xref: /freebsd/sys/dev/isp/isp_pci.c (revision eacee0ff7ec955b32e09515246bd97b6edcd2b0f)
1 /* $FreeBSD$ */
2 /*
3  * PCI specific probe and attach routines for Qlogic ISP SCSI adapters.
4  * FreeBSD Version.
5  *
6  * Copyright (c) 1997, 1998, 1999, 2000, 2001 by Matthew Jacob
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice immediately at the beginning of the file, without modification,
13  *    this list of conditions, and the following disclaimer.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/bus.h>
35 
36 #include <pci/pcireg.h>
37 #include <pci/pcivar.h>
38 
39 #include <machine/bus_memio.h>
40 #include <machine/bus_pio.h>
41 #include <machine/bus.h>
42 #include <machine/resource.h>
43 #include <sys/rman.h>
44 #include <sys/malloc.h>
45 
46 #include <dev/isp/isp_freebsd.h>
47 
48 static u_int16_t isp_pci_rd_reg(struct ispsoftc *, int);
49 static void isp_pci_wr_reg(struct ispsoftc *, int, u_int16_t);
50 static u_int16_t isp_pci_rd_reg_1080(struct ispsoftc *, int);
51 static void isp_pci_wr_reg_1080(struct ispsoftc *, int, u_int16_t);
52 static int
53 isp_pci_rd_isr(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
54 static int
55 isp_pci_rd_isr_2300(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
56 static int isp_pci_mbxdma(struct ispsoftc *);
57 static int
58 isp_pci_dmasetup(struct ispsoftc *, XS_T *, ispreq_t *, u_int16_t *, u_int16_t);
59 static void
60 isp_pci_dmateardown(struct ispsoftc *, XS_T *, u_int16_t);
61 
62 static void isp_pci_reset1(struct ispsoftc *);
63 static void isp_pci_dumpregs(struct ispsoftc *, const char *);
64 
65 #ifndef	ISP_CODE_ORG
66 #define	ISP_CODE_ORG		0x1000
67 #endif
68 
69 static struct ispmdvec mdvec = {
70 	isp_pci_rd_isr,
71 	isp_pci_rd_reg,
72 	isp_pci_wr_reg,
73 	isp_pci_mbxdma,
74 	isp_pci_dmasetup,
75 	isp_pci_dmateardown,
76 	NULL,
77 	isp_pci_reset1,
78 	isp_pci_dumpregs,
79 	NULL,
80 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
81 };
82 
83 static struct ispmdvec mdvec_1080 = {
84 	isp_pci_rd_isr,
85 	isp_pci_rd_reg_1080,
86 	isp_pci_wr_reg_1080,
87 	isp_pci_mbxdma,
88 	isp_pci_dmasetup,
89 	isp_pci_dmateardown,
90 	NULL,
91 	isp_pci_reset1,
92 	isp_pci_dumpregs,
93 	NULL,
94 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
95 };
96 
97 static struct ispmdvec mdvec_12160 = {
98 	isp_pci_rd_isr,
99 	isp_pci_rd_reg_1080,
100 	isp_pci_wr_reg_1080,
101 	isp_pci_mbxdma,
102 	isp_pci_dmasetup,
103 	isp_pci_dmateardown,
104 	NULL,
105 	isp_pci_reset1,
106 	isp_pci_dumpregs,
107 	NULL,
108 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
109 };
110 
111 static struct ispmdvec mdvec_2100 = {
112 	isp_pci_rd_isr,
113 	isp_pci_rd_reg,
114 	isp_pci_wr_reg,
115 	isp_pci_mbxdma,
116 	isp_pci_dmasetup,
117 	isp_pci_dmateardown,
118 	NULL,
119 	isp_pci_reset1,
120 	isp_pci_dumpregs
121 };
122 
123 static struct ispmdvec mdvec_2200 = {
124 	isp_pci_rd_isr,
125 	isp_pci_rd_reg,
126 	isp_pci_wr_reg,
127 	isp_pci_mbxdma,
128 	isp_pci_dmasetup,
129 	isp_pci_dmateardown,
130 	NULL,
131 	isp_pci_reset1,
132 	isp_pci_dumpregs
133 };
134 
135 static struct ispmdvec mdvec_2300 = {
136 	isp_pci_rd_isr_2300,
137 	isp_pci_rd_reg,
138 	isp_pci_wr_reg,
139 	isp_pci_mbxdma,
140 	isp_pci_dmasetup,
141 	isp_pci_dmateardown,
142 	NULL,
143 	isp_pci_reset1,
144 	isp_pci_dumpregs
145 };
146 
147 #ifndef	PCIM_CMD_INVEN
148 #define	PCIM_CMD_INVEN			0x10
149 #endif
150 #ifndef	PCIM_CMD_BUSMASTEREN
151 #define	PCIM_CMD_BUSMASTEREN		0x0004
152 #endif
153 #ifndef	PCIM_CMD_PERRESPEN
154 #define	PCIM_CMD_PERRESPEN		0x0040
155 #endif
156 #ifndef	PCIM_CMD_SEREN
157 #define	PCIM_CMD_SEREN			0x0100
158 #endif
159 
160 #ifndef	PCIR_COMMAND
161 #define	PCIR_COMMAND			0x04
162 #endif
163 
164 #ifndef	PCIR_CACHELNSZ
165 #define	PCIR_CACHELNSZ			0x0c
166 #endif
167 
168 #ifndef	PCIR_LATTIMER
169 #define	PCIR_LATTIMER			0x0d
170 #endif
171 
172 #ifndef	PCIR_ROMADDR
173 #define	PCIR_ROMADDR			0x30
174 #endif
175 
176 #ifndef	PCI_VENDOR_QLOGIC
177 #define	PCI_VENDOR_QLOGIC		0x1077
178 #endif
179 
180 #ifndef	PCI_PRODUCT_QLOGIC_ISP1020
181 #define	PCI_PRODUCT_QLOGIC_ISP1020	0x1020
182 #endif
183 
184 #ifndef	PCI_PRODUCT_QLOGIC_ISP1080
185 #define	PCI_PRODUCT_QLOGIC_ISP1080	0x1080
186 #endif
187 
188 #ifndef	PCI_PRODUCT_QLOGIC_ISP12160
189 #define	PCI_PRODUCT_QLOGIC_ISP12160	0x1216
190 #endif
191 
192 #ifndef	PCI_PRODUCT_QLOGIC_ISP1240
193 #define	PCI_PRODUCT_QLOGIC_ISP1240	0x1240
194 #endif
195 
196 #ifndef	PCI_PRODUCT_QLOGIC_ISP1280
197 #define	PCI_PRODUCT_QLOGIC_ISP1280	0x1280
198 #endif
199 
200 #ifndef	PCI_PRODUCT_QLOGIC_ISP2100
201 #define	PCI_PRODUCT_QLOGIC_ISP2100	0x2100
202 #endif
203 
204 #ifndef	PCI_PRODUCT_QLOGIC_ISP2200
205 #define	PCI_PRODUCT_QLOGIC_ISP2200	0x2200
206 #endif
207 
208 #ifndef	PCI_PRODUCT_QLOGIC_ISP2300
209 #define	PCI_PRODUCT_QLOGIC_ISP2300	0x2300
210 #endif
211 
212 #ifndef	PCI_PRODUCT_QLOGIC_ISP2312
213 #define	PCI_PRODUCT_QLOGIC_ISP2312	0x2312
214 #endif
215 
216 #define	PCI_QLOGIC_ISP1020	\
217 	((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC)
218 
219 #define	PCI_QLOGIC_ISP1080	\
220 	((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC)
221 
222 #define	PCI_QLOGIC_ISP12160	\
223 	((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC)
224 
225 #define	PCI_QLOGIC_ISP1240	\
226 	((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC)
227 
228 #define	PCI_QLOGIC_ISP1280	\
229 	((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC)
230 
231 #define	PCI_QLOGIC_ISP2100	\
232 	((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC)
233 
234 #define	PCI_QLOGIC_ISP2200	\
235 	((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC)
236 
237 #define	PCI_QLOGIC_ISP2300	\
238 	((PCI_PRODUCT_QLOGIC_ISP2300 << 16) | PCI_VENDOR_QLOGIC)
239 
240 #define	PCI_QLOGIC_ISP2312	\
241 	((PCI_PRODUCT_QLOGIC_ISP2312 << 16) | PCI_VENDOR_QLOGIC)
242 
243 /*
244  * Odd case for some AMI raid cards... We need to *not* attach to this.
