xref: /freebsd/sys/dev/iwi/if_iwi.c (revision 13de33a5dc2304b13d595d75d48c51793958474f)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*-
34  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/proc.h>
52 #include <sys/mount.h>
53 #include <sys/namei.h>
54 #include <sys/linker.h>
55 #include <sys/firmware.h>
56 #include <sys/taskqueue.h>
57 
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <net/bpf.h>
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 
74 #include <net80211/ieee80211_var.h>
75 #include <net80211/ieee80211_radiotap.h>
76 #include <net80211/ieee80211_input.h>
77 #include <net80211/ieee80211_regdomain.h>
78 
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip.h>
83 #include <netinet/if_ether.h>
84 
85 #include <dev/iwi/if_iwireg.h>
86 #include <dev/iwi/if_iwivar.h>
87 
88 #define IWI_DEBUG
89 #ifdef IWI_DEBUG
90 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
91 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
92 int iwi_debug = 0;
93 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
94 
95 static const char *iwi_fw_states[] = {
96 	"IDLE", 		/* IWI_FW_IDLE */
97 	"LOADING",		/* IWI_FW_LOADING */
98 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
99 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
100 	"SCANNING",		/* IWI_FW_SCANNING */
101 };
102 #else
103 #define DPRINTF(x)
104 #define DPRINTFN(n, x)
105 #endif
106 
107 MODULE_DEPEND(iwi, pci,  1, 1, 1);
108 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
109 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
110 
111 enum {
112 	IWI_LED_TX,
113 	IWI_LED_RX,
114 	IWI_LED_POLL,
115 };
116 
117 struct iwi_ident {
118 	uint16_t	vendor;
119 	uint16_t	device;
120 	const char	*name;
121 };
122 
123 static const struct iwi_ident iwi_ident_table[] = {
124 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
125 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
126 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
127 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
128 
129 	{ 0, 0, NULL }
130 };
131 
132 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
133 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
134 		    const uint8_t [IEEE80211_ADDR_LEN],
135 		    const uint8_t [IEEE80211_ADDR_LEN]);
136 static void	iwi_vap_delete(struct ieee80211vap *);
137 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
138 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
139 		    int);
140 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
141 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
142 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
143 		    int, bus_addr_t, bus_addr_t);
144 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
145 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
146 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
147 		    int);
148 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
149 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
150 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
151 		    const uint8_t [IEEE80211_ADDR_LEN]);
152 static void	iwi_node_free(struct ieee80211_node *);
153 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
154 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
155 static void	iwi_wme_init(struct iwi_softc *);
156 static int	iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *);
157 static void	iwi_update_wme(void *, int);
158 static int	iwi_wme_update(struct ieee80211com *);
159 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
160 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
161 		    struct iwi_frame *);
162 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
163 static void	iwi_rx_intr(struct iwi_softc *);
164 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
165 static void	iwi_intr(void *);
166 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
167 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
168 static int	iwi_tx_start(struct ifnet *, struct mbuf *,
169 		    struct ieee80211_node *, int);
170 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
171 		    const struct ieee80211_bpf_params *);
172 static void	iwi_start_locked(struct ifnet *);
173 static void	iwi_start(struct ifnet *);
174 static void	iwi_watchdog(void *);
175 static int	iwi_ioctl(struct ifnet *, u_long, caddr_t);
176 static void	iwi_stop_master(struct iwi_softc *);
177 static int	iwi_reset(struct iwi_softc *);
178 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
179 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
180 static void	iwi_release_fw_dma(struct iwi_softc *sc);
181 static int	iwi_config(struct iwi_softc *);
182 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
183 static void	iwi_put_firmware(struct iwi_softc *);
184 static void	iwi_monitor_scan(void *, int);
185 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
186 static void	iwi_scan_start(struct ieee80211com *);
187 static void	iwi_scan_end(struct ieee80211com *);
188 static void	iwi_set_channel(struct ieee80211com *);
189 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
190 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
191 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
192 static void	iwi_disassoc(void *, int);
193 static int	iwi_disassociate(struct iwi_softc *, int quiet);
194 static void	iwi_init_locked(struct iwi_softc *);
195 static void	iwi_init(void *);
196 static int	iwi_init_fw_dma(struct iwi_softc *, int);
197 static void	iwi_stop_locked(void *);
198 static void	iwi_stop(struct iwi_softc *);
199 static void	iwi_restart(void *, int);
200 static int	iwi_getrfkill(struct iwi_softc *);
201 static void	iwi_radio_on(void *, int);
202 static void	iwi_radio_off(void *, int);
203 static void	iwi_sysctlattach(struct iwi_softc *);
204 static void	iwi_led_event(struct iwi_softc *, int);
205 static void	iwi_ledattach(struct iwi_softc *);
206 
207 static int iwi_probe(device_t);
208 static int iwi_attach(device_t);
209 static int iwi_detach(device_t);
210 static int iwi_shutdown(device_t);
211 static int iwi_suspend(device_t);
212 static int iwi_resume(device_t);
213 
214 static device_method_t iwi_methods[] = {
215 	/* Device interface */
216 	DEVMETHOD(device_probe,		iwi_probe),
217 	DEVMETHOD(device_attach,	iwi_attach),
218 	DEVMETHOD(device_detach,	iwi_detach),
219 	DEVMETHOD(device_shutdown,	iwi_shutdown),
220 	DEVMETHOD(device_suspend,	iwi_suspend),
221 	DEVMETHOD(device_resume,	iwi_resume),
222 
223 	{ 0, 0 }
224 };
225 
226 static driver_t iwi_driver = {
227 	"iwi",
228 	iwi_methods,
229 	sizeof (struct iwi_softc)
230 };
231 
232 static devclass_t iwi_devclass;
233 
234 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0);
235 
236 MODULE_VERSION(iwi, 1);
237 
238 static __inline uint8_t
239 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
240 {
241 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
242 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
243 }
244 
245 static __inline uint32_t
246 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
247 {
248 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
249 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
250 }
251 
252 static int
253 iwi_probe(device_t dev)
254 {
255 	const struct iwi_ident *ident;
256 
257 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
258 		if (pci_get_vendor(dev) == ident->vendor &&
259 		    pci_get_device(dev) == ident->device) {
260 			device_set_desc(dev, ident->name);
261 			return 0;
262 		}
263 	}
264 	return ENXIO;
265 }
266 
267 /* Base Address Register */
268 #define IWI_PCI_BAR0	0x10
269 
270 static int
271 iwi_attach(device_t dev)
272 {
273 	struct iwi_softc *sc = device_get_softc(dev);
274 	struct ifnet *ifp;
275 	struct ieee80211com *ic;
276 	uint16_t val;
277 	int i, error;
278 	uint8_t bands;
279 	uint8_t macaddr[IEEE80211_ADDR_LEN];
280 
281 	sc->sc_dev = dev;
282 
283 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
284 	if (ifp == NULL) {
285 		device_printf(dev, "can not if_alloc()\n");
286 		return ENXIO;
287 	}
288 	ic = ifp->if_l2com;
289 
290 	IWI_LOCK_INIT(sc);
291 
292 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
293 
294 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
295 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
296 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
297 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc);
298 	TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme, sc);
299 	TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc);
300 
301 	callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
302 	callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
303 
304 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
305 		device_printf(dev, "chip is in D%d power mode "
306 		    "-- setting to D0\n", pci_get_powerstate(dev));
307 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
308 	}
309 
310 	pci_write_config(dev, 0x41, 0, 1);
311 
312 	/* enable bus-mastering */
313 	pci_enable_busmaster(dev);
314 
315 	sc->mem_rid = IWI_PCI_BAR0;
316 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
317 	    RF_ACTIVE);
318 	if (sc->mem == NULL) {
319 		device_printf(dev, "could not allocate memory resource\n");
320 		goto fail;
321 	}
322 
323 	sc->sc_st = rman_get_bustag(sc->mem);
324 	sc->sc_sh = rman_get_bushandle(sc->mem);
325 
326 	sc->irq_rid = 0;
327 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
328 	    RF_ACTIVE | RF_SHAREABLE);
329 	if (sc->irq == NULL) {
330 		device_printf(dev, "could not allocate interrupt resource\n");
331 		goto fail;
332 	}
333 
334 	if (iwi_reset(sc) != 0) {
335 		device_printf(dev, "could not reset adapter\n");
336 		goto fail;
337 	}
338 
339 	/*
340 	 * Allocate rings.
341 	 */
342 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
343 		device_printf(dev, "could not allocate Cmd ring\n");
344 		goto fail;
345 	}
346 
347 	for (i = 0; i < 4; i++) {
348 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
349 		    IWI_CSR_TX1_RIDX + i * 4,
350 		    IWI_CSR_TX1_WIDX + i * 4);
351 		if (error != 0) {
352 			device_printf(dev, "could not allocate Tx ring %d\n",
353 				i+i);
354 			goto fail;
355 		}
356 	}
357 
358 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
359 		device_printf(dev, "could not allocate Rx ring\n");
360 		goto fail;
361 	}
362 
363 	iwi_wme_init(sc);
364 
365 	ifp->if_softc = sc;
366 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
367 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
368 	ifp->if_init = iwi_init;
369 	ifp->if_ioctl = iwi_ioctl;
370 	ifp->if_start = iwi_start;
371 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
372 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
373 	IFQ_SET_READY(&ifp->if_snd);
374 
375 	ic->ic_ifp = ifp;
376 	ic->ic_opmode = IEEE80211_M_STA;
377 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
378 
379 	/* set device capabilities */
380 	ic->ic_caps =
381 	      IEEE80211_C_STA		/* station mode supported */
382 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
383 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
384 	    | IEEE80211_C_PMGT		/* power save supported */
385 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
386 	    | IEEE80211_C_WPA		/* 802.11i */
387 	    | IEEE80211_C_WME		/* 802.11e */
388 #if 0
389 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
390 #endif
391 	    ;
392 
393 	/* read MAC address from EEPROM */
394 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
395 	macaddr[0] = val & 0xff;
396 	macaddr[1] = val >> 8;
397 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
398 	macaddr[2] = val & 0xff;
399 	macaddr[3] = val >> 8;
400 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
401 	macaddr[4] = val & 0xff;
402 	macaddr[5] = val >> 8;
403 
404 	bands = 0;
405 	setbit(&bands, IEEE80211_MODE_11B);
406 	setbit(&bands, IEEE80211_MODE_11G);
407 	if (pci_get_device(dev) >= 0x4223)
408 		setbit(&bands, IEEE80211_MODE_11A);
409 	ieee80211_init_channels(ic, NULL, &bands);
410 
411 	ieee80211_ifattach(ic, macaddr);
412 	/* override default methods */
413 	ic->ic_node_alloc = iwi_node_alloc;
414 	sc->sc_node_free = ic->ic_node_free;
415 	ic->ic_node_free = iwi_node_free;
416 	ic->ic_raw_xmit = iwi_raw_xmit;
417 	ic->ic_scan_start = iwi_scan_start;
418 	ic->ic_scan_end = iwi_scan_end;
419 	ic->ic_set_channel = iwi_set_channel;
420 	ic->ic_scan_curchan = iwi_scan_curchan;
421 	ic->ic_scan_mindwell = iwi_scan_mindwell;
422 	ic->ic_wme.wme_update = iwi_wme_update;
423 
424 	ic->ic_vap_create = iwi_vap_create;
425 	ic->ic_vap_delete = iwi_vap_delete;
426 
427 	ieee80211_radiotap_attach(ic,
428 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
429 		IWI_TX_RADIOTAP_PRESENT,
430 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
431 		IWI_RX_RADIOTAP_PRESENT);
432 
433 	iwi_sysctlattach(sc);
434 	iwi_ledattach(sc);
435 
436 	/*
437 	 * Hook our interrupt after all initialization is complete.
