1 /* $FreeBSD$ */ 2 /* 3 * Machine and OS Independent Target Mode Code for the Qlogic SCSI/FC adapters. 4 * 5 * Copyright (c) 1999, 2000, 2001 by Matthew Jacob 6 * All rights reserved. 7 * mjacob@feral.com 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice immediately at the beginning of the file, without modification, 14 * this list of conditions, and the following disclaimer. 15 * 2. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * Bug fixes gratefully acknowledged from: 33 * Oded Kedem <oded@kashya.com> 34 */ 35 /* 36 * Include header file appropriate for platform we're building on. 37 */ 38 39 #ifdef __NetBSD__ 40 #include <dev/ic/isp_netbsd.h> 41 #endif 42 #ifdef __FreeBSD__ 43 #include <dev/isp/isp_freebsd.h> 44 #endif 45 #ifdef __OpenBSD__ 46 #include <dev/ic/isp_openbsd.h> 47 #endif 48 #ifdef __linux__ 49 #include "isp_linux.h" 50 #endif 51 52 #ifdef ISP_TARGET_MODE 53 static const char atiocope[] = 54 "ATIO returned for lun %d because it was in the middle of Bus Device Reset " 55 "on bus %d"; 56 static const char atior[] = 57 "ATIO returned on for lun %d on from IID %d because a Bus Reset occurred " 58 "on bus %d"; 59 60 static void isp_got_msg(struct ispsoftc *, int, in_entry_t *); 61 static void isp_got_msg_fc(struct ispsoftc *, int, in_fcentry_t *); 62 static void isp_notify_ack(struct ispsoftc *, void *); 63 static void isp_handle_atio(struct ispsoftc *, at_entry_t *); 64 static void isp_handle_atio2(struct ispsoftc *, at2_entry_t *); 65 static void isp_handle_ctio(struct ispsoftc *, ct_entry_t *); 66 static void isp_handle_ctio2(struct ispsoftc *, ct2_entry_t *); 67 68 /* 69 * The Qlogic driver gets an interrupt to look at response queue entries. 70 * Some of these are status completions for initiatior mode commands, but 71 * if target mode is enabled, we get a whole wad of response queue entries 72 * to be handled here. 73 * 74 * Basically the split into 3 main groups: Lun Enable/Modification responses, 75 * SCSI Command processing, and Immediate Notification events. 76 * 77 * You start by writing a request queue entry to enable target mode (and 78 * establish some resource limitations which you can modify later). 79 * The f/w responds with a LUN ENABLE or LUN MODIFY response with 80 * the status of this action. If the enable was successful, you can expect... 81 * 82 * Response queue entries with SCSI commands encapsulate show up in an ATIO 83 * (Accept Target IO) type- sometimes with enough info to stop the command at 84 * this level. Ultimately the driver has to feed back to the f/w's request 85 * queue a sequence of CTIOs (continue target I/O) that describe data to 86 * be moved and/or status to be sent) and finally finishing with sending 87 * to the f/w's response queue an ATIO which then completes the handshake 88 * with the f/w for that command. There's a lot of variations on this theme, 89 * including flags you can set in the CTIO for the Qlogic 2X00 fibre channel 90 * cards that 'auto-replenish' the f/w's ATIO count, but this is the basic 91 * gist of it. 92 * 93 * The third group that can show up in the response queue are Immediate 94 * Notification events. These include things like notifications of SCSI bus 95 * resets, or Bus Device Reset messages or other messages received. This 96 * a classic oddbins area. It can get a little weird because you then turn 97 * around and acknowledge the Immediate Notify by writing an entry onto the 98 * request queue and then the f/w turns around and gives you an acknowledgement 99 * to *your* acknowledgement on the response queue (the idea being to let 100 * the f/w tell you when the event is *really* over I guess). 101 * 102 */ 103 104 105 /* 106 * A new response queue entry has arrived. The interrupt service code 107 * has already swizzled it into the platform dependent from canonical form. 108 * 109 * Because of the way this driver is designed, unfortunately most of the 110 * actual synchronization work has to be done in the platform specific 111 * code- we have no synchroniation primitives in the common code. 112 */ 113 114 int 115 isp_target_notify(struct ispsoftc *isp, void *vptr, u_int16_t *optrp) 116 { 117 u_int16_t status, seqid; 118 union { 119 at_entry_t *atiop; 120 at2_entry_t *at2iop; 121 ct_entry_t *ctiop; 122 ct2_entry_t *ct2iop; 123 lun_entry_t *lunenp; 124 in_entry_t *inotp; 125 in_fcentry_t *inot_fcp; 126 