1 /* $FreeBSD$ */ 2 /* 3 * Machine and OS Independent Target Mode Code for the Qlogic SCSI/FC adapters. 4 * 5 * Copyright (c) 1999, 2000, 2001 by Matthew Jacob 6 * All rights reserved. 7 * mjacob@feral.com 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice immediately at the beginning of the file, without modification, 14 * this list of conditions, and the following disclaimer. 15 * 2. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * Bug fixes gratefully acknowledged from: 33 * Oded Kedem <oded@kashya.com> 34 */ 35 /* 36 * Include header file appropriate for platform we're building on. 37 */ 38 39 #ifdef __NetBSD__ 40 #include <dev/ic/isp_netbsd.h> 41 #endif 42 #ifdef __FreeBSD__ 43 #include <dev/isp/isp_freebsd.h> 44 #endif 45 #ifdef __OpenBSD__ 46 #include <dev/ic/isp_openbsd.h> 47 #endif 48 #ifdef __linux__ 49 #include "isp_linux.h" 50 #endif 51 52 #ifdef ISP_TARGET_MODE 53 static const char atiocope[] = 54 "ATIO returned for lun %d because it was in the middle of Bus Device Reset " 55 "on bus %d"; 56 static const char atior[] = 57 "ATIO returned on for lun %d on from IID %d because a Bus Reset occurred " 58 "on bus %d"; 59 60 static void isp_got_msg(struct ispsoftc *, int, in_entry_t *); 61 static void isp_got_msg_fc(struct ispsoftc *, int, in_fcentry_t *); 62 static void isp_notify_ack(struct ispsoftc *, void *); 63 static void isp_handle_atio(struct ispsoftc *, at_entry_t *); 64 static void isp_handle_atio2(struct ispsoftc *, at2_entry_t *); 65 static void isp_handle_ctio(struct ispsoftc *, ct_entry_t *); 66 static void isp_handle_ctio2(struct ispsoftc *, ct2_entry_t *); 67 68 /* 69 * The Qlogic driver gets an interrupt to look at response queue entries. 70 * Some of these are status completions for initiatior mode commands, but 71 * if target mode is enabled, we get a whole wad of response queue entries 72 * to be handled here. 73 * 74 * Basically the split into 3 main groups: Lun Enable/Modification responses, 75 * SCSI Command processing, and Immediate Notification events. 76 * 77 * You start by writing a request queue entry to enable target mode (and 78 * establish some resource limitations which you can modify later). 79 * The f/w responds with a LUN ENABLE or LUN MODIFY response with 80 * the status of this action. If the enable was successful, you can expect... 81 * 82 * Response queue entries with SCSI commands encapsulate show up in an ATIO 83 * (Accept Target IO) type- sometimes with enough info to stop the command at 84 * this level. Ultimately the driver has to feed back to the f/w's request 85 * queue a sequence of CTIOs (continue target I/O) that describe data to 86 * be moved and/or status to be sent) and finally finishing with sending 87 * to the f/w's response queue an ATIO which then completes the handshake 88 * with the f/w for that command. There's a lot of variations on this theme, 89 * including flags you can set in the CTIO for the Qlogic 2X00 fibre channel 90 * cards that 'auto-replenish' the f/w's ATIO count, but this is the basic 91 * gist of it. 92 * 93 * The third group that can show up in the response queue are Immediate 94 * Notification events. These include things like notifications of SCSI bus 95 * resets, or Bus Device Reset messages or other messages received. This 96 * a classic oddbins area. It can get a little weird because you then turn 97 * around and acknowledge the Immediate Notify by writing an entry onto the 98 * request queue and then the f/w turns around and gives you an acknowledgement 99 * to *your* acknowledgement on the response queue (the idea being to let 100 * the f/w tell you when the event is *really* over I guess). 101 * 102 */ 103 104 105 /* 106 * A new response queue entry has arrived. The interrupt service code 107 * has already swizzled it into the platform dependent from canonical form. 108 * 109 * Because of the way this driver is designed, unfortunately most of the 110 * actual synchronization work has to be done in the platform specific 111 * code- we have no synchroniation primitives in the common code. 112 */ 113 114 int 115 isp_target_notify(struct ispsoftc *isp, void *vptr, u_int16_t *optrp) 116 { 117 u_int16_t status, seqid; 118 union { 119 at_entry_t *atiop; 120 at2_entry_t *at2iop; 121 ct_entry_t *ctiop; 122 ct2_entry_t *ct2iop; 123 lun_entry_t *lunenp; 124 in_entry_t *inotp; 125 