xref: /freebsd/sys/dev/isp/isp_pci.c (revision ee2ea5ceafed78a5bd9810beb9e3ca927180c226)
1 /* $FreeBSD$ */
2 /*
3  * PCI specific probe and attach routines for Qlogic ISP SCSI adapters.
4  * FreeBSD Version.
5  *
6  * Copyright (c) 1997, 1998, 1999, 2000, 2001 by Matthew Jacob
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice immediately at the beginning of the file, without modification,
13  *    this list of conditions, and the following disclaimer.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/bus.h>
35 
36 #include <pci/pcireg.h>
37 #include <pci/pcivar.h>
38 
39 #include <machine/bus_memio.h>
40 #include <machine/bus_pio.h>
41 #include <machine/bus.h>
42 #include <machine/resource.h>
43 #include <sys/rman.h>
44 #include <sys/malloc.h>
45 
46 #include <dev/isp/isp_freebsd.h>
47 
48 static u_int16_t isp_pci_rd_reg(struct ispsoftc *, int);
49 static void isp_pci_wr_reg(struct ispsoftc *, int, u_int16_t);
50 static u_int16_t isp_pci_rd_reg_1080(struct ispsoftc *, int);
51 static void isp_pci_wr_reg_1080(struct ispsoftc *, int, u_int16_t);
52 static int
53 isp_pci_rd_isr(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
54 static int
55 isp_pci_rd_isr_2300(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
56 static int isp_pci_mbxdma(struct ispsoftc *);
57 static int
58 isp_pci_dmasetup(struct ispsoftc *, XS_T *, ispreq_t *, u_int16_t *, u_int16_t);
59 static void
60 isp_pci_dmateardown(struct ispsoftc *, XS_T *, u_int16_t);
61 
62 static void isp_pci_reset1(struct ispsoftc *);
63 static void isp_pci_dumpregs(struct ispsoftc *, const char *);
64 
65 #ifndef	ISP_CODE_ORG
66 #define	ISP_CODE_ORG		0x1000
67 #endif
68 
69 static struct ispmdvec mdvec = {
70 	isp_pci_rd_isr,
71 	isp_pci_rd_reg,
72 	isp_pci_wr_reg,
73 	isp_pci_mbxdma,
74 	isp_pci_dmasetup,
75 	isp_pci_dmateardown,
76 	NULL,
77 	isp_pci_reset1,
78 	isp_pci_dumpregs,
79 	NULL,
80 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
81 };
82 
83 static struct ispmdvec mdvec_1080 = {
84 	isp_pci_rd_isr,
85 	isp_pci_rd_reg_1080,
86 	isp_pci_wr_reg_1080,
87 	isp_pci_mbxdma,
88 	isp_pci_dmasetup,
89 	isp_pci_dmateardown,
90 	NULL,
91 	isp_pci_reset1,
92 	isp_pci_dumpregs,
93 	NULL,
94 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
95 };
96 
97 static struct ispmdvec mdvec_12160 = {
98 	isp_pci_rd_isr,
99 	isp_pci_rd_reg_1080,
100 	isp_pci_wr_reg_1080,
101 	isp_pci_mbxdma,
102 	isp_pci_dmasetup,
103 	isp_pci_dmateardown,
104 	NULL,
105 	isp_pci_reset1,
106 	isp_pci_dumpregs,
107 	NULL,
108 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
109 };
110 
111 static struct ispmdvec mdvec_2100 = {
112 	isp_pci_rd_isr,
113 	isp_pci_rd_reg,
114 	isp_pci_wr_reg,
115 	isp_pci_mbxdma,
116 	isp_pci_dmasetup,
117 	isp_pci_dmateardown,
118 	NULL,
119 	isp_pci_reset1,
120 	isp_pci_dumpregs
121 };
122 
123 static struct ispmdvec mdvec_2200 = {
124 	isp_pci_rd_isr,
125 	isp_pci_rd_reg,
126 	isp_pci_wr_reg,
127 	isp_pci_mbxdma,
128 	isp_pci_dmasetup,
129 	isp_pci_dmateardown,
130 	NULL,
131 	isp_pci_reset1,
132 	isp_pci_dumpregs
133 };
134 
135 static struct ispmdvec mdvec_2300 = {
136 	isp_pci_rd_isr_2300,
137 	isp_pci_rd_reg,
138 	isp_pci_wr_reg,
139 	isp_pci_mbxdma,
140 	isp_pci_dmasetup,
141 	isp_pci_dmateardown,
142 	NULL,
143 	isp_pci_reset1,
144 	isp_pci_dumpregs
145 };
146 
147 #ifndef	PCIM_CMD_INVEN
148 #define	PCIM_CMD_INVEN			0x10
149 #endif
150 #ifndef	PCIM_CMD_BUSMASTEREN
151 #define	PCIM_CMD_BUSMASTEREN		0x0004
152 #endif
153 #ifndef	PCIM_CMD_PERRESPEN
154 #define	PCIM_CMD_PERRESPEN		0x0040
155 #endif
156 #ifndef	PCIM_CMD_SEREN
157 #define	PCIM_CMD_SEREN			0x0100
158 #endif
159 
160 #ifndef	PCIR_COMMAND
161 #define	PCIR_COMMAND			0x04
162 #endif
163 
164 #ifndef	PCIR_CACHELNSZ
165 #define	PCIR_CACHELNSZ			0x0c
166 #endif
167 
168 #ifndef	PCIR_LATTIMER
169 #define	PCIR_LATTIMER			0x0d
170 #endif
171 
172 #ifndef	PCIR_ROMADDR
173 #define	PCIR_ROMADDR			0x30
174 #endif
175 
176 #ifndef	PCI_VENDOR_QLOGIC
177 #define	PCI_VENDOR_QLOGIC		0x1077
178 #endif
179 
180 #ifndef	PCI_PRODUCT_QLOGIC_ISP1020
181 #define	PCI_PRODUCT_QLOGIC_ISP1020	0x1020
182 #endif
183 
184 #ifndef	PCI_PRODUCT_QLOGIC_ISP1080
185 #define	PCI_PRODUCT_QLOGIC_ISP1080	0x1080
186 #endif
187 
188 #ifndef	PCI_PRODUCT_QLOGIC_ISP12160
189 #define	PCI_PRODUCT_QLOGIC_ISP12160	0x1216
190 #endif
191 
192 #ifndef	PCI_PRODUCT_QLOGIC_ISP1240
193 #define	PCI_PRODUCT_QLOGIC_ISP1240	0x1240
194 #endif
195 
196 #ifndef	PCI_PRODUCT_QLOGIC_ISP1280
197 #define	PCI_PRODUCT_QLOGIC_ISP1280	0x1280
198 #endif
199 
200 #ifndef	PCI_PRODUCT_QLOGIC_ISP2100
201 #define	PCI_PRODUCT_QLOGIC_ISP2100	0x2100
202 #endif
203 
204 #ifndef	PCI_PRODUCT_QLOGIC_ISP2200
205 #define	PCI_PRODUCT_QLOGIC_ISP2200	0x2200
206 #endif
207 
208 #ifndef	PCI_PRODUCT_QLOGIC_ISP2300
209 #define	PCI_PRODUCT_QLOGIC_ISP2300	0x2300
210 #endif
211 
212 #ifndef	PCI_PRODUCT_QLOGIC_ISP2312
213 #define	PCI_PRODUCT_QLOGIC_ISP2312	0x2312
214 #endif
215 
216 #define	PCI_QLOGIC_ISP1020	\
217 	((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC)
218 
219 #define	PCI_QLOGIC_ISP1080	\
220 	((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC)
221 
222 #define	PCI_QLOGIC_ISP12160	\
223 	((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC)
224 
225 #define	PCI_QLOGIC_ISP1240	\
226 	((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC)
227 
228 #define	PCI_QLOGIC_ISP1280	\
229 	((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC)
230 
231 #define	PCI_QLOGIC_ISP2100	\
232 	((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC)
233 
234 #define	PCI_QLOGIC_ISP2200	\
235 	((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC)
236 
237 #define	PCI_QLOGIC_ISP2300	\
238 	((PCI_PRODUCT_QLOGIC_ISP2300 << 16) | PCI_VENDOR_QLOGIC)
239 
240 #define	PCI_QLOGIC_ISP2312	\
241 	((PCI_PRODUCT_QLOGIC_ISP2312 << 16) | PCI_VENDOR_QLOGIC)
242 
243 /*
244  * Odd case for some AMI raid cards... We need to *not* attach to this.