na_entry_t *nackp; 127 na_fcentry_t *nack_fcp; 128 isphdr_t *hp; 129 void * *vp; 130 #define atiop unp.atiop 131 #define at2iop unp.at2iop 132 #define ctiop unp.ctiop 133 #define ct2iop unp.ct2iop 134 #define lunenp unp.lunenp 135 #define inotp unp.inotp 136 #define inot_fcp unp.inot_fcp 137 #define nackp unp.nackp 138 #define nack_fcp unp.nack_fcp 139 #define hdrp unp.hp 140 } unp; 141 u_int8_t local[QENTRY_LEN]; 142 int bus, type, rval = 1; 143 144 type = isp_get_response_type(isp, (isphdr_t *)vptr); 145 unp.vp = vptr; 146 147 ISP_TDQE(isp, "isp_target_notify", (int) *optrp, vptr); 148 149 switch(type) { 150 case RQSTYPE_ATIO: 151 isp_get_atio(isp, atiop, (at_entry_t *) local); 152 isp_handle_atio(isp, (at_entry_t *) local); 153 break; 154 case RQSTYPE_CTIO: 155 isp_get_ctio(isp, ctiop, (ct_entry_t *) local); 156 isp_handle_ctio(isp, (ct_entry_t *) local); 157 break; 158 case RQSTYPE_ATIO2: 159 isp_get_atio2(isp, at2iop, (at2_entry_t *) local); 160 isp_handle_atio2(isp, (at2_entry_t *) local); 161 break; 162 case RQSTYPE_CTIO3: 163 case RQSTYPE_CTIO2: 164 isp_get_ctio2(isp, ct2iop, (ct2_entry_t *) local); 165 isp_handle_ctio2(isp, (ct2_entry_t *) local); 166 break; 167 case RQSTYPE_ENABLE_LUN: 168 case RQSTYPE_MODIFY_LUN: 169 isp_get_enable_lun(isp, lunenp, (lun_entry_t *) local); 170 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, local); 171 break; 172 173 case RQSTYPE_NOTIFY: 174 /* 175 * Either the ISP received a SCSI message it can't 176 * handle, or it's returning an Immed. Notify entry 177 * we sent. We can send Immed. Notify entries to 178 * increment the firmware's resource count for them 179 * (we set this initially in the Enable Lun entry). 180 */ 181 bus = 0; 182 if (IS_FC(isp)) { 183 isp_get_notify_fc(isp, inot_fcp, (in_fcentry_t *)local); 184 inot_fcp = (in_fcentry_t *) local; 185 status = inot_fcp->in_status; 186 seqid = inot_fcp->in_seqid; 187 } else { 188 isp_get_notify(isp, inotp, (in_entry_t *)local); 189 inotp = (in_entry_t *) local; 190 status = inotp->in_status & 0xff; 191 seqid = inotp->in_seqid; 192 if (IS_DUALBUS(isp)) { 193 bus = GET_BUS_VAL(inotp->in_iid); 194 SET_BUS_VAL(inotp->in_iid, 0); 195 } 196 } 197 isp_prt(isp, ISP_LOGTDEBUG0, 198 "Immediate Notify On Bus %d, status=0x%x seqid=0x%x", 199 bus, status, seqid); 200 201 /* 202 * ACK it right away. 203 */ 204 isp_notify_ack(isp, (status == IN_RESET)? NULL : local); 205 switch (status) { 206 case IN_RESET: 207 (void) isp_async(isp, ISPASYNC_BUS_RESET, &bus); 208 break; 209 case IN_MSG_RECEIVED: 210 case IN_IDE_RECEIVED: 211 if (IS_FC(isp)) { 212 isp_got_msg_fc(isp, bus, (in_fcentry_t *)local); 213 } else { 214 isp_got_msg(isp, bus, (in_entry_t *)local); 215 } 216 break; 217 case IN_RSRC_UNAVAIL: 218 isp_prt(isp, ISP_LOGWARN, "Firmware out of ATIOs"); 219 break; 220 case IN_PORT_LOGOUT: 221 case IN_ABORT_TASK: 222 case IN_PORT_CHANGED: 223 case IN_GLOBAL_LOGO: 224 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, &local); 225 break; 226 default: 227 isp_prt(isp, ISP_LOGERR, 228 "bad status (0x%x) in isp_target_notify", status); 229 break; 230 } 231 break; 232 233 case RQSTYPE_NOTIFY_ACK: 234 /* 235 * The ISP is acknowledging our acknowledgement of an 236 * Immediate Notify entry for some asynchronous event. 237 */ 238 if (IS_FC(isp)) { 239 isp_get_notify_ack_fc(isp, nack_fcp, 240 (na_fcentry_t *)local); 241 nack_fcp = (na_fcentry_t *)local; 242 isp_prt(isp, ISP_LOGTDEBUG1, 243 "Notify Ack status=0x%x seqid 0x%x", 244 nack_fcp->na_status, nack_fcp->na_seqid); 245 } else { 246 isp_get_notify_ack(isp, nackp, (na_entry_t *)local); 247 nackp = (na_entry_t *)local; 248 isp_prt(isp, ISP_LOGTDEBUG1, 249 "Notify Ack event 0x%x status=0x%x seqid 0x%x", 250 nackp->na_event, nackp->na_status, nackp->na_seqid); 251 } 252 break; 253 default: 254 isp_prt(isp, ISP_LOGERR, 255 "Unknown entry type 0x%x in isp_target_notify", type); 256 rval = 0; 257 break; 258 } 259 #undef atiop 260 #undef at2iop 261 #undef ctiop 262 #undef ct2iop 263 #undef lunenp 264 #undef inotp 265 #undef inot_fcp 266 #undef nackp 267 #undef nack_fcp 268 #undef hdrp 269 return (rval); 270 } 271 272 273 /* 274 * Toggle (on/off) target mode for bus/target/lun 275 * 276 * The caller has checked for overlap and legality. 