1 /*- 2 * Copyright (c) 2004, 2005 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /*- 34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/namei.h> 54 #include <sys/linker.h> 55 #include <sys/firmware.h> 56 #include <sys/kthread.h> 57 #include <sys/taskqueue.h> 58 59 #include <machine/bus.h> 60 #include <machine/resource.h> 61 #include <sys/rman.h> 62 63 #include <dev/pci/pcireg.h> 64 #include <dev/pci/pcivar.h> 65 66 #include <net/bpf.h> 67 #include <net/if.h> 68 #include <net/if_arp.h> 69 #include <net/ethernet.h> 70 #include <net/if_dl.h> 71 #include <net/if_media.h> 72 #include <net/if_types.h> 73 74 #include <net80211/ieee80211_var.h> 75 #include <net80211/ieee80211_radiotap.h> 76 #include <net80211/ieee80211_input.h> 77 #include <net80211/ieee80211_regdomain.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip.h> 83 #include <netinet/if_ether.h> 84 85 #include <dev/iwi/if_iwireg.h> 86 #include <dev/iwi/if_iwivar.h> 87 88 #define IWI_DEBUG 89 #ifdef IWI_DEBUG 90 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 91 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 92 int iwi_debug = 0; 93 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 94 95 static const char *iwi_fw_states[] = { 96 "IDLE", /* IWI_FW_IDLE */ 97 "LOADING", /* IWI_FW_LOADING */ 98 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 99 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 100 "SCANNING", /* IWI_FW_SCANNING */ 101 }; 102 #else 103 #define DPRINTF(x) 104 #define DPRINTFN(n, x) 105 #endif 106 107 MODULE_DEPEND(iwi, pci, 1, 1, 1); 108 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 109 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 110 111 enum { 112 IWI_LED_TX, 113 IWI_LED_RX, 114 IWI_LED_POLL, 115 }; 116 117 struct iwi_ident { 118 uint16_t vendor; 119 uint16_t device; 120 const char *name; 121 }; 122 123 static const struct iwi_ident iwi_ident_table[] = { 124 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 125 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 126 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 127 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 128 129 { 0, 0, NULL } 130 }; 131 132 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 133 const char name[IFNAMSIZ], int unit, int opmode, int flags, 134 const uint8_t bssid[IEEE80211_ADDR_LEN], 135 const uint8_t mac[IEEE80211_ADDR_LEN]); 136 static void iwi_vap_delete(struct ieee80211vap *); 137 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 138 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 139 int); 140 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 141 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 142 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 143 int, bus_addr_t, bus_addr_t); 144 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 145 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 146 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 147 int); 148 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 149 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 150 static struct ieee80211_node *iwi_node_alloc(struct ieee80211_node_table *); 151 static void iwi_node_free(struct ieee80211_node *); 152 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 153 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 154 static void iwi_wme_init(struct iwi_softc *); 155 static int iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *); 156 static int iwi_wme_update(struct ieee80211com *); 157 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 158 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 159 struct iwi_frame *); 160 static void iwi_authsuccess(void *, int); 161 static void iwi_assocsuccess(void *, int); 162 static void iwi_assocfailed(void *, int); 163 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 164 static void iwi_rx_intr(struct iwi_softc *); 165 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 166 static void iwi_intr(void *); 167 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 168 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 169 static int iwi_tx_start(struct ifnet *, struct mbuf *, 170 struct ieee80211_node *, int); 171 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 172 const struct ieee80211_bpf_params *); 173 static void iwi_start_locked(struct ifnet *); 174 static void iwi_start(struct ifnet *); 175 static void iwi_watchdog(void *); 176 static int iwi_ioctl(struct ifnet *, u_long, caddr_t); 177 static void iwi_stop_master(struct iwi_softc *); 178 static int iwi_reset(struct iwi_softc *); 179 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 180 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 181 static void iwi_release_fw_dma(struct iwi_softc *sc); 182 static int iwi_config(struct iwi_softc *); 183 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 184 static void iwi_put_firmware(struct iwi_softc *); 185 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 186 static void iwi_scan_start(struct ieee80211com *); 187 static void iwi_scan_end(struct ieee80211com *); 188 static void iwi_scanabort(void *, int); 189 static void iwi_set_channel(struct ieee80211com *); 190 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 191 #if 0 192 static void iwi_scan_allchan(struct ieee80211com *, unsigned long maxdwell); 193 #endif 194 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 195 static void iwi_ops(void *, int); 196 static int iwi_queue_cmd(struct iwi_softc *, int, unsigned long); 197 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 198 static int iwi_disassociate(struct iwi_softc *, int quiet); 199 static void iwi_init_locked(struct iwi_softc *); 200 static void iwi_init(void *); 201 static int iwi_init_fw_dma(struct iwi_softc *, int); 202 static void iwi_stop_locked(void *); 203 static void iwi_stop(struct iwi_softc *); 204 static void iwi_restart(void *, int); 205 static int iwi_getrfkill(struct iwi_softc *); 206 static void iwi_radio_on(void *, int); 207 static void iwi_radio_off(void *, int); 208 static void iwi_sysctlattach(struct iwi_softc *); 209 static void iwi_led_event(struct iwi_softc *, int); 210 static void iwi_ledattach(struct iwi_softc *); 211 212 static int iwi_probe(device_t); 213 static int iwi_attach(device_t); 214 static int iwi_detach(device_t); 215 static int iwi_shutdown(device_t); 216 static int iwi_suspend(device_t); 217 static int iwi_resume(device_t); 218 219 static device_method_t iwi_methods[] = { 220 /* Device interface */ 221 DEVMETHOD(device_probe, iwi_probe), 222 DEVMETHOD(device_attach, iwi_attach), 223 DEVMETHOD(device_detach, iwi_detach), 224 DEVMETHOD(device_shutdown, iwi_shutdown), 225 DEVMETHOD(device_suspend, iwi_suspend), 226 DEVMETHOD(device_resume, iwi_resume), 227 228 { 0, 0 } 229 }; 230 231 static driver_t iwi_driver = { 232 "iwi", 233 iwi_methods, 234 sizeof (struct iwi_softc) 235 }; 236 237 static devclass_t iwi_devclass; 238 239 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0); 240 241 static __inline uint8_t 242 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 243 { 244 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 245 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 246 } 247 248 static __inline uint32_t 249 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 250 { 251 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 252 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 253 } 254 255 static int 256 iwi_probe(device_t dev) 257 { 258 const struct iwi_ident *ident; 259 260 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 261 if (pci_get_vendor(dev) == ident->vendor && 262 pci_get_device(dev) == ident->device) { 263 device_set_desc(dev, ident->name); 264 return 0; 265 } 266 } 267 return ENXIO; 268 } 269 270 /* Base Address Register */ 271 #define IWI_PCI_BAR0 0x10 272 273 static int 274 iwi_attach(device_t dev) 275 { 276 struct iwi_softc *sc = device_get_softc(dev); 277 struct ifnet *ifp; 278 struct ieee80211com *ic; 279 uint16_t val; 280 int i, error; 281 uint8_t bands; 282 283 sc->sc_dev = dev; 284 285 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 286 if (ifp == NULL) { 287 device_printf(dev, "can not if_alloc()\n"); 288 return ENXIO; 289 } 290 ic = ifp->if_l2com; 291 292 IWI_LOCK_INIT(sc); 293 IWI_CMD_LOCK_INIT(sc); 294 295 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 296 297 sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT | M_ZERO, 298 taskqueue_thread_enqueue, &sc->sc_tq); 299 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 300 device_get_nameunit(dev)); 301 sc->sc_tq2 = taskqueue_create("iwi_taskq2", M_NOWAIT | M_ZERO, 302 taskqueue_thread_enqueue, &sc->sc_tq2); 303 taskqueue_start_threads(&sc->sc_tq2, 1, PI_NET, "%s taskq2", 304 device_get_nameunit(dev)); 305 306 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 307 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 308 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 309 TASK_INIT(&sc->sc_opstask, 0, iwi_ops, sc); 310 TASK_INIT(&sc->sc_scanaborttask, 0, iwi_scanabort, sc); 311 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 312 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 313 314 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 315 device_printf(dev, "chip is in D%d power mode " 316 "-- setting to D0\n", pci_get_powerstate(dev)); 317 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 318 } 319 320 pci_write_config(dev, 0x41, 0, 1); 321 322 /* enable bus-mastering */ 323 pci_enable_busmaster(dev); 324 325 sc->mem_rid = IWI_PCI_BAR0; 326 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 327 RF_ACTIVE); 328 if (sc->mem == NULL) { 329 device_printf(dev, "could not allocate memory resource\n"); 330 goto fail; 331 } 332 333 sc->sc_st = rman_get_bustag(sc->mem); 334 sc->sc_sh = rman_get_bushandle(sc->mem); 335 336 sc->irq_rid = 0; 337 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 338 RF_ACTIVE | RF_SHAREABLE); 339 if (sc->irq == NULL) { 340 device_printf(dev, "could not allocate interrupt resource\n"); 341 goto fail; 342 } 343 344 if (iwi_reset(sc) != 0) { 345 device_printf(dev, "could not reset adapter\n"); 346 goto fail; 347 } 348 349 /* 350 * Allocate rings. 351 */ 352 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 353 device_printf(dev, "could not allocate Cmd ring\n"); 354 goto fail; 355 } 356 357 for (i = 0; i < 4; i++) { 358 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 359 IWI_CSR_TX1_RIDX + i * 4, 360 IWI_CSR_TX1_WIDX + i * 4); 361 if (error != 0) { 362 device_printf(dev, "could not allocate Tx ring %d\n", 363 i+i); 364 goto fail; 365 } 366 } 367 368 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 369 device_printf(dev, "could not allocate Rx ring\n"); 370 goto fail; 371 } 372 373 iwi_wme_init(sc); 374 375 ifp->if_softc = sc; 376 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 377 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 378 ifp->if_init = iwi_init; 379 ifp->if_ioctl = iwi_ioctl; 380 ifp->if_start = iwi_start; 381 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 382 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 383 IFQ_SET_READY(&ifp->if_snd); 384 385 ic->ic_ifp = ifp; 386 ic->ic_opmode = IEEE80211_M_STA; 387 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 388 389 /* set device capabilities */ 390 ic->ic_caps = 391 IEEE80211_C_STA /* station mode supported */ 392 | IEEE80211_C_IBSS /* IBSS mode supported */ 393 | IEEE80211_C_MONITOR /* monitor mode supported */ 394 | IEEE80211_C_PMGT /* power save supported */ 395 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 396 | IEEE80211_C_WPA /* 802.11i */ 397 | IEEE80211_C_WME /* 802.11e */ 398 #if 0 399 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 400 #endif 401 ; 402 403 /* read MAC address from EEPROM */ 404 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 405 ic->ic_myaddr[0] = val & 0xff; 406 ic->ic_myaddr[1] = val >> 8; 407 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 408 ic->ic_myaddr[2] = val & 0xff; 409 ic->ic_myaddr[3] = val >> 8; 410 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 411 ic->ic_myaddr[4] = val & 0xff; 412 ic->ic_myaddr[5] = val >> 8; 413 414 bands = 0; 415 setbit(&bands, IEEE80211_MODE_11B); 416 setbit(&bands, IEEE80211_MODE_11G); 417 if (pci_get_device(dev) >= 0x4223) 418 setbit(&bands, IEEE80211_MODE_11A); 419 ieee80211_init_channels(ic, NULL, &bands); 420 421 ieee80211_ifattach(ic); 422 /* override default methods */ 423 ic->ic_node_alloc = iwi_node_alloc; 424 sc->sc_node_free = ic->ic_node_free; 425 ic->ic_node_free = iwi_node_free; 426 ic->ic_raw_xmit = iwi_raw_xmit; 427 ic->ic_scan_start = iwi_scan_start; 428 ic->ic_scan_end = iwi_scan_end; 429 ic->ic_set_channel = iwi_set_channel; 430 ic->ic_scan_curchan = iwi_scan_curchan; 431 ic->ic_scan_mindwell = iwi_scan_mindwell; 432 ic->ic_wme.wme_update = iwi_wme_update; 433 434 ic->ic_vap_create = iwi_vap_create; 435 ic->ic_vap_delete = iwi_vap_delete; 436 437 bpfattach(ifp, DLT_IEEE802_11_RADIO, 438 sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap)); 439 440 sc->sc_rxtap_len = sizeof sc->sc_rxtap; 441 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 442 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT); 443 444 sc->sc_txtap_len = sizeof sc->sc_txtap; 445 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 446 sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT); 447 448 iwi_sysctlattach(sc); 449 iwi_ledattach(sc); 450 451 /* 452 * Hook our interrupt after all initialization is complete. 