245  */
246 #define	AMI_RAID_SUBVENDOR_ID	0x101e
247 
248 #define	IO_MAP_REG	0x10
249 #define	MEM_MAP_REG	0x14
250 
251 #define	PCI_DFLT_LTNCY	0x40
252 #define	PCI_DFLT_LNSZ	0x10
253 
254 static int isp_pci_probe (device_t);
255 static int isp_pci_attach (device_t);
256 
257 
258 struct isp_pcisoftc {
259 	struct ispsoftc			pci_isp;
260 	device_t			pci_dev;
261 	struct resource *		pci_reg;
262 	bus_space_tag_t			pci_st;
263 	bus_space_handle_t		pci_sh;
264 	void *				ih;
265 	int16_t				pci_poff[_NREG_BLKS];
266 	bus_dma_tag_t			dmat;
267 	bus_dmamap_t			*dmaps;
268 };
269 ispfwfunc *isp_get_firmware_p = NULL;
270 
271 static device_method_t isp_pci_methods[] = {
272 	/* Device interface */
273 	DEVMETHOD(device_probe,		isp_pci_probe),
274 	DEVMETHOD(device_attach,	isp_pci_attach),
275 	{ 0, 0 }
276 };
277 static void isp_pci_intr(void *);
278 
279 static driver_t isp_pci_driver = {
280 	"isp", isp_pci_methods, sizeof (struct isp_pcisoftc)
281 };
282 static devclass_t isp_devclass;
283 DRIVER_MODULE(isp, pci, isp_pci_driver, isp_devclass, 0, 0);
284 MODULE_VERSION(isp, 1);
285 
286 static int
287 isp_pci_probe(device_t dev)
288 {
289         switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
290 	case PCI_QLOGIC_ISP1020:
291 		device_set_desc(dev, "Qlogic ISP 1020/1040 PCI SCSI Adapter");
292 		break;
293 	case PCI_QLOGIC_ISP1080:
294 		device_set_desc(dev, "Qlogic ISP 1080 PCI SCSI Adapter");
295 		break;
296 	case PCI_QLOGIC_ISP1240:
297 		device_set_desc(dev, "Qlogic ISP 1240 PCI SCSI Adapter");
298 		break;
299 	case PCI_QLOGIC_ISP1280:
300 		device_set_desc(dev, "Qlogic ISP 1280 PCI SCSI Adapter");
301 		break;
302 	case PCI_QLOGIC_ISP12160:
303 		if (pci_get_subvendor(dev) == AMI_RAID_SUBVENDOR_ID) {
304 			return (ENXIO);
305 		}
306 		device_set_desc(dev, "Qlogic ISP 12160 PCI SCSI Adapter");
307 		break;
308 	case PCI_QLOGIC_ISP2100:
309 		device_set_desc(dev, "Qlogic ISP 2100 PCI FC-AL Adapter");
310 		break;
311 	case PCI_QLOGIC_ISP2200:
312 		device_set_desc(dev, "Qlogic ISP 2200 PCI FC-AL Adapter");
313 		break;
314 	case PCI_QLOGIC_ISP2300:
315 		device_set_desc(dev, "Qlogic ISP 2300 PCI FC-AL Adapter");
316 		break;
317 	case PCI_QLOGIC_ISP2312:
318 		device_set_desc(dev, "Qlogic ISP 2312 PCI FC-AL Adapter");
319 		break;
320 	default:
321 		return (ENXIO);
322 	}
323 	if (device_get_unit(dev) == 0 && bootverbose) {
324 		printf("Qlogic ISP Driver, FreeBSD Version %d.%d, "
325 		    "Core Version %d.%d\n",
326 		    ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR,
327 		    ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR);
328 	}
329 	/*
330 	 * XXXX: Here is where we might load the f/w module
331 	 * XXXX: (or increase a reference count to it).
332 	 */
333 	return (0);
334 }
335 
336 static int
337 isp_pci_attach(device_t dev)
338 {
339 	struct resource *regs, *irq;
340 	int tval, rtp, rgd, iqd, m1, m2, isp_debug, role;
341 	u_int32_t data, cmd, linesz, psize, basetype;
342 	struct isp_pcisoftc *pcs;
343 	struct ispsoftc *isp = NULL;
344 	struct ispmdvec *mdvp;
345 	const char *sptr;
346 	int locksetup = 0;
347 
348 	/*
349 	 * Figure out if we're supposed to skip this one.
350 	 * If we are, we actually go to ISP_ROLE_NONE.
351 	 */
352 
353 	tval = 0;
354 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
355 	    "disable", &tval) == 0 && tval) {
356 		device_printf(dev, "device is disabled\n");
357 		/* but return 0 so the !$)$)*!$*) unit isn't reused */
358 		return (0);
359 	}
360 
361 	role = 0;
362 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
363 	    "role", &role) == 0 &&
364 	    ((role & ~(ISP_ROLE_INITIATOR|ISP_ROLE_TARGET)) == 0)) {
365 		device_printf(dev, "setting role to 0x%x\n", role);
366 	} else {
367 #ifdef	ISP_TARGET_MODE
368 		role = ISP_ROLE_INITIATOR|ISP_ROLE_TARGET;
369 #else
370 		role = ISP_DEFAULT_ROLES;
371 #endif
372 	}
373 
374 	pcs = malloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_NOWAIT | M_ZERO);
375 	if (pcs == NULL) {
376 		device_printf(dev, "cannot allocate softc\n");
377 		return (ENOMEM);
378 	}
379 
380 	/*
381 	 * Figure out which we should try first - memory mapping or i/o mapping?
382 	 */
383 #ifdef	__alpha__
384 	m1 = PCIM_CMD_MEMEN;
385 	m2 = PCIM_CMD_PORTEN;
386 #else
387 	m1 = PCIM_CMD_PORTEN;
388 	m2 = PCIM_CMD_MEMEN;
389 #endif
390 
391 	tval = 0;
392         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
393             "prefer_iomap", &tval) == 0 && tval != 0) {
394 		m1 = PCIM_CMD_PORTEN;
395 		m2 = PCIM_CMD_MEMEN;
396 	}
397 	tval = 0;
398         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
399             "prefer_memmap", &tval) == 0 && tval != 0) {
400 		m1 = PCIM_CMD_MEMEN;
401 		m2 = PCIM_CMD_PORTEN;
402 	}
403 
404 	linesz = PCI_DFLT_LNSZ;
405 	irq = regs = NULL;
406 	rgd = rtp = iqd = 0;
407 
408 	cmd = pci_read_config(dev, PCIR_COMMAND, 1);
409 	if (cmd & m1) {
410 		rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
411 		rgd = (m1 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
412 		regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
413 	}
414 	if (regs == NULL && (cmd & m2)) {
415 		rtp = (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
416 		rgd = (m2 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
417 		regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
418 	}
419 	if (regs == NULL) {
420 		device_printf(dev, "unable to map any ports\n");
421 		goto bad;
422 	}
423 	if (bootverbose)
424 		device_printf(dev, "using %s space register mapping\n",
425 		    (rgd == IO_MAP_REG)? "I/O" : "Memory");
426 	pcs->pci_dev = dev;
427 	pcs->pci_reg = regs;
428 	pcs->pci_st = rman_get_bustag(regs);
429 	pcs->pci_sh = rman_get_bushandle(regs);
430 
431 	pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF;
432 	pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF;
433 	pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF;
434 	pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF;
435 	pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF;
436 	mdvp = &mdvec;
437 	basetype = ISP_HA_SCSI_UNKNOWN;
438 	psize = sizeof (sdparam);
439 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1020) {
440 		mdvp = &mdvec;
441 		basetype = ISP_HA_SCSI_UNKNOWN;
442 		psize = sizeof (sdparam);
443 	}
444 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1080) {
445 		mdvp = &mdvec_1080;
446 		basetype = ISP_HA_SCSI_1080;
447 		psize = sizeof (sdparam);
448 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
449 		    ISP1080_DMA_REGS_OFF;
450 	}
451 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1240) {
452 		mdvp = &mdvec_1080;
453 		basetype = ISP_HA_SCSI_1240;
454 		psize = 2 * sizeof (sdparam);
455 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
456 		    ISP1080_DMA_REGS_OFF;
457 	}
458 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1280) {
459 		mdvp = &mdvec_1080;
460 		basetype = ISP_HA_SCSI_1280;
461 		psize = 2 * sizeof (sdparam);
462 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
463 		    ISP1080_DMA_REGS_OFF;
464 	}
465 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP12160) {
466 		mdvp = &mdvec_12160;
467 		basetype = ISP_HA_SCSI_12160;
468 		psize = 2 * sizeof (sdparam);
469 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
470 		    ISP1080_DMA_REGS_OFF;
471 	}
472 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2100) {
473 		mdvp = &mdvec_2100;
474 		basetype = ISP_HA_FC_2100;
475 		psize = sizeof (fcparam);
476 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
477 		    PCI_MBOX_REGS2100_OFF;
478 		if (pci_get_revid(dev) < 3) {
479 			/*
480 			 * XXX: Need to get the actual revision
481 			 * XXX: number of the 2100 FB. At any rate,
482 			 * XXX: lower cache line size for early revision
483 			 * XXX; boards.
484 			 */
485 			linesz = 1;
486 		}
487 	}
488 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2200) {
489 		mdvp = &mdvec_2200;
490 		basetype = ISP_HA_FC_2200;
491 		psize = sizeof (fcparam);
492 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
493 		    PCI_MBOX_REGS2100_OFF;
494 	}
495 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2300) {
496 		mdvp = &mdvec_2300;
497 		basetype = ISP_HA_FC_2300;
498 		psize = sizeof (fcparam);
499 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
500 		    PCI_MBOX_REGS2300_OFF;
501 	}
502 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2312) {
503 		mdvp = &mdvec_2300;
504 		basetype = ISP_HA_FC_2312;
505 		psize = sizeof (fcparam);
506 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
507 		    PCI_MBOX_REGS2300_OFF;
508 	}
509 	isp = &pcs->pci_isp;
510 	isp->isp_param = malloc(psize, M_DEVBUF, M_NOWAIT | M_ZERO);
511 	if (isp->isp_param == NULL) {
512 		device_printf(dev, "cannot allocate parameter data\n");
513 		goto bad;
514 	}
515 	isp->isp_mdvec = mdvp;
516 	isp->isp_type = basetype;
517 	isp->isp_revision = pci_get_revid(dev);
518 	isp->isp_role = role;
519 	isp->isp_dev = dev;
520 
521 	/*
522 	 * Try and find firmware for this device.
523 	 */
524 
525 	if (isp_get_firmware_p) {
526 		int device = (int) pci_get_device(dev);
527 #ifdef	ISP_TARGET_MODE
528 		(*isp_get_firmware_p)(0, 1, device, &mdvp->dv_ispfw);
529 #else
530 		(*isp_get_firmware_p)(0, 0, device, &mdvp->dv_ispfw);
531 #endif
532 	}
533 
534 	/*
535 	 * Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER
536 	 * are set.