in_fcentry_t *inot_fcp; 126 na_entry_t *nackp; 127 na_fcentry_t *nack_fcp; 128 isphdr_t *hp; 129 void * *vp; 130 #define atiop unp.atiop 131 #define at2iop unp.at2iop 132 #define ctiop unp.ctiop 133 #define ct2iop unp.ct2iop 134 #define lunenp unp.lunenp 135 #define inotp unp.inotp 136 #define inot_fcp unp.inot_fcp 137 #define nackp unp.nackp 138 #define nack_fcp unp.nack_fcp 139 #define hdrp unp.hp 140 } unp; 141 u_int8_t local[QENTRY_LEN]; 142 int bus, type, rval = 1; 143 144 type = isp_get_response_type(isp, (isphdr_t *)vptr); 145 unp.vp = vptr; 146 147 ISP_TDQE(isp, "isp_target_notify", (int) *optrp, vptr); 148 149 switch(type) { 150 case RQSTYPE_ATIO: 151 isp_get_atio(isp, atiop, (at_entry_t *) local); 152 isp_handle_atio(isp, (at_entry_t *) local); 153 break; 154 case RQSTYPE_CTIO: 155 isp_get_ctio(isp, ctiop, (ct_entry_t *) local); 156 isp_handle_ctio(isp, (ct_entry_t *) local); 157 break; 158 case RQSTYPE_ATIO2: 159 isp_get_atio2(isp, at2iop, (at2_entry_t *) local); 160 isp_handle_atio2(isp, (at2_entry_t *) local); 161 break; 162 case RQSTYPE_CTIO2: 163 isp_get_ctio2(isp, ct2iop, (ct2_entry_t *) local); 164 isp_handle_ctio2(isp, (ct2_entry_t *) local); 165 break; 166 case RQSTYPE_ENABLE_LUN: 167 case RQSTYPE_MODIFY_LUN: 168 isp_get_enable_lun(isp, lunenp, (lun_entry_t *) local); 169 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, local); 170 break; 171 172 case RQSTYPE_NOTIFY: 173 /* 174 * Either the ISP received a SCSI message it can't 175 * handle, or it's returning an Immed. Notify entry 176 * we sent. We can send Immed. Notify entries to 177 * increment the firmware's resource count for them 178 * (we set this initially in the Enable Lun entry). 179 */ 180 bus = 0; 181 if (IS_FC(isp)) { 182 isp_get_notify_fc(isp, inot_fcp, (in_fcentry_t *)local); 183 inot_fcp = (in_fcentry_t *) local; 184 status = inot_fcp->in_status; 185 seqid = inot_fcp->in_seqid; 186 } else { 187 isp_get_notify(isp, inotp, (in_entry_t *)local); 188 inotp = (in_entry_t *) local; 189 status = inotp->in_status & 0xff; 190 seqid = inotp->in_seqid; 191 if (IS_DUALBUS(isp)) { 192 bus = GET_BUS_VAL(inotp->in_iid); 193 SET_BUS_VAL(inotp->in_iid, 0); 194 } 195 } 196 isp_prt(isp, ISP_LOGTDEBUG0, 197 "Immediate Notify On Bus %d, status=0x%x seqid=0x%x", 198 bus, status, seqid); 199 200 /* 201 * ACK it right away. 202 */ 203 isp_notify_ack(isp, (status == IN_RESET)? NULL : local); 204 switch (status) { 205 case IN_RESET: 206 (void) isp_async(isp, ISPASYNC_BUS_RESET, &bus); 207 break; 208 case IN_MSG_RECEIVED: 209 case IN_IDE_RECEIVED: 210 if (IS_FC(isp)) { 211 isp_got_msg_fc(isp, bus, (in_fcentry_t *)local); 212 } else { 213 isp_got_msg(isp, bus, (in_entry_t *)local); 214 } 215 break; 216 case IN_RSRC_UNAVAIL: 217 isp_prt(isp, ISP_LOGWARN, "Firmware out of ATIOs"); 218 break; 219 case IN_PORT_LOGOUT: 220 case IN_ABORT_TASK: 221 case IN_PORT_CHANGED: 222 case IN_GLOBAL_LOGO: 223 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, &local); 224 break; 225 default: 226 isp_prt(isp, ISP_LOGERR, 227 "bad status (0x%x) in isp_target_notify", status); 228 break; 229 } 230 break; 231 232 case RQSTYPE_NOTIFY_ACK: 233 /* 234 * The ISP is acknowledging our acknowledgement of an 235 * Immediate Notify entry for some asynchronous event. 236 */ 237 if (IS_FC(isp)) { 238 isp_get_notify_ack_fc(isp, nack_fcp, 239 (na_fcentry_t *)local); 240 nack_fcp = (na_fcentry_t *)local; 241 isp_prt(isp, ISP_LOGTDEBUG1, 242 "Notify Ack status=0x%x seqid 0x%x", 243 nack_fcp->na_status, nack_fcp->na_seqid); 244 } else { 245 isp_get_notify_ack(isp, nackp, (na_entry_t *)local); 246 nackp = (na_entry_t *)local; 247 isp_prt(isp, ISP_LOGTDEBUG1, 248 "Notify Ack event 0x%x status=0x%x seqid 0x%x", 249 nackp->na_event, nackp->na_status, nackp->na_seqid); 250 } 251 break; 252 default: 253 isp_prt(isp, ISP_LOGERR, 254 "Unknown entry type 0x%x in isp_target_notify", type); 255 rval = 0; 256 break; 257 } 258 #undef atiop 259 #undef at2iop 260 #undef ctiop 261 #undef ct2iop 262 #undef lunenp 263 #undef inotp 264 #undef inot_fcp 265 #undef nackp 266 #undef nack_fcp 267 #undef hdrp 268 return (rval); 269 } 270 271 272 /* 273 * Toggle (on/off) target mode for bus/target/lun 274 * 275 * The caller has checked for overlap and legality. 