438 	 */
439 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
440 	    NULL, iwi_intr, sc, &sc->sc_ih);
441 	if (error != 0) {
442 		device_printf(dev, "could not set up interrupt\n");
443 		goto fail;
444 	}
445 
446 	if (bootverbose)
447 		ieee80211_announce(ic);
448 
449 	return 0;
450 fail:
451 	/* XXX fix */
452 	iwi_detach(dev);
453 	return ENXIO;
454 }
455 
456 static int
457 iwi_detach(device_t dev)
458 {
459 	struct iwi_softc *sc = device_get_softc(dev);
460 	struct ifnet *ifp = sc->sc_ifp;
461 	struct ieee80211com *ic = ifp->if_l2com;
462 
463 	/* NB: do early to drain any pending tasks */
464 	ieee80211_draintask(ic, &sc->sc_radiontask);
465 	ieee80211_draintask(ic, &sc->sc_radiofftask);
466 	ieee80211_draintask(ic, &sc->sc_restarttask);
467 	ieee80211_draintask(ic, &sc->sc_disassoctask);
468 	ieee80211_draintask(ic, &sc->sc_monitortask);
469 
470 	iwi_stop(sc);
471 
472 	ieee80211_ifdetach(ic);
473 
474 	iwi_put_firmware(sc);
475 	iwi_release_fw_dma(sc);
476 
477 	iwi_free_cmd_ring(sc, &sc->cmdq);
478 	iwi_free_tx_ring(sc, &sc->txq[0]);
479 	iwi_free_tx_ring(sc, &sc->txq[1]);
480 	iwi_free_tx_ring(sc, &sc->txq[2]);
481 	iwi_free_tx_ring(sc, &sc->txq[3]);
482 	iwi_free_rx_ring(sc, &sc->rxq);
483 
484 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
485 	bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
486 
487 	bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
488 
489 	delete_unrhdr(sc->sc_unr);
490 
491 	IWI_LOCK_DESTROY(sc);
492 
493 	if_free(ifp);
494 
495 	return 0;
496 }
497 
498 static struct ieee80211vap *
499 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
500     enum ieee80211_opmode opmode, int flags,
501     const uint8_t bssid[IEEE80211_ADDR_LEN],
502     const uint8_t mac[IEEE80211_ADDR_LEN])
503 {
504 	struct ifnet *ifp = ic->ic_ifp;
505 	struct iwi_softc *sc = ifp->if_softc;
506 	struct iwi_vap *ivp;
507 	struct ieee80211vap *vap;
508 	int i;
509 
510 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
511 		return NULL;
512 	/*
513 	 * Get firmware image (and possibly dma memory) on mode change.
514 	 */
515 	if (iwi_get_firmware(sc, opmode))
516 		return NULL;
517 	/* allocate DMA memory for mapping firmware image */
518 	i = sc->fw_fw.size;
519 	if (sc->fw_boot.size > i)
520 		i = sc->fw_boot.size;
521 	/* XXX do we dma the ucode as well ? */
522 	if (sc->fw_uc.size > i)
523 		i = sc->fw_uc.size;
524 	if (iwi_init_fw_dma(sc, i))
525 		return NULL;
526 
527 	ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap),
528 	    M_80211_VAP, M_NOWAIT | M_ZERO);
529 	if (ivp == NULL)
530 		return NULL;
531 	vap = &ivp->iwi_vap;
532 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
533 	/* override the default, the setting comes from the linux driver */
534 	vap->iv_bmissthreshold = 24;
535 	/* override with driver methods */
536 	ivp->iwi_newstate = vap->iv_newstate;
537 	vap->iv_newstate = iwi_newstate;
538 
539 	/* complete setup */
540 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status);
541 	ic->ic_opmode = opmode;
542 	return vap;
543 }
544 
545 static void
546 iwi_vap_delete(struct ieee80211vap *vap)
547 {
548 	struct iwi_vap *ivp = IWI_VAP(vap);
549 
550 	ieee80211_vap_detach(vap);
551 	free(ivp, M_80211_VAP);
552 }
553 
554 static void
555 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
556 {
557 	if (error != 0)
558 		return;
559 
560 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
561 
562 	*(bus_addr_t *)arg = segs[0].ds_addr;
563 }
564 
565 static int
566 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
567 {
568 	int error;
569 
570 	ring->count = count;
571 	ring->queued = 0;
572 	ring->cur = ring->next = 0;
573 
574 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
575 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
576 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
577 	    NULL, NULL, &ring->desc_dmat);
578 	if (error != 0) {
579 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
580 		goto fail;
581 	}
582 
583 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
584 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
585 	if (error != 0) {
586 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
587 		goto fail;
588 	}
589 
590 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
591 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
592 	if (error != 0) {
593 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
594 		goto fail;
595 	}
596 
597 	return 0;
598 
599 fail:	iwi_free_cmd_ring(sc, ring);
600 	return error;
601 }
602 
603 static void
604 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
605 {
606 	ring->queued = 0;
607 	ring->cur = ring->next = 0;
608 }
609 
610 static void
611 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
612 {
613 	if (ring->desc != NULL) {
614 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
615 		    BUS_DMASYNC_POSTWRITE);
616 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
617 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
618 	}
619 
620 	if (ring->desc_dmat != NULL)
621 		bus_dma_tag_destroy(ring->desc_dmat);
622 }
623 
624 static int
625 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
626     bus_addr_t csr_ridx, bus_addr_t csr_widx)
627 {
628 	int i, error;
629 
630 	ring->count = count;
631 	ring->queued = 0;
632 	ring->cur = ring->next = 0;
633 	ring->csr_ridx = csr_ridx;
634 	ring->csr_widx = csr_widx;
635 
636 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
637 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
638 	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
639 	    NULL, &ring->desc_dmat);
640 	if (error != 0) {
641 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
642 		goto fail;
643 	}
644 
645 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
646 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
647 	if (error != 0) {
648 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
649 		goto fail;
650 	}
651 
652 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
653 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
654 	if (error != 0) {
655 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
656 		goto fail;
657 	}
658 
659 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
660 	    M_NOWAIT | M_ZERO);
661 	if (ring->data == NULL) {
662 		device_printf(sc->sc_dev, "could not allocate soft data\n");
663 		error = ENOMEM;
664 		goto fail;
665 	}
666 
667 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
668 	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
669 	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
670 	if (error != 0) {
671 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
672 		goto fail;
673 	}
674 
675 	for (i = 0; i < count; i++) {
676 		error = bus_dmamap_create(ring->data_dmat, 0,
677 		    &ring->data[i].map);
678 		if (error != 0) {
679 			device_printf(sc->sc_dev, "could not create DMA map\n");
680 			goto fail;
681 		}
682 	}
683 
684 	return 0;
685 
686 fail:	iwi_free_tx_ring(sc, ring);
687 	return error;
688 }
689 
690 static void
691 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
692 {
693 	struct iwi_tx_data *data;
694 	int i;
695 
696 	for (i = 0; i < ring->count; i++) {
697 		data = &ring->data[i];
698 
699 		if (data->m != NULL) {
700 			bus_dmamap_sync(ring->data_dmat, data->map,
701 			    BUS_DMASYNC_POSTWRITE);
702 			bus_dmamap_unload(ring->data_dmat, data->map);
703 			m_freem(data->m);
704 			data->m = NULL;
705 		}
706 
707 		if (data->ni != NULL) {
708 			ieee80211_free_node(data->ni);
709 			data->ni = NULL;
710 		}
711 	}
712 
713 	ring->queued = 0;
714 	ring->cur = ring->next = 0;
715 }
716 
717 static void
718 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
719 {
720 	struct iwi_tx_data *data;
721 	int i;
722 
723 	if (ring->desc != NULL) {
724 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
725 		    BUS_DMASYNC_POSTWRITE);
726 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
727 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
728 	}
729 
730 	if (ring->desc_dmat != NULL)
731 		bus_dma_tag_destroy(ring->desc_dmat);
732 
733 	if (ring->data != NULL) {
734 		for (i = 0; i < ring->count; i++) {
735 			data = &ring->data[i];
736 
737 			if (data->m != NULL) {
738 				bus_dmamap_sync(ring->data_dmat, data->map,
739 				    BUS_DMASYNC_POSTWRITE);
740 				bus_dmamap_unload(ring->data_dmat, data->map);
741 				m_freem(data->m);
742 			}
743 
744 			if (data->ni != NULL)
745 				ieee80211_free_node(data->ni);
746 
747 			if (data->map != NULL)
748 				bus_dmamap_destroy(ring->data_dmat, data->map);
749 		}
750 
751 		free(ring->data, M_DEVBUF);
752 	}
753 
754 	if (ring->data_dmat != NULL)
755 		bus_dma_tag_destroy(ring->data_dmat);
756 }
757 
758 static int
759 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
760 {
761 	struct iwi_rx_data *data;
762 	int i, error;
763 
764 	ring->count = count;
765 	ring->cur = 0;
766 
767 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
768 	    M_NOWAIT | M_ZERO);
769 	if (ring->data == NULL) {
770 		device_printf(sc->sc_dev, "could not allocate soft data\n");
771 		error = ENOMEM;
772 		goto fail;
773 	}
774 
775 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
776 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
777 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
778 	if (error != 0) {
779 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
780 		goto fail;
781 	}
782 
783 	for (i = 0; i < count; i++) {
784 		data = &ring->data[i];
785 
786 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
787 		if (error != 0) {
788 			device_printf(sc->sc_dev, "could not create DMA map\n");
789 			goto fail;
790 		}
791 
792 		data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
793 		if (data->m == NULL) {
794 			device_printf(sc->sc_dev,
795 			    "could not allocate rx mbuf\n");
796 			error = ENOMEM;
797 			goto fail;
798 		}
799 
800 		error = bus_dmamap_load(ring->data_dmat, data->map,
801 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
802 		    &data->physaddr, 0);
803 		if (error != 0) {
804 			device_printf(sc->sc_dev,
805 			    "could not load rx buf DMA map");
806 			goto fail;
807 		}
808 
809 		data->reg = IWI_CSR_RX_BASE + i * 4;
810 	}
811 
812 	return 0;
813 
814 fail:	iwi_free_rx_ring(sc, ring);
815 	return error;
816 }
817 
818 static void
819 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
820 {
821 	ring->cur = 0;
822 }
823 
824 static void
825 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
826 {
827 	struct iwi_rx_data *data;
828 	int i;
829 
830 	if (ring->data != NULL) {
831 		for (i = 0; i < ring->count; i++) {
832 			data = &ring->data[i];
833 
834 			if (data->m != NULL) {
835 				bus_dmamap_sync(ring->data_dmat, data->map,
836 				    BUS_DMASYNC_POSTREAD);
837 				bus_dmamap_unload(ring->data_dmat, data->map);
838 				m_freem(data->m);
839 			}
840 
841 			if (data->map != NULL)
842 				bus_dmamap_destroy(ring->data_dmat, data->map);
843 		}
844 
845 		free(ring->data, M_DEVBUF);
846 	}
847 
848 	if (ring->data_dmat != NULL)
849 		bus_dma_tag_destroy(ring->data_dmat);
850 }
851 
852 static int
853 iwi_shutdown(device_t dev)
854 {
855 	struct iwi_softc *sc = device_get_softc(dev);
856 
857 	iwi_stop(sc);
858 	iwi_put_firmware(sc);		/* ??? XXX */
859 
860 	return 0;
861 }
862 
863 static int
864 iwi_suspend(device_t dev)
865 {
866 	struct iwi_softc *sc = device_get_softc(dev);
867 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
868 
869 	ieee80211_suspend_all(ic);
870 	return 0;
871 }
872 
873 static int
874 iwi_resume(device_t dev)
875 {
876 	struct iwi_softc *sc = device_get_softc(dev);
877 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
878 
879 	pci_write_config(dev, 0x41, 0, 1);
880 
881 	ieee80211_resume_all(ic);
882 	return 0;
883 }
884 
885 static struct ieee80211_node *
886 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
887 {
888 	struct iwi_node *in;
889 
890 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
891 	if (in == NULL)
892 		return NULL;
893 	/* XXX assign sta table entry for adhoc */
894 	in->in_station = -1;
895 
896 	return &in->in_node;
897 }
898 
899 static void
900 iwi_node_free(struct ieee80211_node *ni)
901 {
902 	struct ieee80211com *ic = ni->ni_ic;
903 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
904 	struct iwi_node *in = (struct iwi_node *)ni;
905 
906 	if (in->in_station != -1) {
907 		DPRINTF(("%s mac %6D station %u\n", __func__,
908 		    ni->ni_macaddr, ":", in->in_station));
909 		free_unr(sc->sc_unr, in->in_station);
910 	}
911 
912 	sc->sc_node_free(ni);
913 }
914 
915 /*
916  * Convert h/w rate code to IEEE rate code.
917  */
918 static int
919 iwi_cvtrate(int iwirate)
920 {
921 	switch (iwirate) {
922 	case IWI_RATE_DS1:	return 2;
923 	case IWI_RATE_DS2:	return 4;
924 	case IWI_RATE_DS5:	return 11;
925 	case IWI_RATE_DS11:	return 22;
926 	case IWI_RATE_OFDM6:	return 12;
927 	case IWI_RATE_OFDM9:	return 18;
928 	case IWI_RATE_OFDM12:	return 24;
929 	case IWI_RATE_OFDM18:	return 36;
930 	case IWI_RATE_OFDM24:	return 48;
931 	case IWI_RATE_OFDM36:	return 72;
932 	case IWI_RATE_OFDM48:	return 96;
933 	case IWI_RATE_OFDM54:	return 108;
934 	}
935 	return 0;
936 }
937 
938 /*
939  * The firmware automatically adapts the transmit speed.  We report its current
940  * value here.