537 	 */
538 	cmd |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN |
539 		PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN;
540 	if (IS_2300(isp)) {	/* per QLogic errata */
541 		cmd &= ~PCIM_CMD_INVEN;
542 	}
543 	pci_write_config(dev, PCIR_COMMAND, cmd, 1);
544 
545 	/*
546 	 * Make sure the Cache Line Size register is set sensibly.
547 	 */
548 	data = pci_read_config(dev, PCIR_CACHELNSZ, 1);
549 	if (data != linesz) {
550 		data = PCI_DFLT_LNSZ;
551 		isp_prt(isp, ISP_LOGCONFIG, "set PCI line size to %d", data);
552 		pci_write_config(dev, PCIR_CACHELNSZ, data, 1);
553 	}
554 
555 	/*
556 	 * Make sure the Latency Timer is sane.
557 	 */
558 	data = pci_read_config(dev, PCIR_LATTIMER, 1);
559 	if (data < PCI_DFLT_LTNCY) {
560 		data = PCI_DFLT_LTNCY;
561 		isp_prt(isp, ISP_LOGCONFIG, "set PCI latency to %d", data);
562 		pci_write_config(dev, PCIR_LATTIMER, data, 1);
563 	}
564 
565 	/*
566 	 * Make sure we've disabled the ROM.
567 	 */
568 	data = pci_read_config(dev, PCIR_ROMADDR, 4);
569 	data &= ~1;
570 	pci_write_config(dev, PCIR_ROMADDR, data, 4);
571 
572 	iqd = 0;
573 	irq = bus_alloc_resource(dev, SYS_RES_IRQ, &iqd, 0, ~0,
574 	    1, RF_ACTIVE | RF_SHAREABLE);
575 	if (irq == NULL) {
576 		device_printf(dev, "could not allocate interrupt\n");
577 		goto bad;
578 	}
579 
580 	tval = 0;
581         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
582             "fwload_disable", &tval) == 0 && tval != 0) {
583 		isp->isp_confopts |= ISP_CFG_NORELOAD;
584 	}
585 	tval = 0;
586         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
587             "ignore_nvram", &tval) == 0 && tval != 0) {
588 		isp->isp_confopts |= ISP_CFG_NONVRAM;
589 	}
590 	tval = 0;
591         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
592             "fullduplex", &tval) == 0 && tval != 0) {
593 		isp->isp_confopts |= ISP_CFG_FULL_DUPLEX;
594 	}
595 #ifdef	ISP_FW_CRASH_DUMP
596 	tval = 0;
597         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
598             "fw_dump_enable", &tval) == 0 && tval != 0) {
599 		size_t amt = 0;
600 		if (IS_2200(isp)) {
601 			amt = QLA2200_RISC_IMAGE_DUMP_SIZE;
602 		} else if (IS_23XX(isp)) {
603 			amt = QLA2300_RISC_IMAGE_DUMP_SIZE;
604 		}
605 		if (amt) {
606 			FCPARAM(isp)->isp_dump_data =
607 			    malloc(amt, M_DEVBUF, M_WAITOK | M_ZERO);
608 		} else {
609 			device_printf(dev,
610 			    "f/w crash dumps not supported for this model\n");
611 		}
612 	}
613 #endif
614 
615 	sptr = 0;
616         if (resource_string_value(device_get_name(dev), device_get_unit(dev),
617             "topology", (const char **) &sptr) == 0 && sptr != 0) {
618 		if (strcmp(sptr, "lport") == 0) {
619 			isp->isp_confopts |= ISP_CFG_LPORT;
620 		} else if (strcmp(sptr, "nport") == 0) {
621 			isp->isp_confopts |= ISP_CFG_NPORT;
622 		} else if (strcmp(sptr, "lport-only") == 0) {
623 			isp->isp_confopts |= ISP_CFG_LPORT_ONLY;
624 		} else if (strcmp(sptr, "nport-only") == 0) {
625 			isp->isp_confopts |= ISP_CFG_NPORT_ONLY;
626 		}
627 	}
628 
629 	/*
630 	 * Because the resource_*_value functions can neither return
631 	 * 64 bit integer values, nor can they be directly coerced
632 	 * to interpret the right hand side of the assignment as
633 	 * you want them to interpret it, we have to force WWN
634 	 * hint replacement to specify WWN strings with a leading
635 	 * 'w' (e..g w50000000aaaa0001). Sigh.
636 	 */
637 	sptr = 0;
638 	tval = resource_string_value(device_get_name(dev), device_get_unit(dev),
639             "portwwn", (const char **) &sptr);
640 	if (tval == 0 && sptr != 0 && *sptr++ == 'w') {
641 		char *eptr = 0;
642 		isp->isp_osinfo.default_port_wwn = strtouq(sptr, &eptr, 16);
643 		if (eptr < sptr + 16 || isp->isp_osinfo.default_port_wwn == 0) {
644 			device_printf(dev, "mangled portwwn hint '%s'\n", sptr);
645 			isp->isp_osinfo.default_port_wwn = 0;
646 		} else {
647 			isp->isp_confopts |= ISP_CFG_OWNWWPN;
648 		}
649 	}
650 	if (isp->isp_osinfo.default_port_wwn == 0) {
651 		isp->isp_osinfo.default_port_wwn = 0x400000007F000009ull;
652 	}
653 
654 	sptr = 0;
655 	tval = resource_string_value(device_get_name(dev), device_get_unit(dev),
656             "nodewwn", (const char **) &sptr);
657 	if (tval == 0 && sptr != 0 && *sptr++ == 'w') {
658 		char *eptr = 0;
659 		isp->isp_osinfo.default_node_wwn = strtouq(sptr, &eptr, 16);
660 		if (eptr < sptr + 16 || isp->isp_osinfo.default_node_wwn == 0) {
661 			device_printf(dev, "mangled nodewwn hint '%s'\n", sptr);
662 			isp->isp_osinfo.default_node_wwn = 0;
663 		} else {
664 			isp->isp_confopts |= ISP_CFG_OWNWWNN;
665 		}
666 	}
667 	if (isp->isp_osinfo.default_node_wwn == 0) {
668 		isp->isp_osinfo.default_node_wwn = 0x400000007F000009ull;
669 	}
670 
671 	isp_debug = 0;
672         (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
673             "debug", &isp_debug);
674 
675 	/* Make sure the lock is set up. */
676 	mtx_init(&isp->isp_osinfo.lock, "isp", NULL, MTX_DEF);
677 	locksetup++;
678 
679 #ifdef	ISP_SMPLOCK
680 #define	INTR_FLAGS	INTR_TYPE_CAM | INTR_MPSAFE | INTR_ENTROPY
681 #else
682 #define	INTR_FLAGS	INTR_TYPE_CAM | INTR_ENTROPY
683 #endif
684 	if (bus_setup_intr(dev, irq, INTR_FLAGS, isp_pci_intr, isp, &pcs->ih)) {
685 		device_printf(dev, "could not setup interrupt\n");
686 		goto bad;
687 	}
688 
689 	/*
690 	 * Set up logging levels.
691 	 */
692 	if (isp_debug) {
693 		isp->isp_dblev = isp_debug;
694 	} else {
695 		isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR;
696 	}
697 	if (bootverbose)
698 		isp->isp_dblev |= ISP_LOGCONFIG|ISP_LOGINFO;
699 
700 	/*
701 	 * Last minute checks...
702 	 */
703 	if (IS_2312(isp)) {
704 		isp->isp_port = pci_get_function(dev);
705 	}
706 
707 	/*
708 	 * Make sure we're in reset state.
709 	 */
710 	ISP_LOCK(isp);
711 	isp_reset(isp);
712 	if (isp->isp_state != ISP_RESETSTATE) {
713 		ISP_UNLOCK(isp);
714 		goto bad;
715 	}
716 	isp_init(isp);
717 	if (isp->isp_role != ISP_ROLE_NONE && isp->isp_state != ISP_INITSTATE) {
718 		isp_uninit(isp);
719 		ISP_UNLOCK(isp);
720 		goto bad;
721 	}
722 	isp_attach(isp);
723 	if (isp->isp_role != ISP_ROLE_NONE && isp->isp_state != ISP_RUNSTATE) {
724 		isp_uninit(isp);
725 		ISP_UNLOCK(isp);
726 		goto bad;
727 	}
728 	/*
729 	 * XXXX: Here is where we might unload the f/w module
730 	 * XXXX: (or decrease the reference count to it).
731 	 */
732 	ISP_UNLOCK(isp);
733 	return (0);
734 
735 bad:
736 
737 	if (pcs && pcs->ih) {
738 		(void) bus_teardown_intr(dev, irq, pcs->ih);
739 	}
740 
741 	if (locksetup && isp) {
742 		mtx_destroy(&isp->isp_osinfo.lock);
743 	}
744 
745 	if (irq) {
746 		(void) bus_release_resource(dev, SYS_RES_IRQ, iqd, irq);
747 	}
748 
749 
750 	if (regs) {
751 		(void) bus_release_resource(dev, rtp, rgd, regs);
752 	}
753 
754 	if (pcs) {
755 		if (pcs->pci_isp.isp_param)
756 			free(pcs->pci_isp.isp_param, M_DEVBUF);
757 		free(pcs, M_DEVBUF);
758 	}
759 
760 	/*
761 	 * XXXX: Here is where we might unload the f/w module
762 	 * XXXX: (or decrease the reference count to it).
