1 /* $FreeBSD$ */ 2 /* 3 * PCI specific probe and attach routines for Qlogic ISP SCSI adapters. 4 * FreeBSD Version. 5 * 6 * Copyright (c) 1997, 1998, 1999, 2000, 2001 by Matthew Jacob 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice immediately at the beginning of the file, without modification, 13 * this list of conditions, and the following disclaimer. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/bus.h> 35 36 #include <pci/pcireg.h> 37 #include <pci/pcivar.h> 38 39 #include <machine/bus_memio.h> 40 #include <machine/bus_pio.h> 41 #include <machine/bus.h> 42 #include <machine/resource.h> 43 #include <sys/rman.h> 44 #include <sys/malloc.h> 45 46 #include <dev/isp/isp_freebsd.h> 47 48 static u_int16_t isp_pci_rd_reg __P((struct ispsoftc *, int)); 49 static void isp_pci_wr_reg __P((struct ispsoftc *, int, u_int16_t)); 50 static u_int16_t isp_pci_rd_reg_1080 __P((struct ispsoftc *, int)); 51 static void isp_pci_wr_reg_1080 __P((struct ispsoftc *, int, u_int16_t)); 52 static int isp_pci_mbxdma __P((struct ispsoftc *)); 53 static int isp_pci_dmasetup __P((struct ispsoftc *, XS_T *, 54 ispreq_t *, u_int16_t *, u_int16_t)); 55 static void 56 isp_pci_dmateardown __P((struct ispsoftc *, XS_T *, u_int16_t)); 57 58 static void isp_pci_reset1 __P((struct ispsoftc *)); 59 static void isp_pci_dumpregs __P((struct ispsoftc *, const char *)); 60 61 #ifndef ISP_CODE_ORG 62 #define ISP_CODE_ORG 0x1000 63 #endif 64 65 static struct ispmdvec mdvec = { 66 isp_pci_rd_reg, 67 isp_pci_wr_reg, 68 isp_pci_mbxdma, 69 isp_pci_dmasetup, 70 isp_pci_dmateardown, 71 NULL, 72 isp_pci_reset1, 73 isp_pci_dumpregs, 74 NULL, 75 BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64 76 }; 77 78 static struct ispmdvec mdvec_1080 = { 79 isp_pci_rd_reg_1080, 80 isp_pci_wr_reg_1080, 81 isp_pci_mbxdma, 82 isp_pci_dmasetup, 83 isp_pci_dmateardown, 84 NULL, 85 isp_pci_reset1, 86 isp_pci_dumpregs, 87 NULL, 88 BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64 89 }; 90 91 static struct ispmdvec mdvec_12160 = { 92 isp_pci_rd_reg_1080, 93 isp_pci_wr_reg_1080, 94 isp_pci_mbxdma, 95 isp_pci_dmasetup, 96 isp_pci_dmateardown, 97 NULL, 98 isp_pci_reset1, 99 isp_pci_dumpregs, 100 NULL, 101 BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64 102 }; 103 104 static struct ispmdvec mdvec_2100 = { 105 isp_pci_rd_reg, 106 isp_pci_wr_reg, 107 isp_pci_mbxdma, 108 isp_pci_dmasetup, 109 isp_pci_dmateardown, 110 NULL, 111 isp_pci_reset1, 112 isp_pci_dumpregs 113 }; 114 115 static struct ispmdvec mdvec_2200 = { 116 isp_pci_rd_reg, 117 isp_pci_wr_reg, 118 isp_pci_mbxdma, 119 isp_pci_dmasetup, 120 isp_pci_dmateardown, 121 NULL, 122 isp_pci_reset1, 123 isp_pci_dumpregs 124 }; 125 126 #ifndef PCIM_CMD_INVEN 127 #define PCIM_CMD_INVEN 0x10 128 #endif 129 #ifndef PCIM_CMD_BUSMASTEREN 130 #define PCIM_CMD_BUSMASTEREN 0x0004 131 #endif 132 #ifndef PCIM_CMD_PERRESPEN 133 #define PCIM_CMD_PERRESPEN 0x0040 134 #endif 135 #ifndef PCIM_CMD_SEREN 136 #define PCIM_CMD_SEREN 0x0100 137 #endif 138 139 #ifndef PCIR_COMMAND 140 #define PCIR_COMMAND 0x04 141 #endif 142 143 #ifndef