941  */
942 static void
943 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
944 {
945 	struct ieee80211vap *vap = ifp->if_softc;
946 	struct ieee80211com *ic = vap->iv_ic;
947 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
948 	struct ieee80211_node *ni;
949 
950 	/* read current transmission rate from adapter */
951 	ni = ieee80211_ref_node(vap->iv_bss);
952 	ni->ni_txrate =
953 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
954 	ieee80211_free_node(ni);
955 	ieee80211_media_status(ifp, imr);
956 }
957 
958 static int
959 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
960 {
961 	struct iwi_vap *ivp = IWI_VAP(vap);
962 	struct ieee80211com *ic = vap->iv_ic;
963 	struct ifnet *ifp = ic->ic_ifp;
964 	struct iwi_softc *sc = ifp->if_softc;
965 	IWI_LOCK_DECL;
966 
967 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
968 		ieee80211_state_name[vap->iv_state],
969 		ieee80211_state_name[nstate], sc->flags));
970 
971 	IEEE80211_UNLOCK(ic);
972 	IWI_LOCK(sc);
973 	switch (nstate) {
974 	case IEEE80211_S_INIT:
975 		/*
976 		 * NB: don't try to do this if iwi_stop_master has
977 		 *     shutdown the firmware and disabled interrupts.
978 		 */
979 		if (vap->iv_state == IEEE80211_S_RUN &&
980 		    (sc->flags & IWI_FLAG_FW_INITED))
981 			iwi_disassociate(sc, 0);
982 		break;
983 	case IEEE80211_S_AUTH:
984 		iwi_auth_and_assoc(sc, vap);
985 		break;
986 	case IEEE80211_S_RUN:
987 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
988 		    vap->iv_state == IEEE80211_S_SCAN) {
989 			/*
990 			 * XXX when joining an ibss network we are called
991 			 * with a SCAN -> RUN transition on scan complete.
992 			 * Use that to call iwi_auth_and_assoc.  On completing
993 			 * the join we are then called again with an
994 			 * AUTH -> RUN transition and we want to do nothing.
995 			 * This is all totally bogus and needs to be redone.
996 			 */
997 			iwi_auth_and_assoc(sc, vap);
998 		} else if (vap->iv_opmode == IEEE80211_M_MONITOR)
999 			ieee80211_runtask(ic, &sc->sc_monitortask);
1000 		break;
1001 	case IEEE80211_S_ASSOC:
1002 		/*
1003 		 * If we are transitioning from AUTH then just wait
1004 		 * for the ASSOC status to come back from the firmware.
1005 		 * Otherwise we need to issue the association request.
1006 		 */
1007 		if (vap->iv_state == IEEE80211_S_AUTH)
1008 			break;
1009 		iwi_auth_and_assoc(sc, vap);
1010 		break;
1011 	default:
1012 		break;
1013 	}
1014 	IWI_UNLOCK(sc);
1015 	IEEE80211_LOCK(ic);
1016 	return ivp->iwi_newstate(vap, nstate, arg);
1017 }
1018 
1019 /*
1020  * WME parameters coming from IEEE 802.11e specification.  These values are
1021  * already declared in ieee80211_proto.c, but they are static so they can't
1022  * be reused here.
1023  */
1024 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1025 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1026 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1027 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1028 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1029 };
1030 
1031 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1032 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1033 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1034 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1035 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1036 };
1037 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1038 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1039 
1040 static void
1041 iwi_wme_init(struct iwi_softc *sc)
1042 {
1043 	const struct wmeParams *wmep;
1044 	int ac;
1045 
1046 	memset(sc->wme, 0, sizeof sc->wme);
1047 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1048 		/* set WME values for CCK modulation */
1049 		wmep = &iwi_wme_cck_params[ac];
1050 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1051 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1052 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1053 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1054 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1055 
1056 		/* set WME values for OFDM modulation */
1057 		wmep = &iwi_wme_ofdm_params[ac];
1058 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1059 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1060 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1061 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1062 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1063 	}
1064 }
1065 
1066 static int
1067 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic)
1068 {
1069 	const struct wmeParams *wmep;
1070 	int ac;
1071 
1072 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1073 		/* set WME values for current operating mode */
1074 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1075 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1076 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1077 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1078 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1079 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1080 	}
1081 
1082 	DPRINTF(("Setting WME parameters\n"));
1083 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1084 }
1085 #undef IWI_USEC
1086 #undef IWI_EXP2
1087 
1088 static void
1089 iwi_update_wme(void *arg, int npending)
1090 {
1091 	struct ieee80211com *ic = arg;
1092 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1093 	IWI_LOCK_DECL;
1094 
1095 	IWI_LOCK(sc);
1096 	(void) iwi_wme_setparams(sc, ic);
1097 	IWI_UNLOCK(sc);
1098 }
1099 
1100 static int
1101 iwi_wme_update(struct ieee80211com *ic)
1102 {
1103 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1104 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1105 
1106 	/*
1107 	 * We may be called to update the WME parameters in
1108 	 * the adapter at various places.  If we're already
1109 	 * associated then initiate the request immediately;
1110 	 * otherwise we assume the params will get sent down
1111 	 * to the adapter as part of the work iwi_auth_and_assoc
1112 	 * does.
1113 	 */
1114 	if (vap->iv_state == IEEE80211_S_RUN)
1115 		ieee80211_runtask(ic, &sc->sc_wmetask);
1116 	return (0);
1117 }
1118 
1119 static int
1120 iwi_wme_setie(struct iwi_softc *sc)
1121 {
1122 	struct ieee80211_wme_info wme;
1123 
1124 	memset(&wme, 0, sizeof wme);
1125 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1126 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1127 	wme.wme_oui[0] = 0x00;
1128 	wme.wme_oui[1] = 0x50;
1129 	wme.wme_oui[2] = 0xf2;
1130 	wme.wme_type = WME_OUI_TYPE;
1131 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1132 	wme.wme_version = WME_VERSION;
1133 	wme.wme_info = 0;
1134 
1135 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1136 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1137 }
1138 
1139 /*
1140  * Read 16 bits at address 'addr' from the serial EEPROM.
1141  */
1142 static uint16_t
1143 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1144 {
1145 	uint32_t tmp;
1146 	uint16_t val;
1147 	int n;
1148 
1149 	/* clock C once before the first command */
1150 	IWI_EEPROM_CTL(sc, 0);
1151 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1152 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1153 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1154 
1155 	/* write start bit (1) */
1156 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1157 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1158 
1159 	/* write READ opcode (10) */
1160 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1161 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1162 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1163 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1164 
1165 	/* write address A7-A0 */
1166 	for (n = 7; n >= 0; n--) {
1167 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1168 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1169 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1170 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1171 	}
1172 
1173 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1174 
1175 	/* read data Q15-Q0 */
1176 	val = 0;
1177 	for (n = 15; n >= 0; n--) {
1178 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1179 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1180 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1181 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1182 	}
1183 
1184 	IWI_EEPROM_CTL(sc, 0);
1185 
1186 	/* clear Chip Select and clock C */
1187 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1188 	IWI_EEPROM_CTL(sc, 0);
1189 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1190 
1191 	return val;
1192 }
1193 
1194 static void
1195 iwi_setcurchan(struct iwi_softc *sc, int chan)
1196 {
1197 	struct ifnet *ifp = sc->sc_ifp;
1198 	struct ieee80211com *ic = ifp->if_l2com;
1199 
1200 	sc->curchan = chan;
1201 	ieee80211_radiotap_chan_change(ic);
1202 }
1203 
1204 static void
1205 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1206     struct iwi_frame *frame)
1207 {
1208 	struct ifnet *ifp = sc->sc_ifp;
1209 	struct ieee80211com *ic = ifp->if_l2com;
1210 	struct mbuf *mnew, *m;
1211 	struct ieee80211_node *ni;
1212 	int type, error, framelen;
1213 	int8_t rssi, nf;
1214 	IWI_LOCK_DECL;
1215 
1216 	framelen = le16toh(frame->len);
1217 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1218 		/*
1219 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1220 		 *     out of bounds; need to figure out how to limit
1221 		 *     frame size in the firmware
1222 		 */
1223 		/* XXX stat */
1224 		DPRINTFN(1,
1225 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1226 		    le16toh(frame->len), frame->chan, frame->rssi,
1227 		    frame->rssi_dbm));
1228 		return;
1229 	}
1230 
1231 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1232 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1233 
1234 	if (frame->chan != sc->curchan)
1235 		iwi_setcurchan(sc, frame->chan);
1236 
1237 	/*
1238 	 * Try to allocate a new mbuf for this ring element and load it before
1239 	 * processing the current mbuf. If the ring element cannot be loaded,
1240 	 * drop the received packet and reuse the old mbuf. In the unlikely
1241 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1242 	 */
1243 	mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1244 	if (mnew == NULL) {
1245 		ifp->if_ierrors++;
1246 		return;
1247 	}
1248 
1249 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1250 
1251 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1252 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1253 	    0);
1254 	if (error != 0) {
1255 		m_freem(mnew);
1256 
1257 		/* try to reload the old mbuf */
1258 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1259 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1260 		    &data->physaddr, 0);
1261 		if (error != 0) {
1262 			/* very unlikely that it will fail... */
1263 			panic("%s: could not load old rx mbuf",
1264 			    device_get_name(sc->sc_dev));
1265 		}
1266 		ifp->if_ierrors++;
1267 		return;
1268 	}
1269 
1270 	/*
1271 	 * New mbuf successfully loaded, update Rx ring and continue
1272 	 * processing.
1273 	 */
1274 	m = data->m;
1275 	data->m = mnew;
1276 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1277 
1278 	/* finalize mbuf */
1279 	m->m_pkthdr.rcvif = ifp;
1280 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1281 	    sizeof (struct iwi_frame) + framelen;
1282 
1283 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1284 
1285 	rssi = frame->rssi_dbm;
1286 	nf = -95;
1287 	if (ieee80211_radiotap_active(ic)) {
1288 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1289 
1290 		tap->wr_flags = 0;
1291 		tap->wr_antsignal = rssi;
1292 		tap->wr_antnoise = nf;
1293 		tap->wr_rate = iwi_cvtrate(frame->rate);
1294 		tap->wr_antenna = frame->antenna;
1295 	}
1296 	IWI_UNLOCK(sc);
1297 
1298 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1299 	if (ni != NULL) {
1300 		type = ieee80211_input(ni, m, rssi, nf);
1301 		ieee80211_free_node(ni);
1302 	} else
1303 		type = ieee80211_input_all(ic, m, rssi, nf);
1304 
1305 	IWI_LOCK(sc);
1306 	if (sc->sc_softled) {
1307 		/*
1308 		 * Blink for any data frame.  Otherwise do a
1309 		 * heartbeat-style blink when idle.  The latter
1310 		 * is mainly for station mode where we depend on
1311 		 * periodic beacon frames to trigger the poll event.
1312 		 */
1313 		if (type == IEEE80211_FC0_TYPE_DATA) {
1314 			sc->sc_rxrate = frame->rate;
1315 			iwi_led_event(sc, IWI_LED_RX);
1316 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1317 			iwi_led_event(sc, IWI_LED_POLL);
1318 	}
1319 }
1320 
1321 /*
1322  * Check for an association response frame to see if QoS
1323  * has been negotiated.  We parse just enough to figure
1324  * out if we're supposed to use QoS.  The proper solution
1325  * is to pass the frame up so ieee80211_input can do the
1326  * work but that's made hard by how things currently are
1327  * done in the driver.
1328  */
1329 static void
1330 iwi_checkforqos(struct ieee80211vap *vap,
1331 	const struct ieee80211_frame *wh, int len)
1332 {
1333 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1334 	const uint8_t *frm, *efrm, *wme;
1335 	struct ieee80211_node *ni;
1336 	uint16_t capinfo, status, associd;
1337 
1338 	/* NB: +8 for capinfo, status, associd, and first ie */
1339 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1340 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1341 		return;
1342 	/*
1343 	 * asresp frame format
1344 	 *	[2] capability information
1345 	 *	[2] status
1346 	 *	[2] association ID
1347 	 *	[tlv] supported rates
1348 	 *	[tlv] extended supported rates
1349 	 *	[tlv] WME
1350 	 */
1351 	frm = (const uint8_t *)&wh[1];
1352 	efrm = ((const uint8_t *) wh) + len;
1353 
1354 	capinfo = le16toh(*(const uint16_t *)frm);
1355 	frm += 2;
1356 	status = le16toh(*(const uint16_t *)frm);
1357 	frm += 2;
1358 	associd = le16toh(*(const uint16_t *)frm);
1359 	frm += 2;
1360 
1361 	wme = NULL;
1362 	while (efrm - frm > 1) {
1363 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
1364 		switch (*frm) {
1365 		case IEEE80211_ELEMID_VENDOR:
1366 			if (iswmeoui(frm))
1367 				wme = frm;
1368 			break;
1369 		}
1370 		frm += frm[1] + 2;
1371 	}
1372 
1373 	ni = ieee80211_ref_node(vap->iv_bss);
1374 	ni->ni_capinfo = capinfo;
1375 	ni->ni_associd = associd & 0x3fff;
1376 	if (wme != NULL)
1377 		ni->ni_flags |= IEEE80211_NODE_QOS;
1378 	else
1379 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1380 	ieee80211_free_node(ni);
1381 #undef SUBTYPE
1382 }
1383 
1384 /*
1385  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1386  */
1387 
1388 static void
1389 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1390 {
1391 	struct ifnet *ifp = sc->sc_ifp;
1392 	struct ieee80211com *ic = ifp->if_l2com;
1393 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1394 	struct iwi_notif_scan_channel *chan;
1395 	struct iwi_notif_scan_complete *scan;
1396 	struct iwi_notif_authentication *auth;
1397 	struct iwi_notif_association *assoc;
1398 	struct iwi_notif_beacon_state *beacon;
1399 
1400 	switch (notif->type) {
1401 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1402 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1403 
1404 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1405 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1406 
1407 		/* Reset the timer, the scan is still going */
1408 		sc->sc_state_timer = 3;
1409 		break;
1410 
1411 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1412 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1413 
1414 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1415 		    scan->status));
1416 
1417 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1418 
1419 		/*
1420 		 * Monitor mode works by doing a passive scan to set
1421 		 * the channel and enable rx.  Because we don't want
1422 		 * to abort a scan lest the firmware crash we scan
1423 		 * for a short period of time and automatically restart
1424 		 * the scan when notified the sweep has completed.