763 	 */
764 	return (ENXIO);
765 }
766 
767 static void
768 isp_pci_intr(void *arg)
769 {
770 	struct ispsoftc *isp = arg;
771 	u_int16_t isr, sema, mbox;
772 
773 	ISP_LOCK(isp);
774 	isp->isp_intcnt++;
775 	if (ISP_READ_ISR(isp, &isr, &sema, &mbox) == 0) {
776 		isp->isp_intbogus++;
777 	} else {
778 		int iok = isp->isp_osinfo.intsok;
779 		isp->isp_osinfo.intsok = 0;
780 		isp_intr(isp, isr, sema, mbox);
781 		isp->isp_osinfo.intsok = iok;
782 	}
783 	ISP_UNLOCK(isp);
784 }
785 
786 
787 #define	IspVirt2Off(a, x)	\
788 	(((struct isp_pcisoftc *)a)->pci_poff[((x) & _BLK_REG_MASK) >> \
789 	_BLK_REG_SHFT] + ((x) & 0xff))
790 
791 #define	BXR2(pcs, off)		\
792 	bus_space_read_2(pcs->pci_st, pcs->pci_sh, off)
793 #define	BXW2(pcs, off, v)	\
794 	bus_space_write_2(pcs->pci_st, pcs->pci_sh, off, v)
795 
796 
797 static INLINE int
798 isp_pci_rd_debounced(struct ispsoftc *isp, int off, u_int16_t *rp)
799 {
800 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
801 	u_int16_t val0, val1;
802 	int i = 0;
803 
804 	do {
805 		val0 = BXR2(pcs, IspVirt2Off(isp, off));
806 		val1 = BXR2(pcs, IspVirt2Off(isp, off));
807 	} while (val0 != val1 && ++i < 1000);
808 	if (val0 != val1) {
809 		return (1);
810 	}
811 	*rp = val0;
812 	return (0);
813 }
814 
815 static int
816 isp_pci_rd_isr(struct ispsoftc *isp, u_int16_t *isrp,
817     u_int16_t *semap, u_int16_t *mbp)
818 {
819 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
820 	u_int16_t isr, sema;
821 
822 	if (IS_2100(isp)) {
823 		if (isp_pci_rd_debounced(isp, BIU_ISR, &isr)) {
824 		    return (0);
825 		}
826 		if (isp_pci_rd_debounced(isp, BIU_SEMA, &sema)) {
827 		    return (0);
828 		}
829 	} else {
830 		isr = BXR2(pcs, IspVirt2Off(isp, BIU_ISR));
831 		sema = BXR2(pcs, IspVirt2Off(isp, BIU_SEMA));
832 	}
833 	isp_prt(isp, ISP_LOGDEBUG3, "ISR 0x%x SEMA 0x%x", isr, sema);
834 	isr &= INT_PENDING_MASK(isp);
835 	sema &= BIU_SEMA_LOCK;
836 	if (isr == 0 && sema == 0) {
837 		return (0);
838 	}
839 	*isrp = isr;
840 	if ((*semap = sema) != 0) {
841 		if (IS_2100(isp)) {
842 			if (isp_pci_rd_debounced(isp, OUTMAILBOX0, mbp)) {
843 				return (0);
844 			}
845 		} else {
846 			*mbp = BXR2(pcs, IspVirt2Off(isp, OUTMAILBOX0));
847 		}
848 	}
849 	return (1);
850 }
851 
852 static int
853 isp_pci_rd_isr_2300(struct ispsoftc *isp, u_int16_t *isrp,
854     u_int16_t *semap, u_int16_t *mbox0p)
855 {
856 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
857 	u_int32_t r2hisr;
858 
859 	if (!(BXR2(pcs, IspVirt2Off(isp, BIU_ISR) & BIU2100_ISR_RISC_INT))) {
860 		*isrp = 0;
861 		return (0);
862 	}
863 	r2hisr = bus_space_read_4(pcs->pci_st, pcs->pci_sh,
864 	    IspVirt2Off(pcs, BIU_R2HSTSLO));
865 	isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr);
866 	if ((r2hisr & BIU_R2HST_INTR) == 0) {
867 		*isrp = 0;
868 		return (0);
869 	}
870 	switch (r2hisr & BIU_R2HST_ISTAT_MASK) {
871 	case ISPR2HST_ROM_MBX_OK:
872 	case ISPR2HST_ROM_MBX_FAIL:
873 	case ISPR2HST_MBX_OK:
874 	case ISPR2HST_MBX_FAIL:
875 	case ISPR2HST_ASYNC_EVENT:
876 	case ISPR2HST_RIO_16:
877 	case ISPR2HST_FPOST:
878 	case ISPR2HST_FPOST_CTIO:
879 		*isrp = r2hisr & 0xffff;
880 		*mbox0p = (r2hisr >> 16);
881 		*semap = 1;
882 		return (1);
883 	case ISPR2HST_RSPQ_UPDATE:
884 		*isrp = r2hisr & 0xffff;
885 		*mbox0p = 0;
886 		*semap = 0;
887 		return (1);
888 	default:
889 		return (0);
890 	}
891 }
892 
893 static u_int16_t
894 isp_pci_rd_reg(struct ispsoftc *isp, int regoff)
895 {
896 	u_int16_t rv;
897 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
898 	int oldconf = 0;
899 
900 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
901 		/*
902 		 * We will assume that someone has paused the RISC processor.
903 		 */
904 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
905 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
906 		    oldconf | BIU_PCI_CONF1_SXP);
907 	}
908 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
909 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
910 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
911 	}
912 	return (rv);
913 }
914 
915 static void
916 isp_pci_wr_reg(struct ispsoftc *isp, int regoff, u_int16_t val)
917 {
918 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
919 	int oldconf = 0;
920 
921 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
922 		/*
923 		 * We will assume that someone has paused the RISC processor.
924 		 */
925 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
926 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
927 		    oldconf | BIU_PCI_CONF1_SXP);
928 	}
929 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
930 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
931 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
932 	}
933 }
934 
935 static u_int16_t
936 isp_pci_rd_reg_1080(struct ispsoftc *isp, int regoff)
937 {
938 	u_int16_t rv, oc = 0;
939 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
940 
941 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
942 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
943 		u_int16_t tc;
944 		/*
945 		 * We will assume that someone has paused the RISC processor.
946 		 */
947 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
948 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
949 		if (regoff & SXP_BANK1_SELECT)
950 			tc |= BIU_PCI1080_CONF1_SXP1;
951 		else
952 			tc |= BIU_PCI1080_CONF1_SXP0;
953 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
954 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
955 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
956 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
957 		    oc | BIU_PCI1080_CONF1_DMA);
958 	}
959 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
960 	if (oc) {
961 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
962 	}
963 	return (rv);
964 }
965 
966 static void
967 isp_pci_wr_reg_1080(struct ispsoftc *isp, int regoff, u_int16_t val)
968 {
969 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
970 	int oc = 0;
971 
972 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
973 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
974 		u_int16_t tc;
975 		/*
976 		 * We will assume that someone has paused the RISC processor.
977 		 */
978 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
979 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
980 		if (regoff & SXP_BANK1_SELECT)
981 			tc |= BIU_PCI1080_CONF1_SXP1;
982 		else
983 			tc |= BIU_PCI1080_CONF1_SXP0;
984 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
985 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
986 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
987 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
988 		    oc | BIU_PCI1080_CONF1_DMA);
989 	}
990 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
991 	if (oc) {
992 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
993 	}
994 }
995 
996 
997 struct imush {
998 	struct ispsoftc *isp;
999 	int error;
1000 };
1001 
1002 static void imc(void *, bus_dma_segment_t *, int, int);
1003 
1004 static void
1005 imc(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1006 {
1007 	struct imush *imushp = (struct imush *) arg;
1008 	if (error) {
1009 		imushp->error = error;
1010 	} else {
1011 		struct ispsoftc *isp =imushp->isp;
1012 		bus_addr_t addr = segs->ds_addr;
1013 
1014 		isp->isp_rquest_dma = addr;
1015 		addr += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1016 		isp->isp_result_dma = addr;
1017 		if (IS_FC(isp)) {
1018 			addr += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1019 			FCPARAM(isp)->isp_scdma = addr;
1020 		}
1021 	}
1022 }
1023 
1024 /*
1025  * Should be BUS_SPACE_MAXSIZE, but MAXPHYS is larger than BUS_SPACE_MAXSIZE
1026  */
1027 #define ISP_NSEGS ((MAXPHYS / PAGE_SIZE) + 1)
1028 
1029 static int
1030 isp_pci_mbxdma(struct ispsoftc *isp)
1031 {
1032 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1033 	caddr_t base;
1034 	u_int32_t len;
1035 	int i, error, ns;
1036 	bus_size_t bl;
1037 	struct imush im;
1038 
1039 	/*
1040 	 * Already been here? If so, leave...
1041 	 */
1042 	if (isp->isp_rquest) {
1043 		return (0);
1044 	}
1045 
1046 	if (IS_ULTRA2(isp) || IS_FC(isp) || IS_1240(isp)) {
1047 		bl = BUS_SPACE_UNRESTRICTED;
1048 	} else {
1049 		bl = BUS_SPACE_MAXADDR_24BIT;
1050 	}
1051 
1052 	if (bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR,
1053 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
1054 	    ISP_NSEGS, bl, 0, &pcs->dmat)) {
1055 		isp_prt(isp, ISP_LOGERR, "could not create master dma tag");
1056 		return(1);
1057 	}
1058 
1059 
1060 	len = sizeof (XS_T **) * isp->isp_maxcmds;
1061 	isp->isp_xflist = (XS_T **) malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
1062 	if (isp->isp_xflist == NULL) {
1063 		isp_prt(isp, ISP_LOGERR, "cannot alloc xflist array");
1064 		return (1);
1065 	}
1066 	len = sizeof (bus_dmamap_t) * isp->isp_maxcmds;
1067 	pcs->dmaps = (bus_dmamap_t *) malloc(len, M_DEVBUF,  M_WAITOK);
1068 	if (pcs->dmaps == NULL) {
1069 		isp_prt(isp, ISP_LOGERR, "can't alloc dma map storage");
1070 		free(isp->isp_xflist, M_DEVBUF);
1071 		return (1);
1072 	}
1073 
1074 	/*
1075 	 * Allocate and map the request, result queues, plus FC scratch area.