PCIR_CACHELNSZ 144 #define PCIR_CACHELNSZ 0x0c 145 #endif 146 147 #ifndef PCIR_LATTIMER 148 #define PCIR_LATTIMER 0x0d 149 #endif 150 151 #ifndef PCIR_ROMADDR 152 #define PCIR_ROMADDR 0x30 153 #endif 154 155 #ifndef PCI_VENDOR_QLOGIC 156 #define PCI_VENDOR_QLOGIC 0x1077 157 #endif 158 159 #ifndef PCI_PRODUCT_QLOGIC_ISP1020 160 #define PCI_PRODUCT_QLOGIC_ISP1020 0x1020 161 #endif 162 163 #ifndef PCI_PRODUCT_QLOGIC_ISP1080 164 #define PCI_PRODUCT_QLOGIC_ISP1080 0x1080 165 #endif 166 167 #ifndef PCI_PRODUCT_QLOGIC_ISP12160 168 #define PCI_PRODUCT_QLOGIC_ISP12160 0x1216 169 #endif 170 171 #ifndef PCI_PRODUCT_QLOGIC_ISP1240 172 #define PCI_PRODUCT_QLOGIC_ISP1240 0x1240 173 #endif 174 175 #ifndef PCI_PRODUCT_QLOGIC_ISP1280 176 #define PCI_PRODUCT_QLOGIC_ISP1280 0x1280 177 #endif 178 179 #ifndef PCI_PRODUCT_QLOGIC_ISP2100 180 #define PCI_PRODUCT_QLOGIC_ISP2100 0x2100 181 #endif 182 183 #ifndef PCI_PRODUCT_QLOGIC_ISP2200 184 #define PCI_PRODUCT_QLOGIC_ISP2200 0x2200 185 #endif 186 187 #define PCI_QLOGIC_ISP1020 \ 188 ((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC) 189 190 #define PCI_QLOGIC_ISP1080 \ 191 ((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC) 192 193 #define PCI_QLOGIC_ISP12160 \ 194 ((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC) 195 196 #define PCI_QLOGIC_ISP1240 \ 197 ((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC) 198 199 #define PCI_QLOGIC_ISP1280 \ 200 ((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC) 201 202 #define PCI_QLOGIC_ISP2100 \ 203 ((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC) 204 205 #define PCI_QLOGIC_ISP2200 \ 206 ((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC) 207 208 /* 209 * Odd case for some AMI raid cards... We need to *not* attach to this. 210 */ 211 #define AMI_RAID_SUBVENDOR_ID 0x101e 212 213 #define IO_MAP_REG 0x10 214 #define MEM_MAP_REG 0x14 215 216 #define PCI_DFLT_LTNCY 0x40 217 #define PCI_DFLT_LNSZ 0x10 218 219 static int isp_pci_probe (device_t); 220 static int isp_pci_attach (device_t); 221 222 struct isp_pcisoftc { 223 struct ispsoftc pci_isp; 224 device_t pci_dev; 225 struct resource * pci_reg; 226 bus_space_tag_t pci_st; 227 bus_space_handle_t pci_sh; 228 void * ih; 229 int16_t pci_poff[_NREG_BLKS]; 230 bus_dma_tag_t parent_dmat; 231 bus_dma_tag_t cntrol_dmat; 232 bus_dmamap_t cntrol_dmap; 233 bus_dmamap_t *dmaps; 234 }; 235 ispfwfunc *isp_get_firmware_p = NULL; 236 237 static device_method_t isp_pci_methods[] = { 238 /* Device interface */ 239 DEVMETHOD(device_probe, isp_pci_probe), 240 DEVMETHOD(device_attach, isp_pci_attach), 241 { 0, 0 } 242 }; 243 static void isp_pci_intr __P((void *)); 244 245 static driver_t isp_pci_driver = { 246 "isp", isp_pci_methods, sizeof (struct isp_pcisoftc) 247 }; 248 static devclass_t isp_devclass; 249 DRIVER_MODULE(isp, pci, isp_pci_driver, isp_devclass, 0, 0); 250 MODULE_VERSION(isp, 1); 251 252 static int 253 isp_pci_probe(device_t dev) 254 { 255 switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) { 256 case PCI_QLOGIC_ISP1020: 257 device_set_desc(dev, "Qlogic ISP 1020/1040 PCI