1425 		 */
1426 		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1427 			ieee80211_runtask(ic, &sc->sc_monitortask);
1428 			break;
1429 		}
1430 
1431 		if (scan->status == IWI_SCAN_COMPLETED) {
1432 			/* NB: don't need to defer, net80211 does it for us */
1433 			ieee80211_scan_next(vap);
1434 		}
1435 		break;
1436 
1437 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1438 		auth = (struct iwi_notif_authentication *)(notif + 1);
1439 		switch (auth->state) {
1440 		case IWI_AUTH_SUCCESS:
1441 			DPRINTFN(2, ("Authentication succeeeded\n"));
1442 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1443 			break;
1444 		case IWI_AUTH_FAIL:
1445 			/*
1446 			 * These are delivered as an unsolicited deauth
1447 			 * (e.g. due to inactivity) or in response to an
1448 			 * associate request.
1449 			 */
1450 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1451 			if (vap->iv_state != IEEE80211_S_RUN) {
1452 				DPRINTFN(2, ("Authentication failed\n"));
1453 				vap->iv_stats.is_rx_auth_fail++;
1454 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1455 			} else {
1456 				DPRINTFN(2, ("Deauthenticated\n"));
1457 				vap->iv_stats.is_rx_deauth++;
1458 			}
1459 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1460 			break;
1461 		case IWI_AUTH_SENT_1:
1462 		case IWI_AUTH_RECV_2:
1463 		case IWI_AUTH_SEQ1_PASS:
1464 			break;
1465 		case IWI_AUTH_SEQ1_FAIL:
1466 			DPRINTFN(2, ("Initial authentication handshake failed; "
1467 				"you probably need shared key\n"));
1468 			vap->iv_stats.is_rx_auth_fail++;
1469 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1470 			/* XXX retry shared key when in auto */
1471 			break;
1472 		default:
1473 			device_printf(sc->sc_dev,
1474 			    "unknown authentication state %u\n", auth->state);
1475 			break;
1476 		}
1477 		break;
1478 
1479 	case IWI_NOTIF_TYPE_ASSOCIATION:
1480 		assoc = (struct iwi_notif_association *)(notif + 1);
1481 		switch (assoc->state) {
1482 		case IWI_AUTH_SUCCESS:
1483 			/* re-association, do nothing */
1484 			break;
1485 		case IWI_ASSOC_SUCCESS:
1486 			DPRINTFN(2, ("Association succeeded\n"));
1487 			sc->flags |= IWI_FLAG_ASSOCIATED;
1488 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1489 			iwi_checkforqos(vap,
1490 			    (const struct ieee80211_frame *)(assoc+1),
1491 			    le16toh(notif->len) - sizeof(*assoc) - 1);
1492 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1493 			break;
1494 		case IWI_ASSOC_INIT:
1495 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1496 			switch (sc->fw_state) {
1497 			case IWI_FW_ASSOCIATING:
1498 				DPRINTFN(2, ("Association failed\n"));
1499 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1500 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1501 				break;
1502 
1503 			case IWI_FW_DISASSOCIATING:
1504 				DPRINTFN(2, ("Dissassociated\n"));
1505 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1506 				vap->iv_stats.is_rx_disassoc++;
1507 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1508 				break;
1509 			}
1510 			break;
1511 		default:
1512 			device_printf(sc->sc_dev,
1513 			    "unknown association state %u\n", assoc->state);
1514 			break;
1515 		}
1516 		break;
1517 
1518 	case IWI_NOTIF_TYPE_BEACON:
1519 		/* XXX check struct length */
1520 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1521 
1522 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1523 		    beacon->state, le32toh(beacon->number)));
1524 
1525 		if (beacon->state == IWI_BEACON_MISS) {
1526 			/*
1527 			 * The firmware notifies us of every beacon miss
1528 			 * so we need to track the count against the
1529 			 * configured threshold before notifying the
1530 			 * 802.11 layer.
1531 			 * XXX try to roam, drop assoc only on much higher count
1532 			 */
1533 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1534 				DPRINTF(("Beacon miss: %u >= %u\n",
1535 				    le32toh(beacon->number),
1536 				    vap->iv_bmissthreshold));
1537 				vap->iv_stats.is_beacon_miss++;
1538 				/*
1539 				 * It's pointless to notify the 802.11 layer
1540 				 * as it'll try to send a probe request (which
1541 				 * we'll discard) and then timeout and drop us
1542 				 * into scan state.  Instead tell the firmware
1543 				 * to disassociate and then on completion we'll
1544 				 * kick the state machine to scan.
1545 				 */
1546 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1547 			}
1548 		}
1549 		break;
1550 
1551 	case IWI_NOTIF_TYPE_CALIBRATION:
1552 	case IWI_NOTIF_TYPE_NOISE:
1553 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1554 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1555 		break;
1556 
1557 	default:
1558 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1559 		    notif->type, notif->flags, le16toh(notif->len)));
1560 		break;
1561 	}
1562 }
1563 
1564 static void
1565 iwi_rx_intr(struct iwi_softc *sc)
1566 {
1567 	struct iwi_rx_data *data;
1568 	struct iwi_hdr *hdr;
1569 	uint32_t hw;
1570 
1571 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1572 
1573 	for (; sc->rxq.cur != hw;) {
1574 		data = &sc->rxq.data[sc->rxq.cur];
1575 
1576 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1577 		    BUS_DMASYNC_POSTREAD);
1578 
1579 		hdr = mtod(data->m, struct iwi_hdr *);
1580 
1581 		switch (hdr->type) {
1582 		case IWI_HDR_TYPE_FRAME:
1583 			iwi_frame_intr(sc, data, sc->rxq.cur,
1584 			    (struct iwi_frame *)(hdr + 1));
1585 			break;
1586 
1587 		case IWI_HDR_TYPE_NOTIF:
1588 			iwi_notification_intr(sc,
1589 			    (struct iwi_notif *)(hdr + 1));
1590 			break;
1591 
1592 		default:
1593 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1594 			    hdr->type);
1595 		}
1596 
1597 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1598 
1599 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1600 	}
1601 
1602 	/* tell the firmware what we have processed */
1603 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1604 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1605 }
1606 
1607 static void
1608 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1609 {
1610 	struct ifnet *ifp = sc->sc_ifp;
1611 	struct iwi_tx_data *data;
1612 	uint32_t hw;
1613 
1614 	hw = CSR_READ_4(sc, txq->csr_ridx);
1615 
1616 	for (; txq->next != hw;) {
1617 		data = &txq->data[txq->next];
1618 
1619 		bus_dmamap_sync(txq->data_dmat, data->map,
1620 		    BUS_DMASYNC_POSTWRITE);
1621 		bus_dmamap_unload(txq->data_dmat, data->map);
1622 		if (data->m->m_flags & M_TXCB)
1623 			ieee80211_process_callback(data->ni, data->m, 0/*XXX*/);
1624 		m_freem(data->m);
1625 		data->m = NULL;
1626 		ieee80211_free_node(data->ni);
1627 		data->ni = NULL;
1628 
1629 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1630 
1631 		ifp->if_opackets++;
1632 
1633 		txq->queued--;
1634 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1635 	}
1636 
1637 	sc->sc_tx_timer = 0;
1638 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1639 
1640 	if (sc->sc_softled)
1641 		iwi_led_event(sc, IWI_LED_TX);
1642 
1643 	iwi_start_locked(ifp);
1644 }
1645 
1646 static void
1647 iwi_fatal_error_intr(struct iwi_softc *sc)
1648 {
1649 	struct ifnet *ifp = sc->sc_ifp;
1650 	struct ieee80211com *ic = ifp->if_l2com;
1651 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1652 
1653 	device_printf(sc->sc_dev, "firmware error\n");
1654 	if (vap != NULL)
1655 		ieee80211_cancel_scan(vap);
1656 	ieee80211_runtask(ic, &sc->sc_restarttask);
1657 
1658 	sc->flags &= ~IWI_FLAG_BUSY;
1659 	sc->sc_busy_timer = 0;
1660 	wakeup(sc);
1661 }
1662 
1663 static void
1664 iwi_radio_off_intr(struct iwi_softc *sc)
1665 {
1666 	struct ifnet *ifp = sc->sc_ifp;
1667 	struct ieee80211com *ic = ifp->if_l2com;
1668 
1669 	ieee80211_runtask(ic, &sc->sc_radiofftask);
1670 }
1671 
1672 static void
1673 iwi_intr(void *arg)
1674 {
1675 	struct iwi_softc *sc = arg;
1676 	uint32_t r;
1677 	IWI_LOCK_DECL;
1678 
1679 	IWI_LOCK(sc);
1680 
1681 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1682 		IWI_UNLOCK(sc);
1683 		return;
1684 	}
1685 
1686 	/* acknowledge interrupts */
1687 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1688 
1689 	if (r & IWI_INTR_FATAL_ERROR) {
1690 		iwi_fatal_error_intr(sc);
1691 		goto done;
1692 	}
1693 
1694 	if (r & IWI_INTR_FW_INITED) {
1695 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1696 			wakeup(sc);
1697 	}
1698 
1699 	if (r & IWI_INTR_RADIO_OFF)
1700 		iwi_radio_off_intr(sc);
1701 
1702 	if (r & IWI_INTR_CMD_DONE) {
1703 		sc->flags &= ~IWI_FLAG_BUSY;
1704 		sc->sc_busy_timer = 0;
1705 		wakeup(sc);
1706 	}
1707 
1708 	if (r & IWI_INTR_TX1_DONE)
1709 		iwi_tx_intr(sc, &sc->txq[0]);
1710 
1711 	if (r & IWI_INTR_TX2_DONE)
1712 		iwi_tx_intr(sc, &sc->txq[1]);
1713 
1714 	if (r & IWI_INTR_TX3_DONE)
1715 		iwi_tx_intr(sc, &sc->txq[2]);
1716 
1717 	if (r & IWI_INTR_TX4_DONE)
1718 		iwi_tx_intr(sc, &sc->txq[3]);
1719 
1720 	if (r & IWI_INTR_RX_DONE)
1721 		iwi_rx_intr(sc);
1722 
1723 	if (r & IWI_INTR_PARITY_ERROR) {
1724 		/* XXX rate-limit */
1725 		device_printf(sc->sc_dev, "parity error\n");
1726 	}
1727 done:
1728 	IWI_UNLOCK(sc);
1729 }
1730 
1731 static int
1732 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1733 {
1734 	struct iwi_cmd_desc *desc;
1735 
1736 	IWI_LOCK_ASSERT(sc);
1737 
1738 	if (sc->flags & IWI_FLAG_BUSY) {
1739 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1740 			__func__, type);
1741 		return EAGAIN;
1742 	}
1743 	sc->flags |= IWI_FLAG_BUSY;
1744 	sc->sc_busy_timer = 2;
1745 
1746 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1747 
1748 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1749 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1750 	desc->type = type;
1751 	desc->len = len;
1752 	memcpy(desc->data, data, len);
1753 
1754 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1755 	    BUS_DMASYNC_PREWRITE);
1756 
1757 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1758 	    type, len));
1759 
1760 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1761 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1762 
1763 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1764 }
1765 
1766 static void
1767 iwi_write_ibssnode(struct iwi_softc *sc,
1768 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1769 {
1770 	struct iwi_ibssnode node;
1771 
1772 	/* write node information into NIC memory */
1773 	memset(&node, 0, sizeof node);
1774 	IEEE80211_ADDR_COPY(node.bssid, addr);
1775 
1776 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1777 
1778 	CSR_WRITE_REGION_1(sc,
1779 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1780 	    (uint8_t *)&node, sizeof node);
1781 }
1782 
1783 static int
1784 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1785     int ac)
1786 {
1787 	struct iwi_softc *sc = ifp->if_softc;
1788 	struct ieee80211vap *vap = ni->ni_vap;
1789 	struct ieee80211com *ic = ni->ni_ic;
1790 	struct iwi_node *in = (struct iwi_node *)ni;
1791 	const struct ieee80211_frame *wh;
1792 	struct ieee80211_key *k;
1793 	const struct chanAccParams *cap;
1794 	struct iwi_tx_ring *txq = &sc->txq[ac];
1795 	struct iwi_tx_data *data;
1796 	struct iwi_tx_desc *desc;
1797 	struct mbuf *mnew;
1798 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1799 	int error, nsegs, hdrlen, i;
1800 	int ismcast, flags, xflags, staid;
1801 
1802 	IWI_LOCK_ASSERT(sc);
1803 	wh = mtod(m0, const struct ieee80211_frame *);
1804 	/* NB: only data frames use this path */
1805 	hdrlen = ieee80211_hdrsize(wh);
1806 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1807 	flags = xflags = 0;
1808 
1809 	if (!ismcast)
1810 		flags |= IWI_DATA_FLAG_NEED_ACK;
1811 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1812 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1813 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1814 		xflags |= IWI_DATA_XFLAG_QOS;
1815 		cap = &ic->ic_wme.wme_chanParams;
1816 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1817 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1818 	}
1819 
1820 	/*
1821 	 * This is only used in IBSS mode where the firmware expect an index
1822 	 * in a h/w table instead of a destination address.
