xref: /freebsd/sys/dev/isp/isp_target.c (revision 23f282aa31e9b6fceacd449020e936e98d6f2298)
1 /* $FreeBSD$ */
2 /*
3  * Machine and OS Independent Target Mode Code for the Qlogic SCSI/FC adapters.
4  *
5  * Copyright (c) 1999 by Matthew Jacob
6  * All rights reserved.
7  * mjacob@feral.com
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice immediately at the beginning of the file, without modification,
14  *    this list of conditions, and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
25  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Include header file appropriate for platform we're building on.
36  */
37 
38 #ifdef	__NetBSD__
39 #include <dev/ic/isp_netbsd.h>
40 #endif
41 #ifdef	__FreeBSD__
42 #include <dev/isp/isp_freebsd.h>
43 #endif
44 #ifdef	__OpenBSD__
45 #include <dev/ic/isp_openbsd.h>
46 #endif
47 #ifdef	__linux__
48 #include "isp_linux.h"
49 #endif
50 
51 #ifdef	ISP_TARGET_MODE
52 int isp_tdebug = 0;
53 
54 static void isp_got_msg __P((struct ispsoftc *, int, in_entry_t *));
55 static void isp_got_msg_fc __P((struct ispsoftc *, int, in_fcentry_t *));
56 static void isp_notify_ack __P((struct ispsoftc *, void *));
57 static void isp_handle_atio(struct ispsoftc *, at_entry_t *);
58 static void isp_handle_atio2(struct ispsoftc *, at2_entry_t *);
59 static void isp_handle_ctio(struct ispsoftc *, ct_entry_t *);
60 static void isp_handle_ctio2(struct ispsoftc *, ct2_entry_t *);
61 
62 /*
63  * The Qlogic driver gets an interrupt to look at response queue entries.
64  * Some of these are status completions for initiatior mode commands, but
65  * if target mode is enabled, we get a whole wad of response queue entries
66  * to be handled here.
67  *
68  * Basically the split into 3 main groups: Lun Enable/Modification responses,
69  * SCSI Command processing, and Immediate Notification events.
70  *
71  * You start by writing a request queue entry to enable target mode (and
72  * establish some resource limitations which you can modify later).
73  * The f/w responds with a LUN ENABLE or LUN MODIFY response with
74  * the status of this action. If the enable was successful, you can expect...
75  *
76  * Response queue entries with SCSI commands encapsulate show up in an ATIO
77  * (Accept Target IO) type- sometimes with enough info to stop the command at
78  * this level. Ultimately the driver has to feed back to the f/w's request
79  * queue a sequence of CTIOs (continue target I/O) that describe data to
80  * be moved and/or status to be sent) and finally finishing with sending
81  * to the f/w's response queue an ATIO which then completes the handshake
82  * with the f/w for that command. There's a lot of variations on this theme,
83  * including flags you can set in the CTIO for the Qlogic 2X00 fibre channel
84  * cards that 'auto-replenish' the f/w's ATIO count, but this is the basic
85  * gist of it.
86  *
87  * The third group that can show up in the response queue are Immediate
88  * Notification events. These include things like notifications of SCSI bus
89  * resets, or Bus Device Reset messages or other messages received. This
90  * a classic oddbins area. It can get  a little wierd because you then turn
91  * around and acknowledge the Immediate Notify by writing an entry onto the
92  * request queue and then the f/w turns around and gives you an acknowledgement
93  * to *your* acknowledgement on the response queue (the idea being to let
94  * the f/w tell you when the event is *really* over I guess).
95  *
96  */
97 
98 
99 /*
100  * A new response queue entry has arrived. The interrupt service code
101  * has already swizzled it into the platform dependent from canonical form.
102  *
103  * Because of the way this driver is designed, unfortunately most of the
104  * actual synchronization work has to be done in the platform specific
105  * code- we have no synchroniation primitives in the common code.
106  */
107 
108 int
109 isp_target_notify(isp, vptr, optrp)
110 	struct ispsoftc *isp;
111 	void *vptr;
112 	u_int16_t *optrp;
113 {
114 	u_int16_t status, seqid;
115 	union {
116 		at_entry_t	*atiop;
117 		at2_entry_t	*at2iop;
118 		ct_entry_t	*ctiop;
119 		ct2_entry_t	*ct2iop;
120 		lun_entry_t	*lunenp;
121 		in_entry_t	*inotp;
122 		in_fcentry_t	*inot_fcp;
123 		na_entry_t	*nackp;
124 		na_fcentry_t	*nack_fcp;
125 		isphdr_t	*hp;
126 		void *		*vp;
127 #define	atiop		unp.atiop
128 #define	at2iop		unp.at2iop
129 #define	ctiop		unp.ctiop
130 #define	ct2iop		unp.ct2iop
131 #define	lunenp		unp.lunenp
132 #define	inotp		unp.inotp
133 #define	inot_fcp	unp.inot_fcp
134 #define	nackp		unp.nackp
135 #define	nack_fcp	unp.nack_fcp
136 #define	hdrp		unp.hp
137 	} unp;
138 	int bus, rval = 0;
139 
140 	unp.vp = vptr;
141 
142 	ISP_TDQE(isp, "isp_target_notify", (int) *optrp, vptr);
143 
144 	switch(hdrp->rqs_entry_type) {
145 	case RQSTYPE_ATIO:
146 		isp_handle_atio(isp, atiop);
147 		break;
148 	case RQSTYPE_CTIO:
149 		isp_handle_ctio(isp, ctiop);
150 		break;
151 	case RQSTYPE_ATIO2:
152 		isp_handle_atio2(isp, at2iop);
153 		break;
154 	case RQSTYPE_CTIO2:
155 		isp_handle_ctio2(isp, ct2iop);
156 		break;
157 	case RQSTYPE_ENABLE_LUN:
158 	case RQSTYPE_MODIFY_LUN:
159 		(void) isp_async(isp, ISPASYNC_TARGET_ACTION, vptr);
160 		break;
161 
162 	case RQSTYPE_NOTIFY:
163 		/*
164 		 * Either the ISP received a SCSI message it can't
165 		 * handle, or it's returning an Immed. Notify entry
166 		 * we sent. We can send Immed. Notify entries to
167 		 * increment the firmware's resource count for them
168 		 * (we set this initially in the Enable Lun entry).