276 * 277 * Note that not all of bus, target or lun can be paid attention to. 278 * Note also that this action will not be complete until the f/w writes 279 * response entry. The caller is responsible for synchronizing this. 280 */ 281 int 282 isp_lun_cmd(struct ispsoftc *isp, int cmd, int bus, int tgt, int lun, 283 int cmd_cnt, int inot_cnt, u_int32_t opaque) 284 { 285 lun_entry_t el; 286 u_int16_t nxti, optr; 287 void *outp; 288 289 290 MEMZERO(&el, sizeof (el)); 291 if (IS_DUALBUS(isp)) { 292 el.le_rsvd = (bus & 0x1) << 7; 293 } 294 el.le_cmd_count = cmd_cnt; 295 el.le_in_count = inot_cnt; 296 if (cmd == RQSTYPE_ENABLE_LUN) { 297 if (IS_SCSI(isp)) { 298 el.le_flags = LUN_TQAE|LUN_DISAD; 299 el.le_cdb6len = 12; 300 el.le_cdb7len = 12; 301 } 302 } else if (cmd == -RQSTYPE_ENABLE_LUN) { 303 cmd = RQSTYPE_ENABLE_LUN; 304 el.le_cmd_count = 0; 305 el.le_in_count = 0; 306 } else if (cmd == -RQSTYPE_MODIFY_LUN) { 307 cmd = RQSTYPE_MODIFY_LUN; 308 el.le_ops = LUN_CCDECR | LUN_INDECR; 309 } else { 310 el.le_ops = LUN_CCINCR | LUN_ININCR; 311 } 312 el.le_header.rqs_entry_type = cmd; 313 el.le_header.rqs_entry_count = 1; 314 el.le_reserved = opaque; 315 if (IS_SCSI(isp)) { 316 el.le_tgt = tgt; 317 el.le_lun = lun; 318 } else if ((FCPARAM(isp)->isp_fwattr & ISP_FW_ATTR_SCCLUN) == 0) { 319 el.le_lun = lun; 320 } 321 el.le_timeout = 2; 322 323 if (isp_getrqentry(isp, &nxti, &optr, &outp)) { 324 isp_prt(isp, ISP_LOGERR, 325 "Request Queue Overflow in isp_lun_cmd"); 326 return (-1); 327 } 328 ISP_TDQE(isp, "isp_lun_cmd", (int) optr, &el); 329 isp_put_enable_lun(isp, &el, outp); 330 ISP_ADD_REQUEST(isp, nxti); 331 return (0); 332 } 333 334 335 int 336 isp_target_put_entry(struct ispsoftc *isp, void *ap) 337 { 338 void *outp; 339 u_int16_t nxti, optr; 340 u_int8_t etype = ((isphdr_t *) ap)->rqs_entry_type; 341 342 if (isp_getrqentry(isp, &nxti, &optr, &outp)) { 343 isp_prt(isp, ISP_LOGWARN, 344 "Request Queue Overflow in isp_target_put_entry"); 345 return (-1); 346 } 347 switch (etype) { 348 case RQSTYPE_ATIO: 349 isp_put_atio(isp, (at_entry_t *) ap, (at_entry_t *) outp); 350 break; 351 case RQSTYPE_ATIO2: 352 isp_put_atio2(isp, (at2_entry_t *) ap, (at2_entry_t *) outp); 353 break; 354 case RQSTYPE_CTIO: 355 isp_put_ctio(isp, (ct_entry_t *) ap, (ct_entry_t *) outp); 356 break; 357 case RQSTYPE_CTIO2: 358 isp_put_ctio2(isp, (ct2_entry_t *) ap, (ct2_entry_t *) outp); 359 break; 360 default: 361 isp_prt(isp, ISP_LOGERR, 362 "Unknown type 0x%x in isp_put_entry", etype); 363 return (-1); 364 } 365 366 ISP_TDQE(isp, "isp_target_put_entry", (int) optr, ap);; 367 ISP_ADD_REQUEST(isp, nxti); 368 return (0); 369 } 370 371 int 372 isp_target_put_atio(struct ispsoftc *isp, void *arg) 373 { 374 union { 375 at_entry_t _atio; 376 at2_entry_t _atio2; 377 } atun; 378 379 MEMZERO(&atun, sizeof atun); 380 if (IS_FC(isp)) { 381 at2_entry_t *aep = arg; 382 atun._atio2.at_header.rqs_entry_type = RQSTYPE_ATIO2; 383 atun._atio2.at_header.rqs_entry_count = 1; 384 if (FCPARAM(isp)->isp_fwattr & ISP_FW_ATTR_SCCLUN) { 385 atun._atio2.at_scclun = (u_int16_t) aep->at_scclun; 386 } else { 387 atun._atio2.at_lun = (u_int8_t) aep->at_lun; 388 } 389 atun._atio2.at_status = CT_OK; 390 } else { 391 at_entry_t *aep = arg; 392 atun._atio.at_header.rqs_entry_type = RQSTYPE_ATIO; 393 atun._atio.at_header.rqs_entry_count = 1; 394 atun._atio.at_handle = aep->at_handle; 395 atun._atio.at_iid = aep->at_iid; 396 atun._atio.at_tgt = aep->at_tgt; 397 atun._atio.at_lun = aep->at_lun; 398 atun._atio.at_tag_type = aep->at_tag_type; 399 atun._atio.at_tag_val = aep->at_tag_val; 400 atun._atio.at_status = (aep->at_flags & AT_TQAE); 401 atun._atio.at_status |= CT_OK; 402 } 403 return (isp_target_put_entry(isp, &atun)); 404 } 405 406 /* 407 * Command completion- both for handling cases of no resources or 408 * no blackhole driver, or other cases where we have to, inline, 409 * finish the command sanely, or for normal command completion. 410 * 411 * The 'completion' code value has the scsi status byte in the low 8 bits. 412 * If status is a CHECK CONDITION and bit 8 is nonzero, then bits 12..15 have 413 * the sense key and bits 16..23 have the ASCQ and bits 24..31 have the ASC 414 * values. 415 * 416 * NB: the key, asc, ascq, cannot be used for parallel SCSI as it doesn't 417 * NB: inline SCSI sense reporting. As such, we lose this information. XXX. 418 * 419 * For both parallel && fibre channel, we use the feature that does 420 * an automatic resource autoreplenish so we don't have then later do 421 * put of an atio to replenish the f/w's resource count. 