453 */ 454 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 455 NULL, iwi_intr, sc, &sc->sc_ih); 456 if (error != 0) { 457 device_printf(dev, "could not set up interrupt\n"); 458 goto fail; 459 } 460 461 if (bootverbose) 462 ieee80211_announce(ic); 463 464 return 0; 465 fail: 466 /* XXX fix */ 467 iwi_detach(dev); 468 return ENXIO; 469 } 470 471 static int 472 iwi_detach(device_t dev) 473 { 474 struct iwi_softc *sc = device_get_softc(dev); 475 struct ifnet *ifp = sc->sc_ifp; 476 struct ieee80211com *ic = ifp->if_l2com; 477 478 iwi_stop(sc); 479 480 bpfdetach(ifp); 481 ieee80211_ifdetach(ic); 482 483 /* NB: do early to drain any pending tasks */ 484 taskqueue_free(sc->sc_tq); 485 taskqueue_free(sc->sc_tq2); 486 487 iwi_put_firmware(sc); 488 iwi_release_fw_dma(sc); 489 490 iwi_free_cmd_ring(sc, &sc->cmdq); 491 iwi_free_tx_ring(sc, &sc->txq[0]); 492 iwi_free_tx_ring(sc, &sc->txq[1]); 493 iwi_free_tx_ring(sc, &sc->txq[2]); 494 iwi_free_tx_ring(sc, &sc->txq[3]); 495 iwi_free_rx_ring(sc, &sc->rxq); 496 497 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 498 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 499 500 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 501 502 delete_unrhdr(sc->sc_unr); 503 504 IWI_LOCK_DESTROY(sc); 505 IWI_CMD_LOCK_DESTROY(sc); 506 507 if_free(ifp); 508 509 return 0; 510 } 511 512 static struct ieee80211vap * 513 iwi_vap_create(struct ieee80211com *ic, 514 const char name[IFNAMSIZ], int unit, int opmode, int flags, 515 const uint8_t bssid[IEEE80211_ADDR_LEN], 516 const uint8_t mac[IEEE80211_ADDR_LEN]) 517 { 518 struct ifnet *ifp = ic->ic_ifp; 519 struct iwi_softc *sc = ifp->if_softc; 520 struct iwi_vap *ivp; 521 struct ieee80211vap *vap; 522 int i; 523 524 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 525 return NULL; 526 /* 527 * Get firmware image (and possibly dma memory) on mode change. 528 */ 529 if (iwi_get_firmware(sc, opmode)) 530 return NULL; 531 /* allocate DMA memory for mapping firmware image */ 532 i = sc->fw_fw.size; 533 if (sc->fw_boot.size > i) 534 i = sc->fw_boot.size; 535 /* XXX do we dma the ucode as well ? */ 536 if (sc->fw_uc.size > i) 537 i = sc->fw_uc.size; 538 if (iwi_init_fw_dma(sc, i)) 539 return NULL; 540 541 ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap), 542 M_80211_VAP, M_NOWAIT | M_ZERO); 543 if (ivp == NULL) 544 return NULL; 545 vap = &ivp->iwi_vap; 546 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 547 /* override the default, the setting comes from the linux driver */ 548 vap->iv_bmissthreshold = 24; 549 /* override with driver methods */ 550 ivp->iwi_newstate = vap->iv_newstate; 551 vap->iv_newstate = iwi_newstate; 552 553 TASK_INIT(&ivp->iwi_authsuccess_task, 0, iwi_authsuccess, vap); 554 TASK_INIT(&ivp->iwi_assocsuccess_task, 0, iwi_assocsuccess, vap); 555 TASK_INIT(&ivp->iwi_assocfailed_task, 0, iwi_assocfailed, vap); 556 557 /* complete setup */ 558 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status); 559 ic->ic_opmode = opmode; 560 return vap; 561 } 562 563 static void 564 iwi_vap_delete(struct ieee80211vap *vap) 565 { 566 struct iwi_vap *ivp = IWI_VAP(vap); 567 568 ieee80211_vap_detach(vap); 569 free(ivp, M_80211_VAP); 570 } 571 572 static void 573 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 574 { 575 if (error != 0) 576 return; 577 578 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 579 580 *(bus_addr_t *)arg = segs[0].ds_addr; 581 } 582 583 static int 584 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 585 { 586 int error; 587 588 ring->count = count; 589 ring->queued = 0; 590 ring->cur = ring->next = 0; 591 592 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 593 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 594 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 595 NULL, NULL, &ring->desc_dmat); 596 if (error != 0) { 597 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 598 goto fail; 599 } 600 601 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 602 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 603 if (error != 0) { 604 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 605 goto fail; 606 } 607 608 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 609 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 610 if (error != 0) { 611 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 612 goto fail; 613 } 614 615 return 0; 616 617 fail: iwi_free_cmd_ring(sc, ring); 618 return error; 619 } 620 621 static void 622 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 623 { 624 ring->queued = 0; 625 ring->cur = ring->next = 0; 626 } 627 628 static void 629 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 630 { 631 if (ring->desc != NULL) { 632 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 633 BUS_DMASYNC_POSTWRITE); 634 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 635 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 636 } 637 638 if (ring->desc_dmat != NULL) 639 bus_dma_tag_destroy(ring->desc_dmat); 640 } 641 642 static int 643 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 644 bus_addr_t csr_ridx, bus_addr_t csr_widx) 645 { 646 int i, error; 647 648 ring->count = count; 649 ring->queued = 0; 650 ring->cur = ring->next = 0; 651 ring->csr_ridx = csr_ridx; 652 ring->csr_widx = csr_widx; 653 654 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 655 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 656 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 657 NULL, &ring->desc_dmat); 658 if (error != 0) { 659 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 660 goto fail; 661 } 662 663 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 664 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 665 if (error != 0) { 666 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 667 goto fail; 668 } 669 670 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 671 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 672 if (error != 0) { 673 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 674 goto fail; 675 } 676 677 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 678 M_NOWAIT | M_ZERO); 679 if (ring->data == NULL) { 680 device_printf(sc->sc_dev, "could not allocate soft data\n"); 681 error = ENOMEM; 682 goto fail; 683 } 684 685 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 686 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 687 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 688 if (error != 0) { 689 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 690 goto fail; 691 } 692 693 for (i = 0; i < count; i++) { 694 error = bus_dmamap_create(ring->data_dmat, 0, 695 &ring->data[i].map); 696 if (error != 0) { 697 device_printf(sc->sc_dev, "could not create DMA map\n"); 698 goto fail; 699 } 700 } 701 702 return 0; 703 704 fail: iwi_free_tx_ring(sc, ring); 705 return error; 706 } 707 708 static void 709 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 710 { 711 struct iwi_tx_data *data; 712 int i; 713 714 for (i = 0; i < ring->count; i++) { 715 data = &ring->data[i]; 716 717 if (data->m != NULL) { 718 bus_dmamap_sync(ring->data_dmat, data->map, 719 BUS_DMASYNC_POSTWRITE); 720 bus_dmamap_unload(ring->data_dmat, data->map); 721 m_freem(data->m); 722 data->m = NULL; 723 } 724 725 if (data->ni != NULL) { 726 ieee80211_free_node(data->ni); 727 data->ni = NULL; 728 } 729 } 730 731 ring->queued = 0; 732 ring->cur = ring->next = 0; 733 } 734 735 static void 736 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 737 { 738 struct iwi_tx_data *data; 739 int i; 740 741 if (ring->desc != NULL) { 742 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 743 BUS_DMASYNC_POSTWRITE); 744 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 745 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 746 } 747 748 if (ring->desc_dmat != NULL) 749 bus_dma_tag_destroy(ring->desc_dmat); 750 751 if (ring->data != NULL) { 752 for (i = 0; i < ring->count; i++) { 753 data = &ring->data[i]; 754 755 if (data->m != NULL) { 756 bus_dmamap_sync(ring->data_dmat, data->map, 757 BUS_DMASYNC_POSTWRITE); 758 bus_dmamap_unload(ring->data_dmat, data->map); 759 m_freem(data->m); 760 } 761 762 if (data->ni != NULL) 763 ieee80211_free_node(data->ni); 764 765 if (data->map != NULL) 766 bus_dmamap_destroy(ring->data_dmat, data->map); 767 } 768 769 free(ring->data, M_DEVBUF); 770 } 771 772 if (ring->data_dmat != NULL) 773 bus_dma_tag_destroy(ring->data_dmat); 774 } 775 776 static int 777 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 778 { 779 struct iwi_rx_data *data; 780 int i, error; 781 782 ring->count = count; 783 ring->cur = 0; 784 785 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 786 M_NOWAIT | M_ZERO); 787 if (ring->data == NULL) { 788 device_printf(sc->sc_dev, "could not allocate soft data\n"); 789 error = ENOMEM; 790 goto fail; 791 } 792 793 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 794 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 795 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 796 if (error != 0) { 797 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 798 goto fail; 799 } 800 801 for (i = 0; i < count; i++) { 802 data = &ring->data[i]; 803 804 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 805 if (error != 0) { 806 device_printf(sc->sc_dev, "could not create DMA map\n"); 807 goto fail; 808 } 809 810 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 811 if (data->m == NULL) { 812 device_printf(sc->sc_dev, 813 "could not allocate rx mbuf\n"); 814 error = ENOMEM; 815 goto fail; 816 } 817 818 error = bus_dmamap_load(ring->data_dmat, data->map, 819 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 820 &data->physaddr, 0); 821 if (error != 0) { 822 device_printf(sc->sc_dev, 823 "could not load rx buf DMA map"); 824 goto fail; 825 } 826 827 data->reg = IWI_CSR_RX_BASE + i * 4; 828 } 829 830 return 0; 831 832 fail: iwi_free_rx_ring(sc, ring); 833 return error; 834 } 835 836 static void 837 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 838 { 839 ring->cur = 0; 840 } 841 842 static void 843 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 844 { 845 struct iwi_rx_data *data; 846 int i; 847 848 if (ring->data != NULL) { 849 for (i = 0; i < ring->count; i++) { 850 data = &ring->data[i]; 851 852 if (data->m != NULL) { 853 bus_dmamap_sync(ring->data_dmat, data->map, 854 BUS_DMASYNC_POSTREAD); 855 bus_dmamap_unload(ring->data_dmat, data->map); 856 m_freem(data->m); 857 } 858 859 if (data->map != NULL) 860 bus_dmamap_destroy(ring->data_dmat, data->map); 861 } 862 863 free(ring->data, M_DEVBUF); 864 } 865 866 if (ring->data_dmat != NULL) 867 bus_dma_tag_destroy(ring->data_dmat); 868 } 869 870 static int 871 iwi_shutdown(device_t dev) 872 { 873 struct iwi_softc *sc = device_get_softc(dev); 874 875 iwi_stop(sc); 876 iwi_put_firmware(sc); /* ??? XXX */ 877 878 return 0; 879 } 880 881 static int 882 iwi_suspend(device_t dev) 883 { 884 struct iwi_softc *sc = device_get_softc(dev); 885 886 iwi_stop(sc); 887 888 return 0; 889 } 890 891 static int 892 iwi_resume(device_t dev) 893 { 894 struct iwi_softc *sc = device_get_softc(dev); 895 struct ifnet *ifp = sc->sc_ifp; 896 897 pci_write_config(dev, 0x41, 0, 1); 898 899 if (ifp->if_flags & IFF_UP) 900 iwi_init(sc); 901 902 return 0; 903 } 904 905 static struct ieee80211_node * 906 iwi_node_alloc(struct ieee80211_node_table *nt) 907 { 908 struct iwi_node *in; 909 910 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 911 if (in == NULL) 912 return NULL; 913 914 in->in_station = -1; 915 916 return &in->in_node; 917 } 918 919 static void 920 iwi_node_free(struct ieee80211_node *ni) 921 { 922 struct ieee80211com *ic = ni->ni_ic; 923 struct iwi_softc *sc = ic->ic_ifp->if_softc; 924 struct iwi_node *in = (struct iwi_node *)ni; 925 926 if (in->in_station != -1) { 927 DPRINTF(("%s mac %6D station %u\n", __func__, 928 ni->ni_macaddr, ":", in->in_station)); 929 free_unr(sc->sc_unr, in->in_station); 930 } 931 932 sc->sc_node_free(ni); 933 } 934 935 /* 936 * Convert h/w rate code to IEEE rate code. 937 */ 938 static int 939 iwi_cvtrate(int iwirate) 940 { 941 switch (iwirate) { 942 case IWI_RATE_DS1: return 2; 943 case IWI_RATE_DS2: return 4; 944 case IWI_RATE_DS5: return 11; 945 case IWI_RATE_DS11: return 22; 946 case IWI_RATE_OFDM6: return 12; 947 case IWI_RATE_OFDM9: return 18; 948 case IWI_RATE_OFDM12: return 24; 949 case IWI_RATE_OFDM18: return 36; 950 case IWI_RATE_OFDM24: return 48; 951 case IWI_RATE_OFDM36: return 72; 952 case IWI_RATE_OFDM48: return 96; 953 case IWI_RATE_OFDM54: return 108; 954 } 955 return 0; 956 } 957 958 /* 959 * The firmware automatically adapts the transmit speed. We report its current 960 * value here. 961 */ 962 static void 963 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 964 { 965 struct ieee80211vap *vap = ifp->if_softc; 966 struct ieee80211com *ic = vap->iv_ic; 967 struct iwi_softc *sc = ic->ic_ifp->if_softc; 968 969 /* read current transmission rate from adapter */ 970 vap->iv_bss->ni_txrate = 971 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 972 ieee80211_media_status(ifp, imr); 973 } 974 975 static int 976 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 977 { 978 struct iwi_vap *ivp = IWI_VAP(vap); 979 struct ieee80211com *ic = vap->iv_ic; 980 struct ifnet *ifp = ic->ic_ifp; 981 struct iwi_softc *sc = ifp->if_softc; 982 IWI_LOCK_DECL; 983 984 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 985 ieee80211_state_name[vap->iv_state], 986 ieee80211_state_name[nstate], sc->flags)); 987 988 switch (nstate) { 989 case IEEE80211_S_INIT: 990 IWI_LOCK(sc); 991 /* 992 * NB: don't try to do this if iwi_stop_master has 993 * shutdown the firmware and disabled interrupts. 