277 * 278 * Note that not all of bus, target or lun can be paid attention to. 279 * Note also that this action will not be complete until the f/w writes 280 * response entry. The caller is responsible for synchronizing this. 281 */ 282 int 283 isp_lun_cmd(struct ispsoftc *isp, int cmd, int bus, int tgt, int lun, 284 int cmd_cnt, int inot_cnt, u_int32_t opaque) 285 { 286 lun_entry_t el; 287 u_int16_t nxti, optr; 288 void *outp; 289 290 291 MEMZERO(&el, sizeof (el)); 292 if (IS_DUALBUS(isp)) { 293 el.le_rsvd = (bus & 0x1) << 7; 294 } 295 el.le_cmd_count = cmd_cnt; 296 el.le_in_count = inot_cnt; 297 if (cmd == RQSTYPE_ENABLE_LUN) { 298 if (IS_SCSI(isp)) { 299 el.le_flags = LUN_TQAE|LUN_DISAD; 300 el.le_cdb6len = 12; 301 el.le_cdb7len = 12; 302 } 303 } else if (cmd == -RQSTYPE_ENABLE_LUN) { 304 cmd = RQSTYPE_ENABLE_LUN; 305 el.le_cmd_count = 0; 306 el.le_in_count = 0; 307 } else if (cmd == -RQSTYPE_MODIFY_LUN) { 308 cmd = RQSTYPE_MODIFY_LUN; 309 el.le_ops = LUN_CCDECR | LUN_INDECR; 310 } else { 311 el.le_ops = LUN_CCINCR | LUN_ININCR; 312 } 313 el.le_header.rqs_entry_type = cmd; 314 el.le_header.rqs_entry_count = 1; 315 el.le_reserved = opaque; 316 if (IS_SCSI(isp)) { 317 el.le_tgt = tgt; 318 el.le_lun = lun; 319 } else if ((FCPARAM(isp)->isp_fwattr & ISP_FW_ATTR_SCCLUN) == 0) { 320 el.le_lun = lun; 321 } 322 el.le_timeout = 2; 323 324 if (isp_getrqentry(isp, &nxti, &optr, &outp)) { 325 isp_prt(isp, ISP_LOGERR, 326 "Request Queue Overflow in isp_lun_cmd"); 327 return (-1); 328 } 329 ISP_TDQE(isp, "isp_lun_cmd", (int) optr, &el); 330 isp_put_enable_lun(isp, &el, outp); 331 ISP_ADD_REQUEST(isp, nxti); 332 return (0); 333 } 334 335 336 int 337 isp_target_put_entry(struct ispsoftc *isp, void *ap) 338 { 339 void *outp; 340 u_int16_t nxti, optr; 341 u_int8_t etype = ((isphdr_t *) ap)->rqs_entry_type; 342 343 if (isp_getrqentry(isp, &nxti, &optr, &outp)) { 344 isp_prt(isp, ISP_LOGWARN, 345 "Request Queue Overflow in isp_target_put_entry"); 346 return (-1); 347 } 348 switch (etype) { 349 case RQSTYPE_ATIO: 350 isp_put_atio(isp, (at_entry_t *) ap, (at_entry_t *) outp); 351 break; 352 case RQSTYPE_ATIO2: 353 isp_put_atio2(isp, (at2_entry_t *) ap, (at2_entry_t *) outp); 354 break; 355 case RQSTYPE_CTIO: 356 isp_put_ctio(isp, (ct_entry_t *) ap, (ct_entry_t *) outp); 357 break; 358 case RQSTYPE_CTIO2: 359 isp_put_ctio2(isp, (ct2_entry_t *) ap, (ct2_entry_t *) outp); 360 break; 361 default: 362 isp_prt(isp, ISP_LOGERR, 363 "Unknown type 0x%x in isp_put_entry", etype); 364 return (-1); 365 } 366 367 ISP_TDQE(isp, "isp_target_put_entry", (int) optr, ap); 368 ISP_ADD_REQUEST(isp, nxti); 369 return (0); 370 } 371 372 int 373 isp_target_put_atio(struct ispsoftc *isp, void *arg) 374 { 375 union { 376 at_entry_t _atio; 377 at2_entry_t _atio2; 378 } atun; 379 380 MEMZERO(&atun, sizeof atun); 381 if (IS_FC(isp)) { 382 at2_entry_t *aep = arg; 383 atun._atio2.at_header.rqs_entry_type = RQSTYPE_ATIO2; 384 atun._atio2.at_header.rqs_entry_count = 1; 385 if (FCPARAM(isp)->isp_fwattr & ISP_FW_ATTR_SCCLUN) { 386 atun._atio2.at_scclun = (u_int16_t) aep->at_scclun; 387 } else { 388 atun._atio2.at_lun = (u_int8_t) aep->at_lun; 389 } 390 atun._atio2.at_iid = aep->at_iid; 391 atun._atio2.at_rxid = aep->at_rxid; 392 atun._atio2.at_status = CT_OK; 393 } else { 394 at_entry_t *aep = arg; 395 atun._atio.at_header.rqs_entry_type = RQSTYPE_ATIO; 396 atun._atio.at_header.rqs_entry_count = 1; 397 atun._atio.at_handle = aep->at_handle; 398 atun._atio.at_iid = aep->at_iid; 399 atun._atio.at_tgt = aep->at_tgt; 400 atun._atio.at_lun = aep->at_lun; 401 atun._atio.at_tag_type = aep->at_tag_type; 402 atun._atio.at_tag_val = aep->at_tag_val; 403 atun._atio.at_status = (aep->at_flags & AT_TQAE); 404 atun._atio.at_status |= CT_OK; 405 } 406 return (isp_target_put_entry(isp, &atun)); 407 } 408 409 /* 410 * Command completion- both for handling cases of no resources or 411 * no blackhole driver, or other cases where we have to, inline, 412 * finish the command sanely, or for normal command completion. 413 * 414 * The 'completion' code value has the scsi status byte in the low 8 bits. 415 * If status is a CHECK CONDITION and bit 8 is nonzero, then bits 12..15 have 416 * the sense key and bits 16..23 have the ASCQ and bits 24..31 have the ASC 417 * values. 418 * 419 * NB: the key, asc, ascq, cannot be used for parallel SCSI as it doesn't 420 * NB: inline SCSI sense reporting. As such, we lose this information. XXX. 421 * 422 * For both parallel && fibre channel, we use the feature that does 423 * an automatic resource autoreplenish so we don't have then later do 424 * put of an atio to replenish the f/w's resource count. 