422 */ 423 424 int 425 isp_endcmd(struct ispsoftc *isp, void *arg, u_int32_t code, u_int16_t hdl) 426 { 427 int sts; 428 union { 429 ct_entry_t _ctio; 430 ct2_entry_t _ctio2; 431 } un; 432 433 MEMZERO(&un, sizeof un); 434 sts = code & 0xff; 435 436 if (IS_FC(isp)) { 437 at2_entry_t *aep = arg; 438 ct2_entry_t *cto = &un._ctio2; 439 440 cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2; 441 cto->ct_header.rqs_entry_count = 1; 442 cto->ct_iid = aep->at_iid; 443 if ((FCPARAM(isp)->isp_fwattr & ISP_FW_ATTR_SCCLUN) == 0) { 444 cto->ct_lun = aep->at_lun; 445 } 446 cto->ct_rxid = aep->at_rxid; 447 cto->rsp.m1.ct_scsi_status = sts & 0xff; 448 cto->ct_flags = CT2_SENDSTATUS | CT2_NO_DATA | CT2_FLAG_MODE1; 449 if (hdl == 0) { 450 cto->ct_flags |= CT2_CCINCR; 451 } 452 if (aep->at_datalen) { 453 cto->ct_resid = aep->at_datalen; 454 cto->rsp.m1.ct_scsi_status |= CT2_DATA_UNDER; 455 } 456 if ((sts & 0xff) == SCSI_CHECK && (sts & ECMD_SVALID)) { 457 cto->rsp.m1.ct_resp[0] = 0xf0; 458 cto->rsp.m1.ct_resp[2] = (code >> 12) & 0xf; 459 cto->rsp.m1.ct_resp[7] = 8; 460 cto->rsp.m1.ct_resp[12] = (code >> 24) & 0xff; 461 cto->rsp.m1.ct_resp[13] = (code >> 16) & 0xff; 462 cto->rsp.m1.ct_senselen = 16; 463 cto->rsp.m1.ct_scsi_status |= CT2_SNSLEN_VALID; 464 } 465 cto->ct_syshandle = hdl; 466 } else { 467 at_entry_t *aep = arg; 468 ct_entry_t *cto = &un._ctio; 469 470 cto->ct_header.rqs_entry_type = RQSTYPE_CTIO; 471 cto->ct_header.rqs_entry_count = 1; 472 cto->ct_fwhandle = aep->at_handle; 473 cto->ct_iid = aep->at_iid; 474 cto->ct_tgt = aep->at_tgt; 475 cto->ct_lun = aep->at_lun; 476 cto->ct_tag_type = aep->at_tag_type; 477 cto->ct_tag_val = aep->at_tag_val; 478 if (aep->at_flags & AT_TQAE) { 479 cto->ct_flags |= CT_TQAE; 480 } 481 cto->ct_flags = CT_SENDSTATUS | CT_NO_DATA; 482 if (hdl == 0) { 483 cto->ct_flags |= CT_CCINCR; 484 } 485 cto->ct_scsi_status = sts; 486 cto->ct_syshandle = hdl; 487 } 488 return (isp_target_put_entry(isp, &un)); 489 } 490 491 int 492 isp_target_async(struct ispsoftc *isp, int bus, int event) 493 { 494 tmd_event_t evt; 495 tmd_msg_t msg; 496 497 switch (event) { 498 /* 499 * These three we handle here to propagate an effective bus reset 500 * upstream, but these do not require any immediate notify actions 501 * so we return when done. 502 */ 503 case ASYNC_LIP_F8: 504 case ASYNC_LIP_OCCURRED: 505 case ASYNC_LOOP_UP: 506 case ASYNC_LOOP_DOWN: 507 case ASYNC_LOOP_RESET: 508 case ASYNC_PTPMODE: 509 /* 510 * These don't require any immediate notify actions. We used 511 * treat them like SCSI Bus Resets, but that was just plain 512 * wrong. Let the normal CTIO completion report what occurred. 513 */ 514 return (0); 515 516 case ASYNC_BUS_RESET: 517 case ASYNC_TIMEOUT_RESET: 518 if (IS_FC(isp)) { 519 return (0); /* we'll be getting an inotify instead */ 520 } 521 evt.ev_bus = bus; 522 evt.ev_event = event; 523 (void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt); 524 break; 525 case ASYNC_DEVICE_RESET: 526 /* 527 * Bus Device Reset resets a specific target, so 528 * we pass this as a synthesized message. 529 */ 530 MEMZERO(&msg, sizeof msg); 531 if (IS_FC(isp)) { 532 msg.nt_iid = FCPARAM(isp)->isp_loopid; 533 } else { 534 msg.nt_iid = SDPARAM(isp)->isp_initiator_id; 535 } 536 msg.nt_bus = bus; 537 msg.nt_msg[0] = MSG_BUS_DEV_RESET; 538 (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg); 539 break; 540 default: 541 isp_prt(isp, ISP_LOGERR, 542 "isp_target_async: unknown event 0x%x", event); 543 break; 544 } 545 if (isp->isp_state == ISP_RUNSTATE) 546 isp_notify_ack(isp, NULL); 547 return(0); 548 } 549 550 551 /* 552 * Process a received message. 