1 /*- 2 * Copyright (c) 2004, 2005 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /*- 34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/namei.h> 54 #include <sys/linker.h> 55 #include <sys/firmware.h> 56 #include <sys/taskqueue.h> 57 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 #include <dev/pci/pcireg.h> 63 #include <dev/pci/pcivar.h> 64 65 #include <net/bpf.h> 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_arp.h> 69 #include <net/ethernet.h> 70 #include <net/if_dl.h> 71 #include <net/if_media.h> 72 #include <net/if_types.h> 73 74 #include <net80211/ieee80211_var.h> 75 #include <net80211/ieee80211_radiotap.h> 76 #include <net80211/ieee80211_input.h> 77 #include <net80211/ieee80211_regdomain.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip.h> 83 #include <netinet/if_ether.h> 84 85 #include <dev/iwi/if_iwireg.h> 86 #include <dev/iwi/if_iwivar.h> 87 #include <dev/iwi/if_iwi_ioctl.h> 88 89 #define IWI_DEBUG 90 #ifdef IWI_DEBUG 91 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 92 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 93 int iwi_debug = 0; 94 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 95 96 static const char *iwi_fw_states[] = { 97 "IDLE", /* IWI_FW_IDLE */ 98 "LOADING", /* IWI_FW_LOADING */ 99 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 100 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 101 "SCANNING", /* IWI_FW_SCANNING */ 102 }; 103 #else 104 #define DPRINTF(x) 105 #define DPRINTFN(n, x) 106 #endif 107 108 MODULE_DEPEND(iwi, pci, 1, 1, 1); 109 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 110 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 111 112 enum { 113 IWI_LED_TX, 114 IWI_LED_RX, 115 IWI_LED_POLL, 116 }; 117 118 struct iwi_ident { 119 uint16_t vendor; 120 uint16_t device; 121 const char *name; 122 }; 123 124 static const struct iwi_ident iwi_ident_table[] = { 125 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 126 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 127 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 128 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 129 130 { 0, 0, NULL } 131 }; 132 133 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 134 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 135 const uint8_t [IEEE80211_ADDR_LEN], 136 const uint8_t [IEEE80211_ADDR_LEN]); 137 static void iwi_vap_delete(struct ieee80211vap *); 138 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 139 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 140 int); 141 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 142 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 143 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 144 int, bus_addr_t, bus_addr_t); 145 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 146 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 147 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 148 int); 149 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 150 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 151 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 152 const uint8_t [IEEE80211_ADDR_LEN]); 153 static void iwi_node_free(struct ieee80211_node *); 154 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 155 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 156 static void iwi_wme_init(struct iwi_softc *); 157 static int iwi_wme_setparams(struct iwi_softc *); 158 static int iwi_wme_update(struct ieee80211com *); 159 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 160 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 161 struct iwi_frame *); 162 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 163 static void iwi_rx_intr(struct iwi_softc *); 164 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 165 static void iwi_intr(void *); 166 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 167 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 168 static int iwi_tx_start(struct iwi_softc *, struct mbuf *, 169 struct ieee80211_node *, int); 170 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 171 const struct ieee80211_bpf_params *); 172 static void iwi_start(struct iwi_softc *); 173 static int iwi_transmit(struct ieee80211com *, struct mbuf *); 174 static void iwi_watchdog(void *); 175 static int iwi_ioctl(struct ieee80211com *, u_long, void *); 176 static void iwi_parent(struct ieee80211com *); 177 static void iwi_stop_master(struct iwi_softc *); 178 static int iwi_reset(struct iwi_softc *); 179 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 180 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 181 static void iwi_release_fw_dma(struct iwi_softc *sc); 182 static int iwi_config(struct iwi_softc *); 183 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 184 static void iwi_put_firmware(struct iwi_softc *); 185 static void iwi_monitor_scan(void *, int); 186 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 187 static void iwi_scan_start(struct ieee80211com *); 188 static void iwi_scan_end(struct ieee80211com *); 189 static void iwi_set_channel(struct ieee80211com *); 190 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 191 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 192 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 193 static void iwi_disassoc(void *, int); 194 static int iwi_disassociate(struct iwi_softc *, int quiet); 195 static void iwi_init_locked(struct iwi_softc *); 196 static void iwi_init(void *); 197 static int iwi_init_fw_dma(struct iwi_softc *, int); 198 static void iwi_stop_locked(void *); 199 static void iwi_stop(struct iwi_softc *); 200 static void iwi_restart(void *, int); 201 static int iwi_getrfkill(struct iwi_softc *); 202 static void iwi_radio_on(void *, int); 203 static void iwi_radio_off(void *, int); 204 static void iwi_sysctlattach(struct iwi_softc *); 205 static void iwi_led_event(struct iwi_softc *, int); 206 static void iwi_ledattach(struct iwi_softc *); 207 208 static int iwi_probe(device_t); 209 static int iwi_attach(device_t); 210 static int iwi_detach(device_t); 211 static int iwi_shutdown(device_t); 212 static int iwi_suspend(device_t); 213 static int iwi_resume(device_t); 214 215 static device_method_t iwi_methods[] = { 216 /* Device interface */ 217 DEVMETHOD(device_probe, iwi_probe), 218 DEVMETHOD(device_attach, iwi_attach), 219 DEVMETHOD(device_detach, iwi_detach), 220 DEVMETHOD(device_shutdown, iwi_shutdown), 221 DEVMETHOD(device_suspend, iwi_suspend), 222 DEVMETHOD(device_resume, iwi_resume), 223 224 DEVMETHOD_END 225 }; 226 227 static driver_t iwi_driver = { 228 "iwi", 229 iwi_methods, 230 sizeof (struct iwi_softc) 231 }; 232 233 static devclass_t iwi_devclass; 234 235 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL); 236 237 MODULE_VERSION(iwi, 1); 238 239 static __inline uint8_t 240 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 241 { 242 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 243 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 244 } 245 246 static __inline uint32_t 247 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 248 { 249 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 250 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 251 } 252 253 static int 254 iwi_probe(device_t dev) 255 { 256 const struct iwi_ident *ident; 257 258 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 259 if (pci_get_vendor(dev) == ident->vendor && 260 pci_get_device(dev) == ident->device) { 261 device_set_desc(dev, ident->name); 262 return (BUS_PROBE_DEFAULT); 263 } 264 } 265 return ENXIO; 266 } 267 268 static int 269 iwi_attach(device_t dev) 270 { 271 struct iwi_softc *sc = device_get_softc(dev); 272 struct ieee80211com *ic = &sc->sc_ic; 273 uint16_t val; 274 uint8_t bands[IEEE80211_MODE_BYTES]; 275 int i, error; 276 277 sc->sc_dev = dev; 278 279 IWI_LOCK_INIT(sc); 280 mbufq_init(&sc->sc_snd, ifqmaxlen); 281 282 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 283 284 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 285 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 286 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 287 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); 288 TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc); 289 290 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 291 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 292 293 pci_write_config(dev, 0x41, 0, 1); 294 295 /* enable bus-mastering */ 296 pci_enable_busmaster(dev); 297 298 i = PCIR_BAR(0); 299 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 300 if (sc->mem == NULL) { 301 device_printf(dev, "could not allocate memory resource\n"); 302 goto fail; 303 } 304 305 sc->sc_st = rman_get_bustag(sc->mem); 306 sc->sc_sh = rman_get_bushandle(sc->mem); 307 308 i = 0; 309 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 310 RF_ACTIVE | RF_SHAREABLE); 311 if (sc->irq == NULL) { 312 device_printf(dev, "could not allocate interrupt resource\n"); 313 goto fail; 314 } 315 316 if (iwi_reset(sc) != 0) { 317 device_printf(dev, "could not reset adapter\n"); 318 goto fail; 319 } 320 321 /* 322 * Allocate rings. 323 */ 324 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 325 device_printf(dev, "could not allocate Cmd ring\n"); 326 goto fail; 327 } 328 329 for (i = 0; i < 4; i++) { 330 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 331 IWI_CSR_TX1_RIDX + i * 4, 332 IWI_CSR_TX1_WIDX + i * 4); 333 if (error != 0) { 334 device_printf(dev, "could not allocate Tx ring %d\n", 335 i+i); 336 goto fail; 337 } 338 } 339 340 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 341 device_printf(dev, "could not allocate Rx ring\n"); 342 goto fail; 343 } 344 345 iwi_wme_init(sc); 346 347 ic->ic_softc = sc; 348 ic->ic_name = device_get_nameunit(dev); 349 ic->ic_opmode = IEEE80211_M_STA; 350 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 351 352 /* set device capabilities */ 353 ic->ic_caps = 354 IEEE80211_C_STA /* station mode supported */ 355 | IEEE80211_C_IBSS /* IBSS mode supported */ 356 | IEEE80211_C_MONITOR /* monitor mode supported */ 357 | IEEE80211_C_PMGT /* power save supported */ 358 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 359 | IEEE80211_C_WPA /* 802.11i */ 360 | IEEE80211_C_WME /* 802.11e */ 361 #if 0 362 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 363 #endif 364 ; 365 366 /* read MAC address from EEPROM */ 367 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 368 ic->ic_macaddr[0] = val & 0xff; 369 ic->ic_macaddr[1] = val >> 8; 370 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 371 ic->ic_macaddr[2] = val & 0xff; 372 ic->ic_macaddr[3] = val >> 8; 373 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 374 ic->ic_macaddr[4] = val & 0xff; 375 ic->ic_macaddr[5] = val >> 8; 376 377 memset(bands, 0, sizeof(bands)); 378 setbit(bands, IEEE80211_MODE_11B); 379 setbit(bands, IEEE80211_MODE_11G); 380 if (pci_get_device(dev) >= 0x4223) 381 setbit(bands, IEEE80211_MODE_11A); 382 ieee80211_init_channels(ic, NULL, bands); 383 384 ieee80211_ifattach(ic); 385 /* override default methods */ 386 ic->ic_node_alloc = iwi_node_alloc; 387 sc->sc_node_free = ic->ic_node_free; 388 ic->ic_node_free = iwi_node_free; 389 ic->ic_raw_xmit = iwi_raw_xmit; 390 ic->ic_scan_start = iwi_scan_start; 391 ic->ic_scan_end = iwi_scan_end; 392 ic->ic_set_channel = iwi_set_channel; 393 ic->ic_scan_curchan = iwi_scan_curchan; 394 ic->ic_scan_mindwell = iwi_scan_mindwell; 395 ic->ic_wme.wme_update = iwi_wme_update; 396 397 ic->ic_vap_create = iwi_vap_create; 398 ic->ic_vap_delete = iwi_vap_delete; 399 ic->ic_ioctl = iwi_ioctl; 400 ic->ic_transmit = iwi_transmit; 401 ic->ic_parent = iwi_parent; 402 403 ieee80211_radiotap_attach(ic, 404 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 405 IWI_TX_RADIOTAP_PRESENT, 406 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 407 IWI_RX_RADIOTAP_PRESENT); 408 409 iwi_sysctlattach(sc); 410 iwi_ledattach(sc); 411 412 /* 413 * Hook our interrupt after all initialization is complete. 