169 		 */
170 		bus = 0;
171 		if (IS_FC(isp)) {
172 			status = inot_fcp->in_status;
173 			seqid = inot_fcp->in_seqid;
174 		} else {
175 			status = inotp->in_status & 0xff;
176 			seqid = inotp->in_seqid;
177 			if (IS_DUALBUS(isp)) {
178 				bus = (inotp->in_iid & 0x80) >> 7;
179 				inotp->in_iid &= ~0x80;
180 			}
181 		}
182 		ITDEBUG(2, ("isp_target_notify: Immediate Notify, "
183 		    "status=0x%x seqid=0x%x\n", status, seqid));
184 		switch (status) {
185 		case IN_RESET:
186 			(void) isp_async(isp, ISPASYNC_BUS_RESET, &bus);
187 			break;
188 		case IN_MSG_RECEIVED:
189 		case IN_IDE_RECEIVED:
190 			if (IS_FC(isp)) {
191 				isp_got_msg_fc(isp, bus, vptr);
192 			} else {
193 				isp_got_msg(isp, bus, vptr);
194 			}
195 			break;
196 		case IN_RSRC_UNAVAIL:
197 			PRINTF("%s: Firmware out of ATIOs\n", isp->isp_name);
198 			break;
199 		case IN_ABORT_TASK:
200 			PRINTF("%s: Abort Task for Initiator %d RX_ID 0x%x\n",
201 			    isp->isp_name, inot_fcp->in_iid, seqid);
202 			break;
203 		case IN_PORT_LOGOUT:
204 			PRINTF("%s: Port Logout for Initiator %d RX_ID 0x%x\n",
205 			    isp->isp_name, inot_fcp->in_iid, seqid);
206 			break;
207 		case IN_PORT_CHANGED:
208 			PRINTF("%s: Port Changed for Initiator %d RX_ID 0x%x\n",
209 			    isp->isp_name, inot_fcp->in_iid, seqid);
210 			break;
211 		case IN_GLOBAL_LOGO:
212 			PRINTF("%s: All ports logged out\n", isp->isp_name);
213 			break;
214 		default:
215 			PRINTF("%s: bad status (0x%x) in isp_target_notify\n",
216 			    isp->isp_name, status);
217 			break;
218 		}
219 		isp_notify_ack(isp, vptr);
220 		break;
221 
222 	case RQSTYPE_NOTIFY_ACK:
223 		/*
224 		 * The ISP is acknowledging our acknowledgement of an
225 		 * Immediate Notify entry for some asynchronous event.
226 		 */
227 		if (IS_FC(isp)) {
228 			ITDEBUG(2, ("%s: Notify Ack status=0x%x seqid 0x%x\n",
229 			    isp->isp_name, nack_fcp->na_status,
230 			    nack_fcp->na_seqid));
231 		} else {
232 			ITDEBUG(2, ("%s: Notify Ack event 0x%x status=0x%x "
233 			    "seqid 0x%x\n", isp->isp_name, nackp->na_event,
234 			    nackp->na_status, nackp->na_seqid));
235 		}
236 		break;
237 	default:
238 		PRINTF("%s: Unknown entry type 0x%x in isp_target_notify",
239 		    isp->isp_name, hdrp->rqs_entry_type);
240 		rval = -1;
241 		break;
242 	}
243 #undef	atiop
244 #undef	at2iop
245 #undef	ctiop
246 #undef	ct2iop
247 #undef	lunenp
248 #undef	inotp
249 #undef	inot_fcp
250 #undef	nackp
251 #undef	nack_fcp
252 #undef	hdrp
253 	return (rval);
254 }
255 
256 
257 /*
258  * Toggle (on/off) target mode for bus/target/lun
259  *
260  * The caller has checked for overlap and legality.
261  *
262  * Note that not all of bus, target or lun can be paid attention to.
263  * Note also that this action will not be complete until the f/w writes
264  * response entry. The caller is responsible for synchronizing this.
265  */
266 int
267 isp_lun_cmd(isp, cmd, bus, tgt, lun, opaque)
268 	struct ispsoftc *isp;
269 	int cmd;
270 	int bus;
271 	int tgt;
272 	int lun;
273 	u_int32_t opaque;
274 {
275 	lun_entry_t el;
276 	u_int16_t iptr, optr;
277 	void *outp;
278 
279 
280 	MEMZERO(&el, sizeof (el));
281 	if (IS_DUALBUS(isp)) {
282 		el.le_rsvd = (bus & 0x1) << 7;
283 	}
284 	el.le_cmd_count = DFLT_CMD_CNT;
285 	el.le_in_count = DFLT_INOTIFY;
286 	if (cmd == RQSTYPE_ENABLE_LUN) {
287 		if (IS_SCSI(isp)) {
288 			el.le_flags = LUN_TQAE;
289 			el.le_cdb6len = 12;
290 			el.le_cdb7len = 12;
291 		}
292 	} else if (cmd == -RQSTYPE_ENABLE_LUN) {
293 		cmd = RQSTYPE_ENABLE_LUN;
294 		el.le_cmd_count = 0;
295 		el.le_in_count = 0;
296 	} else if (cmd == -RQSTYPE_MODIFY_LUN) {
297 		cmd = RQSTYPE_MODIFY_LUN;
298 		el.le_ops = LUN_CCDECR | LUN_INDECR;
299 	} else {
300 		el.le_ops = LUN_CCINCR | LUN_ININCR;
301 	}
302 	el.le_header.rqs_entry_type = cmd;
303 	el.le_header.rqs_entry_count = 1;
304 	el.le_reserved = opaque;
305 	if (IS_SCSI(isp)) {
306 		el.le_tgt = tgt;
307 		el.le_lun = lun;
308 #ifndef	ISP2100_SCCLUN
309 	} else {
310 		el.le_lun = lun;
311 #endif
312 	}
313 
314 	if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
315 		PRINTF("%s: Request Queue Overflow in isp_lun_cmd\n",
316 		    isp->isp_name);
317 		return (-1);
318 	}
319 	ISP_SWIZ_ENABLE_LUN(isp, outp, &el);
320 	ISP_TDQE(isp, "isp_lun_cmd", (int) optr, &el);
321 	ISP_ADD_REQUEST(isp, iptr);
322 	return (0);
323 }
324 
325 
326 int
327 isp_target_put_entry(isp, ap)
328 	struct ispsoftc *isp;
329 	void *ap;
330 {
331 	void *outp;
332 	u_int16_t iptr, optr;
333 	u_int8_t etype = ((isphdr_t *) ap)->rqs_entry_type;
334 
335 	if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
336 		PRINTF("%s: Request Queue Overflow in isp_target_put_entry "