1823 	 */
1824 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1825 		if (!ismcast) {
1826 			if (in->in_station == -1) {
1827 				in->in_station = alloc_unr(sc->sc_unr);
1828 				if (in->in_station == -1) {
1829 					/* h/w table is full */
1830 					m_freem(m0);
1831 					ieee80211_free_node(ni);
1832 					ifp->if_oerrors++;
1833 					return 0;
1834 				}
1835 				iwi_write_ibssnode(sc,
1836 					ni->ni_macaddr, in->in_station);
1837 			}
1838 			staid = in->in_station;
1839 		} else {
1840 			/*
1841 			 * Multicast addresses have no associated node
1842 			 * so there will be no station entry.  We reserve
1843 			 * entry 0 for one mcast address and use that.
1844 			 * If there are many being used this will be
1845 			 * expensive and we'll need to do a better job
1846 			 * but for now this handles the broadcast case.
1847 			 */
1848 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1849 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1850 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1851 			}
1852 			staid = 0;
1853 		}
1854 	} else
1855 		staid = 0;
1856 
1857 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1858 		k = ieee80211_crypto_encap(ni, m0);
1859 		if (k == NULL) {
1860 			m_freem(m0);
1861 			return ENOBUFS;
1862 		}
1863 
1864 		/* packet header may have moved, reset our local pointer */
1865 		wh = mtod(m0, struct ieee80211_frame *);
1866 	}
1867 
1868 	if (ieee80211_radiotap_active_vap(vap)) {
1869 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1870 
1871 		tap->wt_flags = 0;
1872 
1873 		ieee80211_radiotap_tx(vap, m0);
1874 	}
1875 
1876 	data = &txq->data[txq->cur];
1877 	desc = &txq->desc[txq->cur];
1878 
1879 	/* save and trim IEEE802.11 header */
1880 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1881 	m_adj(m0, hdrlen);
1882 
1883 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1884 	    &nsegs, 0);
1885 	if (error != 0 && error != EFBIG) {
1886 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1887 		    error);
1888 		m_freem(m0);
1889 		return error;
1890 	}
1891 	if (error != 0) {
1892 		mnew = m_defrag(m0, M_NOWAIT);
1893 		if (mnew == NULL) {
1894 			device_printf(sc->sc_dev,
1895 			    "could not defragment mbuf\n");
1896 			m_freem(m0);
1897 			return ENOBUFS;
1898 		}
1899 		m0 = mnew;
1900 
1901 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1902 		    m0, segs, &nsegs, 0);
1903 		if (error != 0) {
1904 			device_printf(sc->sc_dev,
1905 			    "could not map mbuf (error %d)\n", error);
1906 			m_freem(m0);
1907 			return error;
1908 		}
1909 	}
1910 
1911 	data->m = m0;
1912 	data->ni = ni;
1913 
1914 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1915 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1916 	desc->station = staid;
1917 	desc->cmd = IWI_DATA_CMD_TX;
1918 	desc->len = htole16(m0->m_pkthdr.len);
1919 	desc->flags = flags;
1920 	desc->xflags = xflags;
1921 
1922 #if 0
1923 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1924 		desc->wep_txkey = vap->iv_def_txkey;
1925 	else
1926 #endif
1927 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1928 
1929 	desc->nseg = htole32(nsegs);
1930 	for (i = 0; i < nsegs; i++) {
1931 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1932 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1933 	}
1934 
1935 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1936 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1937 
1938 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1939 	    ac, txq->cur, le16toh(desc->len), nsegs));
1940 
1941 	txq->queued++;
1942 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1943 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1944 
1945 	return 0;
1946 }
1947 
1948 static int
1949 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1950 	const struct ieee80211_bpf_params *params)
1951 {
1952 	/* no support; just discard */
1953 	m_freem(m);
1954 	ieee80211_free_node(ni);
1955 	return 0;
1956 }
1957 
1958 static void
1959 iwi_start_locked(struct ifnet *ifp)
1960 {
1961 	struct iwi_softc *sc = ifp->if_softc;
1962 	struct mbuf *m;
1963 	struct ieee80211_node *ni;
1964 	int ac;
1965 
1966 	IWI_LOCK_ASSERT(sc);
1967 
1968 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1969 		return;
1970 
1971 	for (;;) {
1972 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1973 		if (m == NULL)
1974 			break;
1975 		ac = M_WME_GETAC(m);
1976 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1977 			/* there is no place left in this ring; tail drop */
1978 			/* XXX tail drop */
1979 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1980 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1981 			break;
1982 		}
1983 
1984 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1985 		if (iwi_tx_start(ifp, m, ni, ac) != 0) {
1986 			ieee80211_free_node(ni);
1987 			ifp->if_oerrors++;
1988 			break;
1989 		}
1990 
1991 		sc->sc_tx_timer = 5;
1992 	}
1993 }
1994 
1995 static void
1996 iwi_start(struct ifnet *ifp)
1997 {
1998 	struct iwi_softc *sc = ifp->if_softc;
1999 	IWI_LOCK_DECL;
2000 
2001 	IWI_LOCK(sc);
2002 	iwi_start_locked(ifp);
2003 	IWI_UNLOCK(sc);
2004 }
2005 
2006 static void
2007 iwi_watchdog(void *arg)
2008 {
2009 	struct iwi_softc *sc = arg;
2010 	struct ifnet *ifp = sc->sc_ifp;
2011 	struct ieee80211com *ic = ifp->if_l2com;
2012 
2013 	IWI_LOCK_ASSERT(sc);
2014 
2015 	if (sc->sc_tx_timer > 0) {
2016 		if (--sc->sc_tx_timer == 0) {
2017 			if_printf(ifp, "device timeout\n");
2018 			ifp->if_oerrors++;
2019 			ieee80211_runtask(ic, &sc->sc_restarttask);
2020 		}
2021 	}
2022 	if (sc->sc_state_timer > 0) {
2023 		if (--sc->sc_state_timer == 0) {
2024 			if_printf(ifp, "firmware stuck in state %d, resetting\n",
2025 			    sc->fw_state);
2026 			if (sc->fw_state == IWI_FW_SCANNING) {
2027 				struct ieee80211com *ic = ifp->if_l2com;
2028 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2029 			}
2030 			ieee80211_runtask(ic, &sc->sc_restarttask);
2031 			sc->sc_state_timer = 3;
2032 		}
2033 	}
2034 	if (sc->sc_busy_timer > 0) {
2035 		if (--sc->sc_busy_timer == 0) {
2036 			if_printf(ifp, "firmware command timeout, resetting\n");
2037 			ieee80211_runtask(ic, &sc->sc_restarttask);
2038 		}
2039 	}
2040 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
2041 }
2042 
2043 static int
2044 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2045 {
2046 	struct iwi_softc *sc = ifp->if_softc;
2047 	struct ieee80211com *ic = ifp->if_l2com;
2048 	struct ifreq *ifr = (struct ifreq *) data;
2049 	int error = 0, startall = 0;
2050 	IWI_LOCK_DECL;
2051 
2052 	switch (cmd) {
2053 	case SIOCSIFFLAGS:
2054 		IWI_LOCK(sc);
2055 		if (ifp->if_flags & IFF_UP) {
2056 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2057 				iwi_init_locked(sc);
2058 				startall = 1;
2059 			}
2060 		} else {
2061 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2062 				iwi_stop_locked(sc);
2063 		}
2064 		IWI_UNLOCK(sc);
2065 		if (startall)
2066 			ieee80211_start_all(ic);
2067 		break;
2068 	case SIOCGIFMEDIA:
2069 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2070 		break;
2071 	case SIOCGIFADDR:
2072 		error = ether_ioctl(ifp, cmd, data);
2073 		break;
2074 	default:
2075 		error = EINVAL;
2076 		break;
2077 	}
2078 	return error;
2079 }
2080 
2081 static void
2082 iwi_stop_master(struct iwi_softc *sc)
2083 {
2084 	uint32_t tmp;
2085 	int ntries;
2086 
2087 	/* disable interrupts */
2088 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2089 
2090 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2091 	for (ntries = 0; ntries < 5; ntries++) {
2092 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2093 			break;
2094 		DELAY(10);
2095 	}
2096 	if (ntries == 5)
2097 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2098 
2099 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2100 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2101 
2102 	sc->flags &= ~IWI_FLAG_FW_INITED;
2103 }
2104 
2105 static int
2106 iwi_reset(struct iwi_softc *sc)
2107 {
2108 	uint32_t tmp;
2109 	int i, ntries;
2110 
2111 	iwi_stop_master(sc);
2112 
2113 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2114 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2115 
2116 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2117 
2118 	/* wait for clock stabilization */
2119 	for (ntries = 0; ntries < 1000; ntries++) {
2120 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2121 			break;
2122 		DELAY(200);
2123 	}
2124 	if (ntries == 1000) {
2125 		device_printf(sc->sc_dev,
2126 		    "timeout waiting for clock stabilization\n");
2127 		return EIO;
2128 	}
2129 
2130 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2131 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2132 
2133 	DELAY(10);
2134 
2135 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2136 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2137 
2138 	/* clear NIC memory */
2139 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2140 	for (i = 0; i < 0xc000; i++)
2141 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2142 
2143 	return 0;
2144 }
2145 
2146 static const struct iwi_firmware_ohdr *
2147 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2148 {
2149 	const struct firmware *fp = fw->fp;
2150 	const struct iwi_firmware_ohdr *hdr;
2151 
2152 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2153 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2154 		return NULL;
2155 	}
2156 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2157 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2158 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2159 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2160 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2161 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2162 		    IWI_FW_REQ_MINOR);
2163 		return NULL;
2164 	}
2165 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2166 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2167 	fw->name = fp->name;
2168 	return hdr;
2169 }
2170 
2171 static const struct iwi_firmware_ohdr *
2172 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2173 {
2174 	const struct iwi_firmware_ohdr *hdr;
2175 
2176 	hdr = iwi_setup_ofw(sc, fw);
2177 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2178 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2179 		    fw->name);
2180 		hdr = NULL;
2181 	}
2182 	return hdr;
2183 }
2184 
2185 static void
2186 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2187 	  struct iwi_fw *uc, const char *ucname)
2188 {
2189 	if (fw->fp == NULL)
2190 		fw->fp = firmware_get(fwname);
2191 	/* NB: pre-3.0 ucode is packaged separately */
2192 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2193 		uc->fp = firmware_get(ucname);
2194 }
2195 
2196 /*
2197  * Get the required firmware images if not already loaded.
2198  * Note that we hold firmware images so long as the device
2199  * is marked up in case we need to reload them on device init.
2200  * This is necessary because we re-init the device sometimes
2201  * from a context where we cannot read from the filesystem
2202  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2203  * XXX return 0 on success, 1 on error.
2204  *
2205  * NB: the order of get'ing and put'ing images here is
2206  * intentional to support handling firmware images bundled
2207  * by operating mode and/or all together in one file with
2208  * the boot firmware as "master".
2209  */
2210 static int
2211 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2212 {
2213 	const struct iwi_firmware_hdr *hdr;
2214 	const struct firmware *fp;
2215 
2216 	/* invalidate cached firmware on mode change */
2217 	if (sc->fw_mode != opmode)
2218 		iwi_put_firmware(sc);
2219 
2220 	switch (opmode) {
2221 	case IEEE80211_M_STA:
2222 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2223 		break;
2224 	case IEEE80211_M_IBSS:
2225 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2226 		break;
2227 	case IEEE80211_M_MONITOR:
2228 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2229 			  &sc->fw_uc, "iwi_ucode_monitor");
2230 		break;
2231 	default:
2232 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2233 		return EINVAL;
2234 	}
2235 	fp = sc->fw_fw.fp;
2236 	if (fp == NULL) {
2237 		device_printf(sc->sc_dev, "could not load firmware\n");
2238 		goto bad;
2239 	}
2240 	if (fp->version < 300) {
2241 		/*
2242 		 * Firmware prior to 3.0 was packaged as separate
2243 		 * boot, firmware, and ucode images.  Verify the
2244 		 * ucode image was read in, retrieve the boot image
2245 		 * if needed, and check version stamps for consistency.