SCSI Adapter"); 258 break; 259 case PCI_QLOGIC_ISP1080: 260 device_set_desc(dev, "Qlogic ISP 1080 PCI SCSI Adapter"); 261 break; 262 case PCI_QLOGIC_ISP1240: 263 device_set_desc(dev, "Qlogic ISP 1240 PCI SCSI Adapter"); 264 break; 265 case PCI_QLOGIC_ISP1280: 266 device_set_desc(dev, "Qlogic ISP 1280 PCI SCSI Adapter"); 267 break; 268 case PCI_QLOGIC_ISP12160: 269 if (pci_get_subvendor(dev) == AMI_RAID_SUBVENDOR_ID) { 270 return (ENXIO); 271 } 272 device_set_desc(dev, "Qlogic ISP 12160 PCI SCSI Adapter"); 273 break; 274 case PCI_QLOGIC_ISP2100: 275 device_set_desc(dev, "Qlogic ISP 2100 PCI FC-AL Adapter"); 276 break; 277 case PCI_QLOGIC_ISP2200: 278 device_set_desc(dev, "Qlogic ISP 2200 PCI FC-AL Adapter"); 279 break; 280 default: 281 return (ENXIO); 282 } 283 if (device_get_unit(dev) == 0 && bootverbose) { 284 printf("Qlogic ISP Driver, FreeBSD Version %d.%d, " 285 "Core Version %d.%d\n", 286 ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR, 287 ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR); 288 } 289 /* 290 * XXXX: Here is where we might load the f/w module 291 * XXXX: (or increase a reference count to it). 292 */ 293 return (0); 294 } 295 296 static int 297 isp_pci_attach(device_t dev) 298 { 299 struct resource *regs, *irq; 300 int tval, rtp, rgd, iqd, m1, m2, isp_debug, role; 301 u_int32_t data, cmd, linesz, psize, basetype; 302 struct isp_pcisoftc *pcs; 303 struct ispsoftc *isp = NULL; 304 struct ispmdvec *mdvp; 305 bus_size_t lim; 306 const char *sptr; 307 int locksetup = 0; 308 309 /* 310 * Figure out if we're supposed to skip this one. 311 * If we are, we actually go to ISP_ROLE_NONE. 312 */ 313 314 tval = 0; 315 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 316 "disable", &tval) == 0 && tval) { 317 device_printf(dev, "device is disabled\n"); 318 /* but return 0 so the !$)$)*!$*) unit isn't reused */ 319 return (0); 320 } 321 322 role = 0; 323 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 324 "role", &role) == 0 && 325 ((role & ~(ISP_ROLE_INITIATOR|ISP_ROLE_TARGET)) == 0)) { 326 device_printf(dev, "setting role to 0x%x\n", role); 327 } else { 328 #ifdef ISP_TARGET_MODE 329 role = ISP_ROLE_INITIATOR|ISP_ROLE_TARGET; 330 #else 331 role = ISP_DEFAULT_ROLES; 332 #endif 333 } 334 335 pcs = malloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_NOWAIT | M_ZERO); 336 if (pcs == NULL) { 337 device_printf(dev, "cannot allocate softc\n"); 338 return (ENOMEM); 339 } 340 341 /* 342 * Figure out which we should try first - memory mapping or i/o mapping? 343 */ 344 #ifdef __alpha__ 345 m1 = PCIM_CMD_MEMEN; 346 m2 = PCIM_CMD_PORTEN; 347 #else 348 m1 = PCIM_CMD_PORTEN; 349 m2 = PCIM_CMD_MEMEN; 350 #endif 351 352 tval = 0; 353 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 354 "prefer_iomap", &tval) == 0 && tval != 0) { 355 m1 = PCIM_CMD_PORTEN; 356 m2 = PCIM_CMD_MEMEN; 357 } 358 tval = 0; 359 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 360 "prefer_memmap", &tval) == 0 && tval != 0) { 361 m1 = PCIM_CMD_MEMEN; 362 m2 = PCIM_CMD_PORTEN; 363 } 364 365 linesz = PCI_DFLT_LNSZ; 366 irq = regs = NULL; 367 rgd = rtp = iqd = 0; 368 369 cmd = pci_read_config(dev, PCIR_COMMAND, 1); 370 if (cmd & m1) { 371 rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 372 rgd = (m1 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG; 373 regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE); 374 } 375 if (regs == NULL && (cmd & m2)) { 376 rtp = (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; 377 rgd = (m2 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG; 378 regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE); 379 } 380 if (regs == NULL) { 381 device_printf(dev, "unable to map any ports\n"); 382 goto bad; 383 } 384 if (bootverbose) 385 device_printf(dev, "using %s space register mapping\n", 386 (rgd == IO_MAP_REG)? "I/O" : "Memory"); 387 pcs->pci_dev = dev; 388 pcs->pci_reg = regs; 389 pcs->pci_st = rman_get_bustag(regs); 390 pcs->pci_sh = rman_get_bushandle(regs); 391 392 pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF; 393 pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF; 394 pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF; 395 pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF; 396 pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF; 397 mdvp = &mdvec; 398 basetype = ISP_HA_SCSI_UNKNOWN; 399 psize = sizeof (sdparam); 400 lim = BUS_SPACE_MAXSIZE_32BIT; 401 if (pci_get_devid(dev) == PCI_QLOGIC_ISP1020) { 402 mdvp = &mdvec; 403 basetype = ISP_HA_SCSI_UNKNOWN; 404 psize = sizeof (sdparam); 405 lim = BUS_SPACE_MAXSIZE_24BIT; 406 } 407 if (pci_get_devid(dev) == PCI_QLOGIC_ISP1080) { 408 mdvp = &mdvec_1080; 409 basetype = ISP_HA_SCSI_1080; 410 psize = sizeof (sdparam); 411 pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = 412 ISP1080_DMA_REGS_OFF; 413 } 414 if (pci_get_devid(dev) == PCI_QLOGIC_ISP1240) { 415 mdvp = &mdvec_1080; 416 basetype = ISP_HA_SCSI_1240; 417 psize = 2 * sizeof (sdparam); 418 pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = 419 ISP1080_DMA_REGS_OFF; 420 } 421 if (pci_get_devid(dev) == PCI_QLOGIC_ISP1280) { 422 mdvp = &mdvec_1080; 423 basetype = ISP_HA_SCSI_1280; 424 psize = 2 * sizeof (sdparam); 425 pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = 426 ISP1080_DMA_REGS_OFF; 427 } 428 if (pci_get_devid(dev) == PCI_QLOGIC_ISP12160) { 429 mdvp = &mdvec_12160; 430 basetype = ISP_HA_SCSI_12160; 431 psize = 2 * sizeof (sdparam); 432 pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = 433 ISP1080_DMA_REGS_OFF; 434 } 435 if (pci_get_devid(dev) == PCI_QLOGIC_ISP2100) { 436 mdvp = &mdvec_2100; 437 basetype = ISP_HA_FC_2100; 438 psize = sizeof (fcparam); 439 pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = 440 PCI_MBOX_REGS2100_OFF; 441 if (pci_get_revid(dev) < 3) { 442 /* 443 * XXX: Need to get the actual revision 444 * XXX: number of the 2100 FB. At any rate, 445 * XXX: lower cache line size for early revision 446 * XXX; boards. 