425 */ 426 427 int 428 isp_endcmd(struct ispsoftc *isp, void *arg, u_int32_t code, u_int16_t hdl) 429 { 430 int sts; 431 union { 432 ct_entry_t _ctio; 433 ct2_entry_t _ctio2; 434 } un; 435 436 MEMZERO(&un, sizeof un); 437 sts = code & 0xff; 438 439 if (IS_FC(isp)) { 440 at2_entry_t *aep = arg; 441 ct2_entry_t *cto = &un._ctio2; 442 443 cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2; 444 cto->ct_header.rqs_entry_count = 1; 445 cto->ct_iid = aep->at_iid; 446 if ((FCPARAM(isp)->isp_fwattr & ISP_FW_ATTR_SCCLUN) == 0) { 447 cto->ct_lun = aep->at_lun; 448 } 449 cto->ct_rxid = aep->at_rxid; 450 cto->rsp.m1.ct_scsi_status = sts; 451 cto->ct_flags = CT2_SENDSTATUS | CT2_NO_DATA | CT2_FLAG_MODE1; 452 if (hdl == 0) { 453 cto->ct_flags |= CT2_CCINCR; 454 } 455 if (aep->at_datalen) { 456 cto->ct_resid = aep->at_datalen; 457 cto->rsp.m1.ct_scsi_status |= CT2_DATA_UNDER; 458 } 459 if (sts == SCSI_CHECK && (code & ECMD_SVALID)) { 460 cto->rsp.m1.ct_resp[0] = 0xf0; 461 cto->rsp.m1.ct_resp[2] = (code >> 12) & 0xf; 462 cto->rsp.m1.ct_resp[7] = 8; 463 cto->rsp.m1.ct_resp[12] = (code >> 24) & 0xff; 464 cto->rsp.m1.ct_resp[13] = (code >> 16) & 0xff; 465 cto->rsp.m1.ct_senselen = 16; 466 cto->rsp.m1.ct_scsi_status |= CT2_SNSLEN_VALID; 467 } 468 cto->ct_syshandle = hdl; 469 } else { 470 at_entry_t *aep = arg; 471 ct_entry_t *cto = &un._ctio; 472 473 cto->ct_header.rqs_entry_type = RQSTYPE_CTIO; 474 cto->ct_header.rqs_entry_count = 1; 475 cto->ct_fwhandle = aep->at_handle; 476 cto->ct_iid = aep->at_iid; 477 cto->ct_tgt = aep->at_tgt; 478 cto->ct_lun = aep->at_lun; 479 cto->ct_tag_type = aep->at_tag_type; 480 cto->ct_tag_val = aep->at_tag_val; 481 if (aep->at_flags & AT_TQAE) { 482 cto->ct_flags |= CT_TQAE; 483 } 484 cto->ct_flags = CT_SENDSTATUS | CT_NO_DATA; 485 if (hdl == 0) { 486 cto->ct_flags |= CT_CCINCR; 487 } 488 cto->ct_scsi_status = sts; 489 cto->ct_syshandle = hdl; 490 } 491 return (isp_target_put_entry(isp, &un)); 492 } 493 494 int 495 isp_target_async(struct ispsoftc *isp, int bus, int event) 496 { 497 tmd_event_t evt; 498 tmd_msg_t msg; 499 500 switch (event) { 501 /* 502 * These three we handle here to propagate an effective bus reset 503 * upstream, but these do not require any immediate notify actions 504 * so we return when done. 505 */ 506 case ASYNC_LIP_F8: 507 case ASYNC_LIP_OCCURRED: 508 case ASYNC_LOOP_UP: 509 case ASYNC_LOOP_DOWN: 510 case ASYNC_LOOP_RESET: 511 case ASYNC_PTPMODE: 512 /* 513 * These don't require any immediate notify actions. We used 514 * treat them like SCSI Bus Resets, but that was just plain 515 * wrong. Let the normal CTIO completion report what occurred. 516 */ 517 return (0); 518 519 case ASYNC_BUS_RESET: 520 case ASYNC_TIMEOUT_RESET: 521 if (IS_FC(isp)) { 522 return (0); /* we'll be getting an inotify instead */ 523 } 524 evt.ev_bus = bus; 525 evt.ev_event = event; 526 (void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt); 527 break; 528 case ASYNC_DEVICE_RESET: 529 /* 530 * Bus Device Reset resets a specific target, so 531 * we pass this as a synthesized message. 532 */ 533 MEMZERO(&msg, sizeof msg); 534 if (IS_FC(isp)) { 535 msg.nt_iid = FCPARAM(isp)->isp_loopid; 536 } else { 537 msg.nt_iid = SDPARAM(isp)->isp_initiator_id; 538 } 539 msg.nt_bus = bus; 540 msg.nt_msg[0] = MSG_BUS_DEV_RESET; 541 (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg); 542 break; 543 case ASYNC_CTIO_DONE: 544 evt.ev_bus = bus; 545 evt.ev_event = event; 546 (void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt); 547 return (0); 548 default: 549 isp_prt(isp, ISP_LOGERR, 550 "isp_target_async: unknown event 0x%x", event); 551 break; 552 } 553 if (isp->isp_state == ISP_RUNSTATE) 554 isp_notify_ack(isp, NULL); 555 return(0); 556 } 557 558 559 /* 560 * Process a received message. 