245  */
246 #define	AMI_RAID_SUBVENDOR_ID	0x101e
247 
248 #define	IO_MAP_REG	0x10
249 #define	MEM_MAP_REG	0x14
250 
251 #define	PCI_DFLT_LTNCY	0x40
252 #define	PCI_DFLT_LNSZ	0x10
253 
254 static int isp_pci_probe (device_t);
255 static int isp_pci_attach (device_t);
256 
257 struct isp_pcisoftc {
258 	struct ispsoftc			pci_isp;
259 	device_t			pci_dev;
260 	struct resource *		pci_reg;
261 	bus_space_tag_t			pci_st;
262 	bus_space_handle_t		pci_sh;
263 	void *				ih;
264 	int16_t				pci_poff[_NREG_BLKS];
265 	bus_dma_tag_t			parent_dmat;
266 	bus_dma_tag_t			cntrol_dmat;
267 	bus_dmamap_t			cntrol_dmap;
268 	bus_dmamap_t			*dmaps;
269 };
270 ispfwfunc *isp_get_firmware_p = NULL;
271 
272 static device_method_t isp_pci_methods[] = {
273 	/* Device interface */
274 	DEVMETHOD(device_probe,		isp_pci_probe),
275 	DEVMETHOD(device_attach,	isp_pci_attach),
276 	{ 0, 0 }
277 };
278 static void isp_pci_intr(void *);
279 
280 static driver_t isp_pci_driver = {
281 	"isp", isp_pci_methods, sizeof (struct isp_pcisoftc)
282 };
283 static devclass_t isp_devclass;
284 DRIVER_MODULE(isp, pci, isp_pci_driver, isp_devclass, 0, 0);
285 MODULE_VERSION(isp, 1);
286 
287 static int
288 isp_pci_probe(device_t dev)
289 {
290         switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
291 	case PCI_QLOGIC_ISP1020:
292 		device_set_desc(dev, "Qlogic ISP 1020/1040 PCI SCSI Adapter");
293 		break;
294 	case PCI_QLOGIC_ISP1080:
295 		device_set_desc(dev, "Qlogic ISP 1080 PCI SCSI Adapter");
296 		break;
297 	case PCI_QLOGIC_ISP1240:
298 		device_set_desc(dev, "Qlogic ISP 1240 PCI SCSI Adapter");
299 		break;
300 	case PCI_QLOGIC_ISP1280:
301 		device_set_desc(dev, "Qlogic ISP 1280 PCI SCSI Adapter");
302 		break;
303 	case PCI_QLOGIC_ISP12160:
304 		if (pci_get_subvendor(dev) == AMI_RAID_SUBVENDOR_ID) {
305 			return (ENXIO);
306 		}
307 		device_set_desc(dev, "Qlogic ISP 12160 PCI SCSI Adapter");
308 		break;
309 	case PCI_QLOGIC_ISP2100:
310 		device_set_desc(dev, "Qlogic ISP 2100 PCI FC-AL Adapter");
311 		break;
312 	case PCI_QLOGIC_ISP2200:
313 		device_set_desc(dev, "Qlogic ISP 2200 PCI FC-AL Adapter");
314 		break;
315 	case PCI_QLOGIC_ISP2300:
316 		device_set_desc(dev, "Qlogic ISP 2300 PCI FC-AL Adapter");
317 		break;
318 	case PCI_QLOGIC_ISP2312:
319 		device_set_desc(dev, "Qlogic ISP 2312 PCI FC-AL Adapter");
320 		break;
321 	default:
322 		return (ENXIO);
323 	}
324 	if (device_get_unit(dev) == 0 && bootverbose) {
325 		printf("Qlogic ISP Driver, FreeBSD Version %d.%d, "
326 		    "Core Version %d.%d\n",
327 		    ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR,
328 		    ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR);
329 	}
330 	/*
331 	 * XXXX: Here is where we might load the f/w module
332 	 * XXXX: (or increase a reference count to it).
333 	 */
334 	return (0);
335 }
336 
337 static int
338 isp_pci_attach(device_t dev)
339 {
340 	struct resource *regs, *irq;
341 	int tval, rtp, rgd, iqd, m1, m2, isp_debug, role;
342 	u_int32_t data, cmd, linesz, psize, basetype;
343 	struct isp_pcisoftc *pcs;
344 	struct ispsoftc *isp = NULL;
345 	struct ispmdvec *mdvp;
346 	bus_size_t lim;
347 	const char *sptr;
348 	int locksetup = 0;
349 
350 	/*
351 	 * Figure out if we're supposed to skip this one.
352 	 * If we are, we actually go to ISP_ROLE_NONE.
353 	 */
354 
355 	tval = 0;
356 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
357 	    "disable", &tval) == 0 && tval) {
358 		device_printf(dev, "device is disabled\n");
359 		/* but return 0 so the !$)$)*!$*) unit isn't reused */
360 		return (0);
361 	}
362 
363 	role = 0;
364 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
365 	    "role", &role) == 0 &&
366 	    ((role & ~(ISP_ROLE_INITIATOR|ISP_ROLE_TARGET)) == 0)) {
367 		device_printf(dev, "setting role to 0x%x\n", role);
368 	} else {
369 #ifdef	ISP_TARGET_MODE
370 		role = ISP_ROLE_INITIATOR|ISP_ROLE_TARGET;
371 #else
372 		role = ISP_DEFAULT_ROLES;
373 #endif
374 	}
375 
376 	pcs = malloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_NOWAIT | M_ZERO);
377 	if (pcs == NULL) {
378 		device_printf(dev, "cannot allocate softc\n");
379 		return (ENOMEM);
380 	}
381 
382 	/*
383 	 * Figure out which we should try first - memory mapping or i/o mapping?
384 	 */
385 #ifdef	__alpha__
386 	m1 = PCIM_CMD_MEMEN;
387 	m2 = PCIM_CMD_PORTEN;
388 #else
389 	m1 = PCIM_CMD_PORTEN;
390 	m2 = PCIM_CMD_MEMEN;
391 #endif
392 
393 	tval = 0;
394         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
395             "prefer_iomap", &tval) == 0 && tval != 0) {
396 		m1 = PCIM_CMD_PORTEN;
397 		m2 = PCIM_CMD_MEMEN;
398 	}
399 	tval = 0;
400         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
401             "prefer_memmap", &tval) == 0 && tval != 0) {
402 		m1 = PCIM_CMD_MEMEN;
403 		m2 = PCIM_CMD_PORTEN;
404 	}
405 
406 	linesz = PCI_DFLT_LNSZ;
407 	irq = regs = NULL;
408 	rgd = rtp = iqd = 0;
409 
410 	cmd = pci_read_config(dev, PCIR_COMMAND, 1);
411 	if (cmd & m1) {
412 		rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
413 		rgd = (m1 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
414 		regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
415 	}
416 	if (regs == NULL && (cmd & m2)) {
417 		rtp = (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
418 		rgd = (m2 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
419 		regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
420 	}
421 	if (regs == NULL) {
422 		device_printf(dev, "unable to map any ports\n");
423 		goto bad;
424 	}
425 	if (bootverbose)
426 		device_printf(dev, "using %s space register mapping\n",
427 		    (rgd == IO_MAP_REG)? "I/O" : "Memory");
428 	pcs->pci_dev = dev;
429 	pcs->pci_reg = regs;
430 	pcs->pci_st = rman_get_bustag(regs);
431 	pcs->pci_sh = rman_get_bushandle(regs);
432 
433 	pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF;
434 	pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF;
435 	pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF;
436 	pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF;
437 	pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF;
438 	mdvp = &mdvec;
439 	basetype = ISP_HA_SCSI_UNKNOWN;
440 	psize = sizeof (sdparam);
441 	lim = BUS_SPACE_MAXSIZE_32BIT;
442 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1020) {
443 		mdvp = &mdvec;
444 		basetype = ISP_HA_SCSI_UNKNOWN;
445 		psize = sizeof (sdparam);
446 		lim = BUS_SPACE_MAXSIZE_24BIT;
447 	}
448 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1080) {
449 		mdvp = &mdvec_1080;
450 		basetype = ISP_HA_SCSI_1080;
451 		psize = sizeof (sdparam);
452 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
453 		    ISP1080_DMA_REGS_OFF;
454 	}
455 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1240) {
456 		mdvp = &mdvec_1080;
457 		basetype = ISP_HA_SCSI_1240;
458 		psize = 2 * sizeof (sdparam);
459 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
460 		    ISP1080_DMA_REGS_OFF;
461 	}
462 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1280) {
463 		mdvp = &mdvec_1080;
464 		basetype = ISP_HA_SCSI_1280;
465 		psize = 2 * sizeof (sdparam);
466 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
467 		    ISP1080_DMA_REGS_OFF;
468 	}
469 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP12160) {
470 		mdvp = &mdvec_12160;
471 		basetype = ISP_HA_SCSI_12160;
472 		psize = 2 * sizeof (sdparam);
473 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
474 		    ISP1080_DMA_REGS_OFF;
475 	}
476 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2100) {
477 		mdvp = &mdvec_2100;
478 		basetype = ISP_HA_FC_2100;
479 		psize = sizeof (fcparam);
480 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
481 		    PCI_MBOX_REGS2100_OFF;
482 		if (pci_get_revid(dev) < 3) {
483 			/*
484 			 * XXX: Need to get the actual revision
485 			 * XXX: number of the 2100 FB. At any rate,
486 			 * XXX: lower cache line size for early revision
487 			 * XXX; boards.
488 			 */
489 			linesz = 1;
490 		}
491 	}
492 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2200) {
493 		mdvp = &mdvec_2200;
494 		basetype = ISP_HA_FC_2200;
495 		psize = sizeof (fcparam);
496 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
497 		    PCI_MBOX_REGS2100_OFF;
498 	}
499 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2300) {
500 		mdvp = &mdvec_2300;
501 		basetype = ISP_HA_FC_2300;
502 		psize = sizeof (fcparam);
503 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
504 		    PCI_MBOX_REGS2300_OFF;
505 	}
506 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2312) {
507 		mdvp = &mdvec_2300;
508 		basetype = ISP_HA_FC_2312;
509 		psize = sizeof (fcparam);
510 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
511 		    PCI_MBOX_REGS2300_OFF;
512 	}
513 	isp = &pcs->pci_isp;
514 	isp->isp_param = malloc(psize, M_DEVBUF, M_NOWAIT | M_ZERO);
515 	if (isp->isp_param == NULL) {
516 		device_printf(dev, "cannot allocate parameter data\n");
517 		goto bad;
518 	}
519 	isp->isp_mdvec = mdvp;
520 	isp->isp_type = basetype;
521 	isp->isp_revision = pci_get_revid(dev);
522 	isp->isp_role = role;
523 	isp->isp_dev = dev;
524 
525 	/*
526 	 * Try and find firmware for this device.
527 	 */
528 
529 	if (isp_get_firmware_p) {
530 		int device = (int) pci_get_device(dev);
531 #ifdef	ISP_TARGET_MODE
532 		(*isp_get_firmware_p)(0, 1, device, &mdvp->dv_ispfw);
533 #else
534 		(*isp_get_firmware_p)(0, 0, device, &mdvp->dv_ispfw);
535 #endif
536 	}
537 
538 	/*
539 	 * Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER
540 	 * are set.