447 */ 448 linesz = 1; 449 } 450 } 451 if (pci_get_devid(dev) == PCI_QLOGIC_ISP2200) { 452 mdvp = &mdvec_2200; 453 basetype = ISP_HA_FC_2200; 454 psize = sizeof (fcparam); 455 pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = 456 PCI_MBOX_REGS2100_OFF; 457 } 458 isp = &pcs->pci_isp; 459 isp->isp_param = malloc(psize, M_DEVBUF, M_NOWAIT | M_ZERO); 460 if (isp->isp_param == NULL) { 461 device_printf(dev, "cannot allocate parameter data\n"); 462 goto bad; 463 } 464 isp->isp_mdvec = mdvp; 465 isp->isp_type = basetype; 466 isp->isp_revision = pci_get_revid(dev); 467 isp->isp_role = role; 468 isp->isp_dev = dev; 469 470 /* 471 * Try and find firmware for this device. 472 */ 473 474 if (isp_get_firmware_p) { 475 int device = (int) pci_get_device(dev); 476 #ifdef ISP_TARGET_MODE 477 (*isp_get_firmware_p)(0, 1, device, &mdvp->dv_ispfw); 478 #else 479 (*isp_get_firmware_p)(0, 0, device, &mdvp->dv_ispfw); 480 #endif 481 } 482 483 /* 484 * Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER 485 * are set. 486 */ 487 cmd |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN | 488 PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN; 489 pci_write_config(dev, PCIR_COMMAND, cmd, 1); 490 491 /* 492 * Make sure the Cache Line Size register is set sensibly. 493 */ 494 data = pci_read_config(dev, PCIR_CACHELNSZ, 1); 495 if (data != linesz) { 496 data = PCI_DFLT_LNSZ; 497 isp_prt(isp, ISP_LOGCONFIG, "set PCI line size to %d", data); 498 pci_write_config(dev, PCIR_CACHELNSZ, data, 1); 499 } 500 501 /* 502 * Make sure the Latency Timer is sane. 503 */ 504 data = pci_read_config(dev, PCIR_LATTIMER, 1); 505 if (data < PCI_DFLT_LTNCY) { 506 data = PCI_DFLT_LTNCY; 507 isp_prt(isp, ISP_LOGCONFIG, "set PCI latency to %d", data); 508 pci_write_config(dev, PCIR_LATTIMER, data, 1); 509 } 510 511 /* 512 * Make sure we've disabled the ROM. 513 */ 514 data = pci_read_config(dev, PCIR_ROMADDR, 4); 515 data &= ~1; 516 pci_write_config(dev, PCIR_ROMADDR, data, 4); 517 518 519 if (bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 520 BUS_SPACE_MAXADDR, NULL, NULL, lim + 1, 521 255, lim, 0, &pcs->parent_dmat) != 0) { 522 device_printf(dev, "could not create master dma tag\n"); 523 free(isp->isp_param, M_DEVBUF); 524 free(pcs, M_DEVBUF); 525 return (ENXIO); 526 } 527 528 iqd = 0; 529 irq = bus_alloc_resource(dev, SYS_RES_IRQ, &iqd, 0, ~0, 530 1, RF_ACTIVE | RF_SHAREABLE); 531 if (irq == NULL) { 532 device_printf(dev, "could not allocate interrupt\n"); 533 goto bad; 534 } 535 536 tval = 0; 537 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 538 "fwload_disable", &tval) == 0 && tval != 0) { 539 isp->isp_confopts |= ISP_CFG_NORELOAD; 540 } 541 tval = 0; 542 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 543 "ignore_nvram", &tval) == 0 && tval != 0) { 544 isp->isp_confopts |= ISP_CFG_NONVRAM; 545 } 546 tval = 0; 547 if (resource_int_value(device_get_name(dev), device_get_unit(dev), 548 "fullduplex", &tval) == 0 && tval != 0) { 549 isp->isp_confopts |= ISP_CFG_FULL_DUPLEX; 550 } 551 552 sptr = 0; 553 if (resource_string_value(device_get_name(dev), device_get_unit(dev), 554 "topology", (const char **) &sptr) == 0 && sptr != 0) { 555 if (strcmp(sptr, "lport") == 0) { 556 isp->isp_confopts |= ISP_CFG_LPORT; 557 } else if (strcmp(sptr, "nport") == 