1076 	 */
1077 	len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1078 	len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1079 	if (IS_FC(isp)) {
1080 		len += ISP2100_SCRLEN;
1081 	}
1082 
1083 	ns = (len / PAGE_SIZE) + 1;
1084 	if (bus_dma_tag_create(pcs->dmat, QENTRY_LEN, 0, BUS_SPACE_MAXADDR,
1085 	    BUS_SPACE_MAXADDR, NULL, NULL, len, ns, bl, 0, &isp->isp_cdmat)) {
1086 		isp_prt(isp, ISP_LOGERR,
1087 		    "cannot create a dma tag for control spaces");
1088 		free(pcs->dmaps, M_DEVBUF);
1089 		free(isp->isp_xflist, M_DEVBUF);
1090 		return (1);
1091 	}
1092 
1093 	if (bus_dmamem_alloc(isp->isp_cdmat, (void **)&base, BUS_DMA_NOWAIT,
1094 	    &isp->isp_cdmap) != 0) {
1095 		isp_prt(isp, ISP_LOGERR,
1096 		    "cannot allocate %d bytes of CCB memory", len);
1097 		bus_dma_tag_destroy(isp->isp_cdmat);
1098 		free(isp->isp_xflist, M_DEVBUF);
1099 		free(pcs->dmaps, M_DEVBUF);
1100 		return (1);
1101 	}
1102 
1103 	for (i = 0; i < isp->isp_maxcmds; i++) {
1104 		error = bus_dmamap_create(pcs->dmat, 0, &pcs->dmaps[i]);
1105 		if (error) {
1106 			isp_prt(isp, ISP_LOGERR,
1107 			    "error %d creating per-cmd DMA maps", error);
1108 			while (--i >= 0) {
1109 				bus_dmamap_destroy(pcs->dmat, pcs->dmaps[i]);
1110 			}
1111 			goto bad;
1112 		}
1113 	}
1114 
1115 	im.isp = isp;
1116 	im.error = 0;
1117 	bus_dmamap_load(isp->isp_cdmat, isp->isp_cdmap, base, len, imc, &im, 0);
1118 	if (im.error) {
1119 		isp_prt(isp, ISP_LOGERR,
1120 		    "error %d loading dma map for control areas", im.error);
1121 		goto bad;
1122 	}
1123 
1124 	isp->isp_rquest = base;
1125 	base += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1126 	isp->isp_result = base;
1127 	if (IS_FC(isp)) {
1128 		base += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1129 		FCPARAM(isp)->isp_scratch = base;
1130 	}
1131 	return (0);
1132 
1133 bad:
1134 	bus_dmamem_free(isp->isp_cdmat, base, isp->isp_cdmap);
1135 	bus_dma_tag_destroy(isp->isp_cdmat);
1136 	free(isp->isp_xflist, M_DEVBUF);
1137 	free(pcs->dmaps, M_DEVBUF);
1138 	isp->isp_rquest = NULL;
1139 	return (1);
1140 }
1141 
1142 typedef struct {
1143 	struct ispsoftc *isp;
1144 	void *cmd_token;
1145 	void *rq;
1146 	u_int16_t *nxtip;
1147 	u_int16_t optr;
1148 	u_int error;
1149 } mush_t;
1150 
1151 #define	MUSHERR_NOQENTRIES	-2
1152 
1153 #ifdef	ISP_TARGET_MODE
1154 /*
1155  * We need to handle DMA for target mode differently from initiator mode.
1156  *
1157  * DMA mapping and construction and submission of CTIO Request Entries
1158  * and rendevous for completion are very tightly coupled because we start
1159  * out by knowing (per platform) how much data we have to move, but we
1160  * don't know, up front, how many DMA mapping segments will have to be used
1161  * cover that data, so we don't know how many CTIO Request Entries we
1162  * will end up using. Further, for performance reasons we may want to
1163  * (on the last CTIO for Fibre Channel), send status too (if all went well).
1164  *
1165  * The standard vector still goes through isp_pci_dmasetup, but the callback
1166  * for the DMA mapping routines comes here instead with the whole transfer
1167  * mapped and a pointer to a partially filled in already allocated request
1168  * queue entry. We finish the job.
1169  */
1170 static void tdma_mk(void *, bus_dma_segment_t *, int, int);
1171 static void tdma_mkfc(void *, bus_dma_segment_t *, int, int);
1172 
1173 #define	STATUS_WITH_DATA	1
1174 
1175 static void
1176 tdma_mk(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1177 {
1178 	mush_t *mp;
1179 	struct ccb_scsiio *csio;
1180 	struct ispsoftc *isp;
1181 	struct isp_pcisoftc *pcs;
1182 	bus_dmamap_t *dp;
1183 	ct_entry_t *cto, *qe;
1184 	u_int8_t scsi_status;
1185 	u_int16_t curi, nxti, handle;
1186 	u_int32_t sflags;
1187 	int32_t resid;
1188 	int nth_ctio, nctios, send_status;
1189 
1190 	mp = (mush_t *) arg;
1191 	if (error) {
1192 		mp->error = error;
1193 		return;
1194 	}
1195 
1196 	isp = mp->isp;
1197 	csio = mp->cmd_token;
1198 	cto = mp->rq;
1199 	curi = isp->isp_reqidx;
1200 	qe = (ct_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1201 
1202 	cto->ct_xfrlen = 0;
1203 	cto->ct_seg_count = 0;
1204 	cto->ct_header.rqs_entry_count = 1;
1205 	MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1206 
1207 	if (nseg == 0) {
1208 		cto->ct_header.rqs_seqno = 1;
1209 		isp_prt(isp, ISP_LOGTDEBUG1,
1210 		    "CTIO[%x] lun%d iid%d tag %x flgs %x sts %x ssts %x res %d",
1211 		    cto->ct_fwhandle, csio->ccb_h.target_lun, cto->ct_iid,
1212 		    cto->ct_tag_val, cto->ct_flags, cto->ct_status,
1213 		    cto->ct_scsi_status, cto->ct_resid);
1214 		ISP_TDQE(isp, "tdma_mk[no data]", curi, cto);
1215 		isp_put_ctio(isp, cto, qe);
1216 		return;
1217 	}
1218 
1219 	nctios = nseg / ISP_RQDSEG;
1220 	if (nseg % ISP_RQDSEG) {
1221 		nctios++;
1222 	}
1223 
1224 	/*
1225 	 * Save syshandle, and potentially any SCSI status, which we'll
1226 	 * reinsert on the last CTIO we're going to send.
1227 	 */
1228 
1229 	handle = cto->ct_syshandle;
1230 	cto->ct_syshandle = 0;
1231 	cto->ct_header.rqs_seqno = 0;
1232 	send_status = (cto->ct_flags & CT_SENDSTATUS) != 0;
1233 
1234 	if (send_status) {
1235 		sflags = cto->ct_flags & (CT_SENDSTATUS | CT_CCINCR);
1236 		cto->ct_flags &= ~(CT_SENDSTATUS | CT_CCINCR);
1237 		/*
1238 		 * Preserve residual.
1239 		 */
1240 		resid = cto->ct_resid;
1241 
1242 		/*
1243 		 * Save actual SCSI status.
1244 		 */
1245 		scsi_status = cto->ct_scsi_status;
1246 
1247 #ifndef	STATUS_WITH_DATA
1248 		sflags |= CT_NO_DATA;
1249 		/*
1250 		 * We can't do a status at the same time as a data CTIO, so
1251 		 * we need to synthesize an extra CTIO at this level.
1252 		 */
1253 		nctios++;
1254 #endif
1255 	} else {
1256 		sflags = scsi_status = resid = 0;
1257 	}
1258 
1259 	cto->ct_resid = 0;
1260 	cto->ct_scsi_status = 0;
1261 
1262 	pcs = (struct isp_pcisoftc *)isp;
1263 	dp = &pcs->dmaps[isp_handle_index(handle)];
1264 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1265 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1266 	} else {
1267 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1268 	}
1269 
1270 	nxti = *mp->nxtip;
1271 
1272 	for (nth_ctio = 0; nth_ctio < nctios; nth_ctio++) {
1273 		int seglim;
1274 
1275 		seglim = nseg;
1276 		if (seglim) {
1277 			int seg;
1278 
1279 			if (seglim > ISP_RQDSEG)
1280 				seglim = ISP_RQDSEG;
1281 
1282 			for (seg = 0; seg < seglim; seg++, nseg--) {
1283 				/*
1284 				 * Unlike normal initiator commands, we don't
1285 				 * do any swizzling here.
1286 				 */
1287 				cto->ct_dataseg[seg].ds_count = dm_segs->ds_len;
1288 				cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr;
1289 				cto->ct_xfrlen += dm_segs->ds_len;
1290 				dm_segs++;
1291 			}
1292 			cto->ct_seg_count = seg;
1293 		} else {
1294 			/*
1295 			 * This case should only happen when we're sending an
1296 			 * extra CTIO with final status.
1297 			 */
1298 			if (send_status == 0) {
1299 				isp_prt(isp, ISP_LOGWARN,
1300 				    "tdma_mk ran out of segments");
1301 				mp->error = EINVAL;
1302 				return;
1303 			}
1304 		}
1305 
1306 		/*
1307 		 * At this point, the fields ct_lun, ct_iid, ct_tagval,
1308 		 * ct_tagtype, and ct_timeout have been carried over
1309 		 * unchanged from what our caller had set.