561 * The ISP firmware can handle most messages, there are only 562 * a few that we need to deal with: 563 * - abort: clean up the current command 564 * - abort tag and clear queue 565 */ 566 567 static void 568 isp_got_msg(struct ispsoftc *isp, int bus, in_entry_t *inp) 569 { 570 u_int8_t status = inp->in_status & ~QLTM_SVALID; 571 572 if (status == IN_IDE_RECEIVED || status == IN_MSG_RECEIVED) { 573 tmd_msg_t msg; 574 575 MEMZERO(&msg, sizeof (msg)); 576 msg.nt_bus = bus; 577 msg.nt_iid = inp->in_iid; 578 msg.nt_tgt = inp->in_tgt; 579 msg.nt_lun = inp->in_lun; 580 msg.nt_tagtype = inp->in_tag_type; 581 msg.nt_tagval = inp->in_tag_val; 582 MEMCPY(msg.nt_msg, inp->in_msg, IN_MSGLEN); 583 (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg); 584 } else { 585 isp_prt(isp, ISP_LOGERR, 586 "unknown immediate notify status 0x%x", inp->in_status); 587 } 588 } 589 590 /* 591 * Synthesize a message from the task management flags in a FCP_CMND_IU. 592 */ 593 static void 594 isp_got_msg_fc(struct ispsoftc *isp, int bus, in_fcentry_t *inp) 595 { 596 int lun; 597 static const char f1[] = "%s from iid %d lun %d seq 0x%x"; 598 static const char f2[] = 599 "unknown %s 0x%x lun %d iid %d task flags 0x%x seq 0x%x\n"; 600 601 if (FCPARAM(isp)->isp_fwattr & ISP_FW_ATTR_SCCLUN) { 602 lun = inp->in_scclun; 603 } else { 604 lun = inp->in_lun; 605 } 606 607 if (inp->in_status != IN_MSG_RECEIVED) { 608 isp_prt(isp, ISP_LOGINFO, f2, "immediate notify status", 609 inp->in_status, lun, inp->in_iid, 610 inp->in_task_flags, inp->in_seqid); 611 } else { 612 tmd_msg_t msg; 613 614 MEMZERO(&msg, sizeof (msg)); 615 msg.nt_bus = bus; 616 msg.nt_iid = inp->in_iid; 617 msg.nt_tagval = inp->in_seqid; 618 msg.nt_lun = lun; 619 620 if (inp->in_task_flags & TASK_FLAGS_ABORT_TASK_SET) { 621 isp_prt(isp, ISP_LOGINFO, f1, "ABORT TASK SET", 622 inp->in_iid, lun, inp->in_seqid); 623 msg.nt_msg[0] = MSG_ABORT; 624 } else if (inp->in_task_flags & TASK_FLAGS_CLEAR_TASK_SET) { 625 isp_prt(isp, ISP_LOGINFO, f1, "CLEAR TASK SET", 626 inp->in_iid, lun, inp->in_seqid); 627 msg.nt_msg[0] = MSG_CLEAR_QUEUE; 628 } else if (inp->in_task_flags & TASK_FLAGS_LUN_RESET) { 629 isp_prt(isp, ISP_LOGINFO, f1, "LUN RESET", 630 inp->in_iid, lun, inp->in_seqid); 631 msg.nt_msg[0] = MSG_LUN_RESET; 632 } else if (inp->in_task_flags & TASK_FLAGS_TARGET_RESET) { 633 isp_prt(isp, ISP_LOGINFO, f1, "TARGET RESET", 634 inp->in_iid, lun, inp->in_seqid); 635 msg.nt_msg[0] = MSG_BUS_DEV_RESET; 636 } else if (inp->in_task_flags & TASK_FLAGS_CLEAR_ACA) { 637 isp_prt(isp, ISP_LOGINFO, f1, "CLEAR ACA", 638 inp->in_iid, lun, inp->in_seqid); 639 msg.nt_msg[0] = MSG_REL_RECOVERY; 640 } else { 641 isp_prt(isp, ISP_LOGWARN, f2, "task flag", 642 inp->in_status, lun, inp->in_iid, 643 inp->in_task_flags, inp->in_seqid); 644 } 645 if (msg.nt_msg[0]) { 646 (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg); 647 } 648 } 649 } 650 651 static void 652 isp_notify_ack(struct ispsoftc *isp, void *arg) 653 { 654 char storage[QENTRY_LEN]; 655 u_int16_t nxti, optr; 656 void *outp; 657 658 if (isp_getrqentry(isp, &nxti, &optr, &outp)) { 659 isp_prt(isp, ISP_LOGWARN, 660 "Request Queue Overflow For isp_notify_ack"); 661 return; 662 } 663 664 MEMZERO(storage, QENTRY_LEN); 665 666 if (IS_FC(isp)) { 667 na_fcentry_t *na = (na_fcentry_t *) storage; 668 if (arg) { 669 in_fcentry_t *inp = arg; 670 MEMCPY(storage, arg, sizeof (isphdr_t)); 671 na->na_iid = inp->in_iid; 672 if (FCPARAM(isp)->isp_fwattr & ISP_FW_ATTR_SCCLUN) { 673 na->na_lun = inp->in_scclun; 674 } else { 675 na->na_lun = inp->in_lun; 676 } 677 na->na_task_flags = inp->in_task_flags; 678 na->na_seqid = inp->in_seqid; 679 na->na_flags = NAFC_RCOUNT; 680 na->na_status = inp->in_status; 681 if (inp->in_status == IN_RESET) { 682 na->na_flags |= NAFC_RST_CLRD; 683 } 684 } else { 685 na->na_flags = NAFC_RST_CLRD; 686 } 687 na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK; 688 na->na_header.rqs_entry_count = 1; 689 isp_put_notify_ack_fc(isp, na, (na_fcentry_t *)outp); 690 } else { 691 na_entry_t *na = (na_entry_t *) storage; 692 if (arg) { 693 in_entry_t *inp = arg; 694 MEMCPY(storage, arg, sizeof (isphdr_t)); 695 na->na_iid = inp->in_iid; 696 na->na_lun = inp->in_lun; 697 na->na_tgt = inp->in_tgt; 698 na->na_seqid = inp->in_seqid; 699 if (inp->in_status == IN_RESET) { 700 na->na_event = NA_RST_CLRD; 701 } 702 } else { 703 na->na_event = NA_RST_CLRD; 704 } 705 na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK; 706 na->na_header.rqs_entry_count = 1; 707 isp_put_notify_ack(isp, na, (na_entry_t *)outp); 708 } 709 ISP_TDQE(isp, "isp_notify_ack", (int) optr, storage); 710 ISP_ADD_REQUEST(isp, nxti); 711 } 712 713 static void 714 isp_handle_atio(struct ispsoftc *isp, at_entry_t *aep) 715 { 716 int lun; 717 lun = aep->at_lun; 718 /* 719 * The firmware status (except for the QLTM_SVALID bit) indicates 720 * why this ATIO was sent to us. 721 * 722 * If QLTM_SVALID is set, the firware has recommended Sense Data. 723 * 724 * If the DISCONNECTS DISABLED bit is set in the flags field, 725 * we're still connected on the SCSI bus - i.e. the initiator 726 * did not set DiscPriv in the identify message. We don't care 727 * about this so it's ignored. 