0) { 558 isp->isp_confopts |= ISP_CFG_NPORT; 559 } else if (strcmp(sptr, "lport-only") == 0) { 560 isp->isp_confopts |= ISP_CFG_LPORT_ONLY; 561 } else if (strcmp(sptr, "nport-only") == 0) { 562 isp->isp_confopts |= ISP_CFG_NPORT_ONLY; 563 } 564 } 565 566 /* 567 * Because the resource_*_value functions can neither return 568 * 64 bit integer values, nor can they be directly coerced 569 * to interpret the right hand side of the assignment as 570 * you want them to interpret it, we have to force WWN 571 * hint replacement to specify WWN strings with a leading 572 * 'w' (e..g w50000000aaaa0001). Sigh. 573 */ 574 sptr = 0; 575 tval = resource_string_value(device_get_name(dev), device_get_unit(dev), 576 "portwwn", (const char **) &sptr); 577 if (tval == 0 && sptr != 0 && *sptr++ == 'w') { 578 char *eptr = 0; 579 isp->isp_osinfo.default_port_wwn = strtouq(sptr, &eptr, 16); 580 if (eptr < sptr + 16 || isp->isp_osinfo.default_port_wwn == 0) { 581 device_printf(dev, "mangled portwwn hint '%s'\n", sptr); 582 isp->isp_osinfo.default_port_wwn = 0; 583 } else { 584 isp->isp_confopts |= ISP_CFG_OWNWWN; 585 } 586 } 587 if (isp->isp_osinfo.default_port_wwn == 0) { 588 isp->isp_osinfo.default_port_wwn = 0x400000007F000009ull; 589 } 590 591 sptr = 0; 592 tval = resource_string_value(device_get_name(dev), device_get_unit(dev), 593 "nodewwn", (const char **) &sptr); 594 if (tval == 0 && sptr != 0 && *sptr++ == 'w') { 595 char *eptr = 0; 596 isp->isp_osinfo.default_node_wwn = strtouq(sptr, &eptr, 16); 597 if (eptr < sptr + 16 || isp->isp_osinfo.default_node_wwn == 0) { 598 device_printf(dev, "mangled nodewwn hint '%s'\n", sptr); 599 isp->isp_osinfo.default_node_wwn = 0; 600 } else { 601 isp->isp_confopts |= ISP_CFG_OWNWWN; 602 } 603 } 604 if (isp->isp_osinfo.default_node_wwn == 0) { 605 isp->isp_osinfo.default_node_wwn = 0x400000007F000009ull; 606 } 607 608 isp_debug = 0; 609 (void) resource_int_value(device_get_name(dev), device_get_unit(dev), 610 "debug", &isp_debug); 611 612 /* Make sure the lock is set up. */ 613 mtx_init(&isp->isp_osinfo.lock, "isp", MTX_DEF); 614 locksetup++; 615 616 #ifdef ISP_SMPLOCK 617 #define INTR_FLAGS INTR_TYPE_CAM | INTR_MPSAFE | INTR_ENTROPY 618 #else 619 #define INTR_FLAGS INTR_TYPE_CAM | INTR_ENTROPY 620 #endif 621 if (bus_setup_intr(dev, irq, INTR_FLAGS, isp_pci_intr, isp, &pcs->ih)) { 622 device_printf(dev, "could not setup interrupt\n"); 623 goto bad; 624 } 625 626 /* 627 * Set up logging levels. 628 */ 629 if (isp_debug) { 630 isp->isp_dblev = isp_debug; 631 } else { 632 isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR; 633 } 634 if (bootverbose) 635 isp->isp_dblev |= ISP_LOGCONFIG|ISP_LOGINFO; 636 637 /* 638 * Make sure we're in reset state. 639 */ 640 ISP_LOCK(isp); 641 isp_reset(isp); 642 if (isp->isp_state != ISP_RESETSTATE) { 643 ISP_UNLOCK(isp); 644 goto bad; 645 } 646 isp_init(isp); 647 if (isp->isp_role != ISP_ROLE_NONE && isp->isp_state != ISP_INITSTATE) { 648 isp_uninit(isp); 649 ISP_UNLOCK(isp); 650 goto bad; 651 } 652 isp_attach(isp); 653 if (isp->isp_role != ISP_ROLE_NONE && isp->isp_state != ISP_RUNSTATE) { 654 isp_uninit(isp); 655 ISP_UNLOCK(isp); 656 goto bad; 657 } 658 /* 659 * XXXX: Here is where we might unload the f/w module 660 * XXXX: (or decrease the reference count to it). 