414 */ 415 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 416 NULL, iwi_intr, sc, &sc->sc_ih); 417 if (error != 0) { 418 device_printf(dev, "could not set up interrupt\n"); 419 goto fail; 420 } 421 422 if (bootverbose) 423 ieee80211_announce(ic); 424 425 return 0; 426 fail: 427 /* XXX fix */ 428 iwi_detach(dev); 429 return ENXIO; 430 } 431 432 static int 433 iwi_detach(device_t dev) 434 { 435 struct iwi_softc *sc = device_get_softc(dev); 436 struct ieee80211com *ic = &sc->sc_ic; 437 438 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 439 440 /* NB: do early to drain any pending tasks */ 441 ieee80211_draintask(ic, &sc->sc_radiontask); 442 ieee80211_draintask(ic, &sc->sc_radiofftask); 443 ieee80211_draintask(ic, &sc->sc_restarttask); 444 ieee80211_draintask(ic, &sc->sc_disassoctask); 445 ieee80211_draintask(ic, &sc->sc_monitortask); 446 447 iwi_stop(sc); 448 449 ieee80211_ifdetach(ic); 450 451 iwi_put_firmware(sc); 452 iwi_release_fw_dma(sc); 453 454 iwi_free_cmd_ring(sc, &sc->cmdq); 455 iwi_free_tx_ring(sc, &sc->txq[0]); 456 iwi_free_tx_ring(sc, &sc->txq[1]); 457 iwi_free_tx_ring(sc, &sc->txq[2]); 458 iwi_free_tx_ring(sc, &sc->txq[3]); 459 iwi_free_rx_ring(sc, &sc->rxq); 460 461 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 462 463 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 464 sc->mem); 465 466 delete_unrhdr(sc->sc_unr); 467 mbufq_drain(&sc->sc_snd); 468 469 IWI_LOCK_DESTROY(sc); 470 471 return 0; 472 } 473 474 static struct ieee80211vap * 475 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 476 enum ieee80211_opmode opmode, int flags, 477 const uint8_t bssid[IEEE80211_ADDR_LEN], 478 const uint8_t mac[IEEE80211_ADDR_LEN]) 479 { 480 struct iwi_softc *sc = ic->ic_softc; 481 struct iwi_vap *ivp; 482 struct ieee80211vap *vap; 483 int i; 484 485 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 486 return NULL; 487 /* 488 * Get firmware image (and possibly dma memory) on mode change. 489 */ 490 if (iwi_get_firmware(sc, opmode)) 491 return NULL; 492 /* allocate DMA memory for mapping firmware image */ 493 i = sc->fw_fw.size; 494 if (sc->fw_boot.size > i) 495 i = sc->fw_boot.size; 496 /* XXX do we dma the ucode as well ? */ 497 if (sc->fw_uc.size > i) 498 i = sc->fw_uc.size; 499 if (iwi_init_fw_dma(sc, i)) 500 return NULL; 501 502 ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 503 vap = &ivp->iwi_vap; 504 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 505 /* override the default, the setting comes from the linux driver */ 506 vap->iv_bmissthreshold = 24; 507 /* override with driver methods */ 508 ivp->iwi_newstate = vap->iv_newstate; 509 vap->iv_newstate = iwi_newstate; 510 511 /* complete setup */ 512 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status, 513 mac); 514 ic->ic_opmode = opmode; 515 return vap; 516 } 517 518 static void 519 iwi_vap_delete(struct ieee80211vap *vap) 520 { 521 struct iwi_vap *ivp = IWI_VAP(vap); 522 523 ieee80211_vap_detach(vap); 524 free(ivp, M_80211_VAP); 525 } 526 527 static void 528 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 529 { 530 if (error != 0) 531 return; 532 533 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 534 535 *(bus_addr_t *)arg = segs[0].ds_addr; 536 } 537 538 static int 539 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 540 { 541 int error; 542 543 ring->count = count; 544 ring->queued = 0; 545 ring->cur = ring->next = 0; 546 547 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 548 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 549 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 550 NULL, NULL, &ring->desc_dmat); 551 if (error != 0) { 552 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 553 goto fail; 554 } 555 556 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 557 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 558 if (error != 0) { 559 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 560 goto fail; 561 } 562 563 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 564 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 565 if (error != 0) { 566 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 567 goto fail; 568 } 569 570 return 0; 571 572 fail: iwi_free_cmd_ring(sc, ring); 573 return error; 574 } 575 576 static void 577 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 578 { 579 ring->queued = 0; 580 ring->cur = ring->next = 0; 581 } 582 583 static void 584 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 585 { 586 if (ring->desc != NULL) { 587 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 588 BUS_DMASYNC_POSTWRITE); 589 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 590 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 591 } 592 593 if (ring->desc_dmat != NULL) 594 bus_dma_tag_destroy(ring->desc_dmat); 595 } 596 597 static int 598 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 599 bus_addr_t csr_ridx, bus_addr_t csr_widx) 600 { 601 int i, error; 602 603 ring->count = count; 604 ring->queued = 0; 605 ring->cur = ring->next = 0; 606 ring->csr_ridx = csr_ridx; 607 ring->csr_widx = csr_widx; 608 609 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 610 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 611 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 612 NULL, &ring->desc_dmat); 613 if (error != 0) { 614 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 615 goto fail; 616 } 617 618 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 619 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 620 if (error != 0) { 621 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 622 goto fail; 623 } 624 625 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 626 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 627 if (error != 0) { 628 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 629 goto fail; 630 } 631 632 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 633 M_NOWAIT | M_ZERO); 634 if (ring->data == NULL) { 635 device_printf(sc->sc_dev, "could not allocate soft data\n"); 636 error = ENOMEM; 637 goto fail; 638 } 639 640 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 641 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 642 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 643 if (error != 0) { 644 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 645 goto fail; 646 } 647 648 for (i = 0; i < count; i++) { 649 error = bus_dmamap_create(ring->data_dmat, 0, 650 &ring->data[i].map); 651 if (error != 0) { 652 device_printf(sc->sc_dev, "could not create DMA map\n"); 653 goto fail; 654 } 655 } 656 657 return 0; 658 659 fail: iwi_free_tx_ring(sc, ring); 660 return error; 661 } 662 663 static void 664 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 665 { 666 struct iwi_tx_data *data; 667 int i; 668 669 for (i = 0; i < ring->count; i++) { 670 data = &ring->data[i]; 671 672 if (data->m != NULL) { 673 bus_dmamap_sync(ring->data_dmat, data->map, 674 BUS_DMASYNC_POSTWRITE); 675 bus_dmamap_unload(ring->data_dmat, data->map); 676 m_freem(data->m); 677 data->m = NULL; 678 } 679 680 if (data->ni != NULL) { 681 ieee80211_free_node(data->ni); 682 data->ni = NULL; 683 } 684 } 685 686 ring->queued = 0; 687 ring->cur = ring->next = 0; 688 } 689 690 static void 691 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 692 { 693 struct iwi_tx_data *data; 694 int i; 695 696 if (ring->desc != NULL) { 697 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 698 BUS_DMASYNC_POSTWRITE); 699 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 700 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 701 } 702 703 if (ring->desc_dmat != NULL) 704 bus_dma_tag_destroy(ring->desc_dmat); 705 706 if (ring->data != NULL) { 707 for (i = 0; i < ring->count; i++) { 708 data = &ring->data[i]; 709 710 if (data->m != NULL) { 711 bus_dmamap_sync(ring->data_dmat, data->map, 712 BUS_DMASYNC_POSTWRITE); 713 bus_dmamap_unload(ring->data_dmat, data->map); 714 m_freem(data->m); 715 } 716 717 if (data->ni != NULL) 718 ieee80211_free_node(data->ni); 719 720 if (data->map != NULL) 721 bus_dmamap_destroy(ring->data_dmat, data->map); 722 } 723 724 free(ring->data, M_DEVBUF); 725 } 726 727 if (ring->data_dmat != NULL) 728 bus_dma_tag_destroy(ring->data_dmat); 729 } 730 731 static int 732 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 733 { 734 struct iwi_rx_data *data; 735 int i, error; 736 737 ring->count = count; 738 ring->cur = 0; 739 740 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 741 M_NOWAIT | M_ZERO); 742 if (ring->data == NULL) { 743 device_printf(sc->sc_dev, "could not allocate soft data\n"); 744 error = ENOMEM; 745 goto fail; 746 } 747 748 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 749 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 750 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 751 if (error != 0) { 752 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 753 goto fail; 754 } 755 756 for (i = 0; i < count; i++) { 757 data = &ring->data[i]; 758 759 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 760 if (error != 0) { 761 device_printf(sc->sc_dev, "could not create DMA map\n"); 762 goto fail; 763 } 764 765 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 766 if (data->m == NULL) { 767 device_printf(sc->sc_dev, 768 "could not allocate rx mbuf\n"); 769 error = ENOMEM; 770 goto fail; 771 } 772 773 error = bus_dmamap_load(ring->data_dmat, data->map, 774 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 775 &data->physaddr, 0); 776 if (error != 0) { 777 device_printf(sc->sc_dev, 778 "could not load rx buf DMA map"); 779 goto fail; 780 } 781 782 data->reg = IWI_CSR_RX_BASE + i * 4; 783 } 784 785 return 0; 786 787 fail: iwi_free_rx_ring(sc, ring); 788 return error; 789 } 790 791 static void 792 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 793 { 794 ring->cur = 0; 795 } 796 797 static void 798 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 799 { 800 struct iwi_rx_data *data; 801 int i; 802 803 if (ring->data != NULL) { 804 for (i = 0; i < ring->count; i++) { 805 data = &ring->data[i]; 806 807 if (data->m != NULL) { 808 bus_dmamap_sync(ring->data_dmat, data->map, 809 BUS_DMASYNC_POSTREAD); 810 bus_dmamap_unload(ring->data_dmat, data->map); 811 m_freem(data->m); 812 } 813 814 if (data->map != NULL) 815 bus_dmamap_destroy(ring->data_dmat, data->map); 816 } 817 818 free(ring->data, M_DEVBUF); 819 } 820 821 if (ring->data_dmat != NULL) 822 bus_dma_tag_destroy(ring->data_dmat); 823 } 824 825 static int 826 iwi_shutdown(device_t dev) 827 { 828 struct iwi_softc *sc = device_get_softc(dev); 829 830 iwi_stop(sc); 831 iwi_put_firmware(sc); /* ??? XXX */ 832 833 return 0; 834 } 835 836 static int 837 iwi_suspend(device_t dev) 838 { 839 struct iwi_softc *sc = device_get_softc(dev); 840 struct ieee80211com *ic = &sc->sc_ic; 841 842 ieee80211_suspend_all(ic); 843 return 0; 844 } 845 846 static int 847 iwi_resume(device_t dev) 848 { 849 struct iwi_softc *sc = device_get_softc(dev); 850 struct ieee80211com *ic = &sc->sc_ic; 851 852 pci_write_config(dev, 0x41, 0, 1); 853 854 ieee80211_resume_all(ic); 855 return 0; 856 } 857 858 static struct ieee80211_node * 859 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 860 { 861 struct iwi_node *in; 862 863 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 864 if (in == NULL) 865 return NULL; 866 /* XXX assign sta table entry for adhoc */ 867 in->in_station = -1; 868 869 return &in->in_node; 870 } 871 872 static void 873 iwi_node_free(struct ieee80211_node *ni) 874 { 875 struct ieee80211com *ic = ni->ni_ic; 876 struct iwi_softc *sc = ic->ic_softc; 877 struct iwi_node *in = (struct iwi_node *)ni; 878 879 if (in->in_station != -1) { 880 DPRINTF(("%s mac %6D station %u\n", __func__, 881 ni->ni_macaddr, ":", in->in_station)); 882 free_unr(sc->sc_unr, in->in_station); 883 } 884 885 sc->sc_node_free(ni); 886 } 887 888 /* 889 * Convert h/w rate code to IEEE rate code. 890 */ 891 static int 892 iwi_cvtrate(int iwirate) 893 { 894 switch (iwirate) { 895 case IWI_RATE_DS1: return 2; 896 case IWI_RATE_DS2: return 4; 897 case IWI_RATE_DS5: return 11; 898 case IWI_RATE_DS11: return 22; 899 case IWI_RATE_OFDM6: return 12; 900 case IWI_RATE_OFDM9: return 18; 901 case IWI_RATE_OFDM12: return 24; 902 case IWI_RATE_OFDM18: return 36; 903 case IWI_RATE_OFDM24: return 48; 904 case IWI_RATE_OFDM36: return 72; 905 case IWI_RATE_OFDM48: return 96; 906 case IWI_RATE_OFDM54: return 108; 907 } 908 return 0; 909 } 910 911 /* 912 * The firmware automatically adapts the transmit speed. We report its current 913 * value here. 914 */ 915 static void 916 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 917 { 918 struct ieee80211vap *vap = ifp->if_softc; 919 struct ieee80211com *ic = vap->iv_ic; 920 struct iwi_softc *sc = ic->ic_softc; 921 struct ieee80211_node *ni; 922 923 /* read current transmission rate from adapter */ 924 ni = ieee80211_ref_node(vap->iv_bss); 925 ni->ni_txrate = 926 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 927 ieee80211_free_node(ni); 928 ieee80211_media_status(ifp, imr); 929 } 930 931 static int 932 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 933 { 934 struct iwi_vap *ivp = IWI_VAP(vap); 935 struct ieee80211com *ic = vap->iv_ic; 936 struct iwi_softc *sc = ic->ic_softc; 937 IWI_LOCK_DECL; 938 939 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 940 ieee80211_state_name[vap->iv_state], 941 ieee80211_state_name[nstate], sc->flags)); 942 943 IEEE80211_UNLOCK(ic); 944 IWI_LOCK(sc); 945 switch (nstate) { 946 case IEEE80211_S_INIT: 947 /* 948 * NB: don't try to do this if iwi_stop_master has 949 * shutdown the firmware and disabled interrupts. 950 */ 951 if (vap->iv_state == IEEE80211_S_RUN && 952 (sc->flags & IWI_FLAG_FW_INITED)) 953 iwi_disassociate(sc, 0); 954 break; 955 case IEEE80211_S_AUTH: 956 iwi_auth_and_assoc(sc, vap); 957 break; 958 case IEEE80211_S_RUN: 959 if (vap->iv_opmode == IEEE80211_M_IBSS && 960 vap->iv_state == IEEE80211_S_SCAN) { 961 /* 962 * XXX when joining an ibss network we are called 963 * with a SCAN -> RUN transition on scan complete. 