728 */ 729 730 switch(aep->at_status & ~QLTM_SVALID) { 731 case AT_PATH_INVALID: 732 /* 733 * ATIO rejected by the firmware due to disabled lun. 734 */ 735 isp_prt(isp, ISP_LOGERR, 736 "rejected ATIO for disabled lun %d", lun); 737 break; 738 case AT_NOCAP: 739 /* 740 * Requested Capability not available 741 * We sent an ATIO that overflowed the firmware's 742 * command resource count. 743 */ 744 isp_prt(isp, ISP_LOGERR, 745 "rejected ATIO for lun %d because of command count" 746 " overflow", lun); 747 break; 748 749 case AT_BDR_MSG: 750 /* 751 * If we send an ATIO to the firmware to increment 752 * its command resource count, and the firmware is 753 * recovering from a Bus Device Reset, it returns 754 * the ATIO with this status. We set the command 755 * resource count in the Enable Lun entry and do 756 * not increment it. Therefore we should never get 757 * this status here. 758 */ 759 isp_prt(isp, ISP_LOGERR, atiocope, lun, 760 GET_BUS_VAL(aep->at_iid)); 761 break; 762 763 case AT_CDB: /* Got a CDB */ 764 case AT_PHASE_ERROR: /* Bus Phase Sequence Error */ 765 /* 766 * Punt to platform specific layer. 767 */ 768 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep); 769 break; 770 771 case AT_RESET: 772 /* 773 * A bus reset came along and blew away this command. Why 774 * they do this in addition the async event code stuff, 775 * I dunno. 776 * 777 * Ignore it because the async event will clear things 778 * up for us. 779 */ 780 isp_prt(isp, ISP_LOGWARN, atior, lun, 781 GET_IID_VAL(aep->at_iid), GET_BUS_VAL(aep->at_iid)); 782 break; 783 784 785 default: 786 isp_prt(isp, ISP_LOGERR, 787 "Unknown ATIO status 0x%x from initiator %d for lun %d", 788 aep->at_status, aep->at_iid, lun); 789 (void) isp_target_put_atio(isp, aep); 790 break; 791 } 792 } 793 794 static void 795 isp_handle_atio2(struct ispsoftc *isp, at2_entry_t *aep) 796 { 797 int lun; 798 799 if (FCPARAM(isp)->isp_fwattr & ISP_FW_ATTR_SCCLUN) { 800 lun = aep->at_scclun; 801 } else { 802 lun = aep->at_lun; 803 } 804 805 /* 806 * The firmware status (except for the QLTM_SVALID bit) indicates 807 * why this ATIO was sent to us. 808 * 809 * If QLTM_SVALID is set, the firware has recommended Sense Data. 810 * 811 * If the DISCONNECTS DISABLED bit is set in the flags field, 812 * we're still connected on the SCSI bus - i.e. the initiator 813 * did not set DiscPriv in the identify message. We don't care 814 * about this so it's ignored. 815 */ 816 817 switch(aep->at_status & ~QLTM_SVALID) { 818 case AT_PATH_INVALID: 819 /* 820 * ATIO rejected by the firmware due to disabled lun. 821 */ 822 isp_prt(isp, ISP_LOGERR, 823 "rejected ATIO2 for disabled lun %d", lun); 824 break; 825 case AT_NOCAP: 826 /* 827 * Requested Capability not available 828 * We sent an ATIO that overflowed the firmware's 829 * command resource count. 830 */ 831 isp_prt(isp, ISP_LOGERR, 832 "rejected ATIO2 for lun %d- command count overflow", lun); 833 break; 834 835 case AT_BDR_MSG: 836 /* 837 * If we send an ATIO to the firmware to increment 838 * its command resource count, and the firmware is 839 * recovering from a Bus Device Reset, it returns 840 * the ATIO with this status. We set the command 841 * resource count in the Enable Lun entry and no 842 * not increment it. Therefore we should never get 843 * this status here. 844 */ 845 isp_prt(isp, ISP_LOGERR, atiocope, lun, 0); 846 break; 847 848 case AT_CDB: /* Got a CDB */ 849 /* 850 * Punt to platform specific layer. 851 */ 852 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep); 853 break; 854 855 case AT_RESET: 856 /* 857 * A bus reset came along an blew away this command. Why 858 * they do this in addition the async event code stuff, 859 * I dunno. 