661 */ 662 ISP_UNLOCK(isp); 663 return (0); 664 665 bad: 666 667 if (pcs && pcs->ih) { 668 (void) bus_teardown_intr(dev, irq, pcs->ih); 669 } 670 671 if (locksetup && isp) { 672 mtx_destroy(&isp->isp_osinfo.lock); 673 } 674 675 if (irq) { 676 (void) bus_release_resource(dev, SYS_RES_IRQ, iqd, irq); 677 } 678 679 680 if (regs) { 681 (void) bus_release_resource(dev, rtp, rgd, regs); 682 } 683 684 if (pcs) { 685 if (pcs->pci_isp.isp_param) 686 free(pcs->pci_isp.isp_param, M_DEVBUF); 687 free(pcs, M_DEVBUF); 688 } 689 690 /* 691 * XXXX: Here is where we might unload the f/w module 692 * XXXX: (or decrease the reference count to it). 693 */ 694 return (ENXIO); 695 } 696 697 static void 698 isp_pci_intr(void *arg) 699 { 700 struct ispsoftc *isp = arg; 701 ISP_LOCK(isp); 702 (void) isp_intr(isp); 703 ISP_UNLOCK(isp); 704 } 705 706 static u_int16_t 707 isp_pci_rd_reg(isp, regoff) 708 struct ispsoftc *isp; 709 int regoff; 710 { 711 u_int16_t rv; 712 struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; 713 int offset, oldconf = 0; 714 715 if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { 716 /* 717 * We will assume that someone has paused the RISC processor. 718 */ 719 oldconf = isp_pci_rd_reg(isp, BIU_CONF1); 720 isp_pci_wr_reg(isp, BIU_CONF1, oldconf | BIU_PCI_CONF1_SXP); 721 } 722 offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT]; 723 offset += (regoff & 0xff); 724 rv = bus_space_read_2(pcs->pci_st, pcs->pci_sh, offset); 725 if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { 726 isp_pci_wr_reg(isp, BIU_CONF1, oldconf); 727 } 728 return (rv); 729 } 730 731 static void 732 isp_pci_wr_reg(isp, regoff, val) 733 struct ispsoftc *isp; 734 int regoff; 735 u_int16_t val; 736 { 737 struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; 738 int offset, oldconf = 0; 739 740 if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { 741 /* 742 * We will assume that someone has paused the RISC processor. 743 */ 744 oldconf = isp_pci_rd_reg(isp, BIU_CONF1); 745 isp_pci_wr_reg(isp, BIU_CONF1, oldconf | BIU_PCI_CONF1_SXP); 746 } 747 offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT]; 748 offset += (regoff & 0xff); 749 bus_space_write_2(pcs->pci_st, pcs->pci_sh, offset, val); 750 if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { 751 isp_pci_wr_reg(isp, BIU_CONF1, oldconf); 752 } 753 } 754 755 static u_int16_t 756 isp_pci_rd_reg_1080(isp, regoff) 757 struct ispsoftc *isp; 758 int regoff; 759 { 760 u_int16_t rv, oc = 0; 761 struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; 762 int offset; 763 764 if ((regoff & _BLK_REG_MASK) == SXP_BLOCK || 765 (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) { 766 u_int16_t tc; 767 /* 768 * We will assume that someone has paused the RISC processor. 