2246 		 * The version stamps in the data are also checked
2247 		 * above; this is a bit paranoid but is a cheap
2248 		 * safeguard against mis-packaging.
2249 		 */
2250 		if (sc->fw_uc.fp == NULL) {
2251 			device_printf(sc->sc_dev, "could not load ucode\n");
2252 			goto bad;
2253 		}
2254 		if (sc->fw_boot.fp == NULL) {
2255 			sc->fw_boot.fp = firmware_get("iwi_boot");
2256 			if (sc->fw_boot.fp == NULL) {
2257 				device_printf(sc->sc_dev,
2258 					"could not load boot firmware\n");
2259 				goto bad;
2260 			}
2261 		}
2262 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2263 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2264 			device_printf(sc->sc_dev,
2265 			    "firmware version mismatch: "
2266 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2267 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2268 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2269 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2270 			);
2271 			goto bad;
2272 		}
2273 		/*
2274 		 * Check and setup each image.
2275 		 */
2276 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2277 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2278 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2279 			goto bad;
2280 	} else {
2281 		/*
2282 		 * Check and setup combined image.
2283 		 */
2284 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2285 			device_printf(sc->sc_dev, "image '%s' too small\n",
2286 			    fp->name);
2287 			goto bad;
2288 		}
2289 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2290 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2291 				+ le32toh(hdr->fsize)) {
2292 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2293 			    fp->name);
2294 			goto bad;
2295 		}
2296 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2297 		sc->fw_boot.size = le32toh(hdr->bsize);
2298 		sc->fw_boot.name = fp->name;
2299 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2300 		sc->fw_uc.size = le32toh(hdr->usize);
2301 		sc->fw_uc.name = fp->name;
2302 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2303 		sc->fw_fw.size = le32toh(hdr->fsize);
2304 		sc->fw_fw.name = fp->name;
2305 	}
2306 #if 0
2307 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2308 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2309 #endif
2310 
2311 	sc->fw_mode = opmode;
2312 	return 0;
2313 bad:
2314 	iwi_put_firmware(sc);
2315 	return 1;
2316 }
2317 
2318 static void
2319 iwi_put_fw(struct iwi_fw *fw)
2320 {
2321 	if (fw->fp != NULL) {
2322 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2323 		fw->fp = NULL;
2324 	}
2325 	fw->data = NULL;
2326 	fw->size = 0;
2327 	fw->name = NULL;
2328 }
2329 
2330 /*
2331  * Release any cached firmware images.
2332  */
2333 static void
2334 iwi_put_firmware(struct iwi_softc *sc)
2335 {
2336 	iwi_put_fw(&sc->fw_uc);
2337 	iwi_put_fw(&sc->fw_fw);
2338 	iwi_put_fw(&sc->fw_boot);
2339 }
2340 
2341 static int
2342 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2343 {
2344 	uint32_t tmp;
2345 	const uint16_t *w;
2346 	const char *uc = fw->data;
2347 	size_t size = fw->size;
2348 	int i, ntries, error;
2349 
2350 	IWI_LOCK_ASSERT(sc);
2351 	error = 0;
2352 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2353 	    IWI_RST_STOP_MASTER);
2354 	for (ntries = 0; ntries < 5; ntries++) {
2355 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2356 			break;
2357 		DELAY(10);
2358 	}
2359 	if (ntries == 5) {
2360 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2361 		error = EIO;
2362 		goto fail;
2363 	}
2364 
2365 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2366 	DELAY(5000);
2367 
2368 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2369 	tmp &= ~IWI_RST_PRINCETON_RESET;
2370 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2371 
2372 	DELAY(5000);
2373 	MEM_WRITE_4(sc, 0x3000e0, 0);
2374 	DELAY(1000);
2375 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2376 	DELAY(1000);
2377 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2378 	DELAY(1000);
2379 	MEM_WRITE_1(sc, 0x200000, 0x00);
2380 	MEM_WRITE_1(sc, 0x200000, 0x40);
2381 	DELAY(1000);
2382 
2383 	/* write microcode into adapter memory */
2384 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2385 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2386 
2387 	MEM_WRITE_1(sc, 0x200000, 0x00);
2388 	MEM_WRITE_1(sc, 0x200000, 0x80);
2389 
2390 	/* wait until we get an answer */
2391 	for (ntries = 0; ntries < 100; ntries++) {
2392 		if (MEM_READ_1(sc, 0x200000) & 1)
2393 			break;
2394 		DELAY(100);
2395 	}
2396 	if (ntries == 100) {
2397 		device_printf(sc->sc_dev,
2398 		    "timeout waiting for ucode to initialize\n");
2399 		error = EIO;
2400 		goto fail;
2401 	}
2402 
2403 	/* read the answer or the firmware will not initialize properly */
2404 	for (i = 0; i < 7; i++)
2405 		MEM_READ_4(sc, 0x200004);
2406 
2407 	MEM_WRITE_1(sc, 0x200000, 0x00);
2408 
2409 fail:
2410 	return error;
2411 }
2412 
2413 /* macro to handle unaligned little endian data in firmware image */
2414 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2415 
2416 static int
2417 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2418 {
2419 	u_char *p, *end;
2420 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2421 	int ntries, error;
2422 
2423 	IWI_LOCK_ASSERT(sc);
2424 
2425 	/* copy firmware image to DMA memory */
2426 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2427 
2428 	/* make sure the adapter will get up-to-date values */
2429 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2430 
2431 	/* tell the adapter where the command blocks are stored */
2432 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2433 
2434 	/*
2435 	 * Store command blocks into adapter's internal memory using register
2436 	 * indirections. The adapter will read the firmware image through DMA
2437 	 * using information stored in command blocks.
2438 	 */
2439 	src = sc->fw_physaddr;
2440 	p = sc->fw_virtaddr;
2441 	end = p + fw->size;
2442 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2443 
2444 	while (p < end) {
2445 		dst = GETLE32(p); p += 4; src += 4;
2446 		len = GETLE32(p); p += 4; src += 4;
2447 		p += len;
2448 
2449 		while (len > 0) {
2450 			mlen = min(len, IWI_CB_MAXDATALEN);
2451 
2452 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2453 			sum = ctl ^ src ^ dst;
2454 
2455 			/* write a command block */
2456 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2457 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2458 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2459 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2460 
2461 			src += mlen;
2462 			dst += mlen;
2463 			len -= mlen;
2464 		}
2465 	}
2466 
2467 	/* write a fictive final command block (sentinel) */
2468 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2469 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2470 
2471 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2472 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2473 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2474 
2475 	/* tell the adapter to start processing command blocks */
2476 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2477 
2478 	/* wait until the adapter reaches the sentinel */
2479 	for (ntries = 0; ntries < 400; ntries++) {
2480 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2481 			break;
2482 		DELAY(100);
2483 	}
2484 	/* sync dma, just in case */
2485 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2486 	if (ntries == 400) {
2487 		device_printf(sc->sc_dev,
2488 		    "timeout processing command blocks for %s firmware\n",
2489 		    fw->name);
2490 		return EIO;
2491 	}
2492 
2493 	/* we're done with command blocks processing */
2494 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2495 
2496 	/* allow interrupts so we know when the firmware is ready */
2497 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2498 
2499 	/* tell the adapter to initialize the firmware */
2500 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2501 
2502 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2503 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2504 
2505 	/* wait at most one second for firmware initialization to complete */
2506 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2507 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2508 		    "initialization to complete\n", fw->name);
2509 	}
2510 
2511 	return error;
2512 }
2513 
2514 static int
2515 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2516 {
2517 	uint32_t data;
2518 
2519 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2520 		/* XXX set more fine-grained operation */
2521 		data = htole32(IWI_POWER_MODE_MAX);
2522 	} else
2523 		data = htole32(IWI_POWER_MODE_CAM);
2524 
2525 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2526 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2527 }
2528 
2529 static int
2530 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2531 {
2532 	struct iwi_wep_key wepkey;
2533 	struct ieee80211_key *wk;
2534 	int error, i;
2535 
2536 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2537 		wk = &vap->iv_nw_keys[i];
2538 
2539 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2540 		wepkey.idx = i;
2541 		wepkey.len = wk->wk_keylen;
2542 		memset(wepkey.key, 0, sizeof wepkey.key);
2543 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2544 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2545 		    wepkey.len));
2546 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2547 		    sizeof wepkey);
2548 		if (error != 0)
2549 			return error;
2550 	}
2551 	return 0;
2552 }
2553 
2554 static int
2555 iwi_config(struct iwi_softc *sc)
2556 {
2557 	struct ifnet *ifp = sc->sc_ifp;
2558 	struct ieee80211com *ic = ifp->if_l2com;
2559 	struct iwi_configuration config;
2560 	struct iwi_rateset rs;
2561 	struct iwi_txpower power;
2562 	uint32_t data;
2563 	int error, i;
2564 
2565 	IWI_LOCK_ASSERT(sc);
2566 
2567 	DPRINTF(("Setting MAC address to %6D\n", IF_LLADDR(ifp), ":"));
2568 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp),
2569 	    IEEE80211_ADDR_LEN);
2570 	if (error != 0)
2571 		return error;
2572 
2573 	memset(&config, 0, sizeof config);
2574 	config.bluetooth_coexistence = sc->bluetooth;
2575 	config.silence_threshold = 0x1e;
2576 	config.antenna = sc->antenna;
2577 	config.multicast_enabled = 1;
2578 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2579 	config.disable_unicast_decryption = 1;
2580 	config.disable_multicast_decryption = 1;
2581 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2582 		config.allow_invalid_frames = 1;
2583 		config.allow_beacon_and_probe_resp = 1;
2584 		config.allow_mgt = 1;
2585 	}
2586 	DPRINTF(("Configuring adapter\n"));
2587 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2588 	if (error != 0)
2589 		return error;
2590 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2591 		power.mode = IWI_MODE_11B;
2592 		power.nchan = 11;
2593 		for (i = 0; i < 11; i++) {
2594 			power.chan[i].chan = i + 1;
2595 			power.chan[i].power = IWI_TXPOWER_MAX;
2596 		}
2597 		DPRINTF(("Setting .11b channels tx power\n"));
2598 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2599 		if (error != 0)
2600 			return error;
2601 
2602 		power.mode = IWI_MODE_11G;
2603 		DPRINTF(("Setting .11g channels tx power\n"));
2604 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2605 		if (error != 0)
2606 			return error;
2607 	}
2608 
2609 	memset(&rs, 0, sizeof rs);
2610 	rs.mode = IWI_MODE_11G;
2611 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2612 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2613 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2614 	    rs.nrates);
2615 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2616 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2617 	if (error != 0)
2618 		return error;
2619 
2620 	memset(&rs, 0, sizeof rs);
2621 	rs.mode = IWI_MODE_11A;
2622 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2623 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2624 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2625 	    rs.nrates);
2626 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2627 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2628 	if (error != 0)
2629 		return error;
2630 
2631 	data = htole32(arc4random());
2632 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2633 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2634 	if (error != 0)
2635 		return error;
2636 
2637 	/* enable adapter */
2638 	DPRINTF(("Enabling adapter\n"));
2639 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2640 }
2641 
2642 static __inline void
2643 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2644 {
2645 	uint8_t *st = &scan->scan_type[ix / 2];
2646 	if (ix % 2)
2647 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2648 	else
2649 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2650 }
2651 
2652 static int
2653 scan_type(const struct ieee80211_scan_state *ss,
2654 	const struct ieee80211_channel *chan)
2655 {
2656 	/* We can only set one essid for a directed scan */
2657 	if (ss->ss_nssid != 0)
2658 		return IWI_SCAN_TYPE_BDIRECTED;
2659 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2660 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2661 		return IWI_SCAN_TYPE_BROADCAST;
2662 	return IWI_SCAN_TYPE_PASSIVE;
2663 }
2664 
2665 static __inline int
2666 scan_band(const struct ieee80211_channel *c)
2667 {
2668 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2669 }
2670 
2671 static void
2672 iwi_monitor_scan(void *arg, int npending)
2673 {
2674 	struct iwi_softc *sc = arg;
2675 	IWI_LOCK_DECL;
2676 
2677 	IWI_LOCK(sc);
2678 	(void) iwi_scanchan(sc, 2000, 0);
2679 	IWI_UNLOCK(sc);
2680 }
2681 
2682 /*
2683  * Start a scan on the current channel or all channels.