964 * Use that to call iwi_auth_and_assoc. On completing 965 * the join we are then called again with an 966 * AUTH -> RUN transition and we want to do nothing. 967 * This is all totally bogus and needs to be redone. 968 */ 969 iwi_auth_and_assoc(sc, vap); 970 } else if (vap->iv_opmode == IEEE80211_M_MONITOR) 971 ieee80211_runtask(ic, &sc->sc_monitortask); 972 break; 973 case IEEE80211_S_ASSOC: 974 /* 975 * If we are transitioning from AUTH then just wait 976 * for the ASSOC status to come back from the firmware. 977 * Otherwise we need to issue the association request. 978 */ 979 if (vap->iv_state == IEEE80211_S_AUTH) 980 break; 981 iwi_auth_and_assoc(sc, vap); 982 break; 983 default: 984 break; 985 } 986 IWI_UNLOCK(sc); 987 IEEE80211_LOCK(ic); 988 return ivp->iwi_newstate(vap, nstate, arg); 989 } 990 991 /* 992 * WME parameters coming from IEEE 802.11e specification. These values are 993 * already declared in ieee80211_proto.c, but they are static so they can't 994 * be reused here. 995 */ 996 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 997 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 998 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 999 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1000 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1001 }; 1002 1003 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1004 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1005 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1006 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1007 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1008 }; 1009 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1010 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1011 1012 static void 1013 iwi_wme_init(struct iwi_softc *sc) 1014 { 1015 const struct wmeParams *wmep; 1016 int ac; 1017 1018 memset(sc->wme, 0, sizeof sc->wme); 1019 for (ac = 0; ac < WME_NUM_AC; ac++) { 1020 /* set WME values for CCK modulation */ 1021 wmep = &iwi_wme_cck_params[ac]; 1022 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1023 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1024 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1025 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1026 sc->wme[1].acm[ac] = wmep->wmep_acm; 1027 1028 /* set WME values for OFDM modulation */ 1029 wmep = &iwi_wme_ofdm_params[ac]; 1030 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1031 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1032 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1033 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1034 sc->wme[2].acm[ac] = wmep->wmep_acm; 1035 } 1036 } 1037 1038 static int 1039 iwi_wme_setparams(struct iwi_softc *sc) 1040 { 1041 struct ieee80211com *ic = &sc->sc_ic; 1042 const struct wmeParams *wmep; 1043 int ac; 1044 1045 for (ac = 0; ac < WME_NUM_AC; ac++) { 1046 /* set WME values for current operating mode */ 1047 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1048 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1049 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1050 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1051 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1052 sc->wme[0].acm[ac] = wmep->wmep_acm; 1053 } 1054 1055 DPRINTF(("Setting WME parameters\n")); 1056 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1057 } 1058 #undef IWI_USEC 1059 #undef IWI_EXP2 1060 1061 static int 1062 iwi_wme_update(struct ieee80211com *ic) 1063 { 1064 struct iwi_softc *sc = ic->ic_softc; 1065 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1066 IWI_LOCK_DECL; 1067 1068 /* 1069 * We may be called to update the WME parameters in 1070 * the adapter at various places. If we're already 1071 * associated then initiate the request immediately; 1072 * otherwise we assume the params will get sent down 1073 * to the adapter as part of the work iwi_auth_and_assoc 1074 * does. 1075 */ 1076 if (vap->iv_state == IEEE80211_S_RUN) { 1077 IWI_LOCK(sc); 1078 iwi_wme_setparams(sc); 1079 IWI_UNLOCK(sc); 1080 } 1081 return (0); 1082 } 1083 1084 static int 1085 iwi_wme_setie(struct iwi_softc *sc) 1086 { 1087 struct ieee80211_wme_info wme; 1088 1089 memset(&wme, 0, sizeof wme); 1090 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1091 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1092 wme.wme_oui[0] = 0x00; 1093 wme.wme_oui[1] = 0x50; 1094 wme.wme_oui[2] = 0xf2; 1095 wme.wme_type = WME_OUI_TYPE; 1096 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1097 wme.wme_version = WME_VERSION; 1098 wme.wme_info = 0; 1099 1100 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1101 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1102 } 1103 1104 /* 1105 * Read 16 bits at address 'addr' from the serial EEPROM. 1106 */ 1107 static uint16_t 1108 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1109 { 1110 uint32_t tmp; 1111 uint16_t val; 1112 int n; 1113 1114 /* clock C once before the first command */ 1115 IWI_EEPROM_CTL(sc, 0); 1116 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1117 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1118 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1119 1120 /* write start bit (1) */ 1121 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1122 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1123 1124 /* write READ opcode (10) */ 1125 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1126 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1127 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1128 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1129 1130 /* write address A7-A0 */ 1131 for (n = 7; n >= 0; n--) { 1132 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1133 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1134 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1135 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1136 } 1137 1138 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1139 1140 /* read data Q15-Q0 */ 1141 val = 0; 1142 for (n = 15; n >= 0; n--) { 1143 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1144 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1145 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1146 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1147 } 1148 1149 IWI_EEPROM_CTL(sc, 0); 1150 1151 /* clear Chip Select and clock C */ 1152 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1153 IWI_EEPROM_CTL(sc, 0); 1154 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1155 1156 return val; 1157 } 1158 1159 static void 1160 iwi_setcurchan(struct iwi_softc *sc, int chan) 1161 { 1162 struct ieee80211com *ic = &sc->sc_ic; 1163 1164 sc->curchan = chan; 1165 ieee80211_radiotap_chan_change(ic); 1166 } 1167 1168 static void 1169 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1170 struct iwi_frame *frame) 1171 { 1172 struct ieee80211com *ic = &sc->sc_ic; 1173 struct mbuf *mnew, *m; 1174 struct ieee80211_node *ni; 1175 int type, error, framelen; 1176 int8_t rssi, nf; 1177 IWI_LOCK_DECL; 1178 1179 framelen = le16toh(frame->len); 1180 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1181 /* 1182 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1183 * out of bounds; need to figure out how to limit 1184 * frame size in the firmware 1185 */ 1186 /* XXX stat */ 1187 DPRINTFN(1, 1188 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1189 le16toh(frame->len), frame->chan, frame->rssi, 1190 frame->rssi_dbm)); 1191 return; 1192 } 1193 1194 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1195 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1196 1197 if (frame->chan != sc->curchan) 1198 iwi_setcurchan(sc, frame->chan); 1199 1200 /* 1201 * Try to allocate a new mbuf for this ring element and load it before 1202 * processing the current mbuf. If the ring element cannot be loaded, 1203 * drop the received packet and reuse the old mbuf. In the unlikely 1204 * case that the old mbuf can't be reloaded either, explicitly panic. 1205 */ 1206 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1207 if (mnew == NULL) { 1208 counter_u64_add(ic->ic_ierrors, 1); 1209 return; 1210 } 1211 1212 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1213 1214 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1215 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1216 0); 1217 if (error != 0) { 1218 m_freem(mnew); 1219 1220 /* try to reload the old mbuf */ 1221 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1222 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1223 &data->physaddr, 0); 1224 if (error != 0) { 1225 /* very unlikely that it will fail... */ 1226 panic("%s: could not load old rx mbuf", 1227 device_get_name(sc->sc_dev)); 1228 } 1229 counter_u64_add(ic->ic_ierrors, 1); 1230 return; 1231 } 1232 1233 /* 1234 * New mbuf successfully loaded, update Rx ring and continue 1235 * processing. 1236 */ 1237 m = data->m; 1238 data->m = mnew; 1239 CSR_WRITE_4(sc, data->reg, data->physaddr); 1240 1241 /* finalize mbuf */ 1242 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1243 sizeof (struct iwi_frame) + framelen; 1244 1245 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1246 1247 rssi = frame->rssi_dbm; 1248 nf = -95; 1249 if (ieee80211_radiotap_active(ic)) { 1250 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1251 1252 tap->wr_flags = 0; 1253 tap->wr_antsignal = rssi; 1254 tap->wr_antnoise = nf; 1255 tap->wr_rate = iwi_cvtrate(frame->rate); 1256 tap->wr_antenna = frame->antenna; 1257 } 1258 IWI_UNLOCK(sc); 1259 1260 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1261 if (ni != NULL) { 1262 type = ieee80211_input(ni, m, rssi, nf); 1263 ieee80211_free_node(ni); 1264 } else 1265 type = ieee80211_input_all(ic, m, rssi, nf); 1266 1267 IWI_LOCK(sc); 1268 if (sc->sc_softled) { 1269 /* 1270 * Blink for any data frame. Otherwise do a 1271 * heartbeat-style blink when idle. The latter 1272 * is mainly for station mode where we depend on 1273 * periodic beacon frames to trigger the poll event. 1274 */ 1275 if (type == IEEE80211_FC0_TYPE_DATA) { 1276 sc->sc_rxrate = frame->rate; 1277 iwi_led_event(sc, IWI_LED_RX); 1278 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1279 iwi_led_event(sc, IWI_LED_POLL); 1280 } 1281 } 1282 1283 /* 1284 * Check for an association response frame to see if QoS 1285 * has been negotiated. We parse just enough to figure 1286 * out if we're supposed to use QoS. The proper solution 1287 * is to pass the frame up so ieee80211_input can do the 1288 * work but that's made hard by how things currently are 1289 * done in the driver. 1290 */ 1291 static void 1292 iwi_checkforqos(struct ieee80211vap *vap, 1293 const struct ieee80211_frame *wh, int len) 1294 { 1295 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1296 const uint8_t *frm, *efrm, *wme; 1297 struct ieee80211_node *ni; 1298 uint16_t capinfo, status, associd; 1299 1300 /* NB: +8 for capinfo, status, associd, and first ie */ 1301 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1302 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1303 return; 1304 /* 1305 * asresp frame format 1306 * [2] capability information 1307 * [2] status 1308 * [2] association ID 1309 * [tlv] supported rates 1310 * [tlv] extended supported rates 1311 * [tlv] WME 1312 */ 1313 frm = (const uint8_t *)&wh[1]; 1314 efrm = ((const uint8_t *) wh) + len; 1315 1316 capinfo = le16toh(*(const uint16_t *)frm); 1317 frm += 2; 1318 status = le16toh(*(const uint16_t *)frm); 1319 frm += 2; 1320 associd = le16toh(*(const uint16_t *)frm); 1321 frm += 2; 1322 1323 wme = NULL; 1324 while (efrm - frm > 1) { 1325 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); 1326 switch (*frm) { 1327 case IEEE80211_ELEMID_VENDOR: 1328 if (iswmeoui(frm)) 1329 wme = frm; 1330 break; 1331 } 1332 frm += frm[1] + 2; 1333 } 1334 1335 ni = ieee80211_ref_node(vap->iv_bss); 1336 ni->ni_capinfo = capinfo; 1337 ni->ni_associd = associd & 0x3fff; 1338 if (wme != NULL) 1339 ni->ni_flags |= IEEE80211_NODE_QOS; 1340 else 1341 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1342 ieee80211_free_node(ni); 1343 #undef SUBTYPE 1344 } 1345 1346 static void 1347 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif) 1348 { 1349 struct iwi_notif_link_quality *lq; 1350 int len; 1351 1352 len = le16toh(notif->len); 1353 1354 DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n", 1355 notif->type, 1356 len, 1357 sizeof(struct iwi_notif_link_quality) 1358 )); 1359 1360 /* enforce length */ 1361 if (len != sizeof(struct iwi_notif_link_quality)) { 1362 DPRINTFN(5, ("Notification: (%u) too short (%d)\n", 1363 notif->type, 1364 len)); 1365 return; 1366 } 1367 1368 lq = (struct iwi_notif_link_quality *)(notif + 1); 1369 memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual)); 1370 sc->sc_linkqual_valid = 1; 1371 } 1372 1373 /* 1374 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1375 */ 1376 1377 static void 1378 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1379 { 1380 struct ieee80211com *ic = &sc->sc_ic; 1381 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1382 struct iwi_notif_scan_channel *chan; 1383 struct iwi_notif_scan_complete *scan; 1384 struct iwi_notif_authentication *auth; 1385 struct iwi_notif_association *assoc; 1386 struct iwi_notif_beacon_state *beacon; 1387 1388 switch (notif->type) { 1389 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1390 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1391 1392 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1393 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1394 1395 /* Reset the timer, the scan is still going */ 1396 sc->sc_state_timer = 3; 1397 break; 1398 1399 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1400 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1401 1402 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1403 scan->status)); 1404 1405 IWI_STATE_END(sc, IWI_FW_SCANNING); 1406 1407 /* 1408 * Monitor mode works by doing a passive scan to set 1409 * the channel and enable rx. Because we don't want 1410 * to abort a scan lest the firmware crash we scan 1411 * for a short period of time and automatically restart 1412 * the scan when notified the sweep has completed. 