541 	 */
542 	cmd |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN |
543 		PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN;
544 	if (IS_2300(isp)) {	/* per QLogic errata */
545 		cmd &= ~PCIM_CMD_INVEN;
546 	}
547 	pci_write_config(dev, PCIR_COMMAND, cmd, 1);
548 
549 	/*
550 	 * Make sure the Cache Line Size register is set sensibly.
551 	 */
552 	data = pci_read_config(dev, PCIR_CACHELNSZ, 1);
553 	if (data != linesz) {
554 		data = PCI_DFLT_LNSZ;
555 		isp_prt(isp, ISP_LOGCONFIG, "set PCI line size to %d", data);
556 		pci_write_config(dev, PCIR_CACHELNSZ, data, 1);
557 	}
558 
559 	/*
560 	 * Make sure the Latency Timer is sane.
561 	 */
562 	data = pci_read_config(dev, PCIR_LATTIMER, 1);
563 	if (data < PCI_DFLT_LTNCY) {
564 		data = PCI_DFLT_LTNCY;
565 		isp_prt(isp, ISP_LOGCONFIG, "set PCI latency to %d", data);
566 		pci_write_config(dev, PCIR_LATTIMER, data, 1);
567 	}
568 
569 	/*
570 	 * Make sure we've disabled the ROM.
571 	 */
572 	data = pci_read_config(dev, PCIR_ROMADDR, 4);
573 	data &= ~1;
574 	pci_write_config(dev, PCIR_ROMADDR, data, 4);
575 
576 
577 	if (bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
578 	    BUS_SPACE_MAXADDR, NULL, NULL, lim + 1,
579 	    255, lim, 0, &pcs->parent_dmat) != 0) {
580 		device_printf(dev, "could not create master dma tag\n");
581 		free(isp->isp_param, M_DEVBUF);
582 		free(pcs, M_DEVBUF);
583 		return (ENXIO);
584 	}
585 
586 	iqd = 0;
587 	irq = bus_alloc_resource(dev, SYS_RES_IRQ, &iqd, 0, ~0,
588 	    1, RF_ACTIVE | RF_SHAREABLE);
589 	if (irq == NULL) {
590 		device_printf(dev, "could not allocate interrupt\n");
591 		goto bad;
592 	}
593 
594 	tval = 0;
595         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
596             "fwload_disable", &tval) == 0 && tval != 0) {
597 		isp->isp_confopts |= ISP_CFG_NORELOAD;
598 	}
599 	tval = 0;
600         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
601             "ignore_nvram", &tval) == 0 && tval != 0) {
602 		isp->isp_confopts |= ISP_CFG_NONVRAM;
603 	}
604 	tval = 0;
605         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
606             "fullduplex", &tval) == 0 && tval != 0) {
607 		isp->isp_confopts |= ISP_CFG_FULL_DUPLEX;
608 	}
609 #ifdef	ISP_FW_CRASH_DUMP
610 	tval = 0;
611         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
612             "fw_dump_enable", &tval) == 0 && tval != 0) {
613 		size_t amt = 0;
614 		if (IS_2200(isp)) {
615 			amt = QLA2200_RISC_IMAGE_DUMP_SIZE;
616 		} else if (IS_23XX(isp)) {
617 			amt = QLA2300_RISC_IMAGE_DUMP_SIZE;
618 		}
619 		if (amt) {
620 			FCPARAM(isp)->isp_dump_data =
621 			    malloc(amt, M_DEVBUF, M_WAITOK | M_ZERO);
622 		} else {
623 			device_printf(dev,
624 			    "f/w crash dumps not supported for this model\n");
625 		}
626 	}
627 #endif
628 
629 	sptr = 0;
630         if (resource_string_value(device_get_name(dev), device_get_unit(dev),
631             "topology", (const char **) &sptr) == 0 && sptr != 0) {
632 		if (strcmp(sptr, "lport") == 0) {
633 			isp->isp_confopts |= ISP_CFG_LPORT;
634 		} else if (strcmp(sptr, "nport") == 0) {
635 			isp->isp_confopts |= ISP_CFG_NPORT;
636 		} else if (strcmp(sptr, "lport-only") == 0) {
637 			isp->isp_confopts |= ISP_CFG_LPORT_ONLY;
638 		} else if (strcmp(sptr, "nport-only") == 0) {
639 			isp->isp_confopts |= ISP_CFG_NPORT_ONLY;
640 		}
641 	}
642 
643 	/*
644 	 * Because the resource_*_value functions can neither return
645 	 * 64 bit integer values, nor can they be directly coerced
646 	 * to interpret the right hand side of the assignment as
647 	 * you want them to interpret it, we have to force WWN
648 	 * hint replacement to specify WWN strings with a leading
649 	 * 'w' (e..g w50000000aaaa0001). Sigh.
650 	 */
651 	sptr = 0;
652 	tval = resource_string_value(device_get_name(dev), device_get_unit(dev),
653             "portwwn", (const char **) &sptr);
654 	if (tval == 0 && sptr != 0 && *sptr++ == 'w') {
655 		char *eptr = 0;
656 		isp->isp_osinfo.default_port_wwn = strtouq(sptr, &eptr, 16);
657 		if (eptr < sptr + 16 || isp->isp_osinfo.default_port_wwn == 0) {
658 			device_printf(dev, "mangled portwwn hint '%s'\n", sptr);
659 			isp->isp_osinfo.default_port_wwn = 0;
660 		} else {
661 			isp->isp_confopts |= ISP_CFG_OWNWWPN;
662 		}
663 	}
664 	if (isp->isp_osinfo.default_port_wwn == 0) {
665 		isp->isp_osinfo.default_port_wwn = 0x400000007F000009ull;
666 	}
667 
668 	sptr = 0;
669 	tval = resource_string_value(device_get_name(dev), device_get_unit(dev),
670             "nodewwn", (const char **) &sptr);
671 	if (tval == 0 && sptr != 0 && *sptr++ == 'w') {
672 		char *eptr = 0;
673 		isp->isp_osinfo.default_node_wwn = strtouq(sptr, &eptr, 16);
674 		if (eptr < sptr + 16 || isp->isp_osinfo.default_node_wwn == 0) {
675 			device_printf(dev, "mangled nodewwn hint '%s'\n", sptr);
676 			isp->isp_osinfo.default_node_wwn = 0;
677 		} else {
678 			isp->isp_confopts |= ISP_CFG_OWNWWNN;
679 		}
680 	}
681 	if (isp->isp_osinfo.default_node_wwn == 0) {
682 		isp->isp_osinfo.default_node_wwn = 0x400000007F000009ull;
683 	}
684 
685 	isp_debug = 0;
686         (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
687             "debug", &isp_debug);
688 
689 	/* Make sure the lock is set up. */
690 	mtx_init(&isp->isp_osinfo.lock, "isp", MTX_DEF);
691 	locksetup++;
692 
693 #ifdef	ISP_SMPLOCK
694 #define	INTR_FLAGS	INTR_TYPE_CAM | INTR_MPSAFE | INTR_ENTROPY
695 #else
696 #define	INTR_FLAGS	INTR_TYPE_CAM | INTR_ENTROPY
697 #endif
698 	if (bus_setup_intr(dev, irq, INTR_FLAGS, isp_pci_intr, isp, &pcs->ih)) {
699 		device_printf(dev, "could not setup interrupt\n");
700 		goto bad;
701 	}
702 
703 	/*
704 	 * Set up logging levels.
705 	 */
706 	if (isp_debug) {
707 		isp->isp_dblev = isp_debug;
708 	} else {
709 		isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR;
710 	}
711 	if (bootverbose)
712 		isp->isp_dblev |= ISP_LOGCONFIG|ISP_LOGINFO;
713 
714 	/*
715 	 * Last minute checks...
716 	 */
717 	if (IS_2312(isp)) {
718 		isp->isp_port = pci_get_function(dev);
719 	}
720 
721 	/*
722 	 * Make sure we're in reset state.
723 	 */
724 	ISP_LOCK(isp);
725 	isp_reset(isp);
726 	if (isp->isp_state != ISP_RESETSTATE) {
727 		ISP_UNLOCK(isp);
728 		goto bad;
729 	}
730 	isp_init(isp);
731 	if (isp->isp_role != ISP_ROLE_NONE && isp->isp_state != ISP_INITSTATE) {
732 		isp_uninit(isp);
733 		ISP_UNLOCK(isp);
734 		goto bad;
735 	}
736 	isp_attach(isp);
737 	if (isp->isp_role != ISP_ROLE_NONE && isp->isp_state != ISP_RUNSTATE) {
738 		isp_uninit(isp);
739 		ISP_UNLOCK(isp);
740 		goto bad;
741 	}
742 	/*
743 	 * XXXX: Here is where we might unload the f/w module
744 	 * XXXX: (or decrease the reference count to it).
745 	 */
746 	ISP_UNLOCK(isp);
747 	return (0);
748 
749 bad:
750 
751 	if (pcs && pcs->ih) {
752 		(void) bus_teardown_intr(dev, irq, pcs->ih);
753 	}
754 
755 	if (locksetup && isp) {
756 		mtx_destroy(&isp->isp_osinfo.lock);
757 	}
758 
759 	if (irq) {
760 		(void) bus_release_resource(dev, SYS_RES_IRQ, iqd, irq);
761 	}
762 
763 
764 	if (regs) {
765 		(void) bus_release_resource(dev, rtp, rgd, regs);
766 	}
767 
768 	if (pcs) {
769 		if (pcs->pci_isp.isp_param)
770 			free(pcs->pci_isp.isp_param, M_DEVBUF);
771 		free(pcs, M_DEVBUF);
772 	}
773 
774 	/*
775 	 * XXXX: Here is where we might unload the f/w module
776 	 * XXXX: (or decrease the reference count to it).