337 		    "for type 0x%x\n", isp->isp_name, etype);
338 		return (-1);
339 	}
340 	switch (etype) {
341 	case RQSTYPE_ATIO:
342 		ISP_SWIZ_ATIO(isp, outp, ap);
343 		break;
344 	case RQSTYPE_ATIO2:
345 		ISP_SWIZ_ATIO2(isp, outp, ap);
346 		break;
347 	case RQSTYPE_CTIO:
348 		ISP_SWIZ_CTIO(isp, outp, ap);
349 		break;
350 	case RQSTYPE_CTIO2:
351 		ISP_SWIZ_CTIO2(isp, outp, ap);
352 		break;
353 	default:
354 		PRINTF("%s: Unknown type 0x%x in isp_put_entry\n",
355 		    isp->isp_name, etype);
356 		return (-1);
357 	}
358 
359 	ISP_TDQE(isp, "isp_target_put_entry", (int) optr, ap);;
360 
361 	ISP_ADD_REQUEST(isp, iptr);
362 	return (0);
363 }
364 
365 int
366 isp_target_put_atio(isp, iid, tgt, lun, ttype, tval)
367 	struct ispsoftc *isp;
368 	int iid;
369 	int tgt;
370 	int lun;
371 	int ttype;
372 	int tval;
373 {
374 	union {
375 		at_entry_t _atio;
376 		at2_entry_t _atio2;
377 	} atun;
378 
379 	MEMZERO(&atun, sizeof atun);
380 	if (IS_FC(isp)) {
381 		atun._atio2.at_header.rqs_entry_type = RQSTYPE_ATIO2;
382 		atun._atio2.at_header.rqs_entry_count = 1;
383 #ifdef ISP2100_SCCLUN
384 		atun._atio2.at_scclun = (uint16_t) lun;
385 #else
386 		atun._atio2.at_lun = (uint8_t) lun;
387 #endif
388 		atun._atio2.at_status = CT_OK;
389 	} else {
390 		atun._atio.at_header.rqs_entry_type = RQSTYPE_ATIO;
391 		atun._atio.at_header.rqs_entry_count = 1;
392 		atun._atio.at_iid = iid;
393 		atun._atio.at_tgt = tgt;
394 		atun._atio.at_lun = lun;
395 		atun._atio.at_tag_type = ttype;
396 		atun._atio.at_tag_val = tval;
397 		atun._atio.at_status = CT_OK;
398 	}
399 	return (isp_target_put_entry(isp, &atun));
400 }
401 
402 /*
403  * Command completion- both for handling cases of no resources or
404  * no blackhole driver, or other cases where we have to, inline,
405  * finish the command sanely, or for normal command completion.
406  *
407  * The 'completion' code value has the scsi status byte in the low 8 bits.
408  * If status is a CHECK CONDITION and bit 8 is nonzero, then bits 12..15 have
409  * the sense key and  bits 16..23 have the ASCQ and bits 24..31 have the ASC
410  * values.
411  *
412  * NB: the key, asc, ascq, cannot be used for parallel SCSI as it doesn't
413  * NB: inline SCSI sense reporting.
414  *
415  * For both parallel && fibre channel, we use the feature that does
416  * an automatic resource autoreplenish so we don't have then later do
417  * put of an atio to replenish the f/w's resource count.
418  */
419 
420 int
421 isp_endcmd(struct ispsoftc *isp, void *arg, u_int32_t code, u_int32_t hdl)
422 {
423 	int sts;
424 	union {
425 		ct_entry_t _ctio;
426 		ct2_entry_t _ctio2;
427 	} un;
428 
429 	MEMZERO(&un, sizeof un);
430 	sts = code & 0xff;
431 
432 	if (IS_FC(isp)) {
433 		at2_entry_t *aep = arg;
434 		ct2_entry_t *cto = &un._ctio2;
435 
436 		cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2;
437 		cto->ct_header.rqs_entry_count = 1;
438 		cto->ct_iid = aep->at_iid;
439 #ifndef	ISP2100_SCCLUN
440 		cto->ct_lun = aep->at_lun;
441 #endif
442 		cto->ct_rxid = aep->at_rxid;
443 		cto->rsp.m1.ct_scsi_status = sts & 0xff;
444 		cto->ct_flags = CT2_SENDSTATUS | CT2_NO_DATA | CT2_FLAG_MODE1;
445 		if (hdl == 0) {
446 			cto->ct_flags |= CT2_CCINCR;
447 		}
448 		if (aep->at_datalen) {
449 			cto->ct_resid = aep->at_datalen;
450 			cto->ct_flags |= CT2_DATA_UNDER;
451 		}
452 		if ((sts & 0xff) == SCSI_CHECK && (sts & ECMD_SVALID)) {
453 			cto->rsp.m1.ct_resp[0] = 0xf0;
454 			cto->rsp.m1.ct_resp[2] = (code >> 12) & 0xf;
455 			cto->rsp.m1.ct_resp[7] = 8;
456 			cto->rsp.m1.ct_resp[12] = (code >> 24) & 0xff;
457 			cto->rsp.m1.ct_resp[13] = (code >> 16) & 0xff;
458 			cto->rsp.m1.ct_senselen = 16;
459 			cto->ct_flags |= CT2_SNSLEN_VALID;
460 		}
461 		cto->ct_reserved = hdl;
462 	} else {
463 		at_entry_t *aep = arg;
464 		ct_entry_t *cto = &un._ctio;
465 
466 		cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
467 		cto->ct_header.rqs_entry_count = 1;
468 		cto->ct_iid = aep->at_iid;
469 		cto->ct_tgt = aep->at_tgt;
470 		cto->ct_lun = aep->at_lun;
471 		cto->ct_tag_type = aep->at_tag_type;
472 		cto->ct_tag_val = aep->at_tag_val;
473 		cto->ct_flags = CT_SENDSTATUS | CT_NO_DATA;
474 		if (hdl == 0) {
475 			cto->ct_flags |= CT_CCINCR;
476 		}
477 		cto->ct_scsi_status = sts;
478 		cto->ct_reserved = hdl;
479 	}
480 	return (isp_target_put_entry(isp, &un));
481 }
482 
483 void
484 isp_target_async(isp, bus, event)
485 	struct ispsoftc *isp;
486 	int bus;
487 	int event;
488 {
489 	tmd_event_t evt;
490 	tmd_msg_t msg;
491 
492 	switch (event) {
493 	/*
494 	 * These three we handle here to propagate an effective bus reset
495 	 * upstream, but these do not require any immediate notify actions
496 	 * so we return when done.