1413 */ 1414 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1415 ieee80211_runtask(ic, &sc->sc_monitortask); 1416 break; 1417 } 1418 1419 if (scan->status == IWI_SCAN_COMPLETED) { 1420 /* NB: don't need to defer, net80211 does it for us */ 1421 ieee80211_scan_next(vap); 1422 } 1423 break; 1424 1425 case IWI_NOTIF_TYPE_AUTHENTICATION: 1426 auth = (struct iwi_notif_authentication *)(notif + 1); 1427 switch (auth->state) { 1428 case IWI_AUTH_SUCCESS: 1429 DPRINTFN(2, ("Authentication succeeeded\n")); 1430 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1431 break; 1432 case IWI_AUTH_FAIL: 1433 /* 1434 * These are delivered as an unsolicited deauth 1435 * (e.g. due to inactivity) or in response to an 1436 * associate request. 1437 */ 1438 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1439 if (vap->iv_state != IEEE80211_S_RUN) { 1440 DPRINTFN(2, ("Authentication failed\n")); 1441 vap->iv_stats.is_rx_auth_fail++; 1442 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1443 } else { 1444 DPRINTFN(2, ("Deauthenticated\n")); 1445 vap->iv_stats.is_rx_deauth++; 1446 } 1447 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1448 break; 1449 case IWI_AUTH_SENT_1: 1450 case IWI_AUTH_RECV_2: 1451 case IWI_AUTH_SEQ1_PASS: 1452 break; 1453 case IWI_AUTH_SEQ1_FAIL: 1454 DPRINTFN(2, ("Initial authentication handshake failed; " 1455 "you probably need shared key\n")); 1456 vap->iv_stats.is_rx_auth_fail++; 1457 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1458 /* XXX retry shared key when in auto */ 1459 break; 1460 default: 1461 device_printf(sc->sc_dev, 1462 "unknown authentication state %u\n", auth->state); 1463 break; 1464 } 1465 break; 1466 1467 case IWI_NOTIF_TYPE_ASSOCIATION: 1468 assoc = (struct iwi_notif_association *)(notif + 1); 1469 switch (assoc->state) { 1470 case IWI_AUTH_SUCCESS: 1471 /* re-association, do nothing */ 1472 break; 1473 case IWI_ASSOC_SUCCESS: 1474 DPRINTFN(2, ("Association succeeded\n")); 1475 sc->flags |= IWI_FLAG_ASSOCIATED; 1476 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1477 iwi_checkforqos(vap, 1478 (const struct ieee80211_frame *)(assoc+1), 1479 le16toh(notif->len) - sizeof(*assoc) - 1); 1480 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1481 break; 1482 case IWI_ASSOC_INIT: 1483 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1484 switch (sc->fw_state) { 1485 case IWI_FW_ASSOCIATING: 1486 DPRINTFN(2, ("Association failed\n")); 1487 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1488 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1489 break; 1490 1491 case IWI_FW_DISASSOCIATING: 1492 DPRINTFN(2, ("Dissassociated\n")); 1493 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1494 vap->iv_stats.is_rx_disassoc++; 1495 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1496 break; 1497 } 1498 break; 1499 default: 1500 device_printf(sc->sc_dev, 1501 "unknown association state %u\n", assoc->state); 1502 break; 1503 } 1504 break; 1505 1506 case IWI_NOTIF_TYPE_BEACON: 1507 /* XXX check struct length */ 1508 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1509 1510 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1511 beacon->state, le32toh(beacon->number))); 1512 1513 if (beacon->state == IWI_BEACON_MISS) { 1514 /* 1515 * The firmware notifies us of every beacon miss 1516 * so we need to track the count against the 1517 * configured threshold before notifying the 1518 * 802.11 layer. 1519 * XXX try to roam, drop assoc only on much higher count 1520 */ 1521 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1522 DPRINTF(("Beacon miss: %u >= %u\n", 1523 le32toh(beacon->number), 1524 vap->iv_bmissthreshold)); 1525 vap->iv_stats.is_beacon_miss++; 1526 /* 1527 * It's pointless to notify the 802.11 layer 1528 * as it'll try to send a probe request (which 1529 * we'll discard) and then timeout and drop us 1530 * into scan state. Instead tell the firmware 1531 * to disassociate and then on completion we'll 1532 * kick the state machine to scan. 1533 */ 1534 ieee80211_runtask(ic, &sc->sc_disassoctask); 1535 } 1536 } 1537 break; 1538 1539 case IWI_NOTIF_TYPE_CALIBRATION: 1540 case IWI_NOTIF_TYPE_NOISE: 1541 /* XXX handle? */ 1542 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1543 break; 1544 case IWI_NOTIF_TYPE_LINK_QUALITY: 1545 iwi_notif_link_quality(sc, notif); 1546 break; 1547 1548 default: 1549 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1550 notif->type, notif->flags, le16toh(notif->len))); 1551 break; 1552 } 1553 } 1554 1555 static void 1556 iwi_rx_intr(struct iwi_softc *sc) 1557 { 1558 struct iwi_rx_data *data; 1559 struct iwi_hdr *hdr; 1560 uint32_t hw; 1561 1562 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1563 1564 for (; sc->rxq.cur != hw;) { 1565 data = &sc->rxq.data[sc->rxq.cur]; 1566 1567 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1568 BUS_DMASYNC_POSTREAD); 1569 1570 hdr = mtod(data->m, struct iwi_hdr *); 1571 1572 switch (hdr->type) { 1573 case IWI_HDR_TYPE_FRAME: 1574 iwi_frame_intr(sc, data, sc->rxq.cur, 1575 (struct iwi_frame *)(hdr + 1)); 1576 break; 1577 1578 case IWI_HDR_TYPE_NOTIF: 1579 iwi_notification_intr(sc, 1580 (struct iwi_notif *)(hdr + 1)); 1581 break; 1582 1583 default: 1584 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1585 hdr->type); 1586 } 1587 1588 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1589 1590 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1591 } 1592 1593 /* tell the firmware what we have processed */ 1594 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1595 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1596 } 1597 1598 static void 1599 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1600 { 1601 struct iwi_tx_data *data; 1602 uint32_t hw; 1603 1604 hw = CSR_READ_4(sc, txq->csr_ridx); 1605 1606 while (txq->next != hw) { 1607 data = &txq->data[txq->next]; 1608 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1609 bus_dmamap_sync(txq->data_dmat, data->map, 1610 BUS_DMASYNC_POSTWRITE); 1611 bus_dmamap_unload(txq->data_dmat, data->map); 1612 ieee80211_tx_complete(data->ni, data->m, 0); 1613 data->ni = NULL; 1614 data->m = NULL; 1615 txq->queued--; 1616 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1617 } 1618 sc->sc_tx_timer = 0; 1619 if (sc->sc_softled) 1620 iwi_led_event(sc, IWI_LED_TX); 1621 iwi_start(sc); 1622 } 1623 1624 static void 1625 iwi_fatal_error_intr(struct iwi_softc *sc) 1626 { 1627 struct ieee80211com *ic = &sc->sc_ic; 1628 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1629 1630 device_printf(sc->sc_dev, "firmware error\n"); 1631 if (vap != NULL) 1632 ieee80211_cancel_scan(vap); 1633 ieee80211_runtask(ic, &sc->sc_restarttask); 1634 1635 sc->flags &= ~IWI_FLAG_BUSY; 1636 sc->sc_busy_timer = 0; 1637 wakeup(sc); 1638 } 1639 1640 static void 1641 iwi_radio_off_intr(struct iwi_softc *sc) 1642 { 1643 1644 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask); 1645 } 1646 1647 static void 1648 iwi_intr(void *arg) 1649 { 1650 struct iwi_softc *sc = arg; 1651 uint32_t r; 1652 IWI_LOCK_DECL; 1653 1654 IWI_LOCK(sc); 1655 1656 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1657 IWI_UNLOCK(sc); 1658 return; 1659 } 1660 1661 /* acknowledge interrupts */ 1662 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1663 1664 if (r & IWI_INTR_FATAL_ERROR) { 1665 iwi_fatal_error_intr(sc); 1666 goto done; 1667 } 1668 1669 if (r & IWI_INTR_FW_INITED) { 1670 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1671 wakeup(sc); 1672 } 1673 1674 if (r & IWI_INTR_RADIO_OFF) 1675 iwi_radio_off_intr(sc); 1676 1677 if (r & IWI_INTR_CMD_DONE) { 1678 sc->flags &= ~IWI_FLAG_BUSY; 1679 sc->sc_busy_timer = 0; 1680 wakeup(sc); 1681 } 1682 1683 if (r & IWI_INTR_TX1_DONE) 1684 iwi_tx_intr(sc, &sc->txq[0]); 1685 1686 if (r & IWI_INTR_TX2_DONE) 1687 iwi_tx_intr(sc, &sc->txq[1]); 1688 1689 if (r & IWI_INTR_TX3_DONE) 1690 iwi_tx_intr(sc, &sc->txq[2]); 1691 1692 if (r & IWI_INTR_TX4_DONE) 1693 iwi_tx_intr(sc, &sc->txq[3]); 1694 1695 if (r & IWI_INTR_RX_DONE) 1696 iwi_rx_intr(sc); 1697 1698 if (r & IWI_INTR_PARITY_ERROR) { 1699 /* XXX rate-limit */ 1700 device_printf(sc->sc_dev, "parity error\n"); 1701 } 1702 done: 1703 IWI_UNLOCK(sc); 1704 } 1705 1706 static int 1707 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1708 { 1709 struct iwi_cmd_desc *desc; 1710 1711 IWI_LOCK_ASSERT(sc); 1712 1713 if (sc->flags & IWI_FLAG_BUSY) { 1714 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1715 __func__, type); 1716 return EAGAIN; 1717 } 1718 sc->flags |= IWI_FLAG_BUSY; 1719 sc->sc_busy_timer = 2; 1720 1721 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1722 1723 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1724 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1725 desc->type = type; 1726 desc->len = len; 1727 memcpy(desc->data, data, len); 1728 1729 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1730 BUS_DMASYNC_PREWRITE); 1731 1732 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1733 type, len)); 1734 1735 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1736 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1737 1738 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1739 } 1740 1741 static void 1742 iwi_write_ibssnode(struct iwi_softc *sc, 1743 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1744 { 1745 struct iwi_ibssnode node; 1746 1747 /* write node information into NIC memory */ 1748 memset(&node, 0, sizeof node); 1749 IEEE80211_ADDR_COPY(node.bssid, addr); 1750 1751 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1752 1753 CSR_WRITE_REGION_1(sc, 1754 IWI_CSR_NODE_BASE + entry * sizeof node, 1755 (uint8_t *)&node, sizeof node); 1756 } 1757 1758 static int 1759 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1760 int ac) 1761 { 1762 struct ieee80211vap *vap = ni->ni_vap; 1763 struct ieee80211com *ic = ni->ni_ic; 1764 struct iwi_node *in = (struct iwi_node *)ni; 1765 const struct ieee80211_frame *wh; 1766 struct ieee80211_key *k; 1767 const struct chanAccParams *cap; 1768 struct iwi_tx_ring *txq = &sc->txq[ac]; 1769 struct iwi_tx_data *data; 1770 struct iwi_tx_desc *desc; 1771 struct mbuf *mnew; 1772 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1773 int error, nsegs, hdrlen, i; 1774 int ismcast, flags, xflags, staid; 1775 1776 IWI_LOCK_ASSERT(sc); 1777 wh = mtod(m0, const struct ieee80211_frame *); 1778 /* NB: only data frames use this path */ 1779 hdrlen = ieee80211_hdrsize(wh); 1780 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1781 flags = xflags = 0; 1782 1783 if (!ismcast) 1784 flags |= IWI_DATA_FLAG_NEED_ACK; 1785 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1786 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1787 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1788 xflags |= IWI_DATA_XFLAG_QOS; 1789 cap = &ic->ic_wme.wme_chanParams; 1790 if (!cap->cap_wmeParams[ac].wmep_noackPolicy) 1791 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1792 } 1793 1794 /* 1795 * This is only used in IBSS mode where the firmware expect an index 1796 * in a h/w table instead of a destination address. 