2684  */
2685 static int
2686 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2687 {
2688 	struct ieee80211com *ic;
2689 	struct ieee80211_channel *chan;
2690 	struct ieee80211_scan_state *ss;
2691 	struct iwi_scan_ext scan;
2692 	int error = 0;
2693 
2694 	IWI_LOCK_ASSERT(sc);
2695 	if (sc->fw_state == IWI_FW_SCANNING) {
2696 		/*
2697 		 * This should not happen as we only trigger scan_next after
2698 		 * completion
2699 		 */
2700 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2701 		return (EBUSY);
2702 	}
2703 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2704 
2705 	ic = sc->sc_ifp->if_l2com;
2706 	ss = ic->ic_scan;
2707 
2708 	memset(&scan, 0, sizeof scan);
2709 	scan.full_scan_index = htole32(++sc->sc_scangen);
2710 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2711 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2712 		/*
2713 		 * Use very short dwell times for when we send probe request
2714 		 * frames.  Without this bg scans hang.  Ideally this should
2715 		 * be handled with early-termination as done by net80211 but
2716 		 * that's not feasible (aborting a scan is problematic).
2717 		 */
2718 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2719 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2720 	} else {
2721 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2722 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2723 	}
2724 
2725 	/* We can only set one essid for a directed scan */
2726 	if (ss->ss_nssid != 0) {
2727 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2728 		    ss->ss_ssid[0].len);
2729 		if (error)
2730 			return (error);
2731 	}
2732 
2733 	if (allchan) {
2734 		int i, next, band, b, bstart;
2735 		/*
2736 		 * Convert scan list to run-length encoded channel list
2737 		 * the firmware requires (preserving the order setup by
2738 		 * net80211).  The first entry in each run specifies the
2739 		 * band and the count of items in the run.
2740 		 */
2741 		next = 0;		/* next open slot */
2742 		bstart = 0;		/* NB: not needed, silence compiler */
2743 		band = -1;		/* NB: impossible value */
2744 		KASSERT(ss->ss_last > 0, ("no channels"));
2745 		for (i = 0; i < ss->ss_last; i++) {
2746 			chan = ss->ss_chans[i];
2747 			b = scan_band(chan);
2748 			if (b != band) {
2749 				if (band != -1)
2750 					scan.channels[bstart] =
2751 					    (next - bstart) | band;
2752 				/* NB: this allocates a slot for the run-len */
2753 				band = b, bstart = next++;
2754 			}
2755 			if (next >= IWI_SCAN_CHANNELS) {
2756 				DPRINTF(("truncating scan list\n"));
2757 				break;
2758 			}
2759 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2760 			set_scan_type(&scan, next, scan_type(ss, chan));
2761 			next++;
2762 		}
2763 		scan.channels[bstart] = (next - bstart) | band;
2764 	} else {
2765 		/* Scan the current channel only */
2766 		chan = ic->ic_curchan;
2767 		scan.channels[0] = 1 | scan_band(chan);
2768 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2769 		set_scan_type(&scan, 1, scan_type(ss, chan));
2770 	}
2771 #ifdef IWI_DEBUG
2772 	if (iwi_debug > 0) {
2773 		static const char *scantype[8] =
2774 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2775 		int i;
2776 		printf("Scan request: index %u dwell %d/%d/%d\n"
2777 		    , le32toh(scan.full_scan_index)
2778 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2779 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2780 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2781 		);
2782 		i = 0;
2783 		do {
2784 			int run = scan.channels[i];
2785 			if (run == 0)
2786 				break;
2787 			printf("Scan %d %s channels:", run & 0x3f,
2788 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2789 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2790 				uint8_t type = scan.scan_type[i/2];
2791 				printf(" %u/%s", scan.channels[i],
2792 				    scantype[(i & 1 ? type : type>>4) & 7]);
2793 			}
2794 			printf("\n");
2795 		} while (i < IWI_SCAN_CHANNELS);
2796 	}
2797 #endif
2798 
2799 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2800 }
2801 
2802 static int
2803 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2804 {
2805 	struct iwi_sensitivity sens;
2806 
2807 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2808 
2809 	memset(&sens, 0, sizeof sens);
2810 	sens.rssi = htole16(rssi_dbm);
2811 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2812 }
2813 
2814 static int
2815 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2816 {
2817 	struct ieee80211com *ic = vap->iv_ic;
2818 	struct ifnet *ifp = vap->iv_ifp;
2819 	struct ieee80211_node *ni;
2820 	struct iwi_configuration config;
2821 	struct iwi_associate *assoc = &sc->assoc;
2822 	struct iwi_rateset rs;
2823 	uint16_t capinfo;
2824 	uint32_t data;
2825 	int error, mode;
2826 
2827 	IWI_LOCK_ASSERT(sc);
2828 
2829 	ni = ieee80211_ref_node(vap->iv_bss);
2830 
2831 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2832 		DPRINTF(("Already associated\n"));
2833 		return (-1);
2834 	}
2835 
2836 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2837 	error = 0;
2838 	mode = 0;
2839 
2840 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2841 		mode = IWI_MODE_11A;
2842 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2843 		mode = IWI_MODE_11G;
2844 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2845 		mode = IWI_MODE_11B;
2846 
2847 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2848 		memset(&config, 0, sizeof config);
2849 		config.bluetooth_coexistence = sc->bluetooth;
2850 		config.antenna = sc->antenna;
2851 		config.multicast_enabled = 1;
2852 		if (mode == IWI_MODE_11G)
2853 			config.use_protection = 1;
2854 		config.answer_pbreq =
2855 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2856 		config.disable_unicast_decryption = 1;
2857 		config.disable_multicast_decryption = 1;
2858 		DPRINTF(("Configuring adapter\n"));
2859 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2860 		if (error != 0)
2861 			goto done;
2862 	}
2863 
2864 #ifdef IWI_DEBUG
2865 	if (iwi_debug > 0) {
2866 		printf("Setting ESSID to ");
2867 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2868 		printf("\n");
2869 	}
2870 #endif
2871 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2872 	if (error != 0)
2873 		goto done;
2874 
2875 	error = iwi_setpowermode(sc, vap);
2876 	if (error != 0)
2877 		goto done;
2878 
2879 	data = htole32(vap->iv_rtsthreshold);
2880 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2881 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2882 	if (error != 0)
2883 		goto done;
2884 
2885 	data = htole32(vap->iv_fragthreshold);
2886 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2887 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2888 	if (error != 0)
2889 		goto done;
2890 
2891 	/* the rate set has already been "negotiated" */
2892 	memset(&rs, 0, sizeof rs);
2893 	rs.mode = mode;
2894 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2895 	rs.nrates = ni->ni_rates.rs_nrates;
2896 	if (rs.nrates > IWI_RATESET_SIZE) {
2897 		DPRINTF(("Truncating negotiated rate set from %u\n",
2898 		    rs.nrates));
2899 		rs.nrates = IWI_RATESET_SIZE;
2900 	}
2901 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2902 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2903 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2904 	if (error != 0)
2905 		goto done;
2906 
2907 	memset(assoc, 0, sizeof *assoc);
2908 
2909 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2910 		/* NB: don't treat WME setup as failure */
2911 		if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0)
2912 			assoc->policy |= htole16(IWI_POLICY_WME);
2913 		/* XXX complain on failure? */
2914 	}
2915 
2916 	if (vap->iv_appie_wpa != NULL) {
2917 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2918 
2919 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2920 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2921 		if (error != 0)
2922 			goto done;
2923 	}
2924 
2925 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2926 	if (error != 0)
2927 		goto done;
2928 
2929 	assoc->mode = mode;
2930 	assoc->chan = ic->ic_curchan->ic_ieee;
2931 	/*
2932 	 * NB: do not arrange for shared key auth w/o privacy
2933 	 *     (i.e. a wep key); it causes a firmware error.
2934 	 */
2935 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2936 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2937 		assoc->auth = IWI_AUTH_SHARED;
2938 		/*
2939 		 * It's possible to have privacy marked but no default
2940 		 * key setup.  This typically is due to a user app bug
2941 		 * but if we blindly grab the key the firmware will
2942 		 * barf so avoid it for now.
2943 		 */
2944 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2945 			assoc->auth |= vap->iv_def_txkey << 4;
2946 
2947 		error = iwi_setwepkeys(sc, vap);
2948 		if (error != 0)
2949 			goto done;
2950 	}
2951 	if (vap->iv_flags & IEEE80211_F_WPA)
2952 		assoc->policy |= htole16(IWI_POLICY_WPA);
2953 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2954 		assoc->type = IWI_HC_IBSS_START;
2955 	else
2956 		assoc->type = IWI_HC_ASSOC;
2957 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2958 
2959 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2960 		capinfo = IEEE80211_CAPINFO_IBSS;
2961 	else
2962 		capinfo = IEEE80211_CAPINFO_ESS;
2963 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2964 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2965 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2966 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2967 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2968 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2969 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2970 	assoc->capinfo = htole16(capinfo);
2971 
2972 	assoc->lintval = htole16(ic->ic_lintval);
2973 	assoc->intval = htole16(ni->ni_intval);
2974 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2975 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2976 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2977 	else
2978 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2979 
2980 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2981 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2982 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2983 	    assoc->bssid, ":", assoc->dst, ":",
2984 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2985 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2986 	    le16toh(assoc->intval)));
2987 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2988 done:
2989 	ieee80211_free_node(ni);
2990 	if (error)
2991 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2992 
2993 	return (error);
2994 }
2995 
2996 static void
2997 iwi_disassoc(void *arg, int pending)
2998 {
2999 	struct iwi_softc *sc = arg;
3000 	IWI_LOCK_DECL;
3001 
3002 	IWI_LOCK(sc);
3003 	iwi_disassociate(sc, 0);
3004 	IWI_UNLOCK(sc);
3005 }
3006 
3007 static int
3008 iwi_disassociate(struct iwi_softc *sc, int quiet)
3009 {
3010 	struct iwi_associate *assoc = &sc->assoc;
3011 
3012 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
3013 		DPRINTF(("Not associated\n"));
3014 		return (-1);
3015 	}
3016 
3017 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
3018 
3019 	if (quiet)
3020 		assoc->type = IWI_HC_DISASSOC_QUIET;
3021 	else
3022 		assoc->type = IWI_HC_DISASSOC;
3023 
3024 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3025 	    assoc->bssid, ":", assoc->chan));
3026 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3027 }
3028 
3029 /*
3030  * release dma resources for the firmware
3031  */
3032 static void
3033 iwi_release_fw_dma(struct iwi_softc *sc)
3034 {
3035 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3036 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3037 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3038 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3039 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3040 		bus_dma_tag_destroy(sc->fw_dmat);
3041 
3042 	sc->fw_flags = 0;
3043 	sc->fw_dma_size = 0;
3044 	sc->fw_dmat = NULL;
3045 	sc->fw_map = NULL;
3046 	sc->fw_physaddr = 0;
3047 	sc->fw_virtaddr = NULL;
3048 }
3049 
3050 /*
3051  * allocate the dma descriptor for the firmware.
3052  * Return 0 on success, 1 on error.