860 * 861 * Ignore it because the async event will clear things 862 * up for us. 863 */ 864 isp_prt(isp, ISP_LOGERR, atior, lun, aep->at_iid, 0); 865 break; 866 867 868 default: 869 isp_prt(isp, ISP_LOGERR, 870 "Unknown ATIO2 status 0x%x from initiator %d for lun %d", 871 aep->at_status, aep->at_iid, lun); 872 (void) isp_target_put_atio(isp, aep); 873 break; 874 } 875 } 876 877 static void 878 isp_handle_ctio(struct ispsoftc *isp, ct_entry_t *ct) 879 { 880 void *xs; 881 int pl = ISP_LOGTDEBUG2; 882 char *fmsg = NULL; 883 884 if (ct->ct_syshandle) { 885 xs = isp_find_xs_tgt(isp, ct->ct_syshandle); 886 if (xs == NULL) 887 pl = ISP_LOGALL; 888 } else { 889 xs = NULL; 890 } 891 892 switch(ct->ct_status & ~QLTM_SVALID) { 893 case CT_OK: 894 /* 895 * There are generally 3 possibilities as to why we'd get 896 * this condition: 897 * We disconnected after receiving a CDB. 898 * We sent or received data. 899 * We sent status & command complete. 900 */ 901 902 if (ct->ct_flags & CT_SENDSTATUS) { 903 break; 904 } else if ((ct->ct_flags & CT_DATAMASK) == CT_NO_DATA) { 905 /* 906 * Nothing to do in this case. 907 */ 908 isp_prt(isp, pl, "CTIO- iid %d disconnected OK", 909 ct->ct_iid); 910 return; 911 } 912 break; 913 914 case CT_BDR_MSG: 915 /* 916 * Bus Device Reset message received or the SCSI Bus has 917 * been Reset; the firmware has gone to Bus Free. 918 * 919 * The firmware generates an async mailbox interupt to 920 * notify us of this and returns outstanding CTIOs with this 921 * status. These CTIOs are handled in that same way as 922 * CT_ABORTED ones, so just fall through here. 923 */ 924 fmsg = "Bus Device Reset"; 925 /*FALLTHROUGH*/ 926 case CT_RESET: 927 if (fmsg == NULL) 928 fmsg = "Bus Reset"; 929 /*FALLTHROUGH*/ 930 case CT_ABORTED: 931 /* 932 * When an Abort message is received the firmware goes to 933 * Bus Free and returns all outstanding CTIOs with the status 934 * set, then sends us an Immediate Notify entry. 935 */ 936 if (fmsg == NULL) 937 fmsg = "ABORT TAG message sent by Initiator"; 938 939 isp_prt(isp, ISP_LOGWARN, "CTIO destroyed by %s", fmsg); 940 break; 941 942 case CT_INVAL: 943 /* 944 * CTIO rejected by the firmware due to disabled lun. 945 * "Cannot Happen". 946 */ 947 isp_prt(isp, ISP_LOGERR, 948 "Firmware rejected CTIO for disabled lun %d", 949 ct->ct_lun); 950 break; 951 952 case CT_NOPATH: 953 /* 954 * CTIO rejected by the firmware due "no path for the 955 * nondisconnecting nexus specified". This means that 956 * we tried to access the bus while a non-disconnecting 957 * command is in process. 958 */ 959 isp_prt(isp, ISP_LOGERR, 960 "Firmware rejected CTIO for bad nexus %d/%d/%d", 961 ct->ct_iid, ct->ct_tgt, ct->ct_lun); 962 break; 963 964 case CT_RSELTMO: 965 fmsg = "Reselection"; 966 /*FALLTHROUGH*/ 967 case CT_TIMEOUT: 968 if (fmsg == NULL) 969 fmsg = "Command"; 970 isp_prt(isp, ISP_LOGERR, "Firmware timed out on %s", fmsg); 971 break; 972 973 case CT_PANIC: 974 if (fmsg == NULL) 975 fmsg = "Unrecoverable Error"; 976 /*FALLTHROUGH*/ 977 case CT_ERR: 978 if (fmsg == NULL) 979 fmsg = "Completed with Error"; 980 /*FALLTHROUGH*/ 981 case CT_PHASE_ERROR: 982 if (fmsg == NULL) 983 fmsg = "Phase Sequence Error"; 984 /*FALLTHROUGH*/ 985 case CT_TERMINATED: 986 if (fmsg == NULL) 987 fmsg = "terminated by TERMINATE TRANSFER"; 988 /*FALLTHROUGH*/ 989 case CT_NOACK: 990 if (fmsg == NULL) 991 fmsg = "unacknowledged Immediate Notify pending"; 992 isp_prt(isp, ISP_LOGERR, "CTIO returned by f/w- %s", fmsg); 993 break; 994 default: 995 isp_prt(isp, ISP_LOGERR, "Unknown CTIO status 0x%x", 996 ct->ct_status & ~QLTM_SVALID); 997 break; 998 } 999 1000 if (xs == NULL) { 1001 /* 1002 * There may be more than one CTIO for a data transfer, 1003 * or this may be a status CTIO we're not monitoring. 1004 * 1005 * The assumption is that they'll all be returned in the 1006 * order we got them. 1007 */ 1008 if (ct->ct_syshandle == 0) { 1009 if ((ct->ct_flags & CT_SENDSTATUS) == 0) { 1010 isp_prt(isp, pl, 1011 "intermediate CTIO completed ok"); 1012 } else { 1013 isp_prt(isp, pl, 1014 "unmonitored CTIO completed ok"); 1015 } 1016 } else { 1017 isp_prt(isp, pl, 1018 "NO xs for CTIO (handle 0x%x) status 0x%x", 1019 ct->ct_syshandle, ct->ct_status & ~QLTM_SVALID); 1020 } 1021 } else { 1022 /* 1023 * Final CTIO completed. Release DMA resources and 1024 * notify platform dependent layers. 1025 */ 1026 if ((ct->ct_flags & CT_DATAMASK) != CT_NO_DATA) { 1027 ISP_DMAFREE(isp, xs, ct->ct_syshandle); 1028 } 1029 isp_prt(isp, pl, "final CTIO complete"); 1030 /* 1031 * The platform layer will destroy the handle if appropriate. 