497 	 */
498 	case ASYNC_LIP_OCCURRED:
499 	case ASYNC_LOOP_UP:
500 	case ASYNC_LOOP_DOWN:
501 		evt.ev_bus = bus;
502 		evt.ev_event = event;
503 		(void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt);
504 		return;
505 
506 	case ASYNC_LOOP_RESET:
507 	case ASYNC_BUS_RESET:
508 	case ASYNC_TIMEOUT_RESET:
509 		if (IS_FC(isp)) {
510 			return;	/* we'll be getting an inotify instead */
511 		}
512 		evt.ev_bus = bus;
513 		evt.ev_event = event;
514 		(void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt);
515 		break;
516 	case ASYNC_DEVICE_RESET:
517 		/*
518 		 * Bus Device Reset resets a specific target, so
519 		 * we pass this as a synthesized message.
520 		 */
521 		MEMZERO(&msg, sizeof msg);
522 		if (IS_FC(isp)) {
523 			msg.nt_iid =
524 			    ((fcparam *)isp->isp_param)->isp_loopid;
525 		} else {
526 			msg.nt_iid =
527 			    ((sdparam *)isp->isp_param)->isp_initiator_id;
528 		}
529 		msg.nt_bus = bus;
530 		msg.nt_msg[0] = MSG_BUS_DEV_RESET;
531 		(void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
532 		break;
533 	default:
534 		PRINTF("%s: isp_target_async: unknown event 0x%x\n",
535 		    isp->isp_name, event);
536 		break;
537 	}
538 	isp_notify_ack(isp, NULL);
539 }
540 
541 
542 /*
543  * Process a received message.
544  * The ISP firmware can handle most messages, there are only
545  * a few that we need to deal with:
546  * - abort: clean up the current command
547  * - abort tag and clear queue
548  */
549 
550 static void
551 isp_got_msg(isp, bus, inp)
552 	struct ispsoftc *isp;
553 	int bus;
554 	in_entry_t *inp;
555 {
556 	u_int8_t status = inp->in_status & ~QLTM_SVALID;
557 
558 	if (status == IN_IDE_RECEIVED || status == IN_MSG_RECEIVED) {
559 		tmd_msg_t msg;
560 
561 		MEMZERO(&msg, sizeof (msg));
562 		msg.nt_bus = bus;
563 		msg.nt_iid = inp->in_iid;
564 		msg.nt_tgt = inp->in_tgt;
565 		msg.nt_lun = inp->in_lun;
566 		msg.nt_tagtype = inp->in_tag_type;
567 		msg.nt_tagval = inp->in_tag_val;
568 		MEMCPY(msg.nt_msg, inp->in_msg, IN_MSGLEN);
569 		(void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
570 	} else {
571 		PRINTF("%s: unknown immediate notify status 0x%x\n",
572 		    isp->isp_name, inp->in_status);
573 	}
574 }
575 
576 /*
577  * Synthesize a message from the task management flags in a FCP_CMND_IU.
578  */
579 static void
580 isp_got_msg_fc(isp, bus, inp)
581 	struct ispsoftc *isp;
582 	int bus;
583 	in_fcentry_t *inp;
584 {
585 	static char *f1 = "%s: %s from iid %d lun %d seq 0x%x\n";
586 	static char *f2 =
587 	    "%s: unknown %s 0x%x lun %d iid %d task flags 0x%x seq 0x%x\n";
588 
589 	if (inp->in_status != IN_MSG_RECEIVED) {
590 		PRINTF(f2, isp->isp_name, "immediate notify status",
591 		    inp->in_status, inp->in_lun, inp->in_iid,
592 		    inp->in_task_flags,  inp->in_seqid);
593 	} else {
594 		tmd_msg_t msg;
595 
596 		MEMZERO(&msg, sizeof (msg));
597 		msg.nt_bus = bus;
598 		msg.nt_iid = inp->in_iid;
599 #ifdef	ISP2100_SCCLUN
600 		msg.nt_lun = inp->in_scclun;
601 #else
602 		msg.nt_lun = inp->in_lun;
603 #endif
604 		msg.nt_tagval = inp->in_seqid;
605 
606 		if (inp->in_task_flags & TASK_FLAGS_ABORT_TASK) {
607 			PRINTF(f1, isp->isp_name, "ABORT TASK",
608 			    inp->in_iid, inp->in_lun, inp->in_seqid);
609 			msg.nt_msg[0] = MSG_ABORT_TAG;
610 		} else if (inp->in_task_flags & TASK_FLAGS_CLEAR_TASK_SET) {
611 			PRINTF(f1, isp->isp_name, "CLEAR TASK SET",
612 			    inp->in_iid, inp->in_lun, inp->in_seqid);
613 			msg.nt_msg[0] = MSG_CLEAR_QUEUE;
614 		} else if (inp->in_task_flags & TASK_FLAGS_TARGET_RESET) {
615 			PRINTF(f1, isp->isp_name, "TARGET RESET",
616 			    inp->in_iid, inp->in_lun, inp->in_seqid);
617 			msg.nt_msg[0] = MSG_BUS_DEV_RESET;
618 		} else if (inp->in_task_flags & TASK_FLAGS_CLEAR_ACA) {
619 			PRINTF(f1, isp->isp_name, "CLEAR ACA",
620 			    inp->in_iid, inp->in_lun, inp->in_seqid);
621 			/* ???? */
622 			msg.nt_msg[0] = MSG_REL_RECOVERY;
623 		} else if (inp->in_task_flags & TASK_FLAGS_TERMINATE_TASK) {
624 			PRINTF(f1, isp->isp_name, "TERMINATE TASK",
625 			    inp->in_iid, inp->in_lun, inp->in_seqid);
626 			msg.nt_msg[0] = MSG_TERM_IO_PROC;
627 		} else {
628 			PRINTF(f2, isp->isp_name, "task flag",