1310 		 *
1311 		 * The dataseg fields and the seg_count fields we just got
1312 		 * through setting. The data direction we've preserved all
1313 		 * along and only clear it if we're now sending status.
1314 		 */
1315 
1316 		if (nth_ctio == nctios - 1) {
1317 			/*
1318 			 * We're the last in a sequence of CTIOs, so mark
1319 			 * this CTIO and save the handle to the CCB such that
1320 			 * when this CTIO completes we can free dma resources
1321 			 * and do whatever else we need to do to finish the
1322 			 * rest of the command. We *don't* give this to the
1323 			 * firmware to work on- the caller will do that.
1324 			 */
1325 
1326 			cto->ct_syshandle = handle;
1327 			cto->ct_header.rqs_seqno = 1;
1328 
1329 			if (send_status) {
1330 				cto->ct_scsi_status = scsi_status;
1331 				cto->ct_flags |= sflags;
1332 				cto->ct_resid = resid;
1333 			}
1334 			if (send_status) {
1335 				isp_prt(isp, ISP_LOGTDEBUG1,
1336 				    "CTIO[%x] lun%d iid %d tag %x ct_flags %x "
1337 				    "scsi status %x resid %d",
1338 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1339 				    cto->ct_iid, cto->ct_tag_val, cto->ct_flags,
1340 				    cto->ct_scsi_status, cto->ct_resid);
1341 			} else {
1342 				isp_prt(isp, ISP_LOGTDEBUG1,
1343 				    "CTIO[%x] lun%d iid%d tag %x ct_flags 0x%x",
1344 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1345 				    cto->ct_iid, cto->ct_tag_val,
1346 				    cto->ct_flags);
1347 			}
1348 			isp_put_ctio(isp, cto, qe);
1349 			ISP_TDQE(isp, "last tdma_mk", curi, cto);
1350 			if (nctios > 1) {
1351 				MEMORYBARRIER(isp, SYNC_REQUEST,
1352 				    curi, QENTRY_LEN);
1353 			}
1354 		} else {
1355 			ct_entry_t *oqe = qe;
1356 
1357 			/*
1358 			 * Make sure syshandle fields are clean
1359 			 */
1360 			cto->ct_syshandle = 0;
1361 			cto->ct_header.rqs_seqno = 0;
1362 
1363 			isp_prt(isp, ISP_LOGTDEBUG1,
1364 			    "CTIO[%x] lun%d for ID%d ct_flags 0x%x",
1365 			    cto->ct_fwhandle, csio->ccb_h.target_lun,
1366 			    cto->ct_iid, cto->ct_flags);
1367 
1368 			/*
1369 			 * Get a new CTIO
1370 			 */
1371 			qe = (ct_entry_t *)
1372 			    ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1373 			nxti = ISP_NXT_QENTRY(nxti, RQUEST_QUEUE_LEN(isp));
1374 			if (nxti == mp->optr) {
1375 				isp_prt(isp, ISP_LOGTDEBUG0,
1376 				    "Queue Overflow in tdma_mk");
1377 				mp->error = MUSHERR_NOQENTRIES;
1378 				return;
1379 			}
1380 
1381 			/*
1382 			 * Now that we're done with the old CTIO,
1383 			 * flush it out to the request queue.
1384 			 */
1385 			ISP_TDQE(isp, "dma_tgt_fc", curi, cto);
1386 			isp_put_ctio(isp, cto, oqe);
1387 			if (nth_ctio != 0) {
1388 				MEMORYBARRIER(isp, SYNC_REQUEST, curi,
1389 				    QENTRY_LEN);
1390 			}
1391 			curi = ISP_NXT_QENTRY(curi, RQUEST_QUEUE_LEN(isp));
1392 
1393 			/*
1394 			 * Reset some fields in the CTIO so we can reuse
1395 			 * for the next one we'll flush to the request
1396 			 * queue.
1397 			 */
1398 			cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
1399 			cto->ct_header.rqs_entry_count = 1;
1400 			cto->ct_header.rqs_flags = 0;
1401 			cto->ct_status = 0;
1402 			cto->ct_scsi_status = 0;
1403 			cto->ct_xfrlen = 0;
1404 			cto->ct_resid = 0;
1405 			cto->ct_seg_count = 0;
1406 			MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1407 		}
1408 	}
1409 	*mp->nxtip = nxti;
1410 }
1411 
1412 static void
1413 tdma_mkfc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1414 {
1415 	mush_t *mp;
1416 	u_int8_t sense[QLTM_SENSELEN];
1417 	struct ccb_scsiio *csio;
1418 	struct ispsoftc *isp;
1419 	struct isp_pcisoftc *pcs;
1420 	bus_dmamap_t *dp;
1421 	ct2_entry_t *cto, *qe;
1422 	u_int16_t scsi_status, send_status, send_sense, handle;
1423 	u_int16_t curi, nxti;
1424 	int32_t resid;
1425 	int nth_ctio, nctios;
1426 
1427 	mp = (mush_t *) arg;
1428 	if (error) {
1429 		mp->error = error;
1430 		return;
1431 	}
1432 
1433 	isp = mp->isp;
1434 	csio = mp->cmd_token;
1435 	cto = mp->rq;
1436 	curi = isp->isp_reqidx;
1437 	qe = (ct2_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1438 
1439 	if (nseg == 0) {
1440 		if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE1) {
1441 			isp_prt(isp, ISP_LOGWARN,
1442 			    "dma2_tgt_fc, a status CTIO2 without MODE1 "
1443 			    "set (0x%x)", cto->ct_flags);
1444 			mp->error = EINVAL;
1445 			return;
1446 		}
1447 	 	cto->ct_header.rqs_entry_count = 1;
1448 		cto->ct_header.rqs_seqno = 1;
1449 		/* ct_syshandle contains the handle set by caller */
1450 		/*
1451 		 * We preserve ct_lun, ct_iid, ct_rxid. We set the data
1452 		 * flags to NO DATA and clear relative offset flags.
1453 		 * We preserve the ct_resid and the response area.
1454 		 */
1455 		cto->ct_flags |= CT2_NO_DATA;
1456 		if (cto->ct_resid > 0)
1457 			cto->rsp.m1.ct_scsi_status |= CT2_DATA_UNDER;
1458 		else if (cto->ct_resid < 0)
1459 			cto->rsp.m1.ct_scsi_status |= CT2_DATA_OVER;
1460 		cto->ct_seg_count = 0;
1461 		cto->ct_reloff = 0;
1462 		isp_prt(isp, ISP_LOGTDEBUG1,
1463 		    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts "
1464 		    "0x%x res %d", cto->ct_rxid, csio->ccb_h.target_lun,
1465 		    cto->ct_iid, cto->ct_flags, cto->ct_status,
1466 		    cto->rsp.m1.ct_scsi_status, cto->ct_resid);
1467 		isp_put_ctio2(isp, cto, qe);
1468 		ISP_TDQE(isp, "dma2_tgt_fc[no data]", curi, qe);
1469 		return;
1470 	}
1471 
1472 	if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE0) {
1473 		isp_prt(isp, ISP_LOGWARN,
1474 		    "dma2_tgt_fc, a data CTIO2 without MODE0 set "
1475 		    "(0x%x)", cto->ct_flags);
1476 		mp->error = EINVAL;
1477 		return;
1478 	}
1479 
1480 
1481 	nctios = nseg / ISP_RQDSEG_T2;
1482 	if (nseg % ISP_RQDSEG_T2) {
1483 		nctios++;
1484 	}
1485 
1486 	/*
1487 	 * Save the handle, status, reloff, and residual. We'll reinsert the
1488 	 * handle into the last CTIO2 we're going to send, and reinsert status
1489 	 * and residual (and possibly sense data) if that's to be sent as well.
1490 	 *
1491 	 * We preserve ct_reloff and adjust it for each data CTIO2 we send past
1492 	 * the first one. This is needed so that the FCP DATA IUs being sent
1493 	 * out have the correct offset (they can arrive at the other end out
1494 	 * of order).
1495 	 */
1496 
1497 	handle = cto->ct_syshandle;
1498 	cto->ct_syshandle = 0;
1499 	send_status = (cto->ct_flags & CT2_SENDSTATUS) != 0;
1500 
1501 	if (send_status) {
1502 		cto->ct_flags &= ~(CT2_SENDSTATUS|CT2_CCINCR);
1503 
1504 		/*
1505 		 * Preserve residual.
1506 		 */
1507 		resid = cto->ct_resid;
1508 
1509 		/*
1510 		 * Save actual SCSI status. We'll reinsert the
1511 		 * CT2_SNSLEN_VALID later if appropriate.
1512 		 */
1513 		scsi_status = cto->rsp.m0.ct_scsi_status & 0xff;
1514 		send_sense = cto->rsp.m0.ct_scsi_status & CT2_SNSLEN_VALID;
1515 
1516 		/*
1517 		 * If we're sending status and have a CHECK CONDTION and
1518 		 * have sense data,  we send one more CTIO2 with just the
1519 		 * status and sense data. The upper layers have stashed
1520 		 * the sense data in the dataseg structure for us.