777 	 */
778 	return (ENXIO);
779 }
780 
781 static void
782 isp_pci_intr(void *arg)
783 {
784 	struct ispsoftc *isp = arg;
785 	u_int16_t isr, sema, mbox;
786 
787 	ISP_LOCK(isp);
788 	isp->isp_intcnt++;
789 	if (ISP_READ_ISR(isp, &isr, &sema, &mbox) == 0) {
790 		isp->isp_intbogus++;
791 	} else {
792 		int iok = isp->isp_osinfo.intsok;
793 		isp->isp_osinfo.intsok = 0;
794 		isp_intr(isp, isr, sema, mbox);
795 		isp->isp_osinfo.intsok = iok;
796 	}
797 	ISP_UNLOCK(isp);
798 }
799 
800 
801 #define	IspVirt2Off(a, x)	\
802 	(((struct isp_pcisoftc *)a)->pci_poff[((x) & _BLK_REG_MASK) >> \
803 	_BLK_REG_SHFT] + ((x) & 0xff))
804 
805 #define	BXR2(pcs, off)		\
806 	bus_space_read_2(pcs->pci_st, pcs->pci_sh, off)
807 #define	BXW2(pcs, off, v)	\
808 	bus_space_write_2(pcs->pci_st, pcs->pci_sh, off, v)
809 
810 
811 static INLINE int
812 isp_pci_rd_debounced(struct ispsoftc *isp, int off, u_int16_t *rp)
813 {
814 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
815 	u_int16_t val0, val1;
816 	int i = 0;
817 
818 	do {
819 		val0 = BXR2(pcs, IspVirt2Off(isp, off));
820 		val1 = BXR2(pcs, IspVirt2Off(isp, off));
821 	} while (val0 != val1 && ++i < 1000);
822 	if (val0 != val1) {
823 		return (1);
824 	}
825 	*rp = val0;
826 	return (0);
827 }
828 
829 static int
830 isp_pci_rd_isr(struct ispsoftc *isp, u_int16_t *isrp,
831     u_int16_t *semap, u_int16_t *mbp)
832 {
833 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
834 	u_int16_t isr, sema;
835 
836 	if (IS_2100(isp)) {
837 		if (isp_pci_rd_debounced(isp, BIU_ISR, &isr)) {
838 		    return (0);
839 		}
840 		if (isp_pci_rd_debounced(isp, BIU_SEMA, &sema)) {
841 		    return (0);
842 		}
843 	} else {
844 		isr = BXR2(pcs, IspVirt2Off(isp, BIU_ISR));
845 		sema = BXR2(pcs, IspVirt2Off(isp, BIU_SEMA));
846 	}
847 	isp_prt(isp, ISP_LOGDEBUG3, "ISR 0x%x SEMA 0x%x", isr, sema);
848 	isr &= INT_PENDING_MASK(isp);
849 	sema &= BIU_SEMA_LOCK;
850 	if (isr == 0 && sema == 0) {
851 		return (0);
852 	}
853 	*isrp = isr;
854 	if ((*semap = sema) != 0) {
855 		if (IS_2100(isp)) {
856 			if (isp_pci_rd_debounced(isp, OUTMAILBOX0, mbp)) {
857 				return (0);
858 			}
859 		} else {
860 			*mbp = BXR2(pcs, IspVirt2Off(isp, OUTMAILBOX0));
861 		}
862 	}
863 	return (1);
864 }
865 
866 static int
867 isp_pci_rd_isr_2300(struct ispsoftc *isp, u_int16_t *isrp,
868     u_int16_t *semap, u_int16_t *mbox0p)
869 {
870 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
871 	u_int32_t r2hisr;
872 
873 	if (!(BXR2(pcs, IspVirt2Off(isp, BIU_ISR) & BIU2100_ISR_RISC_INT))) {
874 		*isrp = 0;
875 		return (0);
876 	}
877 	r2hisr = bus_space_read_4(pcs->pci_st, pcs->pci_sh,
878 	    IspVirt2Off(pcs, BIU_R2HSTSLO));
879 	isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr);
880 	if ((r2hisr & BIU_R2HST_INTR) == 0) {
881 		*isrp = 0;
882 		return (0);
883 	}
884 	switch (r2hisr & BIU_R2HST_ISTAT_MASK) {
885 	case ISPR2HST_ROM_MBX_OK:
886 	case ISPR2HST_ROM_MBX_FAIL:
887 	case ISPR2HST_MBX_OK:
888 	case ISPR2HST_MBX_FAIL:
889 	case ISPR2HST_ASYNC_EVENT:
890 	case ISPR2HST_RIO_16:
891 	case ISPR2HST_FPOST:
892 	case ISPR2HST_FPOST_CTIO:
893 		*isrp = r2hisr & 0xffff;
894 		*mbox0p = (r2hisr >> 16);
895 		*semap = 1;
896 		return (1);
897 	case ISPR2HST_RSPQ_UPDATE:
898 		*isrp = r2hisr & 0xffff;
899 		*mbox0p = 0;
900 		*semap = 0;
901 		return (1);
902 	default:
903 		return (0);
904 	}
905 }
906 
907 static u_int16_t
908 isp_pci_rd_reg(struct ispsoftc *isp, int regoff)
909 {
910 	u_int16_t rv;
911 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
912 	int oldconf = 0;
913 
914 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
915 		/*
916 		 * We will assume that someone has paused the RISC processor.
917 		 */
918 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
919 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
920 		    oldconf | BIU_PCI_CONF1_SXP);
921 	}
922 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
923 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
924 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
925 	}
926 	return (rv);
927 }
928 
929 static void
930 isp_pci_wr_reg(struct ispsoftc *isp, int regoff, u_int16_t val)
931 {
932 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
933 	int oldconf = 0;
934 
935 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
936 		/*
937 		 * We will assume that someone has paused the RISC processor.
938 		 */
939 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
940 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
941 		    oldconf | BIU_PCI_CONF1_SXP);
942 	}
943 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
944 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
945 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
946 	}
947 }
948 
949 static u_int16_t
950 isp_pci_rd_reg_1080(struct ispsoftc *isp, int regoff)
951 {
952 	u_int16_t rv, oc = 0;
953 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
954 
955 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
956 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
957 		u_int16_t tc;
958 		/*
959 		 * We will assume that someone has paused the RISC processor.
960 		 */
961 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
962 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
963 		if (regoff & SXP_BANK1_SELECT)
964 			tc |= BIU_PCI1080_CONF1_SXP1;
965 		else
966 			tc |= BIU_PCI1080_CONF1_SXP0;
967 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
968 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
969 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
970 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
971 		    oc | BIU_PCI1080_CONF1_DMA);
972 	}
973 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
974 	if (oc) {
975 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
976 	}
977 	return (rv);
978 }
979 
980 static void
981 isp_pci_wr_reg_1080(struct ispsoftc *isp, int regoff, u_int16_t val)
982 {
983 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
984 	int oc = 0;
985 
986 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
987 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
988 		u_int16_t tc;
989 		/*
990 		 * We will assume that someone has paused the RISC processor.
991 		 */
992 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
993 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
994 		if (regoff & SXP_BANK1_SELECT)
995 			tc |= BIU_PCI1080_CONF1_SXP1;
996 		else
997 			tc |= BIU_PCI1080_CONF1_SXP0;
998 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
999 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
1000 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
1001 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
1002 		    oc | BIU_PCI1080_CONF1_DMA);
1003 	}
1004 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
1005 	if (oc) {
1006 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
1007 	}
1008 }
1009 
1010 static void isp_map_rquest(void *, bus_dma_segment_t *, int, int);
1011 static void isp_map_result(void *, bus_dma_segment_t *, int, int);
1012 static void isp_map_fcscrt(void *, bus_dma_segment_t *, int, int);
1013 
1014 struct imush {
1015 	struct ispsoftc *isp;
1016 	int error;
1017 };
1018 
1019 static void
1020 isp_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1021 {
1022 	struct imush *imushp = (struct imush *) arg;
1023 	if (error) {
1024 		imushp->error = error;
1025 	} else {
1026 		imushp->isp->isp_rquest_dma = segs->ds_addr;
1027 	}
1028 }
1029 
1030 static void
1031 isp_map_result(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1032 {
1033 	struct imush *imushp = (struct imush *) arg;
1034 	if (error) {
1035 		imushp->error = error;
1036 	} else {
1037 		imushp->isp->isp_result_dma = segs->ds_addr;
1038 	}
1039 }
1040 
1041 static void
1042 isp_map_fcscrt(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1043 {
1044 	struct imush *imushp = (struct imush *) arg;
1045 	if (error) {
1046 		imushp->error = error;
1047 	} else {
1048 		fcparam *fcp = imushp->isp->isp_param;
1049 		fcp->isp_scdma = segs->ds_addr;
1050 	}
1051 }
1052 
1053 static int
1054 isp_pci_mbxdma(struct ispsoftc *isp)
1055 {
1056 	struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
1057 	caddr_t base;
1058 	u_int32_t len;
1059 	int i, error;
1060 	bus_size_t lim;
1061 	struct imush im;
1062 
1063 
1064 	/*
1065 	 * Already been here? If so, leave...
1066 	 */
1067 	if (isp->isp_rquest) {
1068 		return (0);
1069 	}
1070 
1071 	len = sizeof (XS_T **) * isp->isp_maxcmds;
1072 	isp->isp_xflist = (XS_T **) malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
1073 	if (isp->isp_xflist == NULL) {
1074 		isp_prt(isp, ISP_LOGERR, "cannot alloc xflist array");
1075 		return (1);
1076 	}
1077 	len = sizeof (bus_dmamap_t) * isp->isp_maxcmds;
1078 	pci->dmaps = (bus_dmamap_t *) malloc(len, M_DEVBUF,  M_WAITOK);
1079 	if (pci->dmaps == NULL) {
1080 		isp_prt(isp, ISP_LOGERR, "can't alloc dma maps");
1081 		free(isp->isp_xflist, M_DEVBUF);
1082 		return (1);
1083 	}
1084 
1085 	if (IS_FC(isp) || IS_ULTRA2(isp))
1086 		lim = BUS_SPACE_MAXADDR + 1;
1087 	else
1088 		lim = BUS_SPACE_MAXADDR_24BIT + 1;
1089 
1090 	/*
1091 	 * Allocate and map the request, result queues, plus FC scratch area.