629 			    inp->in_status, inp->in_lun, inp->in_iid,
630 			    inp->in_task_flags,  inp->in_seqid);
631 		}
632 		if (msg.nt_msg[0]) {
633 			(void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
634 		}
635 	}
636 }
637 
638 static void
639 isp_notify_ack(isp, arg)
640 	struct ispsoftc *isp;
641 	void *arg;
642 {
643 	char storage[QENTRY_LEN];
644 	u_int16_t iptr, optr;
645 	void *outp;
646 
647 	if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
648 		PRINTF("%s: Request Queue Overflow For isp_notify_ack\n",
649 		    isp->isp_name);
650 		return;
651 	}
652 
653 	MEMZERO(storage, QENTRY_LEN);
654 
655 	if (IS_FC(isp)) {
656 		na_fcentry_t *na = (na_fcentry_t *) storage;
657 		if (arg) {
658 			in_fcentry_t *inp = arg;
659 			MEMCPY(storage, arg, sizeof (isphdr_t));
660 			na->na_iid = inp->in_iid;
661 #ifdef	ISP2100_SCCLUN
662 			na->na_lun = inp->in_scclun;
663 #else
664 			na->na_lun = inp->in_lun;
665 #endif
666 			na->na_task_flags = inp->in_task_flags;
667 			na->na_seqid = inp->in_seqid;
668 			na->na_flags = NAFC_RCOUNT;
669 			if (inp->in_status == IN_RESET) {
670 				na->na_flags |= NAFC_RST_CLRD;
671 			}
672 		} else {
673 			na->na_flags = NAFC_RST_CLRD;
674 		}
675 		na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK;
676 		na->na_header.rqs_entry_count = 1;
677 		ISP_SWIZ_NOT_ACK_FC(isp, outp, na);
678 	} else {
679 		na_entry_t *na = (na_entry_t *) storage;
680 		if (arg) {
681 			in_entry_t *inp = arg;
682 			MEMCPY(storage, arg, sizeof (isphdr_t));
683 			na->na_iid = inp->in_iid;
684 			na->na_lun = inp->in_lun;
685 			na->na_tgt = inp->in_tgt;
686 			na->na_seqid = inp->in_seqid;
687 			if (inp->in_status == IN_RESET) {
688 				na->na_event = NA_RST_CLRD;
689 			}
690 		} else {
691 			na->na_event = NA_RST_CLRD;
692 		}
693 		na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK;
694 		na->na_header.rqs_entry_count = 1;
695 		ISP_SWIZ_NOT_ACK(isp, outp, na);
696 	}
697 	ISP_TDQE(isp, "isp_notify_ack", (int) optr, storage);
698 	ISP_ADD_REQUEST(isp, iptr);
699 }
700 
701 static void
702 isp_handle_atio(isp, aep)
703 	struct ispsoftc *isp;
704 	at_entry_t *aep;
705 {
706 	int lun;
707 	lun = aep->at_lun;
708 	/*
709 	 * The firmware status (except for the QLTM_SVALID bit) indicates
710 	 * why this ATIO was sent to us.
711 	 *
712 	 * If QLTM_SVALID is set, the firware has recommended Sense Data.
713 	 *
714 	 * If the DISCONNECTS DISABLED bit is set in the flags field,
715 	 * we're still connected on the SCSI bus - i.e. the initiator
716 	 * did not set DiscPriv in the identify message. We don't care
717 	 * about this so it's ignored.
718 	 */
719 
720 	switch(aep->at_status & ~QLTM_SVALID) {
721 	case AT_PATH_INVALID:
722 		/*
723 		 * ATIO rejected by the firmware due to disabled lun.
724 		 */
725 		PRINTF("%s: rejected ATIO for disabled lun %d\n",
726 		    isp->isp_name, lun);
727 		break;
728 	case AT_NOCAP:
729 		/*
730 		 * Requested Capability not available
731 		 * We sent an ATIO that overflowed the firmware's
732 		 * command resource count.
733 		 */
734 		PRINTF("%s: rejected ATIO for lun %d because of command count"
735 		    " overflow\n", isp->isp_name, lun);
736 		break;
737 
738 	case AT_BDR_MSG:
739 		/*
740 		 * If we send an ATIO to the firmware to increment
741 		 * its command resource count, and the firmware is
742 		 * recovering from a Bus Device Reset, it returns
743 		 * the ATIO with this status. We set the command
744 		 * resource count in the Enable Lun entry and no
745 		 * not increment it. Therefore we should never get
746 		 * this status here.
747 		 */
748 		PRINTF("%s: ATIO returned for lun %d because it was in the "
749 		    " middle of coping with a Bus Device Reset\n",
750 		    isp->isp_name, lun);
751 		break;
752 
753 	case AT_CDB:		/* Got a CDB */
754 	case AT_PHASE_ERROR:	/* Bus Phase Sequence Error */
755 		/*
756 		 * Punt to platform specific layer.
757 		 */
758 		(void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep);
759 		break;
760 
761 	case AT_RESET:
762 		/*
763 		 * A bus reset came along an blew away this command. Why
764 		 * they do this in addition the async event code stuff,
765 		 * I dunno.