1797 */ 1798 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1799 if (!ismcast) { 1800 if (in->in_station == -1) { 1801 in->in_station = alloc_unr(sc->sc_unr); 1802 if (in->in_station == -1) { 1803 /* h/w table is full */ 1804 if_inc_counter(ni->ni_vap->iv_ifp, 1805 IFCOUNTER_OERRORS, 1); 1806 m_freem(m0); 1807 ieee80211_free_node(ni); 1808 return 0; 1809 } 1810 iwi_write_ibssnode(sc, 1811 ni->ni_macaddr, in->in_station); 1812 } 1813 staid = in->in_station; 1814 } else { 1815 /* 1816 * Multicast addresses have no associated node 1817 * so there will be no station entry. We reserve 1818 * entry 0 for one mcast address and use that. 1819 * If there are many being used this will be 1820 * expensive and we'll need to do a better job 1821 * but for now this handles the broadcast case. 1822 */ 1823 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1824 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1825 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1826 } 1827 staid = 0; 1828 } 1829 } else 1830 staid = 0; 1831 1832 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1833 k = ieee80211_crypto_encap(ni, m0); 1834 if (k == NULL) { 1835 m_freem(m0); 1836 return ENOBUFS; 1837 } 1838 1839 /* packet header may have moved, reset our local pointer */ 1840 wh = mtod(m0, struct ieee80211_frame *); 1841 } 1842 1843 if (ieee80211_radiotap_active_vap(vap)) { 1844 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1845 1846 tap->wt_flags = 0; 1847 1848 ieee80211_radiotap_tx(vap, m0); 1849 } 1850 1851 data = &txq->data[txq->cur]; 1852 desc = &txq->desc[txq->cur]; 1853 1854 /* save and trim IEEE802.11 header */ 1855 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1856 m_adj(m0, hdrlen); 1857 1858 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1859 &nsegs, 0); 1860 if (error != 0 && error != EFBIG) { 1861 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1862 error); 1863 m_freem(m0); 1864 return error; 1865 } 1866 if (error != 0) { 1867 mnew = m_defrag(m0, M_NOWAIT); 1868 if (mnew == NULL) { 1869 device_printf(sc->sc_dev, 1870 "could not defragment mbuf\n"); 1871 m_freem(m0); 1872 return ENOBUFS; 1873 } 1874 m0 = mnew; 1875 1876 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1877 m0, segs, &nsegs, 0); 1878 if (error != 0) { 1879 device_printf(sc->sc_dev, 1880 "could not map mbuf (error %d)\n", error); 1881 m_freem(m0); 1882 return error; 1883 } 1884 } 1885 1886 data->m = m0; 1887 data->ni = ni; 1888 1889 desc->hdr.type = IWI_HDR_TYPE_DATA; 1890 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1891 desc->station = staid; 1892 desc->cmd = IWI_DATA_CMD_TX; 1893 desc->len = htole16(m0->m_pkthdr.len); 1894 desc->flags = flags; 1895 desc->xflags = xflags; 1896 1897 #if 0 1898 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1899 desc->wep_txkey = vap->iv_def_txkey; 1900 else 1901 #endif 1902 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1903 1904 desc->nseg = htole32(nsegs); 1905 for (i = 0; i < nsegs; i++) { 1906 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1907 desc->seg_len[i] = htole16(segs[i].ds_len); 1908 } 1909 1910 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1911 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1912 1913 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1914 ac, txq->cur, le16toh(desc->len), nsegs)); 1915 1916 txq->queued++; 1917 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1918 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1919 1920 return 0; 1921 } 1922 1923 static int 1924 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1925 const struct ieee80211_bpf_params *params) 1926 { 1927 /* no support; just discard */ 1928 m_freem(m); 1929 ieee80211_free_node(ni); 1930 return 0; 1931 } 1932 1933 static int 1934 iwi_transmit(struct ieee80211com *ic, struct mbuf *m) 1935 { 1936 struct iwi_softc *sc = ic->ic_softc; 1937 int error; 1938 IWI_LOCK_DECL; 1939 1940 IWI_LOCK(sc); 1941 if (!sc->sc_running) { 1942 IWI_UNLOCK(sc); 1943 return (ENXIO); 1944 } 1945 error = mbufq_enqueue(&sc->sc_snd, m); 1946 if (error) { 1947 IWI_UNLOCK(sc); 1948 return (error); 1949 } 1950 iwi_start(sc); 1951 IWI_UNLOCK(sc); 1952 return (0); 1953 } 1954 1955 static void 1956 iwi_start(struct iwi_softc *sc) 1957 { 1958 struct mbuf *m; 1959 struct ieee80211_node *ni; 1960 int ac; 1961 1962 IWI_LOCK_ASSERT(sc); 1963 1964 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1965 ac = M_WME_GETAC(m); 1966 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1967 /* there is no place left in this ring; tail drop */ 1968 /* XXX tail drop */ 1969 mbufq_prepend(&sc->sc_snd, m); 1970 break; 1971 } 1972 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1973 if (iwi_tx_start(sc, m, ni, ac) != 0) { 1974 ieee80211_free_node(ni); 1975 if_inc_counter(ni->ni_vap->iv_ifp, 1976 IFCOUNTER_OERRORS, 1); 1977 break; 1978 } 1979 sc->sc_tx_timer = 5; 1980 } 1981 } 1982 1983 static void 1984 iwi_watchdog(void *arg) 1985 { 1986 struct iwi_softc *sc = arg; 1987 struct ieee80211com *ic = &sc->sc_ic; 1988 1989 IWI_LOCK_ASSERT(sc); 1990 1991 if (sc->sc_tx_timer > 0) { 1992 if (--sc->sc_tx_timer == 0) { 1993 device_printf(sc->sc_dev, "device timeout\n"); 1994 counter_u64_add(ic->ic_oerrors, 1); 1995 ieee80211_runtask(ic, &sc->sc_restarttask); 1996 } 1997 } 1998 if (sc->sc_state_timer > 0) { 1999 if (--sc->sc_state_timer == 0) { 2000 device_printf(sc->sc_dev, 2001 "firmware stuck in state %d, resetting\n", 2002 sc->fw_state); 2003 if (sc->fw_state == IWI_FW_SCANNING) 2004 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2005 ieee80211_runtask(ic, &sc->sc_restarttask); 2006 sc->sc_state_timer = 3; 2007 } 2008 } 2009 if (sc->sc_busy_timer > 0) { 2010 if (--sc->sc_busy_timer == 0) { 2011 device_printf(sc->sc_dev, 2012 "firmware command timeout, resetting\n"); 2013 ieee80211_runtask(ic, &sc->sc_restarttask); 2014 } 2015 } 2016 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2017 } 2018 2019 static void 2020 iwi_parent(struct ieee80211com *ic) 2021 { 2022 struct iwi_softc *sc = ic->ic_softc; 2023 int startall = 0; 2024 IWI_LOCK_DECL; 2025 2026 IWI_LOCK(sc); 2027 if (ic->ic_nrunning > 0) { 2028 if (!sc->sc_running) { 2029 iwi_init_locked(sc); 2030 startall = 1; 2031 } 2032 } else if (sc->sc_running) 2033 iwi_stop_locked(sc); 2034 IWI_UNLOCK(sc); 2035 if (startall) 2036 ieee80211_start_all(ic); 2037 } 2038 2039 static int 2040 iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 2041 { 2042 struct ifreq *ifr = data; 2043 struct iwi_softc *sc = ic->ic_softc; 2044 int error; 2045 IWI_LOCK_DECL; 2046 2047 IWI_LOCK(sc); 2048 switch (cmd) { 2049 case SIOCGIWISTATS: 2050 /* XXX validate permissions/memory/etc? */ 2051 error = copyout(&sc->sc_linkqual, ifr->ifr_data, 2052 sizeof(struct iwi_notif_link_quality)); 2053 break; 2054 case SIOCZIWISTATS: 2055 memset(&sc->sc_linkqual, 0, 2056 sizeof(struct iwi_notif_link_quality)); 2057 error = 0; 2058 break; 2059 default: 2060 error = ENOTTY; 2061 break; 2062 } 2063 IWI_UNLOCK(sc); 2064 2065 return (error); 2066 } 2067 2068 static void 2069 iwi_stop_master(struct iwi_softc *sc) 2070 { 2071 uint32_t tmp; 2072 int ntries; 2073 2074 /* disable interrupts */ 2075 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2076 2077 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2078 for (ntries = 0; ntries < 5; ntries++) { 2079 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2080 break; 2081 DELAY(10); 2082 } 2083 if (ntries == 5) 2084 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2085 2086 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2087 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2088 2089 sc->flags &= ~IWI_FLAG_FW_INITED; 2090 } 2091 2092 static int 2093 iwi_reset(struct iwi_softc *sc) 2094 { 2095 uint32_t tmp; 2096 int i, ntries; 2097 2098 iwi_stop_master(sc); 2099 2100 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2101 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2102 2103 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2104 2105 /* wait for clock stabilization */ 2106 for (ntries = 0; ntries < 1000; ntries++) { 2107 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2108 break; 2109 DELAY(200); 2110 } 2111 if (ntries == 1000) { 2112 device_printf(sc->sc_dev, 2113 "timeout waiting for clock stabilization\n"); 2114 return EIO; 2115 } 2116 2117 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2118 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2119 2120 DELAY(10); 2121 2122 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2123 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2124 2125 /* clear NIC memory */ 2126 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2127 for (i = 0; i < 0xc000; i++) 2128 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2129 2130 return 0; 2131 } 2132 2133 static const struct iwi_firmware_ohdr * 2134 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2135 { 2136 const struct firmware *fp = fw->fp; 2137 const struct iwi_firmware_ohdr *hdr; 2138 2139 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2140 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2141 return NULL; 2142 } 2143 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2144 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2145 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2146 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2147 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2148 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2149 IWI_FW_REQ_MINOR); 2150 return NULL; 2151 } 2152 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2153 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2154 fw->name = fp->name; 2155 return hdr; 2156 } 2157 2158 static const struct iwi_firmware_ohdr * 2159 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2160 { 2161 const struct iwi_firmware_ohdr *hdr; 2162 2163 hdr = iwi_setup_ofw(sc, fw); 2164 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2165 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2166 fw->name); 2167 hdr = NULL; 2168 } 2169 return hdr; 2170 } 2171 2172 static void 2173 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2174 struct iwi_fw *uc, const char *ucname) 2175 { 2176 if (fw->fp == NULL) 2177 fw->fp = firmware_get(fwname); 2178 /* NB: pre-3.0 ucode is packaged separately */ 2179 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2180 uc->fp = firmware_get(ucname); 2181 } 2182 2183 /* 2184 * Get the required firmware images if not already loaded. 2185 * Note that we hold firmware images so long as the device 2186 * is marked up in case we need to reload them on device init. 2187 * This is necessary because we re-init the device sometimes 2188 * from a context where we cannot read from the filesystem 2189 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2190 * XXX return 0 on success, 1 on error. 2191 * 2192 * NB: the order of get'ing and put'ing images here is 2193 * intentional to support handling firmware images bundled 2194 * by operating mode and/or all together in one file with 2195 * the boot firmware as "master". 2196 */ 2197 static int 2198 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2199 { 2200 const struct iwi_firmware_hdr *hdr; 2201 const struct firmware *fp; 2202 2203 /* invalidate cached firmware on mode change */ 2204 if (sc->fw_mode != opmode) 2205 iwi_put_firmware(sc); 2206 2207 switch (opmode) { 2208 case IEEE80211_M_STA: 2209 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2210 break; 2211 case IEEE80211_M_IBSS: 2212 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2213 break; 2214 case IEEE80211_M_MONITOR: 2215 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2216 &sc->fw_uc, "iwi_ucode_monitor"); 2217 break; 2218 default: 2219 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 2220 return EINVAL; 2221 } 2222 fp = sc->fw_fw.fp; 2223 if (fp == NULL) { 2224 device_printf(sc->sc_dev, "could not load firmware\n"); 2225 goto bad; 2226 } 2227 if (fp->version < 300) { 2228 /* 2229 * Firmware prior to 3.0 was packaged as separate 2230 * boot, firmware, and ucode images. Verify the 2231 * ucode image was read in, retrieve the boot image 2232 * if needed, and check version stamps for consistency. 2233 * The version stamps in the data are also checked 2234 * above; this is a bit paranoid but is a cheap 2235 * safeguard against mis-packaging. 2236 */ 2237 if (sc->fw_uc.fp == NULL) { 2238 device_printf(sc->sc_dev, "could not load ucode\n"); 2239 goto bad; 2240 } 2241 if (sc->fw_boot.fp == NULL) { 2242 sc->fw_boot.fp = firmware_get("iwi_boot"); 2243 if (sc->fw_boot.fp == NULL) { 2244 device_printf(sc->sc_dev, 2245 "could not load boot firmware\n"); 2246 goto bad; 2247 } 2248 } 2249 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2250 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2251 device_printf(sc->sc_dev, 2252 "firmware version mismatch: " 2253 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2254 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2255 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2256 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2257 ); 2258 goto bad; 2259 } 2260 /* 2261 * Check and setup each image. 2262 */ 2263 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2264 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2265 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2266 goto bad; 2267 } else { 2268 /* 2269 * Check and setup combined image. 