994 */ 995 if (vap->iv_state == IEEE80211_S_RUN && 996 (sc->flags & IWI_FLAG_FW_INITED)) 997 iwi_queue_cmd(sc, IWI_DISASSOC, 1); 998 IWI_UNLOCK(sc); 999 break; 1000 case IEEE80211_S_AUTH: 1001 iwi_queue_cmd(sc, IWI_AUTH, arg); 1002 return EINPROGRESS; 1003 case IEEE80211_S_RUN: 1004 if (vap->iv_opmode == IEEE80211_M_IBSS && 1005 vap->iv_state == IEEE80211_S_SCAN) { 1006 /* 1007 * XXX when joining an ibss network we are called 1008 * with a SCAN -> RUN transition on scan complete. 1009 * Use that to call iwi_auth_and_assoc. On completing 1010 * the join we are then called again with an 1011 * AUTH -> RUN transition and we want to do nothing. 1012 * This is all totally bogus and needs to be redone. 1013 */ 1014 iwi_queue_cmd(sc, IWI_ASSOC, 0); 1015 return EINPROGRESS; 1016 } 1017 break; 1018 case IEEE80211_S_ASSOC: 1019 /* 1020 * If we are transitioning from AUTH then just wait 1021 * for the ASSOC status to come back from the firmware. 1022 * Otherwise we need to issue the association request. 1023 */ 1024 if (vap->iv_state == IEEE80211_S_AUTH) 1025 break; 1026 iwi_queue_cmd(sc, IWI_ASSOC, arg); 1027 return EINPROGRESS; 1028 default: 1029 break; 1030 } 1031 return ivp->iwi_newstate(vap, nstate, arg); 1032 } 1033 1034 /* 1035 * WME parameters coming from IEEE 802.11e specification. These values are 1036 * already declared in ieee80211_proto.c, but they are static so they can't 1037 * be reused here. 1038 */ 1039 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1040 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1041 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1042 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1043 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1044 }; 1045 1046 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1047 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1048 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1049 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1050 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1051 }; 1052 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1053 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1054 1055 static void 1056 iwi_wme_init(struct iwi_softc *sc) 1057 { 1058 const struct wmeParams *wmep; 1059 int ac; 1060 1061 memset(sc->wme, 0, sizeof sc->wme); 1062 for (ac = 0; ac < WME_NUM_AC; ac++) { 1063 /* set WME values for CCK modulation */ 1064 wmep = &iwi_wme_cck_params[ac]; 1065 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1066 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1067 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1068 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1069 sc->wme[1].acm[ac] = wmep->wmep_acm; 1070 1071 /* set WME values for OFDM modulation */ 1072 wmep = &iwi_wme_ofdm_params[ac]; 1073 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1074 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1075 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1076 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1077 sc->wme[2].acm[ac] = wmep->wmep_acm; 1078 } 1079 } 1080 1081 static int 1082 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic) 1083 { 1084 const struct wmeParams *wmep; 1085 int ac; 1086 1087 for (ac = 0; ac < WME_NUM_AC; ac++) { 1088 /* set WME values for current operating mode */ 1089 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1090 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1091 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1092 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1093 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1094 sc->wme[0].acm[ac] = wmep->wmep_acm; 1095 } 1096 1097 DPRINTF(("Setting WME parameters\n")); 1098 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1099 } 1100 #undef IWI_USEC 1101 #undef IWI_EXP2 1102 1103 static int 1104 iwi_wme_update(struct ieee80211com *ic) 1105 { 1106 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1107 1108 /* 1109 * We may be called to update the WME parameters in 1110 * the adapter at various places. If we're already 1111 * associated then initiate the request immediately 1112 * (via the taskqueue); otherwise we assume the params 1113 * will get sent down to the adapter as part of the 1114 * work iwi_auth_and_assoc does. 1115 */ 1116 return iwi_queue_cmd(sc, IWI_SET_WME, 0); 1117 } 1118 1119 static int 1120 iwi_wme_setie(struct iwi_softc *sc) 1121 { 1122 struct ieee80211_wme_info wme; 1123 1124 memset(&wme, 0, sizeof wme); 1125 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1126 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1127 wme.wme_oui[0] = 0x00; 1128 wme.wme_oui[1] = 0x50; 1129 wme.wme_oui[2] = 0xf2; 1130 wme.wme_type = WME_OUI_TYPE; 1131 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1132 wme.wme_version = WME_VERSION; 1133 wme.wme_info = 0; 1134 1135 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1136 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1137 } 1138 1139 /* 1140 * Read 16 bits at address 'addr' from the serial EEPROM. 1141 */ 1142 static uint16_t 1143 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1144 { 1145 uint32_t tmp; 1146 uint16_t val; 1147 int n; 1148 1149 /* clock C once before the first command */ 1150 IWI_EEPROM_CTL(sc, 0); 1151 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1152 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1153 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1154 1155 /* write start bit (1) */ 1156 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1157 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1158 1159 /* write READ opcode (10) */ 1160 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1161 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1162 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1163 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1164 1165 /* write address A7-A0 */ 1166 for (n = 7; n >= 0; n--) { 1167 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1168 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1169 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1170 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1171 } 1172 1173 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1174 1175 /* read data Q15-Q0 */ 1176 val = 0; 1177 for (n = 15; n >= 0; n--) { 1178 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1179 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1180 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1181 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1182 } 1183 1184 IWI_EEPROM_CTL(sc, 0); 1185 1186 /* clear Chip Select and clock C */ 1187 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1188 IWI_EEPROM_CTL(sc, 0); 1189 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1190 1191 return val; 1192 } 1193 1194 static void 1195 iwi_setcurchan(struct iwi_softc *sc, int chan) 1196 { 1197 struct ifnet *ifp = sc->sc_ifp; 1198 struct ieee80211com *ic = ifp->if_l2com; 1199 1200 sc->curchan = chan; 1201 1202 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 1203 htole16(ic->ic_curchan->ic_freq); 1204 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 1205 htole16(ic->ic_curchan->ic_flags); 1206 } 1207 1208 static void 1209 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1210 struct iwi_frame *frame) 1211 { 1212 struct ifnet *ifp = sc->sc_ifp; 1213 struct ieee80211com *ic = ifp->if_l2com; 1214 struct mbuf *mnew, *m; 1215 struct ieee80211_node *ni; 1216 int type, error, framelen; 1217 IWI_LOCK_DECL; 1218 1219 framelen = le16toh(frame->len); 1220 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1221 /* 1222 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1223 * out of bounds; need to figure out how to limit 1224 * frame size in the firmware 1225 */ 1226 /* XXX stat */ 1227 DPRINTFN(1, 1228 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1229 le16toh(frame->len), frame->chan, frame->rssi, 1230 frame->rssi_dbm)); 1231 return; 1232 } 1233 1234 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1235 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1236 1237 if (frame->chan != sc->curchan) 1238 iwi_setcurchan(sc, frame->chan); 1239 1240 /* 1241 * Try to allocate a new mbuf for this ring element and load it before 1242 * processing the current mbuf. If the ring element cannot be loaded, 1243 * drop the received packet and reuse the old mbuf. In the unlikely 1244 * case that the old mbuf can't be reloaded either, explicitly panic. 1245 */ 1246 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1247 if (mnew == NULL) { 1248 ifp->if_ierrors++; 1249 return; 1250 } 1251 1252 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1253 1254 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1255 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1256 0); 1257 if (error != 0) { 1258 m_freem(mnew); 1259 1260 /* try to reload the old mbuf */ 1261 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1262 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1263 &data->physaddr, 0); 1264 if (error != 0) { 1265 /* very unlikely that it will fail... */ 1266 panic("%s: could not load old rx mbuf", 1267 device_get_name(sc->sc_dev)); 1268 } 1269 ifp->if_ierrors++; 1270 return; 1271 } 1272 1273 /* 1274 * New mbuf successfully loaded, update Rx ring and continue 1275 * processing. 1276 */ 1277 m = data->m; 1278 data->m = mnew; 1279 CSR_WRITE_4(sc, data->reg, data->physaddr); 1280 1281 /* finalize mbuf */ 1282 m->m_pkthdr.rcvif = ifp; 1283 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1284 sizeof (struct iwi_frame) + framelen; 1285 1286 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1287 1288 if (bpf_peers_present(ifp->if_bpf)) { 1289 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1290 1291 tap->wr_flags = 0; 1292 tap->wr_rate = iwi_cvtrate(frame->rate); 1293 tap->wr_antsignal = frame->signal; 1294 tap->wr_antenna = frame->antenna; 1295 1296 bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m); 1297 } 1298 IWI_UNLOCK(sc); 1299 1300 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1301 if (ni != NULL) { 1302 type = ieee80211_input(ni, m, frame->rssi_dbm, 0, 0); 1303 ieee80211_free_node(ni); 1304 } else 1305 type = ieee80211_input_all(ic, m, frame->rssi_dbm, 0, 0); 1306 1307 IWI_LOCK(sc); 1308 if (sc->sc_softled) { 1309 /* 1310 * Blink for any data frame. Otherwise do a 1311 * heartbeat-style blink when idle. The latter 1312 * is mainly for station mode where we depend on 1313 * periodic beacon frames to trigger the poll event. 1314 */ 1315 if (type == IEEE80211_FC0_TYPE_DATA) { 1316 sc->sc_rxrate = frame->rate; 1317 iwi_led_event(sc, IWI_LED_RX); 1318 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1319 iwi_led_event(sc, IWI_LED_POLL); 1320 } 1321 } 1322 1323 /* 1324 * Check for an association response frame to see if QoS 1325 * has been negotiated. We parse just enough to figure 1326 * out if we're supposed to use QoS. The proper solution 1327 * is to pass the frame up so ieee80211_input can do the 1328 * work but that's made hard by how things currently are 1329 * done in the driver. 1330 */ 1331 static void 1332 iwi_checkforqos(struct ieee80211vap *vap, 1333 const struct ieee80211_frame *wh, int len) 1334 { 1335 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1336 const uint8_t *frm, *efrm, *wme; 1337 struct ieee80211_node *ni; 1338 uint16_t capinfo, status, associd; 1339 1340 /* NB: +8 for capinfo, status, associd, and first ie */ 1341 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1342 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1343 return; 1344 /* 1345 * asresp frame format 1346 * [2] capability information 1347 * [2] status 1348 * [2] association ID 1349 * [tlv] supported rates 1350 * [tlv] extended supported rates 1351 * [tlv] WME 1352 */ 1353 frm = (const uint8_t *)&wh[1]; 1354 efrm = ((const uint8_t *) wh) + len; 1355 1356 capinfo = le16toh(*(const uint16_t *)frm); 1357 frm += 2; 1358 status = le16toh(*(const uint16_t *)frm); 1359 frm += 2; 1360 associd = le16toh(*(const uint16_t *)frm); 1361 frm += 2; 1362 1363 wme = NULL; 1364 while (frm < efrm) { 1365 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1], return); 1366 switch (*frm) { 1367 case IEEE80211_ELEMID_VENDOR: 1368 if (iswmeoui(frm)) 1369 wme = frm; 1370 break; 1371 } 1372 frm += frm[1] + 2; 1373 } 1374 1375 ni = vap->iv_bss; 1376 ni->ni_capinfo = capinfo; 1377 ni->ni_associd = associd; 1378 if (wme != NULL) 1379 ni->ni_flags |= IEEE80211_NODE_QOS; 1380 else 1381 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1382 #undef SUBTYPE 1383 } 1384 1385 /* 1386 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1387 */ 1388 1389 static void 1390 iwi_authsuccess(void *arg, int npending) 1391 { 1392 struct ieee80211vap *vap = arg; 1393 1394 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1395 } 1396 1397 static void 1398 iwi_assocsuccess(void *arg, int npending) 1399 { 1400 struct ieee80211vap *vap = arg; 1401 1402 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1403 } 1404 1405 static void 1406 iwi_assocfailed(void *arg, int npending) 1407 { 1408 struct ieee80211vap *vap = arg; 1409 1410 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1411 } 1412 1413 static void 1414 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1415 { 1416 struct ifnet *ifp = sc->sc_ifp; 1417 struct ieee80211com *ic = ifp->if_l2com; 1418 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1419 struct iwi_notif_scan_channel *chan; 1420 struct iwi_notif_scan_complete *scan; 1421 struct iwi_notif_authentication *auth; 1422 struct iwi_notif_association *assoc; 1423 struct iwi_notif_beacon_state *beacon; 1424 1425 switch (notif->type) { 1426 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1427 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1428 1429 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1430 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1431 1432 /* Reset the timer, the scan is still going */ 1433 sc->sc_state_timer = 3; 1434 break; 1435 1436 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1437 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1438 1439 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1440 scan->status)); 1441 1442 IWI_STATE_END(sc, IWI_FW_SCANNING); 1443 1444 if (scan->status == IWI_SCAN_COMPLETED) { 1445 /* NB: don't need to defer, net80211 does it for us */ 1446 ieee80211_scan_next(vap); 1447 } 1448 break; 1449 1450 case IWI_NOTIF_TYPE_AUTHENTICATION: 1451 auth = (struct iwi_notif_authentication *)(notif + 1); 1452 switch (auth->state) { 1453 case IWI_AUTH_SUCCESS: 1454 DPRINTFN(2, ("Authentication succeeeded\n")); 1455 taskqueue_enqueue(taskqueue_swi, 1456 &IWI_VAP(vap)->iwi_authsuccess_task); 1457 break; 1458 case IWI_AUTH_FAIL: 1459 /* 1460 * These are delivered as an unsolicited deauth 1461 * (e.g. due to inactivity) or in response to an 1462 * associate request. 