766 		 *
767 		 * Ignore it because the async event will clear things
768 		 * up for us.
769 		 */
770 		PRINTF("%s: ATIO returned for lun %d from initiator %d because"
771 		    " a Bus Reset occurred\n", isp->isp_name, lun,
772 		    aep->at_iid);
773 		break;
774 
775 
776 	default:
777 		PRINTF("%s: Unknown ATIO status 0x%x from initiator %d for lun"
778 		    " %d\n", isp->isp_name, aep->at_status, aep->at_iid, lun);
779 		(void) isp_target_put_atio(isp, aep->at_iid, aep->at_tgt,
780 		    lun, aep->at_tag_type, aep->at_tag_val);
781 		break;
782 	}
783 }
784 
785 static void
786 isp_handle_atio2(isp, aep)
787 	struct ispsoftc *isp;
788 	at2_entry_t *aep;
789 {
790 	int lun;
791 #ifdef	ISP2100_SCCLUN
792 	lun = aep->at_scclun;
793 #else
794 	lun = aep->at_lun;
795 #endif
796 	/*
797 	 * The firmware status (except for the QLTM_SVALID bit) indicates
798 	 * why this ATIO was sent to us.
799 	 *
800 	 * If QLTM_SVALID is set, the firware has recommended Sense Data.
801 	 *
802 	 * If the DISCONNECTS DISABLED bit is set in the flags field,
803 	 * we're still connected on the SCSI bus - i.e. the initiator
804 	 * did not set DiscPriv in the identify message. We don't care
805 	 * about this so it's ignored.
806 	 */
807 
808 	switch(aep->at_status & ~QLTM_SVALID) {
809 	case AT_PATH_INVALID:
810 		/*
811 		 * ATIO rejected by the firmware due to disabled lun.
812 		 */
813 		PRINTF("%s: rejected ATIO2 for disabled lun %d\n",
814 		    isp->isp_name, lun);
815 		break;
816 	case AT_NOCAP:
817 		/*
818 		 * Requested Capability not available
819 		 * We sent an ATIO that overflowed the firmware's
820 		 * command resource count.
821 		 */
822 		PRINTF("%s: rejected ATIO2 for lun %d because of command count"
823 		    " overflow\n", isp->isp_name, lun);
824 		break;
825 
826 	case AT_BDR_MSG:
827 		/*
828 		 * If we send an ATIO to the firmware to increment
829 		 * its command resource count, and the firmware is
830 		 * recovering from a Bus Device Reset, it returns
831 		 * the ATIO with this status. We set the command
832 		 * resource count in the Enable Lun entry and no
833 		 * not increment it. Therefore we should never get
834 		 * this status here.
835 		 */
836 		PRINTF("%s: ATIO2 returned for lun %d because it was in the "
837 		    " middle of coping with a Bus Device Reset\n",
838 		    isp->isp_name, lun);
839 		break;
840 
841 	case AT_CDB:		/* Got a CDB */
842 		/*
843 		 * Punt to platform specific layer.
844 		 */
845 		(void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep);
846 		break;
847 
848 	case AT_RESET:
849 		/*
850 		 * A bus reset came along an blew away this command. Why
851 		 * they do this in addition the async event code stuff,
852 		 * I dunno.
853 		 *
854 		 * Ignore it because the async event will clear things
855 		 * up for us.
856 		 */
857 		PRINTF("%s: ATIO2 returned for lun %d from initiator %d because"
858 		    " a Bus Reset occurred\n", isp->isp_name, lun,
859 		    aep->at_iid);
860 		break;
861 
862 
863 	default:
864 		PRINTF("%s: Unknown ATIO2 status 0x%x from initiator %d for lun"
865 		    " %d\n", isp->isp_name, aep->at_status, aep->at_iid, lun);
866 		(void) isp_target_put_atio(isp, aep->at_iid, 0, lun, 0, 0);
867 		break;
868 	}
869 }
870 
871 static void
872 isp_handle_ctio(isp, ct)
873 	struct ispsoftc *isp;
874 	ct_entry_t *ct;
875 {
876 	ISP_SCSI_XFER_T *xs;
877 	int pl = 0;
878 	char *fmsg = NULL;
879 
880 	if (ct->ct_reserved) {
881 		xs = isp_find_xs(isp, ct->ct_reserved);
882 		if (xs == NULL)
883 			pl = 0;
884 	} else {
885 		pl = 2;
886 		xs = NULL;
887 	}
888 
889 	switch(ct->ct_status & ~QLTM_SVALID) {
890 	case CT_OK:
891 		/*
892 		 * There are generally 3 possibilities as to why we'd get
893 		 * this condition:
894 		 * 	We disconnected after receiving a CDB.
895 		 * 	We sent or received data.
896 		 * 	We sent status & command complete.
897 		 */
898 
899 		if (ct->ct_flags & CT_SENDSTATUS) {
900 			break;
901 		} else if ((ct->ct_flags & CT_DATAMASK) == CT_NO_DATA) {
902 			/*
903 			 * Nothing to do in this case.
904 			 */
905 			IDPRINTF(pl, ("%s:CTIO- iid %d disconnected OK\n",
906 			    isp->isp_name, ct->ct_iid));
907 			return;
908 		}
909 		break;
910 
911 	case CT_BDR_MSG:
912 		/*
913 		 * Bus Device Reset message received or the SCSI Bus has
914 		 * been Reset; the firmware has gone to Bus Free.
915 		 *
916 		 * The firmware generates an async mailbox interupt to
917 		 * notify us of this and returns outstanding CTIOs with this
918 		 * status. These CTIOs are handled in that same way as
919 		 * CT_ABORTED ones, so just fall through here.
920 		 */
921 		fmsg = "Bus Device Reset";
922 		/*FALLTHROUGH*/
923 	case CT_RESET:
924 		if (fmsg == NULL)
925 			fmsg = "Bus Reset";
926 		/*FALLTHROUGH*/
927 	case CT_ABORTED:
928 		/*
929 		 * When an Abort message is received the firmware goes to
930 		 * Bus Free and returns all outstanding CTIOs with the status
931 		 * set, then sends us an Immediate Notify entry.