1092 	 */
1093 	len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1094 	len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1095 	if (IS_FC(isp)) {
1096 		len += ISP2100_SCRLEN;
1097 	}
1098 	if (bus_dma_tag_create(pci->parent_dmat, PAGE_SIZE, lim,
1099 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, len, 1,
1100 	    BUS_SPACE_MAXSIZE_32BIT, 0, &pci->cntrol_dmat) != 0) {
1101 		isp_prt(isp, ISP_LOGERR,
1102 		    "cannot create a dma tag for control spaces");
1103 		free(isp->isp_xflist, M_DEVBUF);
1104 		free(pci->dmaps, M_DEVBUF);
1105 		return (1);
1106 	}
1107 	if (bus_dmamem_alloc(pci->cntrol_dmat, (void **)&base,
1108 	    BUS_DMA_NOWAIT, &pci->cntrol_dmap) != 0) {
1109 		isp_prt(isp, ISP_LOGERR,
1110 		    "cannot allocate %d bytes of CCB memory", len);
1111 		free(isp->isp_xflist, M_DEVBUF);
1112 		free(pci->dmaps, M_DEVBUF);
1113 		return (1);
1114 	}
1115 
1116 	isp->isp_rquest = base;
1117 	im.isp = isp;
1118 	im.error = 0;
1119 	bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_rquest,
1120 	    ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)), isp_map_rquest, &im, 0);
1121 	if (im.error) {
1122 		isp_prt(isp, ISP_LOGERR,
1123 		    "error %d loading dma map for DMA request queue", im.error);
1124 		free(isp->isp_xflist, M_DEVBUF);
1125 		free(pci->dmaps, M_DEVBUF);
1126 		isp->isp_rquest = NULL;
1127 		return (1);
1128 	}
1129 	isp->isp_result = base + ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1130 	im.error = 0;
1131 	bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_result,
1132 	    ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)), isp_map_result, &im, 0);
1133 	if (im.error) {
1134 		isp_prt(isp, ISP_LOGERR,
1135 		    "error %d loading dma map for DMA result queue", im.error);
1136 		free(isp->isp_xflist, M_DEVBUF);
1137 		free(pci->dmaps, M_DEVBUF);
1138 		isp->isp_rquest = NULL;
1139 		return (1);
1140 	}
1141 
1142 	for (i = 0; i < isp->isp_maxcmds; i++) {
1143 		error = bus_dmamap_create(pci->parent_dmat, 0, &pci->dmaps[i]);
1144 		if (error) {
1145 			isp_prt(isp, ISP_LOGERR,
1146 			    "error %d creating per-cmd DMA maps", error);
1147 			free(isp->isp_xflist, M_DEVBUF);
1148 			free(pci->dmaps, M_DEVBUF);
1149 			isp->isp_rquest = NULL;
1150 			return (1);
1151 		}
1152 	}
1153 
1154 	if (IS_FC(isp)) {
1155 		fcparam *fcp = (fcparam *) isp->isp_param;
1156 		fcp->isp_scratch = base +
1157 			ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)) +
1158 			ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1159 		im.error = 0;
1160 		bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap,
1161 		    fcp->isp_scratch, ISP2100_SCRLEN, isp_map_fcscrt, &im, 0);
1162 		if (im.error) {
1163 			isp_prt(isp, ISP_LOGERR,
1164 			    "error %d loading FC scratch area", im.error);
1165 			free(isp->isp_xflist, M_DEVBUF);
1166 			free(pci->dmaps, M_DEVBUF);
1167 			isp->isp_rquest = NULL;
1168 			return (1);
1169 		}
1170 	}
1171 	return (0);
1172 }
1173 
1174 typedef struct {
1175 	struct ispsoftc *isp;
1176 	void *cmd_token;
1177 	void *rq;
1178 	u_int16_t *nxtip;
1179 	u_int16_t optr;
1180 	u_int error;
1181 } mush_t;
1182 
1183 #define	MUSHERR_NOQENTRIES	-2
1184 
1185 #ifdef	ISP_TARGET_MODE
1186 /*
1187  * We need to handle DMA for target mode differently from initiator mode.
1188  *
1189  * DMA mapping and construction and submission of CTIO Request Entries
1190  * and rendevous for completion are very tightly coupled because we start
1191  * out by knowing (per platform) how much data we have to move, but we
1192  * don't know, up front, how many DMA mapping segments will have to be used
1193  * cover that data, so we don't know how many CTIO Request Entries we
1194  * will end up using. Further, for performance reasons we may want to
1195  * (on the last CTIO for Fibre Channel), send status too (if all went well).
1196  *
1197  * The standard vector still goes through isp_pci_dmasetup, but the callback
1198  * for the DMA mapping routines comes here instead with the whole transfer
1199  * mapped and a pointer to a partially filled in already allocated request
1200  * queue entry. We finish the job.
1201  */
1202 static void tdma_mk(void *, bus_dma_segment_t *, int, int);
1203 static void tdma_mkfc(void *, bus_dma_segment_t *, int, int);
1204 
1205 #define	STATUS_WITH_DATA	1
1206 
1207 static void
1208 tdma_mk(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1209 {
1210 	mush_t *mp;
1211 	struct ccb_scsiio *csio;
1212 	struct ispsoftc *isp;
1213 	struct isp_pcisoftc *pci;
1214 	bus_dmamap_t *dp;
1215 	ct_entry_t *cto, *qe;
1216 	u_int8_t scsi_status;
1217 	u_int16_t curi, nxti, handle;
1218 	u_int32_t sflags;
1219 	int32_t resid;
1220 	int nth_ctio, nctios, send_status;
1221 
1222 	mp = (mush_t *) arg;
1223 	if (error) {
1224 		mp->error = error;
1225 		return;
1226 	}
1227 
1228 	isp = mp->isp;
1229 	csio = mp->cmd_token;
1230 	cto = mp->rq;
1231 	curi = isp->isp_reqidx;
1232 	qe = (ct_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1233 
1234 	cto->ct_xfrlen = 0;
1235 	cto->ct_seg_count = 0;
1236 	cto->ct_header.rqs_entry_count = 1;
1237 	MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1238 
1239 	if (nseg == 0) {
1240 		cto->ct_header.rqs_seqno = 1;
1241 		isp_prt(isp, ISP_LOGTDEBUG1,
1242 		    "CTIO[%x] lun%d iid%d tag %x flgs %x sts %x ssts %x res %d",
1243 		    cto->ct_fwhandle, csio->ccb_h.target_lun, cto->ct_iid,
1244 		    cto->ct_tag_val, cto->ct_flags, cto->ct_status,
1245 		    cto->ct_scsi_status, cto->ct_resid);
1246 		ISP_TDQE(isp, "tdma_mk[no data]", curi, cto);
1247 		isp_put_ctio(isp, cto, qe);
1248 		return;
1249 	}
1250 
1251 	nctios = nseg / ISP_RQDSEG;
1252 	if (nseg % ISP_RQDSEG) {
1253 		nctios++;
1254 	}
1255 
1256 	/*
1257 	 * Save syshandle, and potentially any SCSI status, which we'll
1258 	 * reinsert on the last CTIO we're going to send.
1259 	 */
1260 
1261 	handle = cto->ct_syshandle;
1262 	cto->ct_syshandle = 0;
1263 	cto->ct_header.rqs_seqno = 0;
1264 	send_status = (cto->ct_flags & CT_SENDSTATUS) != 0;
1265 
1266 	if (send_status) {
1267 		sflags = cto->ct_flags & (CT_SENDSTATUS | CT_CCINCR);
1268 		cto->ct_flags &= ~(CT_SENDSTATUS | CT_CCINCR);
1269 		/*
1270 		 * Preserve residual.
1271 		 */
1272 		resid = cto->ct_resid;
1273 
1274 		/*
1275 		 * Save actual SCSI status.
1276 		 */
1277 		scsi_status = cto->ct_scsi_status;
1278 
1279 #ifndef	STATUS_WITH_DATA
1280 		sflags |= CT_NO_DATA;
1281 		/*
1282 		 * We can't do a status at the same time as a data CTIO, so
1283 		 * we need to synthesize an extra CTIO at this level.
1284 		 */
1285 		nctios++;
1286 #endif
1287 	} else {
1288 		sflags = scsi_status = resid = 0;
1289 	}
1290 
1291 	cto->ct_resid = 0;
1292 	cto->ct_scsi_status = 0;
1293 
1294 	pci = (struct isp_pcisoftc *)isp;
1295 	dp = &pci->dmaps[isp_handle_index(handle)];
1296 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1297 		bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
1298 	} else {
1299 		bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
1300 	}
1301 
1302 	nxti = *mp->nxtip;
1303 
1304 	for (nth_ctio = 0; nth_ctio < nctios; nth_ctio++) {
1305 		int seglim;
1306 
1307 		seglim = nseg;
1308 		if (seglim) {
1309 			int seg;
1310 
1311 			if (seglim > ISP_RQDSEG)
1312 				seglim = ISP_RQDSEG;
1313 
1314 			for (seg = 0; seg < seglim; seg++, nseg--) {
1315 				/*
1316 				 * Unlike normal initiator commands, we don't
1317 				 * do any swizzling here.
1318 				 */
1319 				cto->ct_dataseg[seg].ds_count = dm_segs->ds_len;
1320 				cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr;
1321 				cto->ct_xfrlen += dm_segs->ds_len;
1322 				dm_segs++;
1323 			}
1324 			cto->ct_seg_count = seg;
1325 		} else {
1326 			/*
1327 			 * This case should only happen when we're sending an
1328 			 * extra CTIO with final status.