553 * The ISP firmware can handle most messages, there are only 554 * a few that we need to deal with: 555 * - abort: clean up the current command 556 * - abort tag and clear queue 557 */ 558 559 static void 560 isp_got_msg(struct ispsoftc *isp, int bus, in_entry_t *inp) 561 { 562 u_int8_t status = inp->in_status & ~QLTM_SVALID; 563 564 if (status == IN_IDE_RECEIVED || status == IN_MSG_RECEIVED) { 565 tmd_msg_t msg; 566 567 MEMZERO(&msg, sizeof (msg)); 568 msg.nt_bus = bus; 569 msg.nt_iid = inp->in_iid; 570 msg.nt_tgt = inp->in_tgt; 571 msg.nt_lun = inp->in_lun; 572 msg.nt_tagtype = inp->in_tag_type; 573 msg.nt_tagval = inp->in_tag_val; 574 MEMCPY(msg.nt_msg, inp->in_msg, IN_MSGLEN); 575 (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg); 576 } else { 577 isp_prt(isp, ISP_LOGERR, 578 "unknown immediate notify status 0x%x", inp->in_status); 579 } 580 } 581 582 /* 583 * Synthesize a message from the task management flags in a FCP_CMND_IU. 584 */ 585 static void 586 isp_got_msg_fc(struct ispsoftc *isp, int bus, in_fcentry_t *inp) 587 { 588 int lun; 589 static const char f1[] = "%s from iid %d lun %d seq 0x%x"; 590 static const char f2[] = 591 "unknown %s 0x%x lun %d iid %d task flags 0x%x seq 0x%x\n"; 592 593 if (FCPARAM(isp)->isp_fwattr & ISP_FW_ATTR_SCCLUN) { 594 lun = inp->in_scclun; 595 } else { 596 lun = inp->in_lun; 597 } 598 599 if (inp->in_status != IN_MSG_RECEIVED) { 600 isp_prt(isp, ISP_LOGINFO, f2, "immediate notify status", 601 inp->in_status, lun, inp->in_iid, 602 inp->in_task_flags, inp->in_seqid); 603 } else { 604 tmd_msg_t msg; 605 606 MEMZERO(&msg, sizeof (msg)); 607 msg.nt_bus = bus; 608 msg.nt_iid = inp->in_iid; 609 msg.nt_tagval = inp->in_seqid; 610 msg.nt_lun = lun; 611 612 if (inp->in_task_flags & TASK_FLAGS_ABORT_TASK) { 613 isp_prt(isp, ISP_LOGINFO, f1, "ABORT TASK", 614 inp->in_iid, msg.nt_lun, inp->in_seqid); 615 msg.nt_msg[0] = MSG_ABORT_TAG; 616 } else if (inp->in_task_flags & TASK_FLAGS_CLEAR_TASK_SET) { 617 isp_prt(isp, ISP_LOGINFO, f1, "CLEAR TASK SET", 618 inp->in_iid, msg.nt_lun, inp->in_seqid); 619 msg.nt_msg[0] = MSG_CLEAR_QUEUE; 620 } else if (inp->in_task_flags & TASK_FLAGS_TARGET_RESET) { 621 isp_prt(isp, ISP_LOGINFO, f1, "TARGET RESET", 622 inp->in_iid, msg.nt_lun, inp->in_seqid); 623 msg.nt_msg[0] = MSG_BUS_DEV_RESET; 624 } else if (inp->in_task_flags & TASK_FLAGS_CLEAR_ACA) { 625 isp_prt(isp, ISP_LOGINFO, f1, "CLEAR ACA", 626 inp->in_iid, msg.nt_lun, inp->in_seqid); 627 /* ???? */ 628 msg.nt_msg[0] = MSG_REL_RECOVERY; 629 } else if (inp->in_task_flags & TASK_FLAGS_TERMINATE_TASK) { 630 isp_prt(isp, ISP_LOGINFO, f1, "TERMINATE TASK", 631 inp->in_iid, msg.nt_lun, inp->in_seqid); 632 msg.nt_msg[0] = MSG_TERM_IO_PROC; 633 } else { 634 isp_prt(isp, ISP_LOGWARN, f2, "task flag", 635 inp->in_status, msg.nt_lun, inp->in_iid, 636 inp->in_task_flags, inp->in_seqid); 637 } 638 if (msg.nt_msg[0]) { 639 (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg); 640 } 641 } 642 } 643 644 static void 645 isp_notify_ack(struct ispsoftc *isp, void *arg) 646 { 647 char storage[QENTRY_LEN]; 648 u_int16_t nxti, optr; 649 void *outp; 650 651 if (isp_getrqentry(isp, &nxti, &optr, &outp)) { 652 isp_prt(isp, ISP_LOGWARN, 653 "Request Queue Overflow For isp_notify_ack"); 654 return; 655 } 656 657 MEMZERO(storage, QENTRY_LEN); 658 659 if (IS_FC(isp)) { 660 na_fcentry_t *na = (na_fcentry_t *) storage; 661 if (arg) { 662 in_fcentry_t *inp = arg; 663 MEMCPY(storage, arg, sizeof (isphdr_t)); 664 na->na_iid = inp->in_iid; 665 if (FCPARAM(isp)->isp_fwattr & ISP_FW_ATTR_SCCLUN) { 666 na->na_lun = inp->in_scclun; 667 } else { 668 na->na_lun = inp->in_lun; 669 } 670 na->na_task_flags = inp->in_task_flags; 671 na->na_seqid = inp->in_seqid; 672 na->na_flags = NAFC_RCOUNT; 673 na->na_status = inp->in_status; 674 if (inp->in_status == IN_RESET) { 675 na->na_flags |= NAFC_RST_CLRD; 676 } 677 } else { 678 na->na_flags = NAFC_RST_CLRD; 679 } 680 na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK; 681 na->na_header.rqs_entry_count = 1; 682 isp_put_notify_ack_fc(isp, na, (na_fcentry_t *)outp); 683 } else { 684 na_entry_t *na = (na_entry_t *) storage; 685 if (arg) { 686 in_entry_t *inp = arg; 687 MEMCPY(storage, arg, sizeof (isphdr_t)); 688 na->na_iid = inp->in_iid; 689 na->na_lun = inp->in_lun; 690 na->na_tgt = inp->in_tgt; 691 na->na_seqid = inp->in_seqid; 692 if (inp->in_status == IN_RESET) { 693 na->na_event = NA_RST_CLRD; 694 } 695 } else { 696 na->na_event = NA_RST_CLRD; 697 } 698 na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK; 699 na->na_header.rqs_entry_count = 1; 700 isp_put_notify_ack(isp, na, (na_entry_t *)outp); 701 } 702 ISP_TDQE(isp, "isp_notify_ack", (int) optr, storage); 703 ISP_ADD_REQUEST(isp, nxti); 704 } 705 706 static void 707 isp_handle_atio(struct ispsoftc *isp, at_entry_t *aep) 708 { 709 int lun; 710 lun = aep->at_lun; 711 /* 712 * The firmware status (except for the QLTM_SVALID bit) indicates 713 * why this ATIO was sent to us. 714 * 715 * If QLTM_SVALID is set, the firware has recommended Sense Data. 716 * 717 * If the DISCONNECTS DISABLED bit is set in the flags field, 718 * we're still connected on the SCSI bus - i.e. the initiator 719 * did not set DiscPriv in the identify message. We don't care 720 * about this so it's ignored. 