2270 */ 2271 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2272 device_printf(sc->sc_dev, "image '%s' too small\n", 2273 fp->name); 2274 goto bad; 2275 } 2276 hdr = (const struct iwi_firmware_hdr *)fp->data; 2277 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2278 + le32toh(hdr->fsize)) { 2279 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2280 fp->name); 2281 goto bad; 2282 } 2283 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2284 sc->fw_boot.size = le32toh(hdr->bsize); 2285 sc->fw_boot.name = fp->name; 2286 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2287 sc->fw_uc.size = le32toh(hdr->usize); 2288 sc->fw_uc.name = fp->name; 2289 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2290 sc->fw_fw.size = le32toh(hdr->fsize); 2291 sc->fw_fw.name = fp->name; 2292 } 2293 #if 0 2294 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2295 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2296 #endif 2297 2298 sc->fw_mode = opmode; 2299 return 0; 2300 bad: 2301 iwi_put_firmware(sc); 2302 return 1; 2303 } 2304 2305 static void 2306 iwi_put_fw(struct iwi_fw *fw) 2307 { 2308 if (fw->fp != NULL) { 2309 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2310 fw->fp = NULL; 2311 } 2312 fw->data = NULL; 2313 fw->size = 0; 2314 fw->name = NULL; 2315 } 2316 2317 /* 2318 * Release any cached firmware images. 2319 */ 2320 static void 2321 iwi_put_firmware(struct iwi_softc *sc) 2322 { 2323 iwi_put_fw(&sc->fw_uc); 2324 iwi_put_fw(&sc->fw_fw); 2325 iwi_put_fw(&sc->fw_boot); 2326 } 2327 2328 static int 2329 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2330 { 2331 uint32_t tmp; 2332 const uint16_t *w; 2333 const char *uc = fw->data; 2334 size_t size = fw->size; 2335 int i, ntries, error; 2336 2337 IWI_LOCK_ASSERT(sc); 2338 error = 0; 2339 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2340 IWI_RST_STOP_MASTER); 2341 for (ntries = 0; ntries < 5; ntries++) { 2342 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2343 break; 2344 DELAY(10); 2345 } 2346 if (ntries == 5) { 2347 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2348 error = EIO; 2349 goto fail; 2350 } 2351 2352 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2353 DELAY(5000); 2354 2355 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2356 tmp &= ~IWI_RST_PRINCETON_RESET; 2357 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2358 2359 DELAY(5000); 2360 MEM_WRITE_4(sc, 0x3000e0, 0); 2361 DELAY(1000); 2362 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2363 DELAY(1000); 2364 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2365 DELAY(1000); 2366 MEM_WRITE_1(sc, 0x200000, 0x00); 2367 MEM_WRITE_1(sc, 0x200000, 0x40); 2368 DELAY(1000); 2369 2370 /* write microcode into adapter memory */ 2371 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2372 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2373 2374 MEM_WRITE_1(sc, 0x200000, 0x00); 2375 MEM_WRITE_1(sc, 0x200000, 0x80); 2376 2377 /* wait until we get an answer */ 2378 for (ntries = 0; ntries < 100; ntries++) { 2379 if (MEM_READ_1(sc, 0x200000) & 1) 2380 break; 2381 DELAY(100); 2382 } 2383 if (ntries == 100) { 2384 device_printf(sc->sc_dev, 2385 "timeout waiting for ucode to initialize\n"); 2386 error = EIO; 2387 goto fail; 2388 } 2389 2390 /* read the answer or the firmware will not initialize properly */ 2391 for (i = 0; i < 7; i++) 2392 MEM_READ_4(sc, 0x200004); 2393 2394 MEM_WRITE_1(sc, 0x200000, 0x00); 2395 2396 fail: 2397 return error; 2398 } 2399 2400 /* macro to handle unaligned little endian data in firmware image */ 2401 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2402 2403 static int 2404 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2405 { 2406 u_char *p, *end; 2407 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2408 int ntries, error; 2409 2410 IWI_LOCK_ASSERT(sc); 2411 2412 /* copy firmware image to DMA memory */ 2413 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2414 2415 /* make sure the adapter will get up-to-date values */ 2416 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2417 2418 /* tell the adapter where the command blocks are stored */ 2419 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2420 2421 /* 2422 * Store command blocks into adapter's internal memory using register 2423 * indirections. The adapter will read the firmware image through DMA 2424 * using information stored in command blocks. 2425 */ 2426 src = sc->fw_physaddr; 2427 p = sc->fw_virtaddr; 2428 end = p + fw->size; 2429 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2430 2431 while (p < end) { 2432 dst = GETLE32(p); p += 4; src += 4; 2433 len = GETLE32(p); p += 4; src += 4; 2434 p += len; 2435 2436 while (len > 0) { 2437 mlen = min(len, IWI_CB_MAXDATALEN); 2438 2439 ctl = IWI_CB_DEFAULT_CTL | mlen; 2440 sum = ctl ^ src ^ dst; 2441 2442 /* write a command block */ 2443 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2444 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2445 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2446 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2447 2448 src += mlen; 2449 dst += mlen; 2450 len -= mlen; 2451 } 2452 } 2453 2454 /* write a fictive final command block (sentinel) */ 2455 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2456 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2457 2458 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2459 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2460 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2461 2462 /* tell the adapter to start processing command blocks */ 2463 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2464 2465 /* wait until the adapter reaches the sentinel */ 2466 for (ntries = 0; ntries < 400; ntries++) { 2467 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2468 break; 2469 DELAY(100); 2470 } 2471 /* sync dma, just in case */ 2472 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2473 if (ntries == 400) { 2474 device_printf(sc->sc_dev, 2475 "timeout processing command blocks for %s firmware\n", 2476 fw->name); 2477 return EIO; 2478 } 2479 2480 /* we're done with command blocks processing */ 2481 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2482 2483 /* allow interrupts so we know when the firmware is ready */ 2484 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2485 2486 /* tell the adapter to initialize the firmware */ 2487 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2488 2489 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2490 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2491 2492 /* wait at most one second for firmware initialization to complete */ 2493 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2494 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2495 "initialization to complete\n", fw->name); 2496 } 2497 2498 return error; 2499 } 2500 2501 static int 2502 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2503 { 2504 uint32_t data; 2505 2506 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2507 /* XXX set more fine-grained operation */ 2508 data = htole32(IWI_POWER_MODE_MAX); 2509 } else 2510 data = htole32(IWI_POWER_MODE_CAM); 2511 2512 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2513 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2514 } 2515 2516 static int 2517 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2518 { 2519 struct iwi_wep_key wepkey; 2520 struct ieee80211_key *wk; 2521 int error, i; 2522 2523 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2524 wk = &vap->iv_nw_keys[i]; 2525 2526 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2527 wepkey.idx = i; 2528 wepkey.len = wk->wk_keylen; 2529 memset(wepkey.key, 0, sizeof wepkey.key); 2530 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2531 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2532 wepkey.len)); 2533 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2534 sizeof wepkey); 2535 if (error != 0) 2536 return error; 2537 } 2538 return 0; 2539 } 2540 2541 static int 2542 iwi_config(struct iwi_softc *sc) 2543 { 2544 struct ieee80211com *ic = &sc->sc_ic; 2545 struct iwi_configuration config; 2546 struct iwi_rateset rs; 2547 struct iwi_txpower power; 2548 uint32_t data; 2549 int error, i; 2550 2551 IWI_LOCK_ASSERT(sc); 2552 2553 DPRINTF(("Setting MAC address to %6D\n", ic->ic_macaddr, ":")); 2554 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_macaddr, 2555 IEEE80211_ADDR_LEN); 2556 if (error != 0) 2557 return error; 2558 2559 memset(&config, 0, sizeof config); 2560 config.bluetooth_coexistence = sc->bluetooth; 2561 config.silence_threshold = 0x1e; 2562 config.antenna = sc->antenna; 2563 config.multicast_enabled = 1; 2564 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2565 config.disable_unicast_decryption = 1; 2566 config.disable_multicast_decryption = 1; 2567 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2568 config.allow_invalid_frames = 1; 2569 config.allow_beacon_and_probe_resp = 1; 2570 config.allow_mgt = 1; 2571 } 2572 DPRINTF(("Configuring adapter\n")); 2573 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2574 if (error != 0) 2575 return error; 2576 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2577 power.mode = IWI_MODE_11B; 2578 power.nchan = 11; 2579 for (i = 0; i < 11; i++) { 2580 power.chan[i].chan = i + 1; 2581 power.chan[i].power = IWI_TXPOWER_MAX; 2582 } 2583 DPRINTF(("Setting .11b channels tx power\n")); 2584 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2585 if (error != 0) 2586 return error; 2587 2588 power.mode = IWI_MODE_11G; 2589 DPRINTF(("Setting .11g channels tx power\n")); 2590 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2591 if (error != 0) 2592 return error; 2593 } 2594 2595 memset(&rs, 0, sizeof rs); 2596 rs.mode = IWI_MODE_11G; 2597 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2598 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; 2599 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, 2600 rs.nrates); 2601 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); 2602 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2603 if (error != 0) 2604 return error; 2605 2606 memset(&rs, 0, sizeof rs); 2607 rs.mode = IWI_MODE_11A; 2608 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2609 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; 2610 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, 2611 rs.nrates); 2612 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); 2613 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2614 if (error != 0) 2615 return error; 2616 2617 data = htole32(arc4random()); 2618 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2619 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2620 if (error != 0) 2621 return error; 2622 2623 /* enable adapter */ 2624 DPRINTF(("Enabling adapter\n")); 2625 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2626 } 2627 2628 static __inline void 2629 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2630 { 2631 uint8_t *st = &scan->scan_type[ix / 2]; 2632 if (ix % 2) 2633 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2634 else 2635 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2636 } 2637 2638 static int 2639 scan_type(const struct ieee80211_scan_state *ss, 2640 const struct ieee80211_channel *chan) 2641 { 2642 /* We can only set one essid for a directed scan */ 2643 if (ss->ss_nssid != 0) 2644 return IWI_SCAN_TYPE_BDIRECTED; 2645 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2646 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2647 return IWI_SCAN_TYPE_BROADCAST; 2648 return IWI_SCAN_TYPE_PASSIVE; 2649 } 2650 2651 static __inline int 2652 scan_band(const struct ieee80211_channel *c) 2653 { 2654 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2655 } 2656 2657 static void 2658 iwi_monitor_scan(void *arg, int npending) 2659 { 2660 struct iwi_softc *sc = arg; 2661 IWI_LOCK_DECL; 2662 2663 IWI_LOCK(sc); 2664 (void) iwi_scanchan(sc, 2000, 0); 2665 IWI_UNLOCK(sc); 2666 } 2667 2668 /* 2669 * Start a scan on the current channel or all channels. 2670 */ 2671 static int 2672 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) 2673 { 2674 struct ieee80211com *ic = &sc->sc_ic; 2675 struct ieee80211_channel *chan; 2676 struct ieee80211_scan_state *ss; 2677 struct iwi_scan_ext scan; 2678 int error = 0; 2679 2680 IWI_LOCK_ASSERT(sc); 2681 if (sc->fw_state == IWI_FW_SCANNING) { 2682 /* 2683 * This should not happen as we only trigger scan_next after 2684 * completion 2685 */ 2686 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2687 return (EBUSY); 2688 } 2689 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2690 2691 ss = ic->ic_scan; 2692 2693 memset(&scan, 0, sizeof scan); 2694 scan.full_scan_index = htole32(++sc->sc_scangen); 2695 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2696 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2697 /* 2698 * Use very short dwell times for when we send probe request 2699 * frames. Without this bg scans hang. Ideally this should 2700 * be handled with early-termination as done by net80211 but 2701 * that's not feasible (aborting a scan is problematic). 