1329 			 */
1330 			if (send_status == 0) {
1331 				isp_prt(isp, ISP_LOGWARN,
1332 				    "tdma_mk ran out of segments");
1333 				mp->error = EINVAL;
1334 				return;
1335 			}
1336 		}
1337 
1338 		/*
1339 		 * At this point, the fields ct_lun, ct_iid, ct_tagval,
1340 		 * ct_tagtype, and ct_timeout have been carried over
1341 		 * unchanged from what our caller had set.
1342 		 *
1343 		 * The dataseg fields and the seg_count fields we just got
1344 		 * through setting. The data direction we've preserved all
1345 		 * along and only clear it if we're now sending status.
1346 		 */
1347 
1348 		if (nth_ctio == nctios - 1) {
1349 			/*
1350 			 * We're the last in a sequence of CTIOs, so mark
1351 			 * this CTIO and save the handle to the CCB such that
1352 			 * when this CTIO completes we can free dma resources
1353 			 * and do whatever else we need to do to finish the
1354 			 * rest of the command. We *don't* give this to the
1355 			 * firmware to work on- the caller will do that.
1356 			 */
1357 
1358 			cto->ct_syshandle = handle;
1359 			cto->ct_header.rqs_seqno = 1;
1360 
1361 			if (send_status) {
1362 				cto->ct_scsi_status = scsi_status;
1363 				cto->ct_flags |= sflags;
1364 				cto->ct_resid = resid;
1365 			}
1366 			if (send_status) {
1367 				isp_prt(isp, ISP_LOGTDEBUG1,
1368 				    "CTIO[%x] lun%d iid %d tag %x ct_flags %x "
1369 				    "scsi status %x resid %d",
1370 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1371 				    cto->ct_iid, cto->ct_tag_val, cto->ct_flags,
1372 				    cto->ct_scsi_status, cto->ct_resid);
1373 			} else {
1374 				isp_prt(isp, ISP_LOGTDEBUG1,
1375 				    "CTIO[%x] lun%d iid%d tag %x ct_flags 0x%x",
1376 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1377 				    cto->ct_iid, cto->ct_tag_val,
1378 				    cto->ct_flags);
1379 			}
1380 			isp_put_ctio(isp, cto, qe);
1381 			ISP_TDQE(isp, "last tdma_mk", curi, cto);
1382 			if (nctios > 1) {
1383 				MEMORYBARRIER(isp, SYNC_REQUEST,
1384 				    curi, QENTRY_LEN);
1385 			}
1386 		} else {
1387 			ct_entry_t *oqe = qe;
1388 
1389 			/*
1390 			 * Make sure syshandle fields are clean
1391 			 */
1392 			cto->ct_syshandle = 0;
1393 			cto->ct_header.rqs_seqno = 0;
1394 
1395 			isp_prt(isp, ISP_LOGTDEBUG1,
1396 			    "CTIO[%x] lun%d for ID%d ct_flags 0x%x",
1397 			    cto->ct_fwhandle, csio->ccb_h.target_lun,
1398 			    cto->ct_iid, cto->ct_flags);
1399 
1400 			/*
1401 			 * Get a new CTIO
1402 			 */
1403 			qe = (ct_entry_t *)
1404 			    ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1405 			nxti = ISP_NXT_QENTRY(nxti, RQUEST_QUEUE_LEN(isp));
1406 			if (nxti == mp->optr) {
1407 				isp_prt(isp, ISP_LOGTDEBUG0,
1408 				    "Queue Overflow in tdma_mk");
1409 				mp->error = MUSHERR_NOQENTRIES;
1410 				return;
1411 			}
1412 
1413 			/*
1414 			 * Now that we're done with the old CTIO,
1415 			 * flush it out to the request queue.
1416 			 */
1417 			ISP_TDQE(isp, "dma_tgt_fc", curi, cto);
1418 			isp_put_ctio(isp, cto, oqe);
1419 			if (nth_ctio != 0) {
1420 				MEMORYBARRIER(isp, SYNC_REQUEST, curi,
1421 				    QENTRY_LEN);
1422 			}
1423 			curi = ISP_NXT_QENTRY(curi, RQUEST_QUEUE_LEN(isp));
1424 
1425 			/*
1426 			 * Reset some fields in the CTIO so we can reuse
1427 			 * for the next one we'll flush to the request
1428 			 * queue.
1429 			 */
1430 			cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
1431 			cto->ct_header.rqs_entry_count = 1;
1432 			cto->ct_header.rqs_flags = 0;
1433 			cto->ct_status = 0;
1434 			cto->ct_scsi_status = 0;
1435 			cto->ct_xfrlen = 0;
1436 			cto->ct_resid = 0;
1437 			cto->ct_seg_count = 0;
1438 			MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1439 		}
1440 	}
1441 	*mp->nxtip = nxti;
1442 }
1443 
1444 static void
1445 tdma_mkfc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1446 {
1447 	mush_t *mp;
1448 	u_int8_t sense[QLTM_SENSELEN];
1449 	struct ccb_scsiio *csio;
1450 	struct ispsoftc *isp;
1451 	struct isp_pcisoftc *pci;
1452 	bus_dmamap_t *dp;
1453 	ct2_entry_t *cto, *qe;
1454 	u_int16_t scsi_status, send_status, send_sense, handle;
1455 	u_int16_t curi, nxti;
1456 	int32_t resid;
1457 	int nth_ctio, nctios;
1458 
1459 	mp = (mush_t *) arg;
1460 	if (error) {
1461 		mp->error = error;
1462 		return;
1463 	}
1464 
1465 	isp = mp->isp;
1466 	csio = mp->cmd_token;
1467 	cto = mp->rq;
1468 	curi = isp->isp_reqidx;
1469 	qe = (ct2_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1470 
1471 	if (nseg == 0) {
1472 		if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE1) {
1473 			isp_prt(isp, ISP_LOGWARN,
1474 			    "dma2_tgt_fc, a status CTIO2 without MODE1 "
1475 			    "set (0x%x)", cto->ct_flags);
1476 			mp->error = EINVAL;
1477 			return;
1478 		}
1479 	 	cto->ct_header.rqs_entry_count = 1;
1480 		cto->ct_header.rqs_seqno = 1;
1481 		/* ct_syshandle contains the handle set by caller */
1482 		/*
1483 		 * We preserve ct_lun, ct_iid, ct_rxid. We set the data
1484 		 * flags to NO DATA and clear relative offset flags.
1485 		 * We preserve the ct_resid and the response area.
1486 		 */
1487 		cto->ct_flags |= CT2_NO_DATA;
1488 		if (cto->ct_resid > 0)
1489 			cto->rsp.m1.ct_scsi_status |= CT2_DATA_UNDER;
1490 		else if (cto->ct_resid < 0)
1491 			cto->rsp.m1.ct_scsi_status |= CT2_DATA_OVER;
1492 		cto->ct_seg_count = 0;
1493 		cto->ct_reloff = 0;
1494 		isp_prt(isp, ISP_LOGTDEBUG1,
1495 		    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts "
1496 		    "0x%x res %d", cto->ct_rxid, csio->ccb_h.target_lun,
1497 		    cto->ct_iid, cto->ct_flags, cto->ct_status,
1498 		    cto->rsp.m1.ct_scsi_status, cto->ct_resid);
1499 		isp_put_ctio2(isp, cto, qe);
1500 		ISP_TDQE(isp, "dma2_tgt_fc[no data]", curi, qe);
1501 		return;
1502 	}
1503 
1504 	if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE0) {
1505 		isp_prt(isp, ISP_LOGWARN,
1506 		    "dma2_tgt_fc, a data CTIO2 without MODE0 set "
1507 		    "(0x%x)", cto->ct_flags);
1508 		mp->error = EINVAL;
1509 		return;
1510 	}
1511 
1512 
1513 	nctios = nseg / ISP_RQDSEG_T2;
1514 	if (nseg % ISP_RQDSEG_T2) {
1515 		nctios++;
1516 	}
1517 
1518 	/*
1519 	 * Save the handle, status, reloff, and residual. We'll reinsert the
1520 	 * handle into the last CTIO2 we're going to send, and reinsert status
1521 	 * and residual (and possibly sense data) if that's to be sent as well.
1522 	 *
1523 	 * We preserve ct_reloff and adjust it for each data CTIO2 we send past
1524 	 * the first one. This is needed so that the FCP DATA IUs being sent
1525 	 * out have the correct offset (they can arrive at the other end out
1526 	 * of order).
1527 	 */
1528 
1529 	handle = cto->ct_syshandle;
1530 	cto->ct_syshandle = 0;
1531 	send_status = (cto->ct_flags & CT2_SENDSTATUS) != 0;
1532 
1533 	if (send_status) {
1534 		cto->ct_flags &= ~(CT2_SENDSTATUS|CT2_CCINCR);
1535 
1536 		/*
1537 		 * Preserve residual.
1538 		 */
1539 		resid = cto->ct_resid;
1540 
1541 		/*
1542 		 * Save actual SCSI status. We'll reinsert the
1543 		 * CT2_SNSLEN_VALID later if appropriate.
1544 		 */
1545 		scsi_status = cto->rsp.m0.ct_scsi_status & 0xff;
1546 		send_sense = cto->rsp.m0.ct_scsi_status & CT2_SNSLEN_VALID;
1547 
1548 		/*
1549 		 * If we're sending status and have a CHECK CONDTION and
1550 		 * have sense data,  we send one more CTIO2 with just the
1551 		 * status and sense data. The upper layers have stashed
1552 		 * the sense data in the dataseg structure for us.