721 */ 722 723 switch(aep->at_status & ~QLTM_SVALID) { 724 case AT_PATH_INVALID: 725 /* 726 * ATIO rejected by the firmware due to disabled lun. 727 */ 728 isp_prt(isp, ISP_LOGERR, 729 "rejected ATIO for disabled lun %d", lun); 730 break; 731 case AT_NOCAP: 732 /* 733 * Requested Capability not available 734 * We sent an ATIO that overflowed the firmware's 735 * command resource count. 736 */ 737 isp_prt(isp, ISP_LOGERR, 738 "rejected ATIO for lun %d because of command count" 739 " overflow", lun); 740 break; 741 742 case AT_BDR_MSG: 743 /* 744 * If we send an ATIO to the firmware to increment 745 * its command resource count, and the firmware is 746 * recovering from a Bus Device Reset, it returns 747 * the ATIO with this status. We set the command 748 * resource count in the Enable Lun entry and do 749 * not increment it. Therefore we should never get 750 * this status here. 751 */ 752 isp_prt(isp, ISP_LOGERR, atiocope, lun, 753 GET_BUS_VAL(aep->at_iid)); 754 break; 755 756 case AT_CDB: /* Got a CDB */ 757 case AT_PHASE_ERROR: /* Bus Phase Sequence Error */ 758 /* 759 * Punt to platform specific layer. 760 */ 761 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep); 762 break; 763 764 case AT_RESET: 765 /* 766 * A bus reset came along an blew away this command. Why 767 * they do this in addition the async event code stuff, 768 * I dunno. 769 * 770 * Ignore it because the async event will clear things 771 * up for us. 772 */ 773 isp_prt(isp, ISP_LOGWARN, atior, lun, 774 GET_IID_VAL(aep->at_iid), GET_BUS_VAL(aep->at_iid)); 775 break; 776 777 778 default: 779 isp_prt(isp, ISP_LOGERR, 780 "Unknown ATIO status 0x%x from initiator %d for lun %d", 781 aep->at_status, aep->at_iid, lun); 782 (void) isp_target_put_atio(isp, aep); 783 break; 784 } 785 } 786 787 static void 788 isp_handle_atio2(struct ispsoftc *isp, at2_entry_t *aep) 789 { 790 int lun; 791 792 if (FCPARAM(isp)->isp_fwattr & ISP_FW_ATTR_SCCLUN) { 793 lun = aep->at_scclun; 794 } else { 795 lun = aep->at_lun; 796 } 797 798 /* 799 * The firmware status (except for the QLTM_SVALID bit) indicates 800 * why this ATIO was sent to us. 801 * 802 * If QLTM_SVALID is set, the firware has recommended Sense Data. 803 * 804 * If the DISCONNECTS DISABLED bit is set in the flags field, 805 * we're still connected on the SCSI bus - i.e. the initiator 806 * did not set DiscPriv in the identify message. We don't care 807 * about this so it's ignored. 808 */ 809 810 switch(aep->at_status & ~QLTM_SVALID) { 811 case AT_PATH_INVALID: 812 /* 813 * ATIO rejected by the firmware due to disabled lun. 814 */ 815 isp_prt(isp, ISP_LOGERR, 816 "rejected ATIO2 for disabled lun %d", lun); 817 break; 818 case AT_NOCAP: 819 /* 820 * Requested Capability not available 821 * We sent an ATIO that overflowed the firmware's 822 * command resource count. 823 */ 824 isp_prt(isp, ISP_LOGERR, 825 "rejected ATIO2 for lun %d- command count overflow", lun); 826 break; 827 828 case AT_BDR_MSG: 829 /* 830 * If we send an ATIO to the firmware to increment 831 * its command resource count, and the firmware is 832 * recovering from a Bus Device Reset, it returns 833 * the ATIO with this status. We set the command 834 * resource count in the Enable Lun entry and no 835 * not increment it. Therefore we should never get 836 * this status here. 837 */ 838 isp_prt(isp, ISP_LOGERR, atiocope, lun, 0); 839 break; 840 841 case AT_CDB: /* Got a CDB */ 842 /* 843 * Punt to platform specific layer. 844 */ 845 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep); 846 break; 847 848 case AT_RESET: 849 /* 850 * A bus reset came along an blew away this command. Why 851 * they do this in addition the async event code stuff, 852 * I dunno. 