1463 */ 1464 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1465 if (vap->iv_state != IEEE80211_S_RUN) { 1466 DPRINTFN(2, ("Authentication failed\n")); 1467 vap->iv_stats.is_rx_auth_fail++; 1468 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1469 } else { 1470 DPRINTFN(2, ("Deauthenticated\n")); 1471 vap->iv_stats.is_rx_deauth++; 1472 } 1473 taskqueue_enqueue(taskqueue_swi, 1474 &IWI_VAP(vap)->iwi_assocfailed_task); 1475 break; 1476 case IWI_AUTH_SENT_1: 1477 case IWI_AUTH_RECV_2: 1478 case IWI_AUTH_SEQ1_PASS: 1479 break; 1480 case IWI_AUTH_SEQ1_FAIL: 1481 DPRINTFN(2, ("Initial authentication handshake failed; " 1482 "you probably need shared key\n")); 1483 vap->iv_stats.is_rx_auth_fail++; 1484 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1485 /* XXX retry shared key when in auto */ 1486 break; 1487 default: 1488 device_printf(sc->sc_dev, 1489 "unknown authentication state %u\n", auth->state); 1490 break; 1491 } 1492 break; 1493 1494 case IWI_NOTIF_TYPE_ASSOCIATION: 1495 assoc = (struct iwi_notif_association *)(notif + 1); 1496 switch (assoc->state) { 1497 case IWI_AUTH_SUCCESS: 1498 /* re-association, do nothing */ 1499 break; 1500 case IWI_ASSOC_SUCCESS: 1501 DPRINTFN(2, ("Association succeeded\n")); 1502 sc->flags |= IWI_FLAG_ASSOCIATED; 1503 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1504 iwi_checkforqos(vap, 1505 (const struct ieee80211_frame *)(assoc+1), 1506 le16toh(notif->len) - sizeof(*assoc)); 1507 taskqueue_enqueue(taskqueue_swi, 1508 &IWI_VAP(vap)->iwi_assocsuccess_task); 1509 break; 1510 case IWI_ASSOC_INIT: 1511 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1512 switch (sc->fw_state) { 1513 case IWI_FW_ASSOCIATING: 1514 DPRINTFN(2, ("Association failed\n")); 1515 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1516 taskqueue_enqueue(taskqueue_swi, 1517 &IWI_VAP(vap)->iwi_assocfailed_task); 1518 break; 1519 1520 case IWI_FW_DISASSOCIATING: 1521 DPRINTFN(2, ("Dissassociated\n")); 1522 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1523 vap->iv_stats.is_rx_disassoc++; 1524 taskqueue_enqueue(taskqueue_swi, 1525 &IWI_VAP(vap)->iwi_assocfailed_task); 1526 break; 1527 } 1528 break; 1529 default: 1530 device_printf(sc->sc_dev, 1531 "unknown association state %u\n", assoc->state); 1532 break; 1533 } 1534 break; 1535 1536 case IWI_NOTIF_TYPE_BEACON: 1537 /* XXX check struct length */ 1538 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1539 1540 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1541 beacon->state, le32toh(beacon->number))); 1542 1543 if (beacon->state == IWI_BEACON_MISS) { 1544 /* 1545 * The firmware notifies us of every beacon miss 1546 * so we need to track the count against the 1547 * configured threshold before notifying the 1548 * 802.11 layer. 1549 * XXX try to roam, drop assoc only on much higher count 1550 */ 1551 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1552 DPRINTF(("Beacon miss: %u >= %u\n", 1553 le32toh(beacon->number), 1554 vap->iv_bmissthreshold)); 1555 vap->iv_stats.is_beacon_miss++; 1556 /* 1557 * It's pointless to notify the 802.11 layer 1558 * as it'll try to send a probe request (which 1559 * we'll discard) and then timeout and drop us 1560 * into scan state. Instead tell the firmware 1561 * to disassociate and then on completion we'll 1562 * kick the state machine to scan. 1563 */ 1564 iwi_queue_cmd(sc, IWI_DISASSOC, 1); 1565 } 1566 } 1567 break; 1568 1569 case IWI_NOTIF_TYPE_CALIBRATION: 1570 case IWI_NOTIF_TYPE_NOISE: 1571 case IWI_NOTIF_TYPE_LINK_QUALITY: 1572 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1573 break; 1574 1575 default: 1576 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1577 notif->type, notif->flags, le16toh(notif->len))); 1578 break; 1579 } 1580 } 1581 1582 static void 1583 iwi_rx_intr(struct iwi_softc *sc) 1584 { 1585 struct iwi_rx_data *data; 1586 struct iwi_hdr *hdr; 1587 uint32_t hw; 1588 1589 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1590 1591 for (; sc->rxq.cur != hw;) { 1592 data = &sc->rxq.data[sc->rxq.cur]; 1593 1594 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1595 BUS_DMASYNC_POSTREAD); 1596 1597 hdr = mtod(data->m, struct iwi_hdr *); 1598 1599 switch (hdr->type) { 1600 case IWI_HDR_TYPE_FRAME: 1601 iwi_frame_intr(sc, data, sc->rxq.cur, 1602 (struct iwi_frame *)(hdr + 1)); 1603 break; 1604 1605 case IWI_HDR_TYPE_NOTIF: 1606 iwi_notification_intr(sc, 1607 (struct iwi_notif *)(hdr + 1)); 1608 break; 1609 1610 default: 1611 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1612 hdr->type); 1613 } 1614 1615 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1616 1617 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1618 } 1619 1620 /* tell the firmware what we have processed */ 1621 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1622 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1623 } 1624 1625 static void 1626 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1627 { 1628 struct ifnet *ifp = sc->sc_ifp; 1629 struct iwi_tx_data *data; 1630 uint32_t hw; 1631 1632 hw = CSR_READ_4(sc, txq->csr_ridx); 1633 1634 for (; txq->next != hw;) { 1635 data = &txq->data[txq->next]; 1636 1637 bus_dmamap_sync(txq->data_dmat, data->map, 1638 BUS_DMASYNC_POSTWRITE); 1639 bus_dmamap_unload(txq->data_dmat, data->map); 1640 if (data->m->m_flags & M_TXCB) 1641 ieee80211_process_callback(data->ni, data->m, 0/*XXX*/); 1642 m_freem(data->m); 1643 data->m = NULL; 1644 ieee80211_free_node(data->ni); 1645 data->ni = NULL; 1646 1647 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1648 1649 ifp->if_opackets++; 1650 1651 txq->queued--; 1652 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1653 } 1654 1655 sc->sc_tx_timer = 0; 1656 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1657 1658 if (sc->sc_softled) 1659 iwi_led_event(sc, IWI_LED_TX); 1660 1661 iwi_start_locked(ifp); 1662 } 1663 1664 static void 1665 iwi_intr(void *arg) 1666 { 1667 struct iwi_softc *sc = arg; 1668 uint32_t r; 1669 IWI_LOCK_DECL; 1670 1671 IWI_LOCK(sc); 1672 1673 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1674 IWI_UNLOCK(sc); 1675 return; 1676 } 1677 1678 /* acknowledge interrupts */ 1679 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1680 1681 if (r & IWI_INTR_FATAL_ERROR) { 1682 device_printf(sc->sc_dev, "firmware error\n"); 1683 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 1684 1685 sc->flags &= ~IWI_FLAG_BUSY; 1686 sc->sc_busy_timer = 0; 1687 wakeup(sc); 1688 } 1689 1690 if (r & IWI_INTR_FW_INITED) { 1691 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1692 wakeup(sc); 1693 } 1694 1695 if (r & IWI_INTR_RADIO_OFF) 1696 taskqueue_enqueue(sc->sc_tq, &sc->sc_radiofftask); 1697 1698 if (r & IWI_INTR_CMD_DONE) { 1699 sc->flags &= ~IWI_FLAG_BUSY; 1700 sc->sc_busy_timer = 0; 1701 wakeup(sc); 1702 } 1703 1704 if (r & IWI_INTR_TX1_DONE) 1705 iwi_tx_intr(sc, &sc->txq[0]); 1706 1707 if (r & IWI_INTR_TX2_DONE) 1708 iwi_tx_intr(sc, &sc->txq[1]); 1709 1710 if (r & IWI_INTR_TX3_DONE) 1711 iwi_tx_intr(sc, &sc->txq[2]); 1712 1713 if (r & IWI_INTR_TX4_DONE) 1714 iwi_tx_intr(sc, &sc->txq[3]); 1715 1716 if (r & IWI_INTR_RX_DONE) 1717 iwi_rx_intr(sc); 1718 1719 if (r & IWI_INTR_PARITY_ERROR) { 1720 /* XXX rate-limit */ 1721 device_printf(sc->sc_dev, "parity error\n"); 1722 } 1723 1724 IWI_UNLOCK(sc); 1725 } 1726 1727 static int 1728 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1729 { 1730 struct iwi_cmd_desc *desc; 1731 1732 IWI_LOCK_ASSERT(sc); 1733 1734 if (sc->flags & IWI_FLAG_BUSY) { 1735 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1736 __func__, type); 1737 return EAGAIN; 1738 } 1739 sc->flags |= IWI_FLAG_BUSY; 1740 sc->sc_busy_timer = 2; 1741 1742 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1743 1744 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1745 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1746 desc->type = type; 1747 desc->len = len; 1748 memcpy(desc->data, data, len); 1749 1750 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1751 BUS_DMASYNC_PREWRITE); 1752 1753 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1754 type, len)); 1755 1756 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1757 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1758 1759 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1760 } 1761 1762 static void 1763 iwi_write_ibssnode(struct iwi_softc *sc, 1764 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1765 { 1766 struct iwi_ibssnode node; 1767 1768 /* write node information into NIC memory */ 1769 memset(&node, 0, sizeof node); 1770 IEEE80211_ADDR_COPY(node.bssid, addr); 1771 1772 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1773 1774 CSR_WRITE_REGION_1(sc, 1775 IWI_CSR_NODE_BASE + entry * sizeof node, 1776 (uint8_t *)&node, sizeof node); 1777 } 1778 1779 static int 1780 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni, 1781 int ac) 1782 { 1783 struct iwi_softc *sc = ifp->if_softc; 1784 struct ieee80211vap *vap = ni->ni_vap; 1785 struct ieee80211com *ic = ni->ni_ic; 1786 struct iwi_node *in = (struct iwi_node *)ni; 1787 const struct ieee80211_frame *wh; 1788 struct ieee80211_key *k; 1789 const struct chanAccParams *cap; 1790 struct iwi_tx_ring *txq = &sc->txq[ac]; 1791 struct iwi_tx_data *data; 1792 struct iwi_tx_desc *desc; 1793 struct mbuf *mnew; 1794 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1795 int error, nsegs, hdrlen, i; 1796 int ismcast, flags, xflags, staid; 1797 1798 IWI_LOCK_ASSERT(sc); 1799 wh = mtod(m0, const struct ieee80211_frame *); 1800 /* NB: only data frames use this path */ 1801 hdrlen = ieee80211_hdrsize(wh); 1802 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1803 flags = xflags = 0; 1804 1805 if (!ismcast) 1806 flags |= IWI_DATA_FLAG_NEED_ACK; 1807 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1808 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1809 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1810 xflags |= IWI_DATA_XFLAG_QOS; 1811 cap = &ic->ic_wme.wme_chanParams; 1812 if (!cap->cap_wmeParams[ac].wmep_noackPolicy) 1813 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1814 } 1815 1816 /* 1817 * This is only used in IBSS mode where the firmware expect an index 1818 * in a h/w table instead of a destination address. 