932 		 */
933 		if (fmsg == NULL)
934 			fmsg = "ABORT TASK sent by Initiator";
935 
936 		PRINTF("%s: CTIO destroyed by %s\n", isp->isp_name, fmsg);
937 		break;
938 
939 	case CT_INVAL:
940 		/*
941 		 * CTIO rejected by the firmware due to disabled lun.
942 		 * "Cannot Happen".
943 		 */
944 		PRINTF("%s: Firmware rejected CTIO for disabled lun %d\n",
945 		    isp->isp_name, ct->ct_lun);
946 		break;
947 
948 	case CT_NOPATH:
949 		/*
950 		 * CTIO rejected by the firmware due "no path for the
951 		 * nondisconnecting nexus specified". This means that
952 		 * we tried to access the bus while a non-disconnecting
953 		 * command is in process.
954 		 */
955 		PRINTF("%s: Firmware rejected CTIO for bad nexus %d/%d/%d\n",
956 		    isp->isp_name, ct->ct_iid, ct->ct_tgt, ct->ct_lun);
957 		break;
958 
959 	case CT_RSELTMO:
960 		fmsg = "Reselection";
961 		/*FALLTHROUGH*/
962 	case CT_TIMEOUT:
963 		if (fmsg == NULL)
964 			fmsg = "Command";
965 		PRINTF("%s: Firmware timed out on %s\n", isp->isp_name, fmsg);
966 		break;
967 
968 	case CT_ERR:
969 		fmsg = "Completed with Error";
970 		/*FALLTHROUGH*/
971 	case CT_PHASE_ERROR:
972 		if (fmsg == NULL)
973 			fmsg = "Phase Sequence Error";
974 		/*FALLTHROUGH*/
975 	case CT_TERMINATED:
976 		if (fmsg == NULL)
977 			fmsg = "terminated by TERMINATE TRANSFER";
978 		/*FALLTHROUGH*/
979 	case CT_NOACK:
980 		if (fmsg == NULL)
981 			fmsg = "unacknowledged Immediate Notify pending";
982 
983 		PRINTF("%s: CTIO returned by f/w- %s\n", isp->isp_name, fmsg);
984 #if	0
985 			if (status & SENSEVALID) {
986 				bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET),
987 				    (caddr_t) &cdp->cd_sensedata,
988 				    sizeof(scsi_sense_t));
989 				cdp->cd_flags |= CDF_SENSEVALID;
990 			}
991 #endif
992 		break;
993 	default:
994 		PRINTF("%s: Unknown CTIO status 0x%x\n", isp->isp_name,
995 		    ct->ct_status & ~QLTM_SVALID);
996 		break;
997 	}
998 
999 	if (xs == NULL) {
1000 		/*
1001 		 * There may be more than one CTIO for a data transfer,
1002 		 * or this may be a status CTIO we're not monitoring.
1003 		 *
1004 		 * The assumption is that they'll all be returned in the
1005 		 * order we got them.
1006 		 */
1007 		if (ct->ct_reserved == 0) {
1008 			if ((ct->ct_flags & CT_SENDSTATUS) == 0) {
1009 				IDPRINTF(pl,
1010 				    ("%s: intermediate CTIO completed ok\n",
1011 				    isp->isp_name));
1012 			} else {
1013 				IDPRINTF(pl,
1014 				    ("%s: unmonitored CTIO completed ok\n",
1015 				    isp->isp_name));
1016 			}
1017 		} else {
1018 			IDPRINTF(pl,
1019 			    ("%s: NO xs for CTIO (handle 0x%x) status 0x%x\n",
1020 			    isp->isp_name, ct->ct_reserved,
1021 			    ct->ct_status & ~QLTM_SVALID));
1022 		}
1023 	} else {
1024 		if (ct->ct_flags & CT_SENDSTATUS) {
1025 			/*
1026 			 * Sent status and command complete.
1027 			 *
1028 			 * We're now really done with this command, so we
1029 			 * punt to the platform dependent layers because
1030 			 * only there can we do the appropriate command
1031 			 * complete thread synchronization.
1032 			 */
1033 			IDPRINTF(pl,
1034 			    ("%s:status CTIO complete\n", isp->isp_name));
1035 		} else {
1036 			/*
1037 			 * Final CTIO completed. Release DMA resources and
1038 			 * notify platform dependent layers.
1039 			 */
1040 			IDPRINTF(pl,
1041 			    ("%s: data CTIO complete\n", isp->isp_name));
1042 			ISP_DMAFREE(isp, xs, ct->ct_reserved);
1043 		}
1044 		(void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct);
1045 		/*
1046 		 * The platform layer will destroy the handle if appropriate.
1047 		 */
1048 	}
1049 }
1050 
1051 static void
1052 isp_handle_ctio2(isp, ct)
1053 	struct ispsoftc *isp;
1054 	ct2_entry_t *ct;
1055 {
1056 	ISP_SCSI_XFER_T *xs;
1057 	int pl = 3;
1058 	char *fmsg = NULL;
1059 
1060 	if (ct->ct_reserved) {
1061 		xs = isp_find_xs(isp, ct->ct_reserved);
1062 		if (xs == NULL)
1063 			pl = 0;
1064 	} else {
1065 		pl = 2;
1066 		xs = NULL;
1067 	}
1068 
1069 	switch(ct->ct_status & ~QLTM_SVALID) {
1070 	case CT_OK:
1071 		/*
1072 		 * There are generally 2 possibilities as to why we'd get
1073 		 * this condition:
1074 		 * 	We sent or received data.
1075 		 * 	We sent status & command complete.
1076 		 */
1077 
1078 		break;
1079 
1080 	case CT_BDR_MSG:
1081 		/*
1082 		 * Bus Device Reset message received or the SCSI Bus has
1083 		 * been Reset; the firmware has gone to Bus Free.
1084 		 *
1085 		 * The firmware generates an async mailbox interupt to
1086 		 * notify us of this and returns outstanding CTIOs with this
1087 		 * status. These CTIOs are handled in that same way as
1088 		 * CT_ABORTED ones, so just fall through here.