853 * 854 * Ignore it because the async event will clear things 855 * up for us. 856 */ 857 isp_prt(isp, ISP_LOGERR, atior, lun, aep->at_iid, 0); 858 break; 859 860 861 default: 862 isp_prt(isp, ISP_LOGERR, 863 "Unknown ATIO2 status 0x%x from initiator %d for lun %d", 864 aep->at_status, aep->at_iid, lun); 865 (void) isp_target_put_atio(isp, aep); 866 break; 867 } 868 } 869 870 static void 871 isp_handle_ctio(struct ispsoftc *isp, ct_entry_t *ct) 872 { 873 void *xs; 874 int pl = ISP_LOGTDEBUG2; 875 char *fmsg = NULL; 876 877 if (ct->ct_syshandle) { 878 xs = isp_find_xs(isp, ct->ct_syshandle); 879 if (xs == NULL) 880 pl = ISP_LOGALL; 881 } else { 882 xs = NULL; 883 } 884 885 switch(ct->ct_status & ~QLTM_SVALID) { 886 case CT_OK: 887 /* 888 * There are generally 3 possibilities as to why we'd get 889 * this condition: 890 * We disconnected after receiving a CDB. 891 * We sent or received data. 892 * We sent status & command complete. 893 */ 894 895 if (ct->ct_flags & CT_SENDSTATUS) { 896 break; 897 } else if ((ct->ct_flags & CT_DATAMASK) == CT_NO_DATA) { 898 /* 899 * Nothing to do in this case. 900 */ 901 isp_prt(isp, pl, "CTIO- iid %d disconnected OK", 902 ct->ct_iid); 903 return; 904 } 905 break; 906 907 case CT_BDR_MSG: 908 /* 909 * Bus Device Reset message received or the SCSI Bus has 910 * been Reset; the firmware has gone to Bus Free. 911 * 912 * The firmware generates an async mailbox interupt to 913 * notify us of this and returns outstanding CTIOs with this 914 * status. These CTIOs are handled in that same way as 915 * CT_ABORTED ones, so just fall through here. 916 */ 917 fmsg = "Bus Device Reset"; 918 /*FALLTHROUGH*/ 919 case CT_RESET: 920 if (fmsg == NULL) 921 fmsg = "Bus Reset"; 922 /*FALLTHROUGH*/ 923 case CT_ABORTED: 924 /* 925 * When an Abort message is received the firmware goes to 926 * Bus Free and returns all outstanding CTIOs with the status 927 * set, then sends us an Immediate Notify entry. 928 */ 929 if (fmsg == NULL) 930 fmsg = "ABORT TAG message sent by Initiator"; 931 932 isp_prt(isp, ISP_LOGWARN, "CTIO destroyed by %s", fmsg); 933 break; 934 935 case CT_INVAL: 936 /* 937 * CTIO rejected by the firmware due to disabled lun. 938 * "Cannot Happen". 939 */ 940 isp_prt(isp, ISP_LOGERR, 941 "Firmware rejected CTIO for disabled lun %d", 942 ct->ct_lun); 943 break; 944 945 case CT_NOPATH: 946 /* 947 * CTIO rejected by the firmware due "no path for the 948 * nondisconnecting nexus specified". This means that 949 * we tried to access the bus while a non-disconnecting 950 * command is in process. 951 */ 952 isp_prt(isp, ISP_LOGERR, 953 "Firmware rejected CTIO for bad nexus %d/%d/%d", 954 ct->ct_iid, ct->ct_tgt, ct->ct_lun); 955 break; 956 957 case CT_RSELTMO: 958 fmsg = "Reselection"; 959 /*FALLTHROUGH*/ 960 case CT_TIMEOUT: 961 if (fmsg == NULL) 962 fmsg = "Command"; 963 isp_prt(isp, ISP_LOGERR, "Firmware timed out on %s", fmsg); 964 break; 965 966 case CT_PANIC: 967 if (fmsg == NULL) 968 fmsg = "Unrecoverable Error"; 969 /*FALLTHROUGH*/ 970 case CT_ERR: 971 if (fmsg == NULL) 972 fmsg = "Completed with Error"; 973 /*FALLTHROUGH*/ 974 case CT_PHASE_ERROR: 975 if (fmsg == NULL) 976 fmsg = "Phase Sequence Error"; 977 /*FALLTHROUGH*/ 978 case CT_TERMINATED: 979 if (fmsg == NULL) 980 fmsg = "terminated by TERMINATE TRANSFER"; 981 /*FALLTHROUGH*/ 982 case CT_NOACK: 983 if (fmsg == NULL) 984 fmsg = "unacknowledged Immediate Notify pending"; 985 isp_prt(isp, ISP_LOGERR, "CTIO returned by f/w- %s", fmsg); 986 break; 987 default: 988 isp_prt(isp, ISP_LOGERR, "Unknown CTIO status 0x%x", 989 ct->ct_status & ~QLTM_SVALID); 990 break; 991 } 992 993 if (xs == NULL) { 994 /* 995 * There may be more than one CTIO for a data transfer, 996 * or this may be a status CTIO we're not monitoring. 997 * 998 * The assumption is that they'll all be returned in the 999 * order we got them. 1000 */ 1001 if (ct->ct_syshandle == 0) { 1002 if ((ct->ct_flags & CT_SENDSTATUS) == 0) { 1003 isp_prt(isp, pl, 1004 "intermediate CTIO completed ok"); 1005 } else { 1006 isp_prt(isp, pl, 1007 "unmonitored CTIO completed ok"); 1008 } 1009 } else { 1010 isp_prt(isp, pl, 1011 "NO xs for CTIO (handle 0x%x) status 0x%x", 1012 ct->ct_syshandle, ct->ct_status & ~QLTM_SVALID); 1013 } 1014 } else { 1015 /* 1016 * Final CTIO completed. Release DMA resources and 1017 * notify platform dependent layers. 1018 */ 1019 if ((ct->ct_flags & CT_DATAMASK) != CT_NO_DATA) { 1020 ISP_DMAFREE(isp, xs, ct->ct_syshandle); 1021 } 1022 isp_prt(isp, pl, "final CTIO complete"); 1023 /* 1024 * The platform layer will destroy the handle if appropriate. 