1819 */ 1820 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1821 if (!ismcast) { 1822 if (in->in_station == -1) { 1823 in->in_station = alloc_unr(sc->sc_unr); 1824 if (in->in_station == -1) { 1825 /* h/w table is full */ 1826 m_freem(m0); 1827 ieee80211_free_node(ni); 1828 ifp->if_oerrors++; 1829 return 0; 1830 } 1831 iwi_write_ibssnode(sc, 1832 ni->ni_macaddr, in->in_station); 1833 } 1834 staid = in->in_station; 1835 } else { 1836 /* 1837 * Multicast addresses have no associated node 1838 * so there will be no station entry. We reserve 1839 * entry 0 for one mcast address and use that. 1840 * If there are many being used this will be 1841 * expensive and we'll need to do a better job 1842 * but for now this handles the broadcast case. 1843 */ 1844 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1845 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1846 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1847 } 1848 staid = 0; 1849 } 1850 } else 1851 staid = 0; 1852 1853 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1854 k = ieee80211_crypto_encap(ni, m0); 1855 if (k == NULL) { 1856 m_freem(m0); 1857 return ENOBUFS; 1858 } 1859 1860 /* packet header may have moved, reset our local pointer */ 1861 wh = mtod(m0, struct ieee80211_frame *); 1862 } 1863 1864 if (bpf_peers_present(ifp->if_bpf)) { 1865 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1866 1867 tap->wt_flags = 0; 1868 1869 bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0); 1870 } 1871 1872 data = &txq->data[txq->cur]; 1873 desc = &txq->desc[txq->cur]; 1874 1875 /* save and trim IEEE802.11 header */ 1876 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1877 m_adj(m0, hdrlen); 1878 1879 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1880 &nsegs, 0); 1881 if (error != 0 && error != EFBIG) { 1882 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1883 error); 1884 m_freem(m0); 1885 return error; 1886 } 1887 if (error != 0) { 1888 mnew = m_defrag(m0, M_DONTWAIT); 1889 if (mnew == NULL) { 1890 device_printf(sc->sc_dev, 1891 "could not defragment mbuf\n"); 1892 m_freem(m0); 1893 return ENOBUFS; 1894 } 1895 m0 = mnew; 1896 1897 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1898 m0, segs, &nsegs, 0); 1899 if (error != 0) { 1900 device_printf(sc->sc_dev, 1901 "could not map mbuf (error %d)\n", error); 1902 m_freem(m0); 1903 return error; 1904 } 1905 } 1906 1907 data->m = m0; 1908 data->ni = ni; 1909 1910 desc->hdr.type = IWI_HDR_TYPE_DATA; 1911 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1912 desc->station = staid; 1913 desc->cmd = IWI_DATA_CMD_TX; 1914 desc->len = htole16(m0->m_pkthdr.len); 1915 desc->flags = flags; 1916 desc->xflags = xflags; 1917 1918 #if 0 1919 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1920 desc->wep_txkey = vap->iv_def_txkey; 1921 else 1922 #endif 1923 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1924 1925 desc->nseg = htole32(nsegs); 1926 for (i = 0; i < nsegs; i++) { 1927 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1928 desc->seg_len[i] = htole16(segs[i].ds_len); 1929 } 1930 1931 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1932 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1933 1934 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1935 ac, txq->cur, le16toh(desc->len), nsegs)); 1936 1937 txq->queued++; 1938 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1939 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1940 1941 return 0; 1942 } 1943 1944 static int 1945 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1946 const struct ieee80211_bpf_params *params) 1947 { 1948 /* no support; just discard */ 1949 m_freem(m); 1950 ieee80211_free_node(ni); 1951 return 0; 1952 } 1953 1954 static void 1955 iwi_start_locked(struct ifnet *ifp) 1956 { 1957 struct iwi_softc *sc = ifp->if_softc; 1958 struct mbuf *m; 1959 struct ieee80211_node *ni; 1960 int ac; 1961 1962 IWI_LOCK_ASSERT(sc); 1963 1964 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1965 return; 1966 1967 for (;;) { 1968 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1969 if (m == NULL) 1970 break; 1971 ac = M_WME_GETAC(m); 1972 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1973 /* there is no place left in this ring; tail drop */ 1974 /* XXX tail drop */ 1975 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1976 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1977 break; 1978 } 1979 1980 BPF_MTAP(ifp, m); 1981 1982 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1983 m = ieee80211_encap(ni, m); 1984 if (m == NULL) { 1985 ieee80211_free_node(ni); 1986 ifp->if_oerrors++; 1987 continue; 1988 } 1989 1990 if (iwi_tx_start(ifp, m, ni, ac) != 0) { 1991 ieee80211_free_node(ni); 1992 ifp->if_oerrors++; 1993 break; 1994 } 1995 1996 sc->sc_tx_timer = 5; 1997 } 1998 } 1999 2000 static void 2001 iwi_start(struct ifnet *ifp) 2002 { 2003 struct iwi_softc *sc = ifp->if_softc; 2004 IWI_LOCK_DECL; 2005 2006 IWI_LOCK(sc); 2007 iwi_start_locked(ifp); 2008 IWI_UNLOCK(sc); 2009 } 2010 2011 static void 2012 iwi_watchdog(void *arg) 2013 { 2014 struct iwi_softc *sc = arg; 2015 struct ifnet *ifp = sc->sc_ifp; 2016 2017 IWI_LOCK_ASSERT(sc); 2018 2019 if (sc->sc_tx_timer > 0) { 2020 if (--sc->sc_tx_timer == 0) { 2021 if_printf(ifp, "device timeout\n"); 2022 ifp->if_oerrors++; 2023 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 2024 } 2025 } 2026 if (sc->sc_state_timer > 0) { 2027 if (--sc->sc_state_timer == 0) { 2028 if_printf(ifp, "firmware stuck in state %d, resetting\n", 2029 sc->fw_state); 2030 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 2031 if (sc->fw_state == IWI_FW_SCANNING) { 2032 struct ieee80211com *ic = ifp->if_l2com; 2033 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2034 } 2035 sc->sc_state_timer = 3; 2036 } 2037 } 2038 if (sc->sc_busy_timer > 0) { 2039 if (--sc->sc_busy_timer == 0) { 2040 if_printf(ifp, "firmware command timeout, resetting\n"); 2041 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 2042 } 2043 } 2044 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2045 } 2046 2047 static int 2048 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2049 { 2050 struct iwi_softc *sc = ifp->if_softc; 2051 struct ieee80211com *ic = ifp->if_l2com; 2052 struct ifreq *ifr = (struct ifreq *) data; 2053 int error = 0, startall = 0; 2054 IWI_LOCK_DECL; 2055 2056 switch (cmd) { 2057 case SIOCSIFFLAGS: 2058 IWI_LOCK(sc); 2059 if (ifp->if_flags & IFF_UP) { 2060 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2061 iwi_init_locked(sc); 2062 startall = 1; 2063 } 2064 } else { 2065 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2066 iwi_stop_locked(sc); 2067 } 2068 IWI_UNLOCK(sc); 2069 if (startall) 2070 ieee80211_start_all(ic); 2071 break; 2072 case SIOCGIFMEDIA: 2073 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2074 break; 2075 case SIOCGIFADDR: 2076 error = ether_ioctl(ifp, cmd, data); 2077 break; 2078 default: 2079 error = EINVAL; 2080 break; 2081 } 2082 return error; 2083 } 2084 2085 static void 2086 iwi_stop_master(struct iwi_softc *sc) 2087 { 2088 uint32_t tmp; 2089 int ntries; 2090 2091 /* disable interrupts */ 2092 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2093 2094 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2095 for (ntries = 0; ntries < 5; ntries++) { 2096 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2097 break; 2098 DELAY(10); 2099 } 2100 if (ntries == 5) 2101 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2102 2103 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2104 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2105 2106 sc->flags &= ~IWI_FLAG_FW_INITED; 2107 } 2108 2109 static int 2110 iwi_reset(struct iwi_softc *sc) 2111 { 2112 uint32_t tmp; 2113 int i, ntries; 2114 2115 iwi_stop_master(sc); 2116 2117 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2118 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2119 2120 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2121 2122 /* wait for clock stabilization */ 2123 for (ntries = 0; ntries < 1000; ntries++) { 2124 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2125 break; 2126 DELAY(200); 2127 } 2128 if (ntries == 1000) { 2129 device_printf(sc->sc_dev, 2130 "timeout waiting for clock stabilization\n"); 2131 return EIO; 2132 } 2133 2134 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2135 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2136 2137 DELAY(10); 2138 2139 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2140 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2141 2142 /* clear NIC memory */ 2143 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2144 for (i = 0; i < 0xc000; i++) 2145 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2146 2147 return 0; 2148 } 2149 2150 static const struct iwi_firmware_ohdr * 2151 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2152 { 2153 const struct firmware *fp = fw->fp; 2154 const struct iwi_firmware_ohdr *hdr; 2155 2156 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2157 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2158 return NULL; 2159 } 2160 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2161 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2162 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2163 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2164 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2165 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2166 IWI_FW_REQ_MINOR); 2167 return NULL; 2168 } 2169 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2170 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2171 fw->name = fp->name; 2172 return hdr; 2173 } 2174 2175 static const struct iwi_firmware_ohdr * 2176 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2177 { 2178 const struct iwi_firmware_ohdr *hdr; 2179 2180 hdr = iwi_setup_ofw(sc, fw); 2181 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2182 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2183 fw->name); 2184 hdr = NULL; 2185 } 2186 return hdr; 2187 } 2188 2189 static void 2190 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2191 struct iwi_fw *uc, const char *ucname) 2192 { 2193 if (fw->fp == NULL) 2194 fw->fp = firmware_get(fwname); 2195 /* NB: pre-3.0 ucode is packaged separately */ 2196 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2197 uc->fp = firmware_get(ucname); 2198 } 2199 2200 /* 2201 * Get the required firmware images if not already loaded. 2202 * Note that we hold firmware images so long as the device 2203 * is marked up in case we need to reload them on device init. 2204 * This is necessary because we re-init the device sometimes 2205 * from a context where we cannot read from the filesystem 2206 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2207 * XXX return 0 on success, 1 on error. 2208 * 2209 * NB: the order of get'ing and put'ing images here is 2210 * intentional to support handling firmware images bundled 2211 * by operating mode and/or all together in one file with 2212 * the boot firmware as "master". 2213 */ 2214 static int 2215 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2216 { 2217 const struct iwi_firmware_hdr *hdr; 2218 const struct firmware *fp; 2219 2220 /* invalidate cached firmware on mode change */ 2221 if (sc->fw_mode != opmode) 2222 iwi_put_firmware(sc); 2223 2224 switch (opmode) { 2225 case IEEE80211_M_STA: 2226 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2227 break; 2228 case IEEE80211_M_IBSS: 2229 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2230 break; 2231 case IEEE80211_M_MONITOR: 2232 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2233 &sc->fw_uc, "iwi_ucode_monitor"); 2234 break; 2235 default: 2236 break; 2237 } 2238 fp = sc->fw_fw.fp; 2239 if (fp == NULL) { 2240 device_printf(sc->sc_dev, "could not load firmware\n"); 2241 goto bad; 2242 } 2243 if (fp->version < 300) { 2244 /* 2245 * Firmware prior to 3.0 was packaged as separate 2246 * boot, firmware, and ucode images. Verify the 2247 * ucode image was read in, retrieve the boot image 2248 * if needed, and check version stamps for consistency. 2249 * The version stamps in the data are also checked 2250 * above; this is a bit paranoid but is a cheap 2251 * safeguard against mis-packaging. 2252 */ 2253 if (sc->fw_uc.fp == NULL) { 2254 device_printf(sc->sc_dev, "could not load ucode\n"); 2255 goto bad; 2256 } 2257 if (sc->fw_boot.fp == NULL) { 2258 sc->fw_boot.fp = firmware_get("iwi_boot"); 2259 if (sc->fw_boot.fp == NULL) { 2260 device_printf(sc->sc_dev, 2261 "could not load boot firmware\n"); 2262 goto bad; 2263 } 2264 } 2265 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2266 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2267 device_printf(sc->sc_dev, 2268 "firmware version mismatch: " 2269 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2270 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2271 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2272 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2273 ); 2274 goto bad; 2275 } 2276 /* 2277 * Check and setup each image. 2278 */ 2279 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2280 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2281 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2282 goto bad; 2283 } else { 2284 /* 2285 * Check and setup combined image. 2286 */ 2287 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2288 device_printf(sc->sc_dev, "image '%s' too small\n", 2289 fp->name); 2290 goto bad; 2291 } 2292 hdr = (const struct iwi_firmware_hdr *)fp->data; 2293 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2294 + le32toh(hdr->fsize)) { 2295 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2296 fp->name); 2297 goto bad; 2298 } 2299 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2300 sc->fw_boot.size = le32toh(hdr->bsize); 2301 sc->fw_boot.name = fp->name; 2302 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2303 sc->fw_uc.size = le32toh(hdr->usize); 2304 sc->fw_uc.name = fp->name; 2305 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2306 sc->fw_fw.size = le32toh(hdr->fsize); 2307 sc->fw_fw.name = fp->name; 2308 } 2309 #if 0 2310 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2311 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2312 #endif 2313 2314 sc->fw_mode = opmode; 2315 return 0; 2316 bad: 2317 iwi_put_firmware(sc); 2318 return 1; 2319 } 2320 2321 static void 2322 iwi_put_fw(struct iwi_fw *fw) 2323 { 2324 if (fw->fp != NULL) { 2325 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2326 fw->fp = NULL; 2327 } 2328 fw->data = NULL; 2329 fw->size = 0; 2330 fw->name = NULL; 2331 } 2332 2333 /* 2334 * Release any cached firmware images. 