1521 		 */
1522 
1523 		if ((scsi_status & 0xf) == SCSI_STATUS_CHECK_COND &&
1524 		    send_sense) {
1525 			bcopy(cto->rsp.m0.ct_dataseg, sense, QLTM_SENSELEN);
1526 			nctios++;
1527 		}
1528 	} else {
1529 		scsi_status = send_sense = resid = 0;
1530 	}
1531 
1532 	cto->ct_resid = 0;
1533 	cto->rsp.m0.ct_scsi_status = 0;
1534 	MEMZERO(&cto->rsp, sizeof (cto->rsp));
1535 
1536 	pcs = (struct isp_pcisoftc *)isp;
1537 	dp = &pcs->dmaps[isp_handle_index(handle)];
1538 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1539 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1540 	} else {
1541 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1542 	}
1543 
1544 	nxti = *mp->nxtip;
1545 
1546 	for (nth_ctio = 0; nth_ctio < nctios; nth_ctio++) {
1547 		u_int32_t oxfrlen;
1548 		int seglim;
1549 
1550 		seglim = nseg;
1551 		if (seglim) {
1552 			int seg;
1553 			if (seglim > ISP_RQDSEG_T2)
1554 				seglim = ISP_RQDSEG_T2;
1555 			for (seg = 0; seg < seglim; seg++) {
1556 				cto->rsp.m0.ct_dataseg[seg].ds_base =
1557 				    dm_segs->ds_addr;
1558 				cto->rsp.m0.ct_dataseg[seg].ds_count =
1559 				    dm_segs->ds_len;
1560 				cto->rsp.m0.ct_xfrlen += dm_segs->ds_len;
1561 				dm_segs++;
1562 			}
1563 			cto->ct_seg_count = seg;
1564 			oxfrlen = cto->rsp.m0.ct_xfrlen;
1565 		} else {
1566 			/*
1567 			 * This case should only happen when we're sending a
1568 			 * synthesized MODE1 final status with sense data.
1569 			 */
1570 			if (send_sense == 0) {
1571 				isp_prt(isp, ISP_LOGWARN,
1572 				    "dma2_tgt_fc ran out of segments, "
1573 				    "no SENSE DATA");
1574 				mp->error = EINVAL;
1575 				return;
1576 			}
1577 			oxfrlen = 0;
1578 		}
1579 
1580 
1581 		/*
1582 		 * At this point, the fields ct_lun, ct_iid, ct_rxid,
1583 		 * ct_timeout have been carried over unchanged from what
1584 		 * our caller had set.
1585 		 *
1586 		 * The field ct_reloff is either what the caller set, or
1587 		 * what we've added to below.
1588 		 *
1589 		 * The dataseg fields and the seg_count fields we just got
1590 		 * through setting. The data direction we've preserved all
1591 		 * along and only clear it if we're sending a MODE1 status
1592 		 * as the last CTIO.
1593 		 *
1594 		 */
1595 
1596 		if (nth_ctio == nctios - 1) {
1597 			/*
1598 			 * We're the last in a sequence of CTIO2s, so mark this
1599 			 * CTIO2 and save the handle to the CCB such that when
1600 			 * this CTIO2 completes we can free dma resources and
1601 			 * do whatever else we need to do to finish the rest
1602 			 * of the command.
1603 			 */
1604 
1605 			cto->ct_syshandle = handle;
1606 			cto->ct_header.rqs_seqno = 1;
1607 
1608 			if (send_status) {
1609 				/*
1610 				 * Get 'real' residual and set flags based
1611 				 * on it.
1612 				 */
1613 				cto->ct_resid = resid;
1614 				if (send_sense) {
1615 					MEMCPY(cto->rsp.m1.ct_resp, sense,
1616 					    QLTM_SENSELEN);
1617 					cto->rsp.m1.ct_senselen =
1618 					    QLTM_SENSELEN;
1619 					scsi_status |= CT2_SNSLEN_VALID;
1620 					cto->rsp.m1.ct_scsi_status =
1621 					    scsi_status;
1622 					cto->ct_flags &= CT2_FLAG_MMASK;
1623 					cto->ct_flags |= CT2_FLAG_MODE1 |
1624 					    CT2_NO_DATA | CT2_SENDSTATUS |
1625 					    CT2_CCINCR;
1626 					if (cto->ct_resid > 0)
1627 						cto->rsp.m1.ct_scsi_status |=
1628 						    CT2_DATA_UNDER;
1629 					else if (cto->ct_resid < 0)
1630 						cto->rsp.m1.ct_scsi_status |=
1631 						    CT2_DATA_OVER;
1632 				} else {
1633 					cto->rsp.m0.ct_scsi_status =
1634 					    scsi_status;
1635 					cto->ct_flags |=
1636 					    CT2_SENDSTATUS | CT2_CCINCR;
1637 					if (cto->ct_resid > 0)
1638 						cto->rsp.m0.ct_scsi_status |=
1639 						    CT2_DATA_UNDER;
1640 					else if (cto->ct_resid < 0)
1641 						cto->rsp.m0.ct_scsi_status |=
1642 						    CT2_DATA_OVER;
1643 				}
1644 			}
1645 			isp_prt(isp, ISP_LOGTDEBUG1,
1646 			    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x"
1647 			    " ssts 0x%x res %d", cto->ct_rxid,
1648 			    csio->ccb_h.target_lun, (int) cto->ct_iid,
1649 			    cto->ct_flags, cto->ct_status,
1650 			    cto->rsp.m1.ct_scsi_status, cto->ct_resid);
1651 			isp_put_ctio2(isp, cto, qe);
1652 			ISP_TDQE(isp, "last dma2_tgt_fc", curi, qe);
1653 			if (nctios > 1) {
1654 				MEMORYBARRIER(isp, SYNC_REQUEST,
1655 				    curi, QENTRY_LEN);
1656 			}
1657 		} else {
1658 			ct2_entry_t *oqe = qe;
1659 
1660 			/*
1661 			 * Make sure handle fields are clean
1662 			 */
1663 			cto->ct_syshandle = 0;
1664 			cto->ct_header.rqs_seqno = 0;
1665 			isp_prt(isp, ISP_LOGTDEBUG1,
1666 			    "CTIO2[%x] lun %d->iid%d flgs 0x%x",
1667 			    cto->ct_rxid, csio->ccb_h.target_lun,
1668 			    (int) cto->ct_iid, cto->ct_flags);
1669 			/*
1670 			 * Get a new CTIO2 entry from the request queue.
1671 			 */
1672 			qe = (ct2_entry_t *)
1673 			    ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1674 			nxti = ISP_NXT_QENTRY(nxti, RQUEST_QUEUE_LEN(isp));
1675 			if (nxti == mp->optr) {
1676 				isp_prt(isp, ISP_LOGWARN,
1677 				    "Queue Overflow in dma2_tgt_fc");
1678 				mp->error = MUSHERR_NOQENTRIES;
1679 				return;
1680 			}
1681 
1682 			/*
1683 			 * Now that we're done with the old CTIO2,
1684 			 * flush it out to the request queue.
1685 			 */
1686 			ISP_TDQE(isp, "tdma_mkfc", curi, cto);
1687 			isp_put_ctio2(isp, cto, oqe);
1688 			if (nth_ctio != 0) {
1689 				MEMORYBARRIER(isp, SYNC_REQUEST, curi,
1690 				    QENTRY_LEN);
1691 			}
1692 			curi = ISP_NXT_QENTRY(curi, RQUEST_QUEUE_LEN(isp));
1693 
1694 			/*
1695 			 * Reset some fields in the CTIO2 so we can reuse
1696 			 * for the next one we'll flush to the request
1697 			 * queue.
1698 			 */
1699 			cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2;
1700 			cto->ct_header.rqs_entry_count = 1;
1701 			cto->ct_header.rqs_flags = 0;
1702 			cto->ct_status = 0;
1703 			cto->ct_resid = 0;
1704 			cto->ct_seg_count = 0;
1705 			/*
1706 			 * Adjust the new relative offset by the amount which
1707 			 * is recorded in the data segment of the old CTIO2 we
1708 			 * just finished filling out.
1709 			 */
1710 			cto->ct_reloff += oxfrlen;
1711 			MEMZERO(&cto->rsp, sizeof (cto->rsp));
1712 		}
1713 	}
1714 	*mp->nxtip = nxti;
1715 }
1716 #endif
1717 
1718 static void dma2(void *, bus_dma_segment_t *, int, int);
1719 
1720 static void
1721 dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1722 {
1723 	mush_t *mp;
1724 	struct ispsoftc *isp;
1725 	struct ccb_scsiio *csio;
1726 	struct isp_pcisoftc *pcs;
1727 	bus_dmamap_t *dp;
1728 	bus_dma_segment_t *eseg;
1729 	ispreq_t *rq;
1730 	int seglim, datalen;
1731 	u_int16_t nxti;
1732 
1733 	mp = (mush_t *) arg;
1734 	if (error) {
1735 		mp->error = error;
1736 		return;
1737 	}
1738 
1739 	if (nseg < 1) {
1740 		isp_prt(mp->isp, ISP_LOGERR, "bad segment count (%d)", nseg);
1741 		mp->error = EFAULT;
1742 		return;
1743 	}
1744 	csio = mp->cmd_token;
1745 	isp = mp->isp;
1746 	rq = mp->rq;
1747 	pcs = (struct isp_pcisoftc *)mp->isp;
1748 	dp = &pcs->dmaps[isp_handle_index(rq->req_handle)];
1749 	nxti = *mp->nxtip;
1750 
1751 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1752 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1753 	} else {
1754 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1755 	}
1756 
1757 	datalen = XS_XFRLEN(csio);
1758 
1759 	/*
1760 	 * We're passed an initial partially filled in entry that
1761 	 * has most fields filled in except for data transfer
1762 	 * related values.
1763 	 *
1764 	 * Our job is to fill in the initial request queue entry and
1765 	 * then to start allocating and filling in continuation entries
1766 	 * until we've covered the entire transfer.