1025 */ 1026 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct); 1027 } 1028 } 1029 1030 static void 1031 isp_handle_ctio2(struct ispsoftc *isp, ct2_entry_t *ct) 1032 { 1033 XS_T *xs; 1034 int pl = ISP_LOGTDEBUG2; 1035 char *fmsg = NULL; 1036 1037 if (ct->ct_syshandle) { 1038 xs = isp_find_xs(isp, ct->ct_syshandle); 1039 if (xs == NULL) 1040 pl = ISP_LOGALL; 1041 } else { 1042 xs = NULL; 1043 } 1044 1045 switch(ct->ct_status & ~QLTM_SVALID) { 1046 case CT_BUS_ERROR: 1047 isp_prt(isp, ISP_LOGERR, "PCI DMA Bus Error"); 1048 /* FALL Through */ 1049 case CT_DATA_OVER: 1050 case CT_DATA_UNDER: 1051 case CT_OK: 1052 /* 1053 * There are generally 2 possibilities as to why we'd get 1054 * this condition: 1055 * We sent or received data. 1056 * We sent status & command complete. 1057 */ 1058 1059 break; 1060 1061 case CT_BDR_MSG: 1062 /* 1063 * Target Reset function received. 1064 * 1065 * The firmware generates an async mailbox interupt to 1066 * notify us of this and returns outstanding CTIOs with this 1067 * status. These CTIOs are handled in that same way as 1068 * CT_ABORTED ones, so just fall through here. 1069 */ 1070 fmsg = "TARGET RESET Task Management Function Received"; 1071 /*FALLTHROUGH*/ 1072 case CT_RESET: 1073 if (fmsg == NULL) 1074 fmsg = "LIP Reset"; 1075 /*FALLTHROUGH*/ 1076 case CT_ABORTED: 1077 /* 1078 * When an Abort message is received the firmware goes to 1079 * Bus Free and returns all outstanding CTIOs with the status 1080 * set, then sends us an Immediate Notify entry. 1081 */ 1082 if (fmsg == NULL) 1083 fmsg = "ABORT Task Management Function Received"; 1084 1085 isp_prt(isp, ISP_LOGERR, "CTIO2 destroyed by %s", fmsg); 1086 break; 1087 1088 case CT_INVAL: 1089 /* 1090 * CTIO rejected by the firmware - invalid data direction. 1091 */ 1092 isp_prt(isp, ISP_LOGERR, "CTIO2 had wrong data directiond"); 1093 break; 1094 1095 case CT_RSELTMO: 1096 fmsg = "failure to reconnect to initiator"; 1097 /*FALLTHROUGH*/ 1098 case CT_TIMEOUT: 1099 if (fmsg == NULL) 1100 fmsg = "command"; 1101 isp_prt(isp, ISP_LOGERR, "Firmware timed out on %s", fmsg); 1102 break; 1103 1104 case CT_ERR: 1105 fmsg = "Completed with Error"; 1106 /*FALLTHROUGH*/ 1107 case CT_LOGOUT: 1108 if (fmsg == NULL) 1109 fmsg = "Port Logout"; 1110 /*FALLTHROUGH*/ 1111 case CT_PORTNOTAVAIL: 1112 if (fmsg == NULL) 1113 fmsg = "Port not available"; 1114 case CT_PORTCHANGED: 1115 if (fmsg == NULL) 1116 fmsg = "Port Changed"; 1117 case CT_NOACK: 1118 if (fmsg == NULL) 1119 fmsg = "unacknowledged Immediate Notify pending"; 1120 isp_prt(isp, ISP_LOGERR, "CTIO returned by f/w- %s", fmsg); 1121 break; 1122 1123 case CT_INVRXID: 1124 /* 1125 * CTIO rejected by the firmware because an invalid RX_ID. 1126 * Just print a message. 1127 */ 1128 isp_prt(isp, ISP_LOGERR, 1129 "CTIO2 completed with Invalid RX_ID 0x%x", ct->ct_rxid); 1130 break; 1131 1132 default: 1133 isp_prt(isp, ISP_LOGERR, "Unknown CTIO2 status 0x%x", 1134 ct->ct_status & ~QLTM_SVALID); 1135 break; 1136 } 1137 1138 if (xs == NULL) { 1139 /* 1140 * There may be more than one CTIO for a data transfer, 1141 * or this may be a status CTIO we're not monitoring. 1142 * 1143 * The assumption is that they'll all be returned in the 1144 * order we got them. 1145 */ 1146 if (ct->ct_syshandle == 0) { 1147 if ((ct->ct_flags & CT_SENDSTATUS) == 0) { 1148 isp_prt(isp, pl, 1149 "intermediate CTIO completed ok"); 1150 } else { 1151 isp_prt(isp, pl, 1152 "unmonitored CTIO completed ok"); 1153 } 1154 } else { 1155 isp_prt(isp, pl, 1156 "NO xs for CTIO (handle 0x%x) status 0x%x", 1157 ct->ct_syshandle, ct->ct_status & ~QLTM_SVALID); 1158 } 1159 } else { 1160 if ((ct->ct_flags & CT2_DATAMASK) != CT2_NO_DATA) { 1161 ISP_DMAFREE(isp, xs, ct->ct_syshandle); 1162 } 1163 if (ct->ct_flags & CT_SENDSTATUS) { 1164 /* 1165 * Sent status and command complete. 1166 * 1167 * We're now really done with this command, so we 1168 * punt to the platform dependent layers because 1169 * only there can we do the appropriate command 1170 * complete thread synchronization. 1171 */ 1172 isp_prt(isp, pl, "status CTIO complete"); 1173 } else { 1174 /* 1175 * Final CTIO completed. Release DMA resources and 1176 * notify platform dependent layers. 1177 */ 1178 isp_prt(isp, pl, "data CTIO complete"); 1179 } 1180 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct); 1181 /* 1182 * The platform layer will destroy the handle if appropriate. 1183 */ 1184 } 1185 } 1186 #endif 1187