1553 		 */
1554 
1555 		if ((scsi_status & 0xf) == SCSI_STATUS_CHECK_COND &&
1556 		    send_sense) {
1557 			bcopy(cto->rsp.m0.ct_dataseg, sense, QLTM_SENSELEN);
1558 			nctios++;
1559 		}
1560 	} else {
1561 		scsi_status = send_sense = resid = 0;
1562 	}
1563 
1564 	cto->ct_resid = 0;
1565 	cto->rsp.m0.ct_scsi_status = 0;
1566 	MEMZERO(&cto->rsp, sizeof (cto->rsp));
1567 
1568 	pci = (struct isp_pcisoftc *)isp;
1569 	dp = &pci->dmaps[isp_handle_index(handle)];
1570 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1571 		bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
1572 	} else {
1573 		bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
1574 	}
1575 
1576 	nxti = *mp->nxtip;
1577 
1578 	for (nth_ctio = 0; nth_ctio < nctios; nth_ctio++) {
1579 		u_int32_t oxfrlen;
1580 		int seglim;
1581 
1582 		seglim = nseg;
1583 		if (seglim) {
1584 			int seg;
1585 			if (seglim > ISP_RQDSEG_T2)
1586 				seglim = ISP_RQDSEG_T2;
1587 			for (seg = 0; seg < seglim; seg++) {
1588 				cto->rsp.m0.ct_dataseg[seg].ds_base =
1589 				    dm_segs->ds_addr;
1590 				cto->rsp.m0.ct_dataseg[seg].ds_count =
1591 				    dm_segs->ds_len;
1592 				cto->rsp.m0.ct_xfrlen += dm_segs->ds_len;
1593 				dm_segs++;
1594 			}
1595 			cto->ct_seg_count = seg;
1596 			oxfrlen = cto->rsp.m0.ct_xfrlen;
1597 		} else {
1598 			/*
1599 			 * This case should only happen when we're sending a
1600 			 * synthesized MODE1 final status with sense data.
1601 			 */
1602 			if (send_sense == 0) {
1603 				isp_prt(isp, ISP_LOGWARN,
1604 				    "dma2_tgt_fc ran out of segments, "
1605 				    "no SENSE DATA");
1606 				mp->error = EINVAL;
1607 				return;
1608 			}
1609 			oxfrlen = 0;
1610 		}
1611 
1612 
1613 		/*
1614 		 * At this point, the fields ct_lun, ct_iid, ct_rxid,
1615 		 * ct_timeout have been carried over unchanged from what
1616 		 * our caller had set.
1617 		 *
1618 		 * The field ct_reloff is either what the caller set, or
1619 		 * what we've added to below.
1620 		 *
1621 		 * The dataseg fields and the seg_count fields we just got
1622 		 * through setting. The data direction we've preserved all
1623 		 * along and only clear it if we're sending a MODE1 status
1624 		 * as the last CTIO.
1625 		 *
1626 		 */
1627 
1628 		if (nth_ctio == nctios - 1) {
1629 			/*
1630 			 * We're the last in a sequence of CTIO2s, so mark this
1631 			 * CTIO2 and save the handle to the CCB such that when
1632 			 * this CTIO2 completes we can free dma resources and
1633 			 * do whatever else we need to do to finish the rest
1634 			 * of the command.
1635 			 */
1636 
1637 			cto->ct_syshandle = handle;
1638 			cto->ct_header.rqs_seqno = 1;
1639 
1640 			if (send_status) {
1641 				/*
1642 				 * Get 'real' residual and set flags based
1643 				 * on it.
1644 				 */
1645 				cto->ct_resid = resid;
1646 				if (send_sense) {
1647 					MEMCPY(cto->rsp.m1.ct_resp, sense,
1648 					    QLTM_SENSELEN);
1649 					cto->rsp.m1.ct_senselen =
1650 					    QLTM_SENSELEN;
1651 					scsi_status |= CT2_SNSLEN_VALID;
1652 					cto->rsp.m1.ct_scsi_status =
1653 					    scsi_status;
1654 					cto->ct_flags &= CT2_FLAG_MMASK;
1655 					cto->ct_flags |= CT2_FLAG_MODE1 |
1656 					    CT2_NO_DATA | CT2_SENDSTATUS |
1657 					    CT2_CCINCR;
1658 					if (cto->ct_resid > 0)
1659 						cto->rsp.m1.ct_scsi_status |=
1660 						    CT2_DATA_UNDER;
1661 					else if (cto->ct_resid < 0)
1662 						cto->rsp.m1.ct_scsi_status |=
1663 						    CT2_DATA_OVER;
1664 				} else {
1665 					cto->rsp.m0.ct_scsi_status =
1666 					    scsi_status;
1667 					cto->ct_flags |=
1668 					    CT2_SENDSTATUS | CT2_CCINCR;
1669 					if (cto->ct_resid > 0)
1670 						cto->rsp.m0.ct_scsi_status |=
1671 						    CT2_DATA_UNDER;
1672 					else if (cto->ct_resid < 0)
1673 						cto->rsp.m0.ct_scsi_status |=
1674 						    CT2_DATA_OVER;
1675 				}
1676 			}
1677 			isp_prt(isp, ISP_LOGTDEBUG1,
1678 			    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x"
1679 			    " ssts 0x%x res %d", cto->ct_rxid,
1680 			    csio->ccb_h.target_lun, (int) cto->ct_iid,
1681 			    cto->ct_flags, cto->ct_status,
1682 			    cto->rsp.m1.ct_scsi_status, cto->ct_resid);
1683 			isp_put_ctio2(isp, cto, qe);
1684 			ISP_TDQE(isp, "last dma2_tgt_fc", curi, qe);
1685 			if (nctios > 1) {
1686 				MEMORYBARRIER(isp, SYNC_REQUEST,
1687 				    curi, QENTRY_LEN);
1688 			}
1689 		} else {
1690 			ct2_entry_t *oqe = qe;
1691 
1692 			/*
1693 			 * Make sure handle fields are clean
1694 			 */
1695 			cto->ct_syshandle = 0;
1696 			cto->ct_header.rqs_seqno = 0;
1697 			isp_prt(isp, ISP_LOGTDEBUG1,
1698 			    "CTIO2[%x] lun %d->iid%d flgs 0x%x",
1699 			    cto->ct_rxid, csio->ccb_h.target_lun,
1700 			    (int) cto->ct_iid, cto->ct_flags);
1701 			/*
1702 			 * Get a new CTIO2 entry from the request queue.
1703 			 */
1704 			qe = (ct2_entry_t *)
1705 			    ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1706 			nxti = ISP_NXT_QENTRY(nxti, RQUEST_QUEUE_LEN(isp));
1707 			if (nxti == mp->optr) {
1708 				isp_prt(isp, ISP_LOGWARN,
1709 				    "Queue Overflow in dma2_tgt_fc");
1710 				mp->error = MUSHERR_NOQENTRIES;
1711 				return;
1712 			}
1713 
1714 			/*
1715 			 * Now that we're done with the old CTIO2,
1716 			 * flush it out to the request queue.
1717 			 */
1718 			ISP_TDQE(isp, "tdma_mkfc", curi, cto);
1719 			isp_put_ctio2(isp, cto, oqe);
1720 			if (nth_ctio != 0) {
1721 				MEMORYBARRIER(isp, SYNC_REQUEST, curi,
1722 				    QENTRY_LEN);
1723 			}
1724 			curi = ISP_NXT_QENTRY(curi, RQUEST_QUEUE_LEN(isp));
1725 
1726 			/*
1727 			 * Reset some fields in the CTIO2 so we can reuse
1728 			 * for the next one we'll flush to the request
1729 			 * queue.
1730 			 */
1731 			cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2;
1732 			cto->ct_header.rqs_entry_count = 1;
1733 			cto->ct_header.rqs_flags = 0;
1734 			cto->ct_status = 0;
1735 			cto->ct_resid = 0;
1736 			cto->ct_seg_count = 0;
1737 			/*
1738 			 * Adjust the new relative offset by the amount which
1739 			 * is recorded in the data segment of the old CTIO2 we
1740 			 * just finished filling out.
1741 			 */
1742 			cto->ct_reloff += oxfrlen;
1743 			MEMZERO(&cto->rsp, sizeof (cto->rsp));
1744 		}
1745 	}
1746 	*mp->nxtip = nxti;
1747 }
1748 #endif
1749 
1750 static void dma2(void *, bus_dma_segment_t *, int, int);
1751 
1752 static void
1753 dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1754 {
1755 	mush_t *mp;
1756 	struct ispsoftc *isp;
1757 	struct ccb_scsiio *csio;
1758 	struct isp_pcisoftc *pci;
1759 	bus_dmamap_t *dp;
1760 	bus_dma_segment_t *eseg;
1761 	ispreq_t *rq;
1762 	int seglim, datalen;
1763 	u_int16_t nxti;
1764 
1765 	mp = (mush_t *) arg;
1766 	if (error) {
1767 		mp->error = error;
1768 		return;
1769 	}
1770 
1771 	if (nseg < 1) {
1772 		isp_prt(mp->isp, ISP_LOGERR, "bad segment count (%d)", nseg);
1773 		mp->error = EFAULT;
1774 		return;
1775 	}
1776 	csio = mp->cmd_token;
1777 	isp = mp->isp;
1778 	rq = mp->rq;
1779 	pci = (struct isp_pcisoftc *)mp->isp;
1780 	dp = &pci->dmaps[isp_handle_index(rq->req_handle)];
1781 	nxti = *mp->nxtip;
1782 
1783 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1784 		bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
1785 	} else {
1786 		bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
1787 	}
1788 
1789 	datalen = XS_XFRLEN(csio);
1790 
1791 	/*
1792 	 * We're passed an initial partially filled in entry that
1793 	 * has most fields filled in except for data transfer
1794 	 * related values.
1795 	 *
1796 	 * Our job is to fill in the initial request queue entry and
1797 	 * then to start allocating and filling in continuation entries
1798 	 * until we've covered the entire transfer.