1767 	 */
1768 
1769 	if (IS_FC(isp)) {
1770 		seglim = ISP_RQDSEG_T2;
1771 		((ispreqt2_t *)rq)->req_totalcnt = datalen;
1772 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1773 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN;
1774 		} else {
1775 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT;
1776 		}
1777 	} else {
1778 		if (csio->cdb_len > 12) {
1779 			seglim = 0;
1780 		} else {
1781 			seglim = ISP_RQDSEG;
1782 		}
1783 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1784 			rq->req_flags |= REQFLAG_DATA_IN;
1785 		} else {
1786 			rq->req_flags |= REQFLAG_DATA_OUT;
1787 		}
1788 	}
1789 
1790 	eseg = dm_segs + nseg;
1791 
1792 	while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
1793 		if (IS_FC(isp)) {
1794 			ispreqt2_t *rq2 = (ispreqt2_t *)rq;
1795 			rq2->req_dataseg[rq2->req_seg_count].ds_base =
1796 			    dm_segs->ds_addr;
1797 			rq2->req_dataseg[rq2->req_seg_count].ds_count =
1798 			    dm_segs->ds_len;
1799 		} else {
1800 			rq->req_dataseg[rq->req_seg_count].ds_base =
1801 				dm_segs->ds_addr;
1802 			rq->req_dataseg[rq->req_seg_count].ds_count =
1803 				dm_segs->ds_len;
1804 		}
1805 		datalen -= dm_segs->ds_len;
1806 		rq->req_seg_count++;
1807 		dm_segs++;
1808 	}
1809 
1810 	while (datalen > 0 && dm_segs != eseg) {
1811 		u_int16_t onxti;
1812 		ispcontreq_t local, *crq = &local, *cqe;
1813 
1814 		cqe = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1815 		onxti = nxti;
1816 		nxti = ISP_NXT_QENTRY(onxti, RQUEST_QUEUE_LEN(isp));
1817 		if (nxti == mp->optr) {
1818 			isp_prt(isp, ISP_LOGDEBUG0, "Request Queue Overflow++");
1819 			mp->error = MUSHERR_NOQENTRIES;
1820 			return;
1821 		}
1822 		rq->req_header.rqs_entry_count++;
1823 		MEMZERO((void *)crq, sizeof (*crq));
1824 		crq->req_header.rqs_entry_count = 1;
1825 		crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
1826 
1827 		seglim = 0;
1828 		while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) {
1829 			crq->req_dataseg[seglim].ds_base =
1830 			    dm_segs->ds_addr;
1831 			crq->req_dataseg[seglim].ds_count =
1832 			    dm_segs->ds_len;
1833 			rq->req_seg_count++;
1834 			dm_segs++;
1835 			seglim++;
1836 			datalen -= dm_segs->ds_len;
1837 		}
1838 		isp_put_cont_req(isp, crq, cqe);
1839 		MEMORYBARRIER(isp, SYNC_REQUEST, onxti, QENTRY_LEN);
1840 	}
1841 	*mp->nxtip = nxti;
1842 }
1843 
1844 static int
1845 isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq,
1846 	u_int16_t *nxtip, u_int16_t optr)
1847 {
1848 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1849 	ispreq_t *qep;
1850 	bus_dmamap_t *dp = NULL;
1851 	mush_t mush, *mp;
1852 	void (*eptr)(void *, bus_dma_segment_t *, int, int);
1853 
1854 	qep = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, isp->isp_reqidx);
1855 #ifdef	ISP_TARGET_MODE
1856 	if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) {
1857 		if (IS_FC(isp)) {
1858 			eptr = tdma_mkfc;
1859 		} else {
1860 			eptr = tdma_mk;
1861 		}
1862 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1863 		    (csio->dxfer_len == 0)) {
1864 			mp = &mush;
1865 			mp->isp = isp;
1866 			mp->cmd_token = csio;
1867 			mp->rq = rq;	/* really a ct_entry_t or ct2_entry_t */
1868 			mp->nxtip = nxtip;
1869 			mp->optr = optr;
1870 			mp->error = 0;
1871 			(*eptr)(mp, NULL, 0, 0);
1872 			goto mbxsync;
1873 		}
1874 	} else
1875 #endif
1876 	eptr = dma2;
1877 
1878 
1879 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1880 	    (csio->dxfer_len == 0)) {
1881 		rq->req_seg_count = 1;
1882 		goto mbxsync;
1883 	}
1884 
1885 	/*
1886 	 * Do a virtual grapevine step to collect info for
1887 	 * the callback dma allocation that we have to use...
1888 	 */
1889 	mp = &mush;
1890 	mp->isp = isp;
1891 	mp->cmd_token = csio;
1892 	mp->rq = rq;
1893 	mp->nxtip = nxtip;
1894 	mp->optr = optr;
1895 	mp->error = 0;
1896 
1897 	if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
1898 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) {
1899 			int error, s;
1900 			dp = &pcs->dmaps[isp_handle_index(rq->req_handle)];
1901 			s = splsoftvm();
1902 			error = bus_dmamap_load(pcs->dmat, *dp,
1903 			    csio->data_ptr, csio->dxfer_len, eptr, mp, 0);
1904 			if (error == EINPROGRESS) {
1905 				bus_dmamap_unload(pcs->dmat, *dp);
1906 				mp->error = EINVAL;
1907 				isp_prt(isp, ISP_LOGERR,
1908 				    "deferred dma allocation not supported");
1909 			} else if (error && mp->error == 0) {
1910 #ifdef	DIAGNOSTIC
1911 				isp_prt(isp, ISP_LOGERR,
1912 				    "error %d in dma mapping code", error);
1913 #endif
1914 				mp->error = error;
1915 			}
1916 			splx(s);
1917 		} else {
1918 			/* Pointer to physical buffer */
1919 			struct bus_dma_segment seg;
1920 			seg.ds_addr = (bus_addr_t)csio->data_ptr;
1921 			seg.ds_len = csio->dxfer_len;
1922 			(*eptr)(mp, &seg, 1, 0);
1923 		}
1924 	} else {
1925 		struct bus_dma_segment *segs;
1926 
1927 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) {
1928 			isp_prt(isp, ISP_LOGERR,
1929 			    "Physical segment pointers unsupported");
1930 			mp->error = EINVAL;
1931 		} else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
1932 			isp_prt(isp, ISP_LOGERR,
1933 			    "Virtual segment addresses unsupported");
1934 			mp->error = EINVAL;
1935 		} else {
1936 			/* Just use the segments provided */
1937 			segs = (struct bus_dma_segment *) csio->data_ptr;
1938 			(*eptr)(mp, segs, csio->sglist_cnt, 0);
1939 		}
1940 	}
1941 	if (mp->error) {
1942 		int retval = CMD_COMPLETE;
1943 		if (mp->error == MUSHERR_NOQENTRIES) {
1944 			retval = CMD_EAGAIN;
1945 		} else if (mp->error == EFBIG) {
1946 			XS_SETERR(csio, CAM_REQ_TOO_BIG);
1947 		} else if (mp->error == EINVAL) {
1948 			XS_SETERR(csio, CAM_REQ_INVALID);
1949 		} else {
1950 			XS_SETERR(csio, CAM_UNREC_HBA_ERROR);
1951 		}
1952 		return (retval);
1953 	}
1954 mbxsync:
1955 	switch (rq->req_header.rqs_entry_type) {
1956 	case RQSTYPE_REQUEST:
1957 		isp_put_request(isp, rq, qep);
1958 		break;
1959 	case RQSTYPE_CMDONLY:
1960 		isp_put_extended_request(isp, (ispextreq_t *)rq,
1961 		    (ispextreq_t *)qep);
1962 		break;
1963 	case RQSTYPE_T2RQS:
1964 		isp_put_request_t2(isp, (ispreqt2_t *) rq, (ispreqt2_t *) qep);
1965 		break;
1966 	}
1967 	return (CMD_QUEUED);
1968 }
1969 
1970 static void
1971 isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int16_t handle)
1972 {
1973 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1974 	bus_dmamap_t *dp = &pcs->dmaps[isp_handle_index(handle)];
1975 	if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1976 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_POSTREAD);
1977 	} else {
1978 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_POSTWRITE);
1979 	}
1980 	bus_dmamap_unload(pcs->dmat, *dp);
1981 }
1982 
1983 
1984 static void
1985 isp_pci_reset1(struct ispsoftc *isp)
1986 {
1987 	/* Make sure the BIOS is disabled */
1988 	isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS);
1989 	/* and enable interrupts */
1990 	ENABLE_INTS(isp);
1991 }
1992 
1993 static void
1994 isp_pci_dumpregs(struct ispsoftc *isp, const char *msg)
1995 {
1996 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1997 	if (msg)
1998 		printf("%s: %s\n", device_get_nameunit(isp->isp_dev), msg);
1999 	else
2000 		printf("%s:\n", device_get_nameunit(isp->isp_dev));
2001 	if (IS_SCSI(isp))
2002 		printf("    biu_conf1=%x", ISP_READ(isp, BIU_CONF1));
2003 	else
2004 		printf("    biu_csr=%x", ISP_READ(isp, BIU2100_CSR));
2005 	printf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR),
2006 	    ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA));
2007 	printf("risc_hccr=%x\n", ISP_READ(isp, HCCR));
2008 
2009 
2010 	if (IS_SCSI(isp)) {
2011 		ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
2012 		printf("    cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n",
2013 			ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS),
2014 			ISP_READ(isp, CDMA_FIFO_STS));
2015 		printf("    ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n",
2016 			ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS),
2017 			ISP_READ(isp, DDMA_FIFO_STS));
2018 		printf("    sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n",
2019 			ISP_READ(isp, SXP_INTERRUPT),
2020 			ISP_READ(isp, SXP_GROSS_ERR),
2021 			ISP_READ(isp, SXP_PINS_CTRL));
2022 		ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
2023 	}
2024 	printf("    mbox regs: %x %x %x %x %x\n",
2025 	    ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1),
2026 	    ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3),
2027 	    ISP_READ(isp, OUTMAILBOX4));
2028 	printf("    PCI Status Command/Status=%x\n",
2029 	    pci_read_config(pcs->pci_dev, PCIR_COMMAND, 1));
2030 }
2031