2702 */ 2703 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2704 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2705 } else { 2706 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2707 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2708 } 2709 2710 /* We can only set one essid for a directed scan */ 2711 if (ss->ss_nssid != 0) { 2712 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2713 ss->ss_ssid[0].len); 2714 if (error) 2715 return (error); 2716 } 2717 2718 if (allchan) { 2719 int i, next, band, b, bstart; 2720 /* 2721 * Convert scan list to run-length encoded channel list 2722 * the firmware requires (preserving the order setup by 2723 * net80211). The first entry in each run specifies the 2724 * band and the count of items in the run. 2725 */ 2726 next = 0; /* next open slot */ 2727 bstart = 0; /* NB: not needed, silence compiler */ 2728 band = -1; /* NB: impossible value */ 2729 KASSERT(ss->ss_last > 0, ("no channels")); 2730 for (i = 0; i < ss->ss_last; i++) { 2731 chan = ss->ss_chans[i]; 2732 b = scan_band(chan); 2733 if (b != band) { 2734 if (band != -1) 2735 scan.channels[bstart] = 2736 (next - bstart) | band; 2737 /* NB: this allocates a slot for the run-len */ 2738 band = b, bstart = next++; 2739 } 2740 if (next >= IWI_SCAN_CHANNELS) { 2741 DPRINTF(("truncating scan list\n")); 2742 break; 2743 } 2744 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2745 set_scan_type(&scan, next, scan_type(ss, chan)); 2746 next++; 2747 } 2748 scan.channels[bstart] = (next - bstart) | band; 2749 } else { 2750 /* Scan the current channel only */ 2751 chan = ic->ic_curchan; 2752 scan.channels[0] = 1 | scan_band(chan); 2753 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2754 set_scan_type(&scan, 1, scan_type(ss, chan)); 2755 } 2756 #ifdef IWI_DEBUG 2757 if (iwi_debug > 0) { 2758 static const char *scantype[8] = 2759 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2760 int i; 2761 printf("Scan request: index %u dwell %d/%d/%d\n" 2762 , le32toh(scan.full_scan_index) 2763 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2764 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2765 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2766 ); 2767 i = 0; 2768 do { 2769 int run = scan.channels[i]; 2770 if (run == 0) 2771 break; 2772 printf("Scan %d %s channels:", run & 0x3f, 2773 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2774 for (run &= 0x3f, i++; run > 0; run--, i++) { 2775 uint8_t type = scan.scan_type[i/2]; 2776 printf(" %u/%s", scan.channels[i], 2777 scantype[(i & 1 ? type : type>>4) & 7]); 2778 } 2779 printf("\n"); 2780 } while (i < IWI_SCAN_CHANNELS); 2781 } 2782 #endif 2783 2784 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2785 } 2786 2787 static int 2788 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2789 { 2790 struct iwi_sensitivity sens; 2791 2792 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2793 2794 memset(&sens, 0, sizeof sens); 2795 sens.rssi = htole16(rssi_dbm); 2796 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2797 } 2798 2799 static int 2800 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2801 { 2802 struct ieee80211com *ic = vap->iv_ic; 2803 struct ifnet *ifp = vap->iv_ifp; 2804 struct ieee80211_node *ni; 2805 struct iwi_configuration config; 2806 struct iwi_associate *assoc = &sc->assoc; 2807 struct iwi_rateset rs; 2808 uint16_t capinfo; 2809 uint32_t data; 2810 int error, mode; 2811 2812 IWI_LOCK_ASSERT(sc); 2813 2814 ni = ieee80211_ref_node(vap->iv_bss); 2815 2816 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2817 DPRINTF(("Already associated\n")); 2818 return (-1); 2819 } 2820 2821 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2822 error = 0; 2823 mode = 0; 2824 2825 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2826 mode = IWI_MODE_11A; 2827 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2828 mode = IWI_MODE_11G; 2829 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2830 mode = IWI_MODE_11B; 2831 2832 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2833 memset(&config, 0, sizeof config); 2834 config.bluetooth_coexistence = sc->bluetooth; 2835 config.antenna = sc->antenna; 2836 config.multicast_enabled = 1; 2837 if (mode == IWI_MODE_11G) 2838 config.use_protection = 1; 2839 config.answer_pbreq = 2840 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2841 config.disable_unicast_decryption = 1; 2842 config.disable_multicast_decryption = 1; 2843 DPRINTF(("Configuring adapter\n")); 2844 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2845 if (error != 0) 2846 goto done; 2847 } 2848 2849 #ifdef IWI_DEBUG 2850 if (iwi_debug > 0) { 2851 printf("Setting ESSID to "); 2852 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2853 printf("\n"); 2854 } 2855 #endif 2856 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2857 if (error != 0) 2858 goto done; 2859 2860 error = iwi_setpowermode(sc, vap); 2861 if (error != 0) 2862 goto done; 2863 2864 data = htole32(vap->iv_rtsthreshold); 2865 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2866 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2867 if (error != 0) 2868 goto done; 2869 2870 data = htole32(vap->iv_fragthreshold); 2871 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2872 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2873 if (error != 0) 2874 goto done; 2875 2876 /* the rate set has already been "negotiated" */ 2877 memset(&rs, 0, sizeof rs); 2878 rs.mode = mode; 2879 rs.type = IWI_RATESET_TYPE_NEGOTIATED; 2880 rs.nrates = ni->ni_rates.rs_nrates; 2881 if (rs.nrates > IWI_RATESET_SIZE) { 2882 DPRINTF(("Truncating negotiated rate set from %u\n", 2883 rs.nrates)); 2884 rs.nrates = IWI_RATESET_SIZE; 2885 } 2886 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); 2887 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); 2888 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2889 if (error != 0) 2890 goto done; 2891 2892 memset(assoc, 0, sizeof *assoc); 2893 2894 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2895 /* NB: don't treat WME setup as failure */ 2896 if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0) 2897 assoc->policy |= htole16(IWI_POLICY_WME); 2898 /* XXX complain on failure? */ 2899 } 2900 2901 if (vap->iv_appie_wpa != NULL) { 2902 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2903 2904 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2905 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2906 if (error != 0) 2907 goto done; 2908 } 2909 2910 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2911 if (error != 0) 2912 goto done; 2913 2914 assoc->mode = mode; 2915 assoc->chan = ic->ic_curchan->ic_ieee; 2916 /* 2917 * NB: do not arrange for shared key auth w/o privacy 2918 * (i.e. a wep key); it causes a firmware error. 2919 */ 2920 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2921 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2922 assoc->auth = IWI_AUTH_SHARED; 2923 /* 2924 * It's possible to have privacy marked but no default 2925 * key setup. This typically is due to a user app bug 2926 * but if we blindly grab the key the firmware will 2927 * barf so avoid it for now. 2928 */ 2929 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2930 assoc->auth |= vap->iv_def_txkey << 4; 2931 2932 error = iwi_setwepkeys(sc, vap); 2933 if (error != 0) 2934 goto done; 2935 } 2936 if (vap->iv_flags & IEEE80211_F_WPA) 2937 assoc->policy |= htole16(IWI_POLICY_WPA); 2938 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2939 assoc->type = IWI_HC_IBSS_START; 2940 else 2941 assoc->type = IWI_HC_ASSOC; 2942 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2943 2944 if (vap->iv_opmode == IEEE80211_M_IBSS) 2945 capinfo = IEEE80211_CAPINFO_IBSS; 2946 else 2947 capinfo = IEEE80211_CAPINFO_ESS; 2948 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2949 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2950 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2951 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2952 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2953 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2954 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2955 assoc->capinfo = htole16(capinfo); 2956 2957 assoc->lintval = htole16(ic->ic_lintval); 2958 assoc->intval = htole16(ni->ni_intval); 2959 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2960 if (vap->iv_opmode == IEEE80211_M_IBSS) 2961 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 2962 else 2963 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2964 2965 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2966 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2967 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2968 assoc->bssid, ":", assoc->dst, ":", 2969 assoc->chan, le16toh(assoc->policy), assoc->auth, 2970 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2971 le16toh(assoc->intval))); 2972 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2973 done: 2974 ieee80211_free_node(ni); 2975 if (error) 2976 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2977 2978 return (error); 2979 } 2980 2981 static void 2982 iwi_disassoc(void *arg, int pending) 2983 { 2984 struct iwi_softc *sc = arg; 2985 IWI_LOCK_DECL; 2986 2987 IWI_LOCK(sc); 2988 iwi_disassociate(sc, 0); 2989 IWI_UNLOCK(sc); 2990 } 2991 2992 static int 2993 iwi_disassociate(struct iwi_softc *sc, int quiet) 2994 { 2995 struct iwi_associate *assoc = &sc->assoc; 2996 2997 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 2998 DPRINTF(("Not associated\n")); 2999 return (-1); 3000 } 3001 3002 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3003 3004 if (quiet) 3005 assoc->type = IWI_HC_DISASSOC_QUIET; 3006 else 3007 assoc->type = IWI_HC_DISASSOC; 3008 3009 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3010 assoc->bssid, ":", assoc->chan)); 3011 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3012 } 3013 3014 /* 3015 * release dma resources for the firmware 3016 */ 3017 static void 3018 iwi_release_fw_dma(struct iwi_softc *sc) 3019 { 3020 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3021 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3022 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3023 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3024 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3025 bus_dma_tag_destroy(sc->fw_dmat); 3026 3027 sc->fw_flags = 0; 3028 sc->fw_dma_size = 0; 3029 sc->fw_dmat = NULL; 3030 sc->fw_map = NULL; 3031 sc->fw_physaddr = 0; 3032 sc->fw_virtaddr = NULL; 3033 } 3034 3035 /* 3036 * allocate the dma descriptor for the firmware. 3037 * Return 0 on success, 1 on error. 