2335 */ 2336 static void 2337 iwi_put_firmware(struct iwi_softc *sc) 2338 { 2339 iwi_put_fw(&sc->fw_uc); 2340 iwi_put_fw(&sc->fw_fw); 2341 iwi_put_fw(&sc->fw_boot); 2342 } 2343 2344 static int 2345 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2346 { 2347 uint32_t tmp; 2348 const uint16_t *w; 2349 const char *uc = fw->data; 2350 size_t size = fw->size; 2351 int i, ntries, error; 2352 2353 IWI_LOCK_ASSERT(sc); 2354 error = 0; 2355 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2356 IWI_RST_STOP_MASTER); 2357 for (ntries = 0; ntries < 5; ntries++) { 2358 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2359 break; 2360 DELAY(10); 2361 } 2362 if (ntries == 5) { 2363 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2364 error = EIO; 2365 goto fail; 2366 } 2367 2368 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2369 DELAY(5000); 2370 2371 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2372 tmp &= ~IWI_RST_PRINCETON_RESET; 2373 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2374 2375 DELAY(5000); 2376 MEM_WRITE_4(sc, 0x3000e0, 0); 2377 DELAY(1000); 2378 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2379 DELAY(1000); 2380 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2381 DELAY(1000); 2382 MEM_WRITE_1(sc, 0x200000, 0x00); 2383 MEM_WRITE_1(sc, 0x200000, 0x40); 2384 DELAY(1000); 2385 2386 /* write microcode into adapter memory */ 2387 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2388 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2389 2390 MEM_WRITE_1(sc, 0x200000, 0x00); 2391 MEM_WRITE_1(sc, 0x200000, 0x80); 2392 2393 /* wait until we get an answer */ 2394 for (ntries = 0; ntries < 100; ntries++) { 2395 if (MEM_READ_1(sc, 0x200000) & 1) 2396 break; 2397 DELAY(100); 2398 } 2399 if (ntries == 100) { 2400 device_printf(sc->sc_dev, 2401 "timeout waiting for ucode to initialize\n"); 2402 error = EIO; 2403 goto fail; 2404 } 2405 2406 /* read the answer or the firmware will not initialize properly */ 2407 for (i = 0; i < 7; i++) 2408 MEM_READ_4(sc, 0x200004); 2409 2410 MEM_WRITE_1(sc, 0x200000, 0x00); 2411 2412 fail: 2413 return error; 2414 } 2415 2416 /* macro to handle unaligned little endian data in firmware image */ 2417 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2418 2419 static int 2420 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2421 { 2422 u_char *p, *end; 2423 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2424 int ntries, error; 2425 2426 IWI_LOCK_ASSERT(sc); 2427 2428 /* copy firmware image to DMA memory */ 2429 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2430 2431 /* make sure the adapter will get up-to-date values */ 2432 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2433 2434 /* tell the adapter where the command blocks are stored */ 2435 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2436 2437 /* 2438 * Store command blocks into adapter's internal memory using register 2439 * indirections. The adapter will read the firmware image through DMA 2440 * using information stored in command blocks. 2441 */ 2442 src = sc->fw_physaddr; 2443 p = sc->fw_virtaddr; 2444 end = p + fw->size; 2445 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2446 2447 while (p < end) { 2448 dst = GETLE32(p); p += 4; src += 4; 2449 len = GETLE32(p); p += 4; src += 4; 2450 p += len; 2451 2452 while (len > 0) { 2453 mlen = min(len, IWI_CB_MAXDATALEN); 2454 2455 ctl = IWI_CB_DEFAULT_CTL | mlen; 2456 sum = ctl ^ src ^ dst; 2457 2458 /* write a command block */ 2459 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2460 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2461 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2462 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2463 2464 src += mlen; 2465 dst += mlen; 2466 len -= mlen; 2467 } 2468 } 2469 2470 /* write a fictive final command block (sentinel) */ 2471 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2472 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2473 2474 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2475 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2476 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2477 2478 /* tell the adapter to start processing command blocks */ 2479 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2480 2481 /* wait until the adapter reaches the sentinel */ 2482 for (ntries = 0; ntries < 400; ntries++) { 2483 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2484 break; 2485 DELAY(100); 2486 } 2487 /* sync dma, just in case */ 2488 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2489 if (ntries == 400) { 2490 device_printf(sc->sc_dev, 2491 "timeout processing command blocks for %s firmware\n", 2492 fw->name); 2493 return EIO; 2494 } 2495 2496 /* we're done with command blocks processing */ 2497 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2498 2499 /* allow interrupts so we know when the firmware is ready */ 2500 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2501 2502 /* tell the adapter to initialize the firmware */ 2503 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2504 2505 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2506 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2507 2508 /* wait at most one second for firmware initialization to complete */ 2509 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2510 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2511 "initialization to complete\n", fw->name); 2512 } 2513 2514 return error; 2515 } 2516 2517 static int 2518 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2519 { 2520 uint32_t data; 2521 2522 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2523 /* XXX set more fine-grained operation */ 2524 data = htole32(IWI_POWER_MODE_MAX); 2525 } else 2526 data = htole32(IWI_POWER_MODE_CAM); 2527 2528 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2529 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2530 } 2531 2532 static int 2533 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2534 { 2535 struct iwi_wep_key wepkey; 2536 struct ieee80211_key *wk; 2537 int error, i; 2538 2539 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2540 wk = &vap->iv_nw_keys[i]; 2541 2542 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2543 wepkey.idx = i; 2544 wepkey.len = wk->wk_keylen; 2545 memset(wepkey.key, 0, sizeof wepkey.key); 2546 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2547 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2548 wepkey.len)); 2549 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2550 sizeof wepkey); 2551 if (error != 0) 2552 return error; 2553 } 2554 return 0; 2555 } 2556 2557 static int 2558 iwi_config(struct iwi_softc *sc) 2559 { 2560 struct ifnet *ifp = sc->sc_ifp; 2561 struct ieee80211com *ic = ifp->if_l2com; 2562 struct iwi_configuration config; 2563 struct iwi_rateset rs; 2564 struct iwi_txpower power; 2565 uint32_t data; 2566 int error, i; 2567 2568 IWI_LOCK_ASSERT(sc); 2569 2570 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 2571 DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":")); 2572 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, 2573 IEEE80211_ADDR_LEN); 2574 if (error != 0) 2575 return error; 2576 2577 memset(&config, 0, sizeof config); 2578 config.bluetooth_coexistence = sc->bluetooth; 2579 config.silence_threshold = 0x1e; 2580 config.antenna = sc->antenna; 2581 config.multicast_enabled = 1; 2582 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2583 config.disable_unicast_decryption = 1; 2584 config.disable_multicast_decryption = 1; 2585 DPRINTF(("Configuring adapter\n")); 2586 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2587 if (error != 0) 2588 return error; 2589 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2590 power.mode = IWI_MODE_11B; 2591 power.nchan = 11; 2592 for (i = 0; i < 11; i++) { 2593 power.chan[i].chan = i + 1; 2594 power.chan[i].power = IWI_TXPOWER_MAX; 2595 } 2596 DPRINTF(("Setting .11b channels tx power\n")); 2597 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2598 if (error != 0) 2599 return error; 2600 2601 power.mode = IWI_MODE_11G; 2602 DPRINTF(("Setting .11g channels tx power\n")); 2603 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2604 if (error != 0) 2605 return error; 2606 } 2607 2608 memset(&rs, 0, sizeof rs); 2609 rs.mode = IWI_MODE_11G; 2610 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2611 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; 2612 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, 2613 rs.nrates); 2614 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); 2615 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2616 if (error != 0) 2617 return error; 2618 2619 memset(&rs, 0, sizeof rs); 2620 rs.mode = IWI_MODE_11A; 2621 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2622 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; 2623 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, 2624 rs.nrates); 2625 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); 2626 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2627 if (error != 0) 2628 return error; 2629 2630 data = htole32(arc4random()); 2631 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2632 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2633 if (error != 0) 2634 return error; 2635 2636 /* enable adapter */ 2637 DPRINTF(("Enabling adapter\n")); 2638 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2639 } 2640 2641 static __inline void 2642 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2643 { 2644 uint8_t *st = &scan->scan_type[ix / 2]; 2645 if (ix % 2) 2646 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2647 else 2648 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2649 } 2650 2651 static int 2652 scan_type(const struct ieee80211_scan_state *ss, 2653 const struct ieee80211_channel *chan) 2654 { 2655 /* We can only set one essid for a directed scan */ 2656 if (ss->ss_nssid != 0) 2657 return IWI_SCAN_TYPE_BDIRECTED; 2658 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2659 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2660 return IWI_SCAN_TYPE_BROADCAST; 2661 return IWI_SCAN_TYPE_PASSIVE; 2662 } 2663 2664 static __inline int 2665 scan_band(const struct ieee80211_channel *c) 2666 { 2667 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2668 } 2669 2670 /* 2671 * Start a scan on the current channel or all channels. 2672 */ 2673 static int 2674 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int mode) 2675 { 2676 struct ieee80211com *ic; 2677 struct ieee80211_channel *chan; 2678 struct ieee80211_scan_state *ss; 2679 struct iwi_scan_ext scan; 2680 int error = 0; 2681 2682 IWI_LOCK_ASSERT(sc); 2683 if (sc->fw_state == IWI_FW_SCANNING) { 2684 /* 2685 * This should not happen as we only trigger scan_next after 2686 * completion 2687 */ 2688 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2689 return (EBUSY); 2690 } 2691 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2692 2693 ic = sc->sc_ifp->if_l2com; 2694 ss = ic->ic_scan; 2695 2696 memset(&scan, 0, sizeof scan); 2697 scan.full_scan_index = htole32(++sc->sc_scangen); 2698 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2699 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2700 /* 2701 * Use very short dwell times for when we send probe request 2702 * frames. Without this bg scans hang. Ideally this should 2703 * be handled with early-termination as done by net80211 but 2704 * that's not feasible (aborting a scan is problematic). 2705 */ 2706 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2707 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2708 } else { 2709 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2710 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2711 } 2712 2713 /* We can only set one essid for a directed scan */ 2714 if (ss->ss_nssid != 0) { 2715 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2716 ss->ss_ssid[0].len); 2717 if (error) 2718 return (error); 2719 } 2720 2721 if (mode == IWI_SCAN_ALLCHAN) { 2722 int i, next, band, b, bstart; 2723 /* 2724 * Convert scan list to run-length encoded channel list 2725 * the firmware requires (preserving the order setup by 2726 * net80211). The first entry in each run specifies the 2727 * band and the count of items in the run. 2728 */ 2729 next = 0; /* next open slot */ 2730 bstart = 0; /* NB: not needed, silence compiler */ 2731 band = -1; /* NB: impossible value */ 2732 KASSERT(ss->ss_last > 0, ("no channels")); 2733 for (i = 0; i < ss->ss_last; i++) { 2734 chan = ss->ss_chans[i]; 2735 b = scan_band(chan); 2736 if (b != band) { 2737 if (band != -1) 2738 scan.channels[bstart] = 2739 (next - bstart) | band; 2740 /* NB: this allocates a slot for the run-len */ 2741 band = b, bstart = next++; 2742 } 2743 if (next >= IWI_SCAN_CHANNELS) { 2744 DPRINTF(("truncating scan list\n")); 2745 break; 2746 } 2747 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2748 set_scan_type(&scan, next, scan_type(ss, chan)); 2749 next++; 2750 } 2751 scan.channels[bstart] = (next - bstart) | band; 2752 } else { 2753 /* Scan the current channel only */ 2754 chan = ic->ic_curchan; 2755 scan.channels[0] = 1 | scan_band(chan); 2756 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2757 set_scan_type(&scan, 1, scan_type(ss, chan)); 2758 } 2759 #ifdef IWI_DEBUG 2760 if (iwi_debug > 0) { 2761 static const char *scantype[8] = 2762 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2763 int i; 2764 printf("Scan request: index %u dwell %d/%d/%d\n" 2765 , le32toh(scan.full_scan_index) 2766 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2767 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2768 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2769 ); 2770 i = 0; 2771 do { 2772 int run = scan.channels[i]; 2773 if (run == 0) 2774 break; 2775 printf("Scan %d %s channels:", run & 0x3f, 2776 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2777 for (run &= 0x3f, i++; run > 0; run--, i++) { 2778 uint8_t type = scan.scan_type[i/2]; 2779 printf(" %u/%s", scan.channels[i], 2780 scantype[(i & 1 ? type : type>>4) & 7]); 2781 } 2782 printf("\n"); 2783 } while (i < IWI_SCAN_CHANNELS); 2784 } 2785 #endif 2786 2787 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2788 } 2789 2790 static void 2791 iwi_scanabort(void *arg, int npending) 2792 { 2793 struct iwi_softc *sc = arg; 2794 IWI_LOCK_DECL; 2795 2796 IWI_LOCK(sc); 2797 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 2798 /* NB: make sure we're still scanning */ 2799 if (sc->fw_state == IWI_FW_SCANNING) 2800 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 2801 IWI_UNLOCK(sc); 2802 } 2803 2804 static int 2805 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2806 { 2807 struct iwi_sensitivity sens; 2808 2809 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2810 2811 memset(&sens, 0, sizeof sens); 2812 sens.rssi = htole16(rssi_dbm); 2813 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2814 } 2815 2816 static int 2817 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2818 { 2819 struct ieee80211com *ic = vap->iv_ic; 2820 struct ifnet *ifp = vap->iv_ifp; 2821 struct ieee80211_node *ni = vap->iv_bss; 2822 struct iwi_configuration config; 2823 struct iwi_associate *assoc = &sc->assoc; 2824 struct iwi_rateset rs; 2825 uint16_t capinfo; 2826 uint32_t data; 2827 int error, mode; 2828 2829 IWI_LOCK_ASSERT(sc); 2830 2831 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2832 DPRINTF(("Already associated\n")); 2833 return (-1); 2834 } 2835 2836 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2837 error = 0; 2838 mode = 0; 2839 2840 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2841 mode = IWI_MODE_11A; 2842 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2843 mode = IWI_MODE_11G; 2844 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2845 mode = IWI_MODE_11B; 2846 2847 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2848 memset(&config, 0, sizeof config); 2849 config.bluetooth_coexistence = sc->bluetooth; 2850 config.antenna = sc->antenna; 2851 config.multicast_enabled = 1; 2852 if (mode == IWI_MODE_11G) 2853 config.use_protection = 1; 2854 config.answer_pbreq = 2855 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2856 config.disable_unicast_decryption = 1; 2857 config.disable_multicast_decryption = 1; 2858 DPRINTF(("Configuring adapter\n")); 2859 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2860 if (error != 0) 2861 goto done; 2862 } 2863 2864 #ifdef IWI_DEBUG 2865 if (iwi_debug > 0) { 2866 printf("Setting ESSID to "); 2867 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2868 printf("\n"); 2869 } 2870 #endif 2871 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2872 if (error != 0) 2873 goto done; 2874 2875 error = iwi_setpowermode(sc, vap); 2876 if (error != 0) 2877 goto done; 2878 2879 data = htole32(vap->iv_rtsthreshold); 2880 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2881 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2882 if (error != 0) 2883 goto done; 2884 2885 data = htole32(vap->iv_fragthreshold); 2886 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2887 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2888 if (error != 0) 2889 goto done; 2890 2891 /* the rate set has already been "negotiated" */ 2892 memset(&rs, 0, sizeof rs); 2893 rs.mode = mode; 2894 rs.type = IWI_RATESET_TYPE_NEGOTIATED; 2895 rs.nrates = ni->ni_rates.rs_nrates; 2896 if (rs.nrates > IWI_RATESET_SIZE) { 2897 DPRINTF(("Truncating negotiated rate set from %u\n", 2898 rs.nrates)); 2899 rs.nrates = IWI_RATESET_SIZE; 2900 } 2901 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); 2902 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); 2903 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2904 if (error != 0) 2905 goto done; 2906 2907 memset(assoc, 0, sizeof *assoc); 2908 2909 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2910 /* NB: don't treat WME setup as failure */ 2911 if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0) 2912 assoc->policy |= htole16(IWI_POLICY_WME); 2913 /* XXX complain on failure? */ 2914 } 2915 2916 if (vap->iv_appie_wpa != NULL) { 2917 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2918 2919 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2920 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2921 if (error != 0) 2922 goto done; 2923 } 2924 2925 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2926 if (error != 0) 2927 goto done; 2928 2929 assoc->mode = mode; 2930 assoc->chan = ic->ic_curchan->ic_ieee; 2931 /* 2932 * NB: do not arrange for shared key auth w/o privacy 2933 * (i.e. a wep key); it causes a firmware error. 2934 */ 2935 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2936 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2937 assoc->auth = IWI_AUTH_SHARED; 2938 /* 2939 * It's possible to have privacy marked but no default 2940 * key setup. This typically is due to a user app bug 2941 * but if we blindly grab the key the firmware will 2942 * barf so avoid it for now. 2943 */ 2944 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2945 assoc->auth |= vap->iv_def_txkey << 4; 2946 2947 error = iwi_setwepkeys(sc, vap); 2948 if (error != 0) 2949 goto done; 2950 } 2951 if (vap->iv_flags & IEEE80211_F_WPA) 2952 assoc->policy |= htole16(IWI_POLICY_WPA); 2953 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2954 assoc->type = IWI_HC_IBSS_START; 2955 else 2956 assoc->type = IWI_HC_ASSOC; 2957 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2958 2959 if (vap->iv_opmode == IEEE80211_M_IBSS) 2960 capinfo = IEEE80211_CAPINFO_IBSS; 2961 else 2962 capinfo = IEEE80211_CAPINFO_ESS; 2963 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2964 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2965 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2966 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2967 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2968 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2969 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2970 assoc->capinfo = htole16(capinfo); 2971 2972 assoc->lintval = htole16(ic->ic_lintval); 2973 assoc->intval = htole16(ni->ni_intval); 2974 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2975 if (vap->iv_opmode == IEEE80211_M_IBSS) 2976 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 2977 else 2978 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2979 2980 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2981 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2982 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2983 assoc->bssid, ":", assoc->dst, ":", 2984 assoc->chan, le16toh(assoc->policy), assoc->auth, 2985 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2986 le16toh(assoc->intval))); 2987 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2988 done: 2989 if (error) 2990 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2991 2992 return (error); 2993 } 2994 2995 static int 2996 iwi_disassociate(struct iwi_softc *sc, int quiet) 2997 { 2998 struct iwi_associate *assoc = &sc->assoc; 2999 3000 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 3001 DPRINTF(("Not associated\n")); 3002 return (-1); 3003 } 3004 3005 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3006 3007 if (quiet) 3008 assoc->type = IWI_HC_DISASSOC_QUIET; 3009 else 3010 assoc->type = IWI_HC_DISASSOC; 3011 3012 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3013 assoc->bssid, ":", assoc->chan)); 3014 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3015 } 3016 3017 /* 3018 * release dma resources for the firmware 3019 */ 3020 static void 3021 iwi_release_fw_dma(struct iwi_softc *sc) 3022 { 3023 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3024 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3025 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3026 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3027 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3028 bus_dma_tag_destroy(sc->fw_dmat); 3029 3030 sc->fw_flags = 0; 3031 sc->fw_dma_size = 0; 3032 sc->fw_dmat = NULL; 3033 sc->fw_map = NULL; 3034 sc->fw_physaddr = 0; 3035 sc->fw_virtaddr = NULL; 3036 } 3037 3038 /* 3039 * allocate the dma descriptor for the firmware. 3040 * Return 0 on success, 1 on error. 3041 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3042 */ 3043 static int 3044 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3045 { 3046 if (sc->fw_dma_size >= size) 3047 return 0; 3048 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3049 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3050 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3051 device_printf(sc->sc_dev, 3052 "could not create firmware DMA tag\n"); 3053 goto error; 3054 } 3055 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3056 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3057 &sc->fw_map) != 0) { 3058 device_printf(sc->sc_dev, 3059 "could not allocate firmware DMA memory\n"); 3060 goto error; 3061 } 3062 sc->fw_flags |= IWI_FW_HAVE_MAP; 3063 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3064 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3065 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3066 goto error; 3067 } 3068 sc->fw_flags |= IWI_FW_HAVE_PHY; 3069 sc->fw_dma_size = size; 3070 return 0; 3071 3072 error: 3073 iwi_release_fw_dma(sc); 3074 return 1; 3075 } 3076 3077 static void 3078 iwi_init_locked(struct iwi_softc *sc) 3079 { 3080 struct ifnet *ifp = sc->sc_ifp; 3081 struct iwi_rx_data *data; 3082 int i; 3083 3084 IWI_LOCK_ASSERT(sc); 3085 3086 if (sc->fw_state == IWI_FW_LOADING) { 3087 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3088 return; /* XXX: condvar? */ 3089 } 3090 3091 iwi_stop_locked(sc); 3092 3093 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3094 3095 taskqueue_unblock(sc->sc_tq); 3096 taskqueue_unblock(sc->sc_tq2); 3097 3098 if (iwi_reset(sc) != 0) { 3099 device_printf(sc->sc_dev, "could not reset adapter\n"); 3100 goto fail; 3101 } 3102 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3103 device_printf(sc->sc_dev, 3104 "could not load boot firmware %s\n", sc->fw_boot.name); 3105 goto fail; 3106 } 3107 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3108 device_printf(sc->sc_dev, 3109 "could not load microcode %s\n", sc->fw_uc.name); 3110 goto fail; 3111 } 3112 3113 iwi_stop_master(sc); 3114 3115 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3116 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3117 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3118 3119 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3120 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3121 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3122 3123 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3124 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3125 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3126 3127 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3128 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3129 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3130 3131 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3132 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3133 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3134 3135 for (i = 0; i < sc->rxq.count; i++) { 3136 data = &sc->rxq.data[i]; 3137 CSR_WRITE_4(sc, data->reg, data->physaddr); 3138 } 3139 3140 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3141 3142 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3143 device_printf(sc->sc_dev, 3144 "could not load main firmware %s\n", sc->fw_fw.name); 3145 goto fail; 3146 } 3147 sc->flags |= IWI_FLAG_FW_INITED; 3148 3149 IWI_STATE_END(sc, IWI_FW_LOADING); 3150 3151 if (iwi_config(sc) != 0) { 3152 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3153 goto fail2; 3154 } 3155 3156 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3157 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3158 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3159 return; 3160 fail: 3161 IWI_STATE_END(sc, IWI_FW_LOADING); 3162 fail2: 3163 iwi_stop_locked(sc); 3164 } 3165 3166 static void 3167 iwi_init(void *priv) 3168 { 3169 struct iwi_softc *sc = priv; 3170 struct ifnet *ifp = sc->sc_ifp; 3171 struct ieee80211com *ic = ifp->if_l2com; 3172 IWI_LOCK_DECL; 3173 3174 IWI_LOCK(sc); 3175 iwi_init_locked(sc); 3176 IWI_UNLOCK(sc); 3177 3178 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3179 ieee80211_start_all(ic); 3180 } 3181 3182 static void 3183 iwi_stop_locked(void *priv) 3184 { 3185 struct iwi_softc *sc = priv; 3186 struct ifnet *ifp = sc->sc_ifp; 3187 3188 IWI_LOCK_ASSERT(sc); 3189 3190 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3191 3192 taskqueue_block(sc->sc_tq); 3193 taskqueue_block(sc->sc_tq2); 3194 if (sc->sc_softled) { 3195 callout_stop(&sc->sc_ledtimer); 3196 sc->sc_blinking = 0; 3197 } 3198 callout_stop(&sc->sc_wdtimer); 3199 callout_stop(&sc->sc_rftimer); 3200 3201 iwi_stop_master(sc); 3202 3203 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3204 3205 /* reset rings */ 3206 iwi_reset_cmd_ring(sc, &sc->cmdq); 3207 iwi_reset_tx_ring(sc, &sc->txq[0]); 3208 iwi_reset_tx_ring(sc, &sc->txq[1]); 3209 iwi_reset_tx_ring(sc, &sc->txq[2]); 3210 iwi_reset_tx_ring(sc, &sc->txq[3]); 3211 iwi_reset_rx_ring(sc, &sc->rxq); 3212 3213 memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd)); 3214 sc->sc_tx_timer = 0; 3215 sc->sc_state_timer = 0; 3216 sc->sc_busy_timer = 0; 3217 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3218 sc->fw_state = IWI_FW_IDLE; 3219 wakeup(sc); 3220 } 3221 3222 static void 3223 iwi_stop(struct iwi_softc *sc) 3224 { 3225 IWI_LOCK_DECL; 3226 3227 IWI_LOCK(sc); 3228 iwi_stop_locked(sc); 3229 IWI_UNLOCK(sc); 3230 } 3231 3232 static void 3233 iwi_restart(void *arg, int npending) 3234 { 3235 struct iwi_softc *sc = arg; 3236 3237 iwi_init(sc); 3238 } 3239 3240 /* 3241 * Return whether or not the radio is enabled in hardware 3242 * (i.e. the rfkill switch is "off"). 