1032 */ 1033 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct); 1034 } 1035 } 1036 1037 static void 1038 isp_handle_ctio2(struct ispsoftc *isp, ct2_entry_t *ct) 1039 { 1040 XS_T *xs; 1041 int pl = ISP_LOGTDEBUG2; 1042 char *fmsg = NULL; 1043 1044 if (ct->ct_syshandle) { 1045 xs = isp_find_xs_tgt(isp, ct->ct_syshandle); 1046 if (xs == NULL) 1047 pl = ISP_LOGALL; 1048 } else { 1049 xs = NULL; 1050 } 1051 1052 switch(ct->ct_status & ~QLTM_SVALID) { 1053 case CT_BUS_ERROR: 1054 isp_prt(isp, ISP_LOGERR, "PCI DMA Bus Error"); 1055 /* FALL Through */ 1056 case CT_DATA_OVER: 1057 case CT_DATA_UNDER: 1058 case CT_OK: 1059 /* 1060 * There are generally 2 possibilities as to why we'd get 1061 * this condition: 1062 * We sent or received data. 1063 * We sent status & command complete. 1064 */ 1065 1066 break; 1067 1068 case CT_BDR_MSG: 1069 /* 1070 * Target Reset function received. 1071 * 1072 * The firmware generates an async mailbox interupt to 1073 * notify us of this and returns outstanding CTIOs with this 1074 * status. These CTIOs are handled in that same way as 1075 * CT_ABORTED ones, so just fall through here. 1076 */ 1077 fmsg = "TARGET RESET Task Management Function Received"; 1078 /*FALLTHROUGH*/ 1079 case CT_RESET: 1080 if (fmsg == NULL) 1081 fmsg = "LIP Reset"; 1082 /*FALLTHROUGH*/ 1083 case CT_ABORTED: 1084 /* 1085 * When an Abort message is received the firmware goes to 1086 * Bus Free and returns all outstanding CTIOs with the status 1087 * set, then sends us an Immediate Notify entry. 1088 */ 1089 if (fmsg == NULL) 1090 fmsg = "ABORT Task Management Function Received"; 1091 1092 isp_prt(isp, ISP_LOGERR, "CTIO2 destroyed by %s", fmsg); 1093 break; 1094 1095 case CT_INVAL: 1096 /* 1097 * CTIO rejected by the firmware - invalid data direction. 1098 */ 1099 isp_prt(isp, ISP_LOGERR, "CTIO2 had wrong data direction"); 1100 break; 1101 1102 case CT_RSELTMO: 1103 fmsg = "failure to reconnect to initiator"; 1104 /*FALLTHROUGH*/ 1105 case CT_TIMEOUT: 1106 if (fmsg == NULL) 1107 fmsg = "command"; 1108 isp_prt(isp, ISP_LOGERR, "Firmware timed out on %s", fmsg); 1109 break; 1110 1111 case CT_ERR: 1112 fmsg = "Completed with Error"; 1113 /*FALLTHROUGH*/ 1114 case CT_LOGOUT: 1115 if (fmsg == NULL) 1116 fmsg = "Port Logout"; 1117 /*FALLTHROUGH*/ 1118 case CT_PORTNOTAVAIL: 1119 if (fmsg == NULL) 1120 fmsg = "Port not available"; 1121 /*FALLTHROUGH*/ 1122 case CT_PORTCHANGED: 1123 if (fmsg == NULL) 1124 fmsg = "Port Changed"; 1125 /*FALLTHROUGH*/ 1126 case CT_NOACK: 1127 if (fmsg == NULL) 1128 fmsg = "unacknowledged Immediate Notify pending"; 1129 isp_prt(isp, ISP_LOGERR, "CTIO returned by f/w- %s", fmsg); 1130 break; 1131 1132 case CT_INVRXID: 1133 /* 1134 * CTIO rejected by the firmware because an invalid RX_ID. 1135 * Just print a message. 1136 */ 1137 isp_prt(isp, ISP_LOGERR, 1138 "CTIO2 completed with Invalid RX_ID 0x%x", ct->ct_rxid); 1139 break; 1140 1141 default: 1142 isp_prt(isp, ISP_LOGERR, "Unknown CTIO2 status 0x%x", 1143 ct->ct_status & ~QLTM_SVALID); 1144 break; 1145 } 1146 1147 if (xs == NULL) { 1148 /* 1149 * There may be more than one CTIO for a data transfer, 1150 * or this may be a status CTIO we're not monitoring. 1151 * 1152 * The assumption is that they'll all be returned in the 1153 * order we got them. 1154 */ 1155 if (ct->ct_syshandle == 0) { 1156 if ((ct->ct_flags & CT2_SENDSTATUS) == 0) { 1157 isp_prt(isp, pl, 1158 "intermediate CTIO completed ok"); 1159 } else { 1160 isp_prt(isp, pl, 1161 "unmonitored CTIO completed ok"); 1162 } 1163 } else { 1164 isp_prt(isp, pl, 1165 "NO xs for CTIO (handle 0x%x) status 0x%x", 1166 ct->ct_syshandle, ct->ct_status & ~QLTM_SVALID); 1167 } 1168 } else { 1169 if ((ct->ct_flags & CT2_DATAMASK) != CT2_NO_DATA) { 1170 ISP_DMAFREE(isp, xs, ct->ct_syshandle); 1171 } 1172 if (ct->ct_flags & CT2_SENDSTATUS) { 1173 /* 1174 * Sent status and command complete. 1175 * 1176 * We're now really done with this command, so we 1177 * punt to the platform dependent layers because 1178 * only there can we do the appropriate command 1179 * complete thread synchronization. 1180 */ 1181 isp_prt(isp, pl, "status CTIO complete"); 1182 } else { 1183 /* 1184 * Final CTIO completed. Release DMA resources and 1185 * notify platform dependent layers. 1186 */ 1187 isp_prt(isp, pl, "data CTIO complete"); 1188 } 1189 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct); 1190 /* 1191 * The platform layer will destroy the handle if appropriate. 1192 */ 1193 } 1194 } 1195 #endif 1196