3038 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3039 */ 3040 static int 3041 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3042 { 3043 if (sc->fw_dma_size >= size) 3044 return 0; 3045 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3046 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3047 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3048 device_printf(sc->sc_dev, 3049 "could not create firmware DMA tag\n"); 3050 goto error; 3051 } 3052 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3053 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3054 &sc->fw_map) != 0) { 3055 device_printf(sc->sc_dev, 3056 "could not allocate firmware DMA memory\n"); 3057 goto error; 3058 } 3059 sc->fw_flags |= IWI_FW_HAVE_MAP; 3060 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3061 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3062 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3063 goto error; 3064 } 3065 sc->fw_flags |= IWI_FW_HAVE_PHY; 3066 sc->fw_dma_size = size; 3067 return 0; 3068 3069 error: 3070 iwi_release_fw_dma(sc); 3071 return 1; 3072 } 3073 3074 static void 3075 iwi_init_locked(struct iwi_softc *sc) 3076 { 3077 struct iwi_rx_data *data; 3078 int i; 3079 3080 IWI_LOCK_ASSERT(sc); 3081 3082 if (sc->fw_state == IWI_FW_LOADING) { 3083 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3084 return; /* XXX: condvar? */ 3085 } 3086 3087 iwi_stop_locked(sc); 3088 3089 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3090 3091 if (iwi_reset(sc) != 0) { 3092 device_printf(sc->sc_dev, "could not reset adapter\n"); 3093 goto fail; 3094 } 3095 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3096 device_printf(sc->sc_dev, 3097 "could not load boot firmware %s\n", sc->fw_boot.name); 3098 goto fail; 3099 } 3100 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3101 device_printf(sc->sc_dev, 3102 "could not load microcode %s\n", sc->fw_uc.name); 3103 goto fail; 3104 } 3105 3106 iwi_stop_master(sc); 3107 3108 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3109 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3110 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3111 3112 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3113 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3114 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3115 3116 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3117 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3118 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3119 3120 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3121 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3122 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3123 3124 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3125 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3126 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3127 3128 for (i = 0; i < sc->rxq.count; i++) { 3129 data = &sc->rxq.data[i]; 3130 CSR_WRITE_4(sc, data->reg, data->physaddr); 3131 } 3132 3133 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3134 3135 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3136 device_printf(sc->sc_dev, 3137 "could not load main firmware %s\n", sc->fw_fw.name); 3138 goto fail; 3139 } 3140 sc->flags |= IWI_FLAG_FW_INITED; 3141 3142 IWI_STATE_END(sc, IWI_FW_LOADING); 3143 3144 if (iwi_config(sc) != 0) { 3145 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3146 goto fail2; 3147 } 3148 3149 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3150 sc->sc_running = 1; 3151 return; 3152 fail: 3153 IWI_STATE_END(sc, IWI_FW_LOADING); 3154 fail2: 3155 iwi_stop_locked(sc); 3156 } 3157 3158 static void 3159 iwi_init(void *priv) 3160 { 3161 struct iwi_softc *sc = priv; 3162 struct ieee80211com *ic = &sc->sc_ic; 3163 IWI_LOCK_DECL; 3164 3165 IWI_LOCK(sc); 3166 iwi_init_locked(sc); 3167 IWI_UNLOCK(sc); 3168 3169 if (sc->sc_running) 3170 ieee80211_start_all(ic); 3171 } 3172 3173 static void 3174 iwi_stop_locked(void *priv) 3175 { 3176 struct iwi_softc *sc = priv; 3177 3178 IWI_LOCK_ASSERT(sc); 3179 3180 sc->sc_running = 0; 3181 3182 if (sc->sc_softled) { 3183 callout_stop(&sc->sc_ledtimer); 3184 sc->sc_blinking = 0; 3185 } 3186 callout_stop(&sc->sc_wdtimer); 3187 callout_stop(&sc->sc_rftimer); 3188 3189 iwi_stop_master(sc); 3190 3191 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3192 3193 /* reset rings */ 3194 iwi_reset_cmd_ring(sc, &sc->cmdq); 3195 iwi_reset_tx_ring(sc, &sc->txq[0]); 3196 iwi_reset_tx_ring(sc, &sc->txq[1]); 3197 iwi_reset_tx_ring(sc, &sc->txq[2]); 3198 iwi_reset_tx_ring(sc, &sc->txq[3]); 3199 iwi_reset_rx_ring(sc, &sc->rxq); 3200 3201 sc->sc_tx_timer = 0; 3202 sc->sc_state_timer = 0; 3203 sc->sc_busy_timer = 0; 3204 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3205 sc->fw_state = IWI_FW_IDLE; 3206 wakeup(sc); 3207 } 3208 3209 static void 3210 iwi_stop(struct iwi_softc *sc) 3211 { 3212 IWI_LOCK_DECL; 3213 3214 IWI_LOCK(sc); 3215 iwi_stop_locked(sc); 3216 IWI_UNLOCK(sc); 3217 } 3218 3219 static void 3220 iwi_restart(void *arg, int npending) 3221 { 3222 struct iwi_softc *sc = arg; 3223 3224 iwi_init(sc); 3225 } 3226 3227 /* 3228 * Return whether or not the radio is enabled in hardware 3229 * (i.e. the rfkill switch is "off"). 3230 */ 3231 static int 3232 iwi_getrfkill(struct iwi_softc *sc) 3233 { 3234 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3235 } 3236 3237 static void 3238 iwi_radio_on(void *arg, int pending) 3239 { 3240 struct iwi_softc *sc = arg; 3241 struct ieee80211com *ic = &sc->sc_ic; 3242 3243 device_printf(sc->sc_dev, "radio turned on\n"); 3244 3245 iwi_init(sc); 3246 ieee80211_notify_radio(ic, 1); 3247 } 3248 3249 static void 3250 iwi_rfkill_poll(void *arg) 3251 { 3252 struct iwi_softc *sc = arg; 3253 3254 IWI_LOCK_ASSERT(sc); 3255 3256 /* 3257 * Check for a change in rfkill state. We get an 3258 * interrupt when a radio is disabled but not when 3259 * it is enabled so we must poll for the latter. 3260 */ 3261 if (!iwi_getrfkill(sc)) { 3262 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask); 3263 return; 3264 } 3265 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3266 } 3267 3268 static void 3269 iwi_radio_off(void *arg, int pending) 3270 { 3271 struct iwi_softc *sc = arg; 3272 struct ieee80211com *ic = &sc->sc_ic; 3273 IWI_LOCK_DECL; 3274 3275 device_printf(sc->sc_dev, "radio turned off\n"); 3276 3277 ieee80211_notify_radio(ic, 0); 3278 3279 IWI_LOCK(sc); 3280 iwi_stop_locked(sc); 3281 iwi_rfkill_poll(sc); 3282 IWI_UNLOCK(sc); 3283 } 3284 3285 static int 3286 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3287 { 3288 struct iwi_softc *sc = arg1; 3289 uint32_t size, buf[128]; 3290 3291 memset(buf, 0, sizeof buf); 3292 3293 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3294 return SYSCTL_OUT(req, buf, sizeof buf); 3295 3296 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3297 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3298 3299 return SYSCTL_OUT(req, buf, size); 3300 } 3301 3302 static int 3303 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3304 { 3305 struct iwi_softc *sc = arg1; 3306 int val = !iwi_getrfkill(sc); 3307 3308 return SYSCTL_OUT(req, &val, sizeof val); 3309 } 3310 3311 /* 3312 * Add sysctl knobs. 3313 */ 3314 static void 3315 iwi_sysctlattach(struct iwi_softc *sc) 3316 { 3317 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3318 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3319 3320 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3321 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3322 "radio transmitter switch state (0=off, 1=on)"); 3323 3324 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3325 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3326 "statistics"); 3327 3328 sc->bluetooth = 0; 3329 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3330 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3331 3332 sc->antenna = IWI_ANTENNA_AUTO; 3333 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3334 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3335 } 3336 3337 /* 3338 * LED support. 3339 * 3340 * Different cards have different capabilities. Some have three 3341 * led's while others have only one. The linux ipw driver defines 3342 * led's for link state (associated or not), band (11a, 11g, 11b), 3343 * and for link activity. We use one led and vary the blink rate 3344 * according to the tx/rx traffic a la the ath driver. 3345 */ 3346 3347 static __inline uint32_t 3348 iwi_toggle_event(uint32_t r) 3349 { 3350 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3351 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3352 } 3353 3354 static uint32_t 3355 iwi_read_event(struct iwi_softc *sc) 3356 { 3357 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3358 } 3359 3360 static void 3361 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3362 { 3363 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3364 } 3365 3366 static void 3367 iwi_led_done(void *arg) 3368 { 3369 struct iwi_softc *sc = arg; 3370 3371 sc->sc_blinking = 0; 3372 } 3373 3374 /* 3375 * Turn the activity LED off: flip the pin and then set a timer so no 3376 * update will happen for the specified duration. 3377 */ 3378 static void 3379 iwi_led_off(void *arg) 3380 { 3381 struct iwi_softc *sc = arg; 3382 uint32_t v; 3383 3384 v = iwi_read_event(sc); 3385 v &= ~sc->sc_ledpin; 3386 iwi_write_event(sc, iwi_toggle_event(v)); 3387 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3388 } 3389 3390 /* 3391 * Blink the LED according to the specified on/off times. 3392 */ 3393 static void 3394 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3395 { 3396 uint32_t v; 3397 3398 v = iwi_read_event(sc); 3399 v |= sc->sc_ledpin; 3400 iwi_write_event(sc, iwi_toggle_event(v)); 3401 sc->sc_blinking = 1; 3402 sc->sc_ledoff = off; 3403 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3404 } 3405 3406 static void 3407 iwi_led_event(struct iwi_softc *sc, int event) 3408 { 3409 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3410 static const struct { 3411 u_int rate; /* tx/rx iwi rate */ 3412 u_int16_t timeOn; /* LED on time (ms) */ 3413 u_int16_t timeOff; /* LED off time (ms) */ 3414 } blinkrates[] = { 3415 { IWI_RATE_OFDM54, 40, 10 }, 3416 { IWI_RATE_OFDM48, 44, 11 }, 3417 { IWI_RATE_OFDM36, 50, 13 }, 3418 { IWI_RATE_OFDM24, 57, 14 }, 3419 { IWI_RATE_OFDM18, 67, 16 }, 3420 { IWI_RATE_OFDM12, 80, 20 }, 3421 { IWI_RATE_DS11, 100, 25 }, 3422 { IWI_RATE_OFDM9, 133, 34 }, 3423 { IWI_RATE_OFDM6, 160, 40 }, 3424 { IWI_RATE_DS5, 200, 50 }, 3425 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3426 { IWI_RATE_DS2, 267, 66 }, 3427 { IWI_RATE_DS1, 400, 100 }, 3428 { 0, 500, 130 }, /* unknown rate/polling */ 3429 }; 3430 uint32_t txrate; 3431 int j = 0; /* XXX silence compiler */ 3432 3433 sc->sc_ledevent = ticks; /* time of last event */ 3434 if (sc->sc_blinking) /* don't interrupt active blink */ 3435 return; 3436 switch (event) { 3437 case IWI_LED_POLL: 3438 j = nitems(blinkrates)-1; 3439 break; 3440 case IWI_LED_TX: 3441 /* read current transmission rate from adapter */ 3442 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3443 if (blinkrates[sc->sc_txrix].rate != txrate) { 3444 for (j = 0; j < nitems(blinkrates)-1; j++) 3445 if (blinkrates[j].rate == txrate) 3446 break; 3447 sc->sc_txrix = j; 3448 } else 3449 j = sc->sc_txrix; 3450 break; 3451 case IWI_LED_RX: 3452 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3453 for (j = 0; j < nitems(blinkrates)-1; j++) 3454 if (blinkrates[j].rate == sc->sc_rxrate) 3455 break; 3456 sc->sc_rxrix = j; 3457 } else 3458 j = sc->sc_rxrix; 3459 break; 3460 } 3461 /* XXX beware of overflow */ 3462 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3463 (blinkrates[j].timeOff * hz) / 1000); 3464 } 3465 3466 static int 3467 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3468 { 3469 struct iwi_softc *sc = arg1; 3470 int softled = sc->sc_softled; 3471 int error; 3472 3473 error = sysctl_handle_int(oidp, &softled, 0, req); 3474 if (error || !req->newptr) 3475 return error; 3476 softled = (softled != 0); 3477 if (softled != sc->sc_softled) { 3478 if (softled) { 3479 uint32_t v = iwi_read_event(sc); 3480 v &= ~sc->sc_ledpin; 3481 iwi_write_event(sc, iwi_toggle_event(v)); 3482 } 3483 sc->sc_softled = softled; 3484 } 3485 return 0; 3486 } 3487 3488 static void 3489 iwi_ledattach(struct iwi_softc *sc) 3490 { 3491 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3492 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3493 3494 sc->sc_blinking = 0; 3495 sc->sc_ledstate = 1; 3496 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3497 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3498 3499 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3500 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3501 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3502 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3503 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3504 "pin setting to turn activity LED on"); 3505 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3506 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3507 "idle time for inactivity LED (ticks)"); 3508 /* XXX for debugging */ 3509 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3510 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3511 "NIC type from EEPROM"); 3512 3513 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3514 sc->sc_softled = 1; 3515 3516 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3517 if (sc->sc_nictype == 1) { 3518 /* 3519 * NB: led's are reversed. 3520 */ 3521 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3522 } 3523 } 3524 3525 static void 3526 iwi_scan_start(struct ieee80211com *ic) 3527 { 3528 /* ignore */ 3529 } 3530 3531 static void 3532 iwi_set_channel(struct ieee80211com *ic) 3533 { 3534 struct iwi_softc *sc = ic->ic_softc; 3535 3536 if (sc->fw_state == IWI_FW_IDLE) 3537 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3538 } 3539 3540 static void 3541 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3542 { 3543 struct ieee80211vap *vap = ss->ss_vap; 3544 struct iwi_softc *sc = vap->iv_ic->ic_softc; 3545 IWI_LOCK_DECL; 3546 3547 IWI_LOCK(sc); 3548 if (iwi_scanchan(sc, maxdwell, 0)) 3549 ieee80211_cancel_scan(vap); 3550 IWI_UNLOCK(sc); 3551 } 3552 3553 static void 3554 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3555 { 3556 /* NB: don't try to abort scan; wait for firmware to finish */ 3557 } 3558 3559 static void 3560 iwi_scan_end(struct ieee80211com *ic) 3561 { 3562 struct iwi_softc *sc = ic->ic_softc; 3563 IWI_LOCK_DECL; 3564 3565 IWI_LOCK(sc); 3566 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 3567 /* NB: make sure we're still scanning */ 3568 if (sc->fw_state == IWI_FW_SCANNING) 3569 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 3570 IWI_UNLOCK(sc); 3571 } 3572