3243 */ 3244 static int 3245 iwi_getrfkill(struct iwi_softc *sc) 3246 { 3247 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3248 } 3249 3250 static void 3251 iwi_radio_on(void *arg, int pending) 3252 { 3253 struct iwi_softc *sc = arg; 3254 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3255 3256 device_printf(sc->sc_dev, "radio turned on\n"); 3257 3258 iwi_init(sc); 3259 ieee80211_notify_radio(ic, 1); 3260 } 3261 3262 static void 3263 iwi_rfkill_poll(void *arg) 3264 { 3265 struct iwi_softc *sc = arg; 3266 3267 IWI_LOCK_ASSERT(sc); 3268 3269 /* 3270 * Check for a change in rfkill state. We get an 3271 * interrupt when a radio is disabled but not when 3272 * it is enabled so we must poll for the latter. 3273 */ 3274 if (!iwi_getrfkill(sc)) { 3275 taskqueue_unblock(sc->sc_tq); 3276 taskqueue_enqueue(sc->sc_tq, &sc->sc_radiontask); 3277 return; 3278 } 3279 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3280 } 3281 3282 static void 3283 iwi_radio_off(void *arg, int pending) 3284 { 3285 struct iwi_softc *sc = arg; 3286 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3287 IWI_LOCK_DECL; 3288 3289 device_printf(sc->sc_dev, "radio turned off\n"); 3290 3291 ieee80211_notify_radio(ic, 0); 3292 3293 IWI_LOCK(sc); 3294 iwi_stop_locked(sc); 3295 iwi_rfkill_poll(sc); 3296 IWI_UNLOCK(sc); 3297 } 3298 3299 static int 3300 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3301 { 3302 struct iwi_softc *sc = arg1; 3303 uint32_t size, buf[128]; 3304 3305 memset(buf, 0, sizeof buf); 3306 3307 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3308 return SYSCTL_OUT(req, buf, sizeof buf); 3309 3310 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3311 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3312 3313 return SYSCTL_OUT(req, buf, size); 3314 } 3315 3316 static int 3317 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3318 { 3319 struct iwi_softc *sc = arg1; 3320 int val = !iwi_getrfkill(sc); 3321 3322 return SYSCTL_OUT(req, &val, sizeof val); 3323 } 3324 3325 /* 3326 * Add sysctl knobs. 3327 */ 3328 static void 3329 iwi_sysctlattach(struct iwi_softc *sc) 3330 { 3331 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3332 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3333 3334 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3335 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3336 "radio transmitter switch state (0=off, 1=on)"); 3337 3338 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3339 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3340 "statistics"); 3341 3342 sc->bluetooth = 0; 3343 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3344 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3345 3346 sc->antenna = IWI_ANTENNA_AUTO; 3347 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3348 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3349 } 3350 3351 /* 3352 * LED support. 3353 * 3354 * Different cards have different capabilities. Some have three 3355 * led's while others have only one. The linux ipw driver defines 3356 * led's for link state (associated or not), band (11a, 11g, 11b), 3357 * and for link activity. We use one led and vary the blink rate 3358 * according to the tx/rx traffic a la the ath driver. 3359 */ 3360 3361 static __inline uint32_t 3362 iwi_toggle_event(uint32_t r) 3363 { 3364 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3365 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3366 } 3367 3368 static uint32_t 3369 iwi_read_event(struct iwi_softc *sc) 3370 { 3371 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3372 } 3373 3374 static void 3375 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3376 { 3377 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3378 } 3379 3380 static void 3381 iwi_led_done(void *arg) 3382 { 3383 struct iwi_softc *sc = arg; 3384 3385 sc->sc_blinking = 0; 3386 } 3387 3388 /* 3389 * Turn the activity LED off: flip the pin and then set a timer so no 3390 * update will happen for the specified duration. 3391 */ 3392 static void 3393 iwi_led_off(void *arg) 3394 { 3395 struct iwi_softc *sc = arg; 3396 uint32_t v; 3397 3398 v = iwi_read_event(sc); 3399 v &= ~sc->sc_ledpin; 3400 iwi_write_event(sc, iwi_toggle_event(v)); 3401 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3402 } 3403 3404 /* 3405 * Blink the LED according to the specified on/off times. 3406 */ 3407 static void 3408 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3409 { 3410 uint32_t v; 3411 3412 v = iwi_read_event(sc); 3413 v |= sc->sc_ledpin; 3414 iwi_write_event(sc, iwi_toggle_event(v)); 3415 sc->sc_blinking = 1; 3416 sc->sc_ledoff = off; 3417 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3418 } 3419 3420 static void 3421 iwi_led_event(struct iwi_softc *sc, int event) 3422 { 3423 #define N(a) (sizeof(a)/sizeof(a[0])) 3424 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3425 static const struct { 3426 u_int rate; /* tx/rx iwi rate */ 3427 u_int16_t timeOn; /* LED on time (ms) */ 3428 u_int16_t timeOff; /* LED off time (ms) */ 3429 } blinkrates[] = { 3430 { IWI_RATE_OFDM54, 40, 10 }, 3431 { IWI_RATE_OFDM48, 44, 11 }, 3432 { IWI_RATE_OFDM36, 50, 13 }, 3433 { IWI_RATE_OFDM24, 57, 14 }, 3434 { IWI_RATE_OFDM18, 67, 16 }, 3435 { IWI_RATE_OFDM12, 80, 20 }, 3436 { IWI_RATE_DS11, 100, 25 }, 3437 { IWI_RATE_OFDM9, 133, 34 }, 3438 { IWI_RATE_OFDM6, 160, 40 }, 3439 { IWI_RATE_DS5, 200, 50 }, 3440 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3441 { IWI_RATE_DS2, 267, 66 }, 3442 { IWI_RATE_DS1, 400, 100 }, 3443 { 0, 500, 130 }, /* unknown rate/polling */ 3444 }; 3445 uint32_t txrate; 3446 int j = 0; /* XXX silence compiler */ 3447 3448 sc->sc_ledevent = ticks; /* time of last event */ 3449 if (sc->sc_blinking) /* don't interrupt active blink */ 3450 return; 3451 switch (event) { 3452 case IWI_LED_POLL: 3453 j = N(blinkrates)-1; 3454 break; 3455 case IWI_LED_TX: 3456 /* read current transmission rate from adapter */ 3457 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3458 if (blinkrates[sc->sc_txrix].rate != txrate) { 3459 for (j = 0; j < N(blinkrates)-1; j++) 3460 if (blinkrates[j].rate == txrate) 3461 break; 3462 sc->sc_txrix = j; 3463 } else 3464 j = sc->sc_txrix; 3465 break; 3466 case IWI_LED_RX: 3467 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3468 for (j = 0; j < N(blinkrates)-1; j++) 3469 if (blinkrates[j].rate == sc->sc_rxrate) 3470 break; 3471 sc->sc_rxrix = j; 3472 } else 3473 j = sc->sc_rxrix; 3474 break; 3475 } 3476 /* XXX beware of overflow */ 3477 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3478 (blinkrates[j].timeOff * hz) / 1000); 3479 #undef N 3480 } 3481 3482 static int 3483 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3484 { 3485 struct iwi_softc *sc = arg1; 3486 int softled = sc->sc_softled; 3487 int error; 3488 3489 error = sysctl_handle_int(oidp, &softled, 0, req); 3490 if (error || !req->newptr) 3491 return error; 3492 softled = (softled != 0); 3493 if (softled != sc->sc_softled) { 3494 if (softled) { 3495 uint32_t v = iwi_read_event(sc); 3496 v &= ~sc->sc_ledpin; 3497 iwi_write_event(sc, iwi_toggle_event(v)); 3498 } 3499 sc->sc_softled = softled; 3500 } 3501 return 0; 3502 } 3503 3504 static void 3505 iwi_ledattach(struct iwi_softc *sc) 3506 { 3507 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3508 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3509 3510 sc->sc_blinking = 0; 3511 sc->sc_ledstate = 1; 3512 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3513 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3514 3515 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3516 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3517 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3518 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3519 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3520 "pin setting to turn activity LED on"); 3521 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3522 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3523 "idle time for inactivity LED (ticks)"); 3524 /* XXX for debugging */ 3525 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3526 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3527 "NIC type from EEPROM"); 3528 3529 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3530 sc->sc_softled = 1; 3531 3532 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3533 if (sc->sc_nictype == 1) { 3534 /* 3535 * NB: led's are reversed. 3536 */ 3537 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3538 } 3539 } 3540 3541 static void 3542 iwi_ops(void *arg0, int npending) 3543 { 3544 static const char *opnames[] = { 3545 [IWI_CMD_FREE] = "FREE", 3546 [IWI_SCAN_START] = "SCAN_START", 3547 [IWI_SET_CHANNEL] = "SET_CHANNEL", 3548 [IWI_AUTH] = "AUTH", 3549 [IWI_ASSOC] = "ASSOC", 3550 [IWI_DISASSOC] = "DISASSOC", 3551 [IWI_SCAN_CURCHAN] = "SCAN_CURCHAN", 3552 [IWI_SCAN_ALLCHAN] = "SCAN_ALLCHAN", 3553 [IWI_SET_WME] = "SET_WME", 3554 }; 3555 struct iwi_softc *sc = arg0; 3556 struct ifnet *ifp = sc->sc_ifp; 3557 struct ieee80211com *ic = ifp->if_l2com; 3558 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3559 IWI_LOCK_DECL; 3560 int cmd; 3561 unsigned long arg; 3562 3563 again: 3564 IWI_CMD_LOCK(sc); 3565 cmd = sc->sc_cmd[sc->sc_cmd_cur]; 3566 if (cmd == IWI_CMD_FREE) { 3567 /* No more commands to process */ 3568 IWI_CMD_UNLOCK(sc); 3569 return; 3570 } 3571 arg = sc->sc_arg[sc->sc_cmd_cur]; 3572 sc->sc_cmd[sc->sc_cmd_cur] = IWI_CMD_FREE; /* free the slot */ 3573 sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % IWI_CMD_MAXOPS; 3574 IWI_CMD_UNLOCK(sc); 3575 3576 IWI_LOCK(sc); 3577 while (sc->fw_state != IWI_FW_IDLE || (sc->flags & IWI_FLAG_BUSY)) { 3578 msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz/10); 3579 } 3580 3581 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3582 IWI_UNLOCK(sc); 3583 return; 3584 } 3585 3586 DPRINTF(("%s: %s arg %lu\n", __func__, opnames[cmd], arg)); 3587 switch (cmd) { 3588 case IWI_AUTH: 3589 case IWI_ASSOC: 3590 if (cmd == IWI_AUTH) 3591 vap->iv_state = IEEE80211_S_AUTH; 3592 else 3593 vap->iv_state = IEEE80211_S_ASSOC; 3594 iwi_auth_and_assoc(sc, vap); 3595 /* NB: completion done in iwi_notification_intr */ 3596 break; 3597 case IWI_DISASSOC: 3598 iwi_disassociate(sc, 0); 3599 break; 3600 case IWI_SET_WME: 3601 if (vap->iv_state == IEEE80211_S_RUN) 3602 (void) iwi_wme_setparams(sc, ic); 3603 break; 3604 case IWI_SCAN_START: 3605 sc->flags |= IWI_FLAG_CHANNEL_SCAN; 3606 break; 3607 case IWI_SCAN_CURCHAN: 3608 case IWI_SCAN_ALLCHAN: 3609 if (!(sc->flags & IWI_FLAG_CHANNEL_SCAN)) { 3610 DPRINTF(("%s: ic_scan_curchan while not scanning\n", 3611 __func__)); 3612 goto done; 3613 } 3614 if (iwi_scanchan(sc, arg, cmd)) 3615 ieee80211_cancel_scan(vap); 3616 break; 3617 } 3618 done: 3619 IWI_UNLOCK(sc); 3620 3621 /* Take another pass */ 3622 goto again; 3623 } 3624 3625 static int 3626 iwi_queue_cmd(struct iwi_softc *sc, int cmd, unsigned long arg) 3627 { 3628 IWI_CMD_LOCK(sc); 3629 if (sc->sc_cmd[sc->sc_cmd_next] != 0) { 3630 IWI_CMD_UNLOCK(sc); 3631 DPRINTF(("%s: command %d dropped\n", __func__, cmd)); 3632 return (EBUSY); 3633 } 3634 3635 sc->sc_cmd[sc->sc_cmd_next] = cmd; 3636 sc->sc_arg[sc->sc_cmd_next] = arg; 3637 sc->sc_cmd_next = (sc->sc_cmd_next + 1) % IWI_CMD_MAXOPS; 3638 taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask); 3639 IWI_CMD_UNLOCK(sc); 3640 return (0); 3641 } 3642 3643 static void 3644 iwi_scan_start(struct ieee80211com *ic) 3645 { 3646 struct ifnet *ifp = ic->ic_ifp; 3647 struct iwi_softc *sc = ifp->if_softc; 3648 3649 iwi_queue_cmd(sc, IWI_SCAN_START, 0); 3650 } 3651 3652 static void 3653 iwi_set_channel(struct ieee80211com *ic) 3654 { 3655 struct ifnet *ifp = ic->ic_ifp; 3656 struct iwi_softc *sc = ifp->if_softc; 3657 if (sc->fw_state == IWI_FW_IDLE) 3658 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3659 } 3660 3661 static void 3662 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3663 { 3664 struct ieee80211vap *vap = ss->ss_vap; 3665 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3666 struct iwi_softc *sc = ifp->if_softc; 3667 3668 iwi_queue_cmd(sc, IWI_SCAN_CURCHAN, maxdwell); 3669 } 3670 3671 #if 0 3672 static void 3673 iwi_scan_allchan(struct ieee80211com *ic, unsigned long maxdwell) 3674 { 3675 struct ifnet *ifp = ic->ic_ifp; 3676 struct iwi_softc *sc = ifp->if_softc; 3677 3678 iwi_queue_cmd(sc, IWI_SCAN_ALLCHAN, maxdwell); 3679 } 3680 #endif 3681 3682 static void 3683 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3684 { 3685 /* NB: don't try to abort scan; wait for firmware to finish */ 3686 } 3687 3688 static void 3689 iwi_scan_end(struct ieee80211com *ic) 3690 { 3691 struct ifnet *ifp = ic->ic_ifp; 3692 struct iwi_softc *sc = ifp->if_softc; 3693 3694 taskqueue_enqueue(sc->sc_tq2, &sc->sc_scanaborttask); 3695 } 3696