1089 		 */
1090 		fmsg = "Bus Device Reset";
1091 		/*FALLTHROUGH*/
1092 	case CT_RESET:
1093 		if (fmsg == NULL)
1094 			fmsg = "Bus Reset";
1095 		/*FALLTHROUGH*/
1096 	case CT_ABORTED:
1097 		/*
1098 		 * When an Abort message is received the firmware goes to
1099 		 * Bus Free and returns all outstanding CTIOs with the status
1100 		 * set, then sends us an Immediate Notify entry.
1101 		 */
1102 		if (fmsg == NULL)
1103 			fmsg = "ABORT TASK sent by Initiator";
1104 
1105 		PRINTF("%s: CTIO2 destroyed by %s\n", isp->isp_name, fmsg);
1106 		break;
1107 
1108 	case CT_INVAL:
1109 		/*
1110 		 * CTIO rejected by the firmware - invalid data direction.
1111 		 */
1112 		PRINTF("%s: CTIO2 had wrong data directiond\n", isp->isp_name);
1113 		break;
1114 
1115 	case CT_NOPATH:
1116 		/*
1117 		 * CTIO rejected by the firmware due "no path for the
1118 		 * nondisconnecting nexus specified". This means that
1119 		 * we tried to access the bus while a non-disconnecting
1120 		 * command is in process.
1121 		 */
1122 		PRINTF("%s: Firmware rejected CTIO2 for bad nexus %d->%d\n",
1123 		    isp->isp_name, ct->ct_iid, ct->ct_lun);
1124 		break;
1125 
1126 	case CT_RSELTMO:
1127 		fmsg = "Reselection";
1128 		/*FALLTHROUGH*/
1129 	case CT_TIMEOUT:
1130 		if (fmsg == NULL)
1131 			fmsg = "Command";
1132 		PRINTF("%s: Firmware timed out on %s\n", isp->isp_name, fmsg);
1133 		break;
1134 
1135 	case CT_ERR:
1136 		fmsg = "Completed with Error";
1137 		/*FALLTHROUGH*/
1138 	case CT_PHASE_ERROR:	/* Bus phase sequence error */
1139 		if (fmsg == NULL)
1140 			fmsg = "Phase Sequence Error";
1141 		/*FALLTHROUGH*/
1142 	case CT_TERMINATED:
1143 		if (fmsg == NULL)
1144 			fmsg = "terminated by TERMINATE TRANSFER";
1145 		/*FALLTHROUGH*/
1146 	case CT_LOGOUT:
1147 		if (fmsg == NULL)
1148 			fmsg = "Port Logout";
1149 		/*FALLTHROUGH*/
1150 	case CT_PORTNOTAVAIL:
1151 		if (fmsg == NULL)
1152 			fmsg = "Port not available";
1153 	case CT_NOACK:
1154 		if (fmsg == NULL)
1155 			fmsg = "unacknowledged Immediate Notify pending";
1156 
1157 		PRINTF("%s: CTIO returned by f/w- %s\n", isp->isp_name, fmsg);
1158 #if	0
1159 			if (status & SENSEVALID) {
1160 				bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET),
1161 				    (caddr_t) &cdp->cd_sensedata,
1162 				    sizeof(scsi_sense_t));
1163 				cdp->cd_flags |= CDF_SENSEVALID;
1164 			}
1165 #endif
1166 		break;
1167 
1168 	case CT_INVRXID:
1169 		/*
1170 		 * CTIO rejected by the firmware because an invalid RX_ID.
1171 		 * Just print a message.
1172 		 */
1173 		PRINTF("%s: CTIO2 completed with Invalid RX_ID 0x%x\n",
1174 		    isp->isp_name, ct->ct_rxid);
1175 		break;
1176 
1177 	default:
1178 		IDPRINTF(pl, ("%s: Unknown CTIO status 0x%x\n", isp->isp_name,
1179 		    ct->ct_status & ~QLTM_SVALID));
1180 		break;
1181 	}
1182 
1183 	if (xs == NULL) {
1184 		/*
1185 		 * There may be more than one CTIO for a data transfer,
1186 		 * or this may be a status CTIO we're not monitoring.
1187 		 *
1188 		 * The assumption is that they'll all be returned in the
1189 		 * order we got them.
1190 		 */
1191 		if (ct->ct_reserved == 0) {
1192 			if ((ct->ct_flags & CT_SENDSTATUS) == 0) {
1193 				IDPRINTF(pl,
1194 				    ("%s: intermediate CTIO completed ok\n",
1195 				    isp->isp_name));
1196 			} else {
1197 				IDPRINTF(pl,
1198 				    ("%s: unmonitored CTIO completed ok\n",
1199 				    isp->isp_name));
1200 			}
1201 		} else {
1202 			IDPRINTF(pl,
1203 			    ("%s: NO xs for CTIO (handle 0x%x) status 0x%x\n",
1204 			    isp->isp_name, ct->ct_reserved,
1205 			    ct->ct_status & ~QLTM_SVALID));
1206 		}
1207 	} else {
1208 		if (ct->ct_flags & CT_SENDSTATUS) {
1209 			/*
1210 			 * Sent status and command complete.
1211 			 *
1212 			 * We're now really done with this command, so we
1213 			 * punt to the platform dependent layers because
1214 			 * only there can we do the appropriate command
1215 			 * complete thread synchronization.
1216 			 */
1217 			IDPRINTF(pl,
1218 			    ("%s: status CTIO complete\n", isp->isp_name));
1219 		} else {
1220 			/*
1221 			 * Final CTIO completed. Release DMA resources and
1222 			 * notify platform dependent layers.
1223 			 */
1224 			IDPRINTF(pl,
1225 			    ("%s: data CTIO complete\n", isp->isp_name));
1226 			ISP_DMAFREE(isp, xs, ct->ct_reserved);
1227 		}
1228 		(void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct);
1229 		/*
1230 		 * The platform layer will destroy the handle if appropriate.
1231 		 */
1232 	}
1233 }
1234 #endif
1235