1799 	 */
1800 
1801 	if (IS_FC(isp)) {
1802 		seglim = ISP_RQDSEG_T2;
1803 		((ispreqt2_t *)rq)->req_totalcnt = datalen;
1804 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1805 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN;
1806 		} else {
1807 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT;
1808 		}
1809 	} else {
1810 		if (csio->cdb_len > 12) {
1811 			seglim = 0;
1812 		} else {
1813 			seglim = ISP_RQDSEG;
1814 		}
1815 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1816 			rq->req_flags |= REQFLAG_DATA_IN;
1817 		} else {
1818 			rq->req_flags |= REQFLAG_DATA_OUT;
1819 		}
1820 	}
1821 
1822 	eseg = dm_segs + nseg;
1823 
1824 	while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
1825 		if (IS_FC(isp)) {
1826 			ispreqt2_t *rq2 = (ispreqt2_t *)rq;
1827 			rq2->req_dataseg[rq2->req_seg_count].ds_base =
1828 			    dm_segs->ds_addr;
1829 			rq2->req_dataseg[rq2->req_seg_count].ds_count =
1830 			    dm_segs->ds_len;
1831 		} else {
1832 			rq->req_dataseg[rq->req_seg_count].ds_base =
1833 				dm_segs->ds_addr;
1834 			rq->req_dataseg[rq->req_seg_count].ds_count =
1835 				dm_segs->ds_len;
1836 		}
1837 		datalen -= dm_segs->ds_len;
1838 		rq->req_seg_count++;
1839 		dm_segs++;
1840 	}
1841 
1842 	while (datalen > 0 && dm_segs != eseg) {
1843 		u_int16_t onxti;
1844 		ispcontreq_t local, *crq = &local, *cqe;
1845 
1846 		cqe = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1847 		onxti = nxti;
1848 		nxti = ISP_NXT_QENTRY(onxti, RQUEST_QUEUE_LEN(isp));
1849 		if (nxti == mp->optr) {
1850 			isp_prt(isp, ISP_LOGDEBUG0, "Request Queue Overflow++");
1851 			mp->error = MUSHERR_NOQENTRIES;
1852 			return;
1853 		}
1854 		rq->req_header.rqs_entry_count++;
1855 		MEMZERO((void *)crq, sizeof (*crq));
1856 		crq->req_header.rqs_entry_count = 1;
1857 		crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
1858 
1859 		seglim = 0;
1860 		while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) {
1861 			crq->req_dataseg[seglim].ds_base =
1862 			    dm_segs->ds_addr;
1863 			crq->req_dataseg[seglim].ds_count =
1864 			    dm_segs->ds_len;
1865 			rq->req_seg_count++;
1866 			dm_segs++;
1867 			seglim++;
1868 			datalen -= dm_segs->ds_len;
1869 		}
1870 		isp_put_cont_req(isp, crq, cqe);
1871 		MEMORYBARRIER(isp, SYNC_REQUEST, onxti, QENTRY_LEN);
1872 	}
1873 	*mp->nxtip = nxti;
1874 }
1875 
1876 static int
1877 isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq,
1878 	u_int16_t *nxtip, u_int16_t optr)
1879 {
1880 	struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
1881 	ispreq_t *qep;
1882 	bus_dmamap_t *dp = NULL;
1883 	mush_t mush, *mp;
1884 	void (*eptr)(void *, bus_dma_segment_t *, int, int);
1885 
1886 	qep = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, isp->isp_reqidx);
1887 #ifdef	ISP_TARGET_MODE
1888 	if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) {
1889 		if (IS_FC(isp)) {
1890 			eptr = tdma_mkfc;
1891 		} else {
1892 			eptr = tdma_mk;
1893 		}
1894 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1895 		    (csio->dxfer_len == 0)) {
1896 			mp = &mush;
1897 			mp->isp = isp;
1898 			mp->cmd_token = csio;
1899 			mp->rq = rq;	/* really a ct_entry_t or ct2_entry_t */
1900 			mp->nxtip = nxtip;
1901 			mp->optr = optr;
1902 			mp->error = 0;
1903 			(*eptr)(mp, NULL, 0, 0);
1904 			goto mbxsync;
1905 		}
1906 	} else
1907 #endif
1908 	eptr = dma2;
1909 
1910 
1911 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1912 	    (csio->dxfer_len == 0)) {
1913 		rq->req_seg_count = 1;
1914 		goto mbxsync;
1915 	}
1916 
1917 	/*
1918 	 * Do a virtual grapevine step to collect info for
1919 	 * the callback dma allocation that we have to use...
1920 	 */
1921 	mp = &mush;
1922 	mp->isp = isp;
1923 	mp->cmd_token = csio;
1924 	mp->rq = rq;
1925 	mp->nxtip = nxtip;
1926 	mp->optr = optr;
1927 	mp->error = 0;
1928 
1929 	if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
1930 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) {
1931 			int error, s;
1932 			dp = &pci->dmaps[isp_handle_index(rq->req_handle)];
1933 			s = splsoftvm();
1934 			error = bus_dmamap_load(pci->parent_dmat, *dp,
1935 			    csio->data_ptr, csio->dxfer_len, eptr, mp, 0);
1936 			if (error == EINPROGRESS) {
1937 				bus_dmamap_unload(pci->parent_dmat, *dp);
1938 				mp->error = EINVAL;
1939 				isp_prt(isp, ISP_LOGERR,
1940 				    "deferred dma allocation not supported");
1941 			} else if (error && mp->error == 0) {
1942 #ifdef	DIAGNOSTIC
1943 				isp_prt(isp, ISP_LOGERR,
1944 				    "error %d in dma mapping code", error);
1945 #endif
1946 				mp->error = error;
1947 			}
1948 			splx(s);
1949 		} else {
1950 			/* Pointer to physical buffer */
1951 			struct bus_dma_segment seg;
1952 			seg.ds_addr = (bus_addr_t)csio->data_ptr;
1953 			seg.ds_len = csio->dxfer_len;
1954 			(*eptr)(mp, &seg, 1, 0);
1955 		}
1956 	} else {
1957 		struct bus_dma_segment *segs;
1958 
1959 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) {
1960 			isp_prt(isp, ISP_LOGERR,
1961 			    "Physical segment pointers unsupported");
1962 			mp->error = EINVAL;
1963 		} else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
1964 			isp_prt(isp, ISP_LOGERR,
1965 			    "Virtual segment addresses unsupported");
1966 			mp->error = EINVAL;
1967 		} else {
1968 			/* Just use the segments provided */
1969 			segs = (struct bus_dma_segment *) csio->data_ptr;
1970 			(*eptr)(mp, segs, csio->sglist_cnt, 0);
1971 		}
1972 	}
1973 	if (mp->error) {
1974 		int retval = CMD_COMPLETE;
1975 		if (mp->error == MUSHERR_NOQENTRIES) {
1976 			retval = CMD_EAGAIN;
1977 		} else if (mp->error == EFBIG) {
1978 			XS_SETERR(csio, CAM_REQ_TOO_BIG);
1979 		} else if (mp->error == EINVAL) {
1980 			XS_SETERR(csio, CAM_REQ_INVALID);
1981 		} else {
1982 			XS_SETERR(csio, CAM_UNREC_HBA_ERROR);
1983 		}
1984 		return (retval);
1985 	}
1986 mbxsync:
1987 	switch (rq->req_header.rqs_entry_type) {
1988 	case RQSTYPE_REQUEST:
1989 		isp_put_request(isp, rq, qep);
1990 		break;
1991 	case RQSTYPE_CMDONLY:
1992 		isp_put_extended_request(isp, (ispextreq_t *)rq,
1993 		    (ispextreq_t *)qep);
1994 		break;
1995 	case RQSTYPE_T2RQS:
1996 		isp_put_request_t2(isp, (ispreqt2_t *) rq, (ispreqt2_t *) qep);
1997 		break;
1998 	}
1999 	return (CMD_QUEUED);
2000 }
2001 
2002 static void
2003 isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int16_t handle)
2004 {
2005 	struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
2006 	bus_dmamap_t *dp = &pci->dmaps[isp_handle_index(handle)];
2007 	if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
2008 		bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTREAD);
2009 	} else {
2010 		bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTWRITE);
2011 	}
2012 	bus_dmamap_unload(pci->parent_dmat, *dp);
2013 }
2014 
2015 
2016 static void
2017 isp_pci_reset1(struct ispsoftc *isp)
2018 {
2019 	/* Make sure the BIOS is disabled */
2020 	isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS);
2021 	/* and enable interrupts */
2022 	ENABLE_INTS(isp);
2023 }
2024 
2025 static void
2026 isp_pci_dumpregs(struct ispsoftc *isp, const char *msg)
2027 {
2028 	struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
2029 	if (msg)
2030 		printf("%s: %s\n", device_get_nameunit(isp->isp_dev), msg);
2031 	else
2032 		printf("%s:\n", device_get_nameunit(isp->isp_dev));
2033 	if (IS_SCSI(isp))
2034 		printf("    biu_conf1=%x", ISP_READ(isp, BIU_CONF1));
2035 	else
2036 		printf("    biu_csr=%x", ISP_READ(isp, BIU2100_CSR));
2037 	printf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR),
2038 	    ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA));
2039 	printf("risc_hccr=%x\n", ISP_READ(isp, HCCR));
2040 
2041 
2042 	if (IS_SCSI(isp)) {
2043 		ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
2044 		printf("    cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n",
2045 			ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS),
2046 			ISP_READ(isp, CDMA_FIFO_STS));
2047 		printf("    ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n",
2048 			ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS),
2049 			ISP_READ(isp, DDMA_FIFO_STS));
2050 		printf("    sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n",
2051 			ISP_READ(isp, SXP_INTERRUPT),
2052 			ISP_READ(isp, SXP_GROSS_ERR),
2053 			ISP_READ(isp, SXP_PINS_CTRL));
2054 		ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
2055 	}
2056 	printf("    mbox regs: %x %x %x %x %x\n",
2057 	    ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1),
2058 	    ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3),
2059 	    ISP_READ(isp, OUTMAILBOX4));
2060 	printf("    PCI Status Command/Status=%x\n",
2061 	    pci_read_config(pci->pci_dev, PCIR_COMMAND, 1));
2062 }
2063