3053  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3054  */
3055 static int
3056 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3057 {
3058 	if (sc->fw_dma_size >= size)
3059 		return 0;
3060 	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3061 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3062 	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3063 		device_printf(sc->sc_dev,
3064 		    "could not create firmware DMA tag\n");
3065 		goto error;
3066 	}
3067 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3068 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3069 	    &sc->fw_map) != 0) {
3070 		device_printf(sc->sc_dev,
3071 		    "could not allocate firmware DMA memory\n");
3072 		goto error;
3073 	}
3074 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3075 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3076 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3077 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3078 		goto error;
3079 	}
3080 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3081 	sc->fw_dma_size = size;
3082 	return 0;
3083 
3084 error:
3085 	iwi_release_fw_dma(sc);
3086 	return 1;
3087 }
3088 
3089 static void
3090 iwi_init_locked(struct iwi_softc *sc)
3091 {
3092 	struct ifnet *ifp = sc->sc_ifp;
3093 	struct iwi_rx_data *data;
3094 	int i;
3095 
3096 	IWI_LOCK_ASSERT(sc);
3097 
3098 	if (sc->fw_state == IWI_FW_LOADING) {
3099 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3100 		return;		/* XXX: condvar? */
3101 	}
3102 
3103 	iwi_stop_locked(sc);
3104 
3105 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3106 
3107 	if (iwi_reset(sc) != 0) {
3108 		device_printf(sc->sc_dev, "could not reset adapter\n");
3109 		goto fail;
3110 	}
3111 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3112 		device_printf(sc->sc_dev,
3113 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3114 		goto fail;
3115 	}
3116 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3117 		device_printf(sc->sc_dev,
3118 		    "could not load microcode %s\n", sc->fw_uc.name);
3119 		goto fail;
3120 	}
3121 
3122 	iwi_stop_master(sc);
3123 
3124 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3125 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3126 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3127 
3128 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3129 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3130 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3131 
3132 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3133 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3134 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3135 
3136 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3137 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3138 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3139 
3140 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3141 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3142 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3143 
3144 	for (i = 0; i < sc->rxq.count; i++) {
3145 		data = &sc->rxq.data[i];
3146 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3147 	}
3148 
3149 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3150 
3151 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3152 		device_printf(sc->sc_dev,
3153 		    "could not load main firmware %s\n", sc->fw_fw.name);
3154 		goto fail;
3155 	}
3156 	sc->flags |= IWI_FLAG_FW_INITED;
3157 
3158 	IWI_STATE_END(sc, IWI_FW_LOADING);
3159 
3160 	if (iwi_config(sc) != 0) {
3161 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3162 		goto fail2;
3163 	}
3164 
3165 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
3166 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3167 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3168 	return;
3169 fail:
3170 	IWI_STATE_END(sc, IWI_FW_LOADING);
3171 fail2:
3172 	iwi_stop_locked(sc);
3173 }
3174 
3175 static void
3176 iwi_init(void *priv)
3177 {
3178 	struct iwi_softc *sc = priv;
3179 	struct ifnet *ifp = sc->sc_ifp;
3180 	struct ieee80211com *ic = ifp->if_l2com;
3181 	IWI_LOCK_DECL;
3182 
3183 	IWI_LOCK(sc);
3184 	iwi_init_locked(sc);
3185 	IWI_UNLOCK(sc);
3186 
3187 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3188 		ieee80211_start_all(ic);
3189 }
3190 
3191 static void
3192 iwi_stop_locked(void *priv)
3193 {
3194 	struct iwi_softc *sc = priv;
3195 	struct ifnet *ifp = sc->sc_ifp;
3196 
3197 	IWI_LOCK_ASSERT(sc);
3198 
3199 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3200 
3201 	if (sc->sc_softled) {
3202 		callout_stop(&sc->sc_ledtimer);
3203 		sc->sc_blinking = 0;
3204 	}
3205 	callout_stop(&sc->sc_wdtimer);
3206 	callout_stop(&sc->sc_rftimer);
3207 
3208 	iwi_stop_master(sc);
3209 
3210 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3211 
3212 	/* reset rings */
3213 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3214 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3215 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3216 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3217 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3218 	iwi_reset_rx_ring(sc, &sc->rxq);
3219 
3220 	sc->sc_tx_timer = 0;
3221 	sc->sc_state_timer = 0;
3222 	sc->sc_busy_timer = 0;
3223 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3224 	sc->fw_state = IWI_FW_IDLE;
3225 	wakeup(sc);
3226 }
3227 
3228 static void
3229 iwi_stop(struct iwi_softc *sc)
3230 {
3231 	IWI_LOCK_DECL;
3232 
3233 	IWI_LOCK(sc);
3234 	iwi_stop_locked(sc);
3235 	IWI_UNLOCK(sc);
3236 }
3237 
3238 static void
3239 iwi_restart(void *arg, int npending)
3240 {
3241 	struct iwi_softc *sc = arg;
3242 
3243 	iwi_init(sc);
3244 }
3245 
3246 /*
3247  * Return whether or not the radio is enabled in hardware
3248  * (i.e. the rfkill switch is "off").
3249  */
3250 static int
3251 iwi_getrfkill(struct iwi_softc *sc)
3252 {
3253 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3254 }
3255 
3256 static void
3257 iwi_radio_on(void *arg, int pending)
3258 {
3259 	struct iwi_softc *sc = arg;
3260 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3261 
3262 	device_printf(sc->sc_dev, "radio turned on\n");
3263 
3264 	iwi_init(sc);
3265 	ieee80211_notify_radio(ic, 1);
3266 }
3267 
3268 static void
3269 iwi_rfkill_poll(void *arg)
3270 {
3271 	struct iwi_softc *sc = arg;
3272 
3273 	IWI_LOCK_ASSERT(sc);
3274 
3275 	/*
3276 	 * Check for a change in rfkill state.  We get an
3277 	 * interrupt when a radio is disabled but not when
3278 	 * it is enabled so we must poll for the latter.
3279 	 */
3280 	if (!iwi_getrfkill(sc)) {
3281 		struct ifnet *ifp = sc->sc_ifp;
3282 		struct ieee80211com *ic = ifp->if_l2com;
3283 
3284 		ieee80211_runtask(ic, &sc->sc_radiontask);
3285 		return;
3286 	}
3287 	callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
3288 }
3289 
3290 static void
3291 iwi_radio_off(void *arg, int pending)
3292 {
3293 	struct iwi_softc *sc = arg;
3294 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3295 	IWI_LOCK_DECL;
3296 
3297 	device_printf(sc->sc_dev, "radio turned off\n");
3298 
3299 	ieee80211_notify_radio(ic, 0);
3300 
3301 	IWI_LOCK(sc);
3302 	iwi_stop_locked(sc);
3303 	iwi_rfkill_poll(sc);
3304 	IWI_UNLOCK(sc);
3305 }
3306 
3307 static int
3308 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3309 {
3310 	struct iwi_softc *sc = arg1;
3311 	uint32_t size, buf[128];
3312 
3313 	memset(buf, 0, sizeof buf);
3314 
3315 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3316 		return SYSCTL_OUT(req, buf, sizeof buf);
3317 
3318 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3319 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3320 
3321 	return SYSCTL_OUT(req, buf, size);
3322 }
3323 
3324 static int
3325 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3326 {
3327 	struct iwi_softc *sc = arg1;
3328 	int val = !iwi_getrfkill(sc);
3329 
3330 	return SYSCTL_OUT(req, &val, sizeof val);
3331 }
3332 
3333 /*
3334  * Add sysctl knobs.
3335  */
3336 static void
3337 iwi_sysctlattach(struct iwi_softc *sc)
3338 {
3339 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3340 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3341 
3342 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3343 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3344 	    "radio transmitter switch state (0=off, 1=on)");
3345 
3346 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3347 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3348 	    "statistics");
3349 
3350 	sc->bluetooth = 0;
3351 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3352 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3353 
3354 	sc->antenna = IWI_ANTENNA_AUTO;
3355 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3356 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3357 }
3358 
3359 /*
3360  * LED support.
3361  *
3362  * Different cards have different capabilities.  Some have three
3363  * led's while others have only one.  The linux ipw driver defines
3364  * led's for link state (associated or not), band (11a, 11g, 11b),
3365  * and for link activity.  We use one led and vary the blink rate
3366  * according to the tx/rx traffic a la the ath driver.
3367  */
3368 
3369 static __inline uint32_t
3370 iwi_toggle_event(uint32_t r)
3371 {
3372 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3373 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3374 }
3375 
3376 static uint32_t
3377 iwi_read_event(struct iwi_softc *sc)
3378 {
3379 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3380 }
3381 
3382 static void
3383 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3384 {
3385 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3386 }
3387 
3388 static void
3389 iwi_led_done(void *arg)
3390 {
3391 	struct iwi_softc *sc = arg;
3392 
3393 	sc->sc_blinking = 0;
3394 }
3395 
3396 /*
3397  * Turn the activity LED off: flip the pin and then set a timer so no
3398  * update will happen for the specified duration.
3399  */
3400 static void
3401 iwi_led_off(void *arg)
3402 {
3403 	struct iwi_softc *sc = arg;
3404 	uint32_t v;
3405 
3406 	v = iwi_read_event(sc);
3407 	v &= ~sc->sc_ledpin;
3408 	iwi_write_event(sc, iwi_toggle_event(v));
3409 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3410 }
3411 
3412 /*
3413  * Blink the LED according to the specified on/off times.
3414  */
3415 static void
3416 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3417 {
3418 	uint32_t v;
3419 
3420 	v = iwi_read_event(sc);
3421 	v |= sc->sc_ledpin;
3422 	iwi_write_event(sc, iwi_toggle_event(v));
3423 	sc->sc_blinking = 1;
3424 	sc->sc_ledoff = off;
3425 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3426 }
3427 
3428 static void
3429 iwi_led_event(struct iwi_softc *sc, int event)
3430 {
3431 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3432 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3433 	static const struct {
3434 		u_int		rate;		/* tx/rx iwi rate */
3435 		u_int16_t	timeOn;		/* LED on time (ms) */
3436 		u_int16_t	timeOff;	/* LED off time (ms) */
3437 	} blinkrates[] = {
3438 		{ IWI_RATE_OFDM54, 40,  10 },
3439 		{ IWI_RATE_OFDM48, 44,  11 },
3440 		{ IWI_RATE_OFDM36, 50,  13 },
3441 		{ IWI_RATE_OFDM24, 57,  14 },
3442 		{ IWI_RATE_OFDM18, 67,  16 },
3443 		{ IWI_RATE_OFDM12, 80,  20 },
3444 		{ IWI_RATE_DS11,  100,  25 },
3445 		{ IWI_RATE_OFDM9, 133,  34 },
3446 		{ IWI_RATE_OFDM6, 160,  40 },
3447 		{ IWI_RATE_DS5,   200,  50 },
3448 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3449 		{ IWI_RATE_DS2,   267,  66 },
3450 		{ IWI_RATE_DS1,   400, 100 },
3451 		{            0,   500, 130 },	/* unknown rate/polling */
3452 	};
3453 	uint32_t txrate;
3454 	int j = 0;			/* XXX silence compiler */
3455 
3456 	sc->sc_ledevent = ticks;	/* time of last event */
3457 	if (sc->sc_blinking)		/* don't interrupt active blink */
3458 		return;
3459 	switch (event) {
3460 	case IWI_LED_POLL:
3461 		j = N(blinkrates)-1;
3462 		break;
3463 	case IWI_LED_TX:
3464 		/* read current transmission rate from adapter */
3465 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3466 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3467 			for (j = 0; j < N(blinkrates)-1; j++)
3468 				if (blinkrates[j].rate == txrate)
3469 					break;
3470 			sc->sc_txrix = j;
3471 		} else
3472 			j = sc->sc_txrix;
3473 		break;
3474 	case IWI_LED_RX:
3475 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3476 			for (j = 0; j < N(blinkrates)-1; j++)
3477 				if (blinkrates[j].rate == sc->sc_rxrate)
3478 					break;
3479 			sc->sc_rxrix = j;
3480 		} else
3481 			j = sc->sc_rxrix;
3482 		break;
3483 	}
3484 	/* XXX beware of overflow */
3485 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3486 		(blinkrates[j].timeOff * hz) / 1000);
3487 #undef N
3488 }
3489 
3490 static int
3491 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3492 {
3493 	struct iwi_softc *sc = arg1;
3494 	int softled = sc->sc_softled;
3495 	int error;
3496 
3497 	error = sysctl_handle_int(oidp, &softled, 0, req);
3498 	if (error || !req->newptr)
3499 		return error;
3500 	softled = (softled != 0);
3501 	if (softled != sc->sc_softled) {
3502 		if (softled) {
3503 			uint32_t v = iwi_read_event(sc);
3504 			v &= ~sc->sc_ledpin;
3505 			iwi_write_event(sc, iwi_toggle_event(v));
3506 		}
3507 		sc->sc_softled = softled;
3508 	}
3509 	return 0;
3510 }
3511 
3512 static void
3513 iwi_ledattach(struct iwi_softc *sc)
3514 {
3515 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3516 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3517 
3518 	sc->sc_blinking = 0;
3519 	sc->sc_ledstate = 1;
3520 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3521 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3522 
3523 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3524 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3525 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3526 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3527 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3528 		"pin setting to turn activity LED on");
3529 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3530 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3531 		"idle time for inactivity LED (ticks)");
3532 	/* XXX for debugging */
3533 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3534 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3535 		"NIC type from EEPROM");
3536 
3537 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3538 	sc->sc_softled = 1;
3539 
3540 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3541 	if (sc->sc_nictype == 1) {
3542 		/*
3543 		 * NB: led's are reversed.
3544 		 */
3545 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3546 	}
3547 }
3548 
3549 static void
3550 iwi_scan_start(struct ieee80211com *ic)
3551 {
3552 	/* ignore */
3553 }
3554 
3555 static void
3556 iwi_set_channel(struct ieee80211com *ic)
3557 {
3558 	struct ifnet *ifp = ic->ic_ifp;
3559 	struct iwi_softc *sc = ifp->if_softc;
3560 	if (sc->fw_state == IWI_FW_IDLE)
3561 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3562 }
3563 
3564 static void
3565 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3566 {
3567 	struct ieee80211vap *vap = ss->ss_vap;
3568 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3569 	struct iwi_softc *sc = ifp->if_softc;
3570 	IWI_LOCK_DECL;
3571 
3572 	IWI_LOCK(sc);
3573 	if (iwi_scanchan(sc, maxdwell, 0))
3574 		ieee80211_cancel_scan(vap);
3575 	IWI_UNLOCK(sc);
3576 }
3577 
3578 static void
3579 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3580 {
3581 	/* NB: don't try to abort scan; wait for firmware to finish */
3582 }
3583 
3584 static void
3585 iwi_scan_end(struct ieee80211com *ic)
3586 {
3587 	struct ifnet *ifp = ic->ic_ifp;
3588 	struct iwi_softc *sc = ifp->if_softc;
3589 	IWI_LOCK_DECL;
3590 
3591 	IWI_LOCK(sc);
3592 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3593 	/* NB: make sure we're still scanning */
3594 	if (sc->fw_state == IWI_FW_SCANNING)
3595 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3596 	IWI_UNLOCK(sc);
3597 }
3598