* 3387 * Turn the activity LED off: flip the pin and then set a timer so no 3388 * update will happen for the specified duration. 3389 */ 3390 static void 3391 iwi_led_off(void *arg) 3392 { 3393 struct iwi_softc *sc = arg; 3394 uint32_t v; 3395 3396 v = iwi_read_event(sc); 3397 v &= ~sc->sc_ledpin; 3398 iwi_write_event(sc, iwi_toggle_event(v)); 3399 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3400 } 3401 3402 /* 3403 * Blink the LED according to the specified on/off times. 3404 */ 3405 static void 3406 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3407 { 3408 uint32_t v; 3409 3410 v = iwi_read_event(sc); 3411 v |= sc->sc_ledpin; 3412 iwi_write_event(sc, iwi_toggle_event(v)); 3413 sc->sc_blinking = 1; 3414 sc->sc_ledoff = off; 3415 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3416 } 3417 3418 static void 3419 iwi_led_event(struct iwi_softc *sc, int event) 3420 { 3421 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3422 static const struct { 3423 u_int rate; /* tx/rx iwi rate */ 3424 u_int16_t timeOn; /* LED on time (ms) */ 3425 u_int16_t timeOff; /* LED off time (ms) */ 3426 } blinkrates[] = { 3427 { IWI_RATE_OFDM54, 40, 10 }, 3428 { IWI_RATE_OFDM48, 44, 11 }, 3429 { IWI_RATE_OFDM36, 50, 13 }, 3430 { IWI_RATE_OFDM24, 57, 14 }, 3431 { IWI_RATE_OFDM18, 67, 16 }, 3432 { IWI_RATE_OFDM12, 80, 20 }, 3433 { IWI_RATE_DS11, 100, 25 }, 3434 { IWI_RATE_OFDM9, 133, 34 }, 3435 { IWI_RATE_OFDM6, 160, 40 }, 3436 { IWI_RATE_DS5, 200, 50 }, 3437 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3438 { IWI_RATE_DS2, 267, 66 }, 3439 { IWI_RATE_DS1, 400, 100 }, 3440 { 0, 500, 130 }, /* unknown rate/polling */ 3441 }; 3442 uint32_t txrate; 3443 int j = 0; /* XXX silence compiler */ 3444 3445 sc->sc_ledevent = ticks; /* time of last event */ 3446 if (sc->sc_blinking) /* don't interrupt active blink */ 3447 return; 3448 switch (event) { 3449 case IWI_LED_POLL: 3450 j = nitems(blinkrates)-1; 3451 break; 3452 case IWI_LED_TX: 3453 /* read current transmission rate from adapter */ 3454 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3455 if (blinkrates[sc->sc_txrix].rate != txrate) { 3456 for (j = 0; j < nitems(blinkrates)-1; j++) 3457 if (blinkrates[j].rate == txrate) 3458 break; 3459 sc->sc_txrix = j; 3460 } else 3461 j = sc->sc_txrix; 3462 break; 3463 case IWI_LED_RX: 3464 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3465 for (j = 0; j < nitems(blinkrates)-1; j++) 3466 if (blinkrates[j].rate == sc->sc_rxrate) 3467 break; 3468 sc->sc_rxrix = j; 3469 } else 3470 j = sc->sc_rxrix; 3471 break; 3472 } 3473 /* XXX beware of overflow */ 3474 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3475 (blinkrates[j].timeOff * hz) / 1000); 3476 } 3477 3478 static int 3479 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3480 { 3481 struct iwi_softc *sc = arg1; 3482 int softled = sc->sc_softled; 3483 int error; 3484 3485 error = sysctl_handle_int(oidp, &softled, 0, req); 3486 if (error || !req->newptr) 3487 return error; 3488 softled = (softled != 0); 3489 if (softled != sc->sc_softled) { 3490 if (softled) { 3491 uint32_t v = iwi_read_event(sc); 3492 v &= ~sc->sc_ledpin; 3493 iwi_write_event(sc, iwi_toggle_event(v)); 3494 } 3495 sc->sc_softled = softled; 3496 } 3497 return 0; 3498 } 3499 3500 static void 3501 iwi_ledattach(struct iwi_softc *sc) 3502 { 3503 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3504 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3505 3506 sc->sc_blinking = 0; 3507 sc->sc_ledstate = 1; 3508 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3509 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3510 3511 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3512 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3513 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3514 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3515 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3516 "pin setting to turn activity LED on"); 3517 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3518 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3519 "idle time for inactivity LED (ticks)"); 3520 /* XXX for debugging */ 3521 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3522 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3523 "NIC type from EEPROM"); 3524 3525 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3526 sc->sc_softled = 1; 3527 3528 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3529 if (sc->sc_nictype == 1) { 3530 /* 3531 * NB: led's are reversed. 3532 */ 3533 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3534 } 3535 } 3536 3537 static void 3538 iwi_scan_start(struct ieee80211com *ic) 3539 { 3540 /* ignore */ 3541 } 3542 3543 static void 3544 iwi_set_channel(struct ieee80211com *ic) 3545 { 3546 struct iwi_softc *sc = ic->ic_softc; 3547 3548 if (sc->fw_state == IWI_FW_IDLE) 3549 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3550 } 3551 3552 static void 3553 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3554 { 3555 struct ieee80211vap *vap = ss->ss_vap; 3556 struct iwi_softc *sc = vap->iv_ic->ic_softc; 3557 IWI_LOCK_DECL; 3558 3559 IWI_LOCK(sc); 3560 if (iwi_scanchan(sc, maxdwell, 0)) 3561 ieee80211_cancel_scan(vap); 3562 IWI_UNLOCK(sc); 3563 } 3564 3565 static void 3566 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3567 { 3568 /* NB: don't try to abort scan; wait for firmware to finish */ 3569 } 3570 3571 static void 3572 iwi_scan_end(struct ieee80211com *ic) 3573 { 3574 struct iwi_softc *sc = ic->ic_softc; 3575 IWI_LOCK_DECL; 3576 3577 IWI_LOCK(sc); 3578 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 3579 /* NB: make sure we're still scanning */ 3580 if (sc->fw_state == IWI_FW_SCANNING) 3581 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 3582 IWI_UNLOCK(sc); 3583 } 3584 3585 static void 3586 iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz) 3587 { 3588 struct iwi_softc *sc = ic->ic_softc; 3589 device_t dev = sc->sc_dev; 3590 3591 memset(bands, 0, bands_sz); 3592 setbit(bands, IEEE80211_MODE_11B); 3593 setbit(bands, IEEE80211_MODE_11G); 3594 if (pci_get_device(dev) >= 0x4223) 3595 setbit(bands, IEEE80211_MODE_11A); 3596 } 3597 3598 static void 3599 iwi_getradiocaps(struct ieee80211com *ic, 3600 int maxchans, int *nchans, struct ieee80211_channel chans[]) 3601 { 3602 uint8_t bands[IEEE80211_MODE_BYTES]; 3603 3604 iwi_collect_bands(ic, bands, sizeof(bands)); 3605 *nchans = 0; 3606 if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G)) 3607 ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 3608 def_chan_2ghz, nitems(def_chan_2ghz), bands, 0); 3609 if (isset(bands, IEEE80211_MODE_11A)) { 3610 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3611 def_chan_5ghz_band1, nitems(def_chan_5ghz_band1), 3612 bands, 0); 3613 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3614 def_chan_5ghz_band2, nitems(def_chan_5ghz_band2), 3615 bands, 0); 3616 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3617 def_chan_5ghz_band3, nitems(def_chan_5ghz_band3), 3618 bands, 0); 3619 } 3620 } 3621