769 */ 770 oc = isp_pci_rd_reg(isp, BIU_CONF1); 771 tc = oc & ~BIU_PCI1080_CONF1_DMA; 772 if (regoff & SXP_BANK1_SELECT) 773 tc |= BIU_PCI1080_CONF1_SXP1; 774 else 775 tc |= BIU_PCI1080_CONF1_SXP0; 776 isp_pci_wr_reg(isp, BIU_CONF1, tc); 777 } else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) { 778 oc = isp_pci_rd_reg(isp, BIU_CONF1); 779 isp_pci_wr_reg(isp, BIU_CONF1, oc | BIU_PCI1080_CONF1_DMA); 780 } 781 offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT]; 782 offset += (regoff & 0xff); 783 rv = bus_space_read_2(pcs->pci_st, pcs->pci_sh, offset); 784 if (oc) { 785 isp_pci_wr_reg(isp, BIU_CONF1, oc); 786 } 787 return (rv); 788 } 789 790 static void 791 isp_pci_wr_reg_1080(isp, regoff, val) 792 struct ispsoftc *isp; 793 int regoff; 794 u_int16_t val; 795 { 796 struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; 797 int offset, oc = 0; 798 799 if ((regoff & _BLK_REG_MASK) == SXP_BLOCK || 800 (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) { 801 u_int16_t tc; 802 /* 803 * We will assume that someone has paused the RISC processor. 804 */ 805 oc = isp_pci_rd_reg(isp, BIU_CONF1); 806 tc = oc & ~BIU_PCI1080_CONF1_DMA; 807 if (regoff & SXP_BANK1_SELECT) 808 tc |= BIU_PCI1080_CONF1_SXP1; 809 else 810 tc |= BIU_PCI1080_CONF1_SXP0; 811 isp_pci_wr_reg(isp, BIU_CONF1, tc); 812 } else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) { 813 oc = isp_pci_rd_reg(isp, BIU_CONF1); 814 isp_pci_wr_reg(isp, BIU_CONF1, oc | BIU_PCI1080_CONF1_DMA); 815 } 816 offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT]; 817 offset += (regoff & 0xff); 818 bus_space_write_2(pcs->pci_st, pcs->pci_sh, offset, val); 819 if (oc) { 820 isp_pci_wr_reg(isp, BIU_CONF1, oc); 821 } 822 } 823 824 static void isp_map_rquest __P((void *, bus_dma_segment_t *, int, int)); 825 static void isp_map_result __P((void *, bus_dma_segment_t *, int, int)); 826 static void isp_map_fcscrt __P((void *, bus_dma_segment_t *, int, int)); 827 828 struct imush { 829 struct ispsoftc *isp; 830 int error; 831 }; 832 833 static void 834 isp_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error) 835 { 836 struct imush *imushp = (struct imush *) arg; 837 if (error) { 838 imushp->error = error; 839 } else { 840 imushp->isp->isp_rquest_dma = segs->ds_addr; 841 } 842 } 843 844 static void 845 isp_map_result(void *arg, bus_dma_segment_t *segs, int nseg, int error) 846 { 847 struct imush *imushp = (struct imush *) arg; 848 if (error) { 849 imushp->error = error; 850 } else { 851 imushp->isp->isp_result_dma = segs->ds_addr; 852 } 853 } 854 855 static void 856 isp_map_fcscrt(void *arg, bus_dma_segment_t *segs, int nseg, int error) 857 { 858 struct imush *imushp = (struct imush *) arg; 859 if (error) { 860 imushp->error = error; 861 } else { 862 fcparam *fcp = imushp->isp->isp_param; 863 fcp->isp_scdma = segs->ds_addr; 864 } 865 } 866 867 static int 868 isp_pci_mbxdma(struct ispsoftc *isp) 869 { 870 struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; 871 caddr_t base; 872 u_int32_t len; 873 int i, error; 874 bus_size_t lim; 875 struct imush im; 876 877 878 /* 879 * Already been here? If so, leave... 880 */ 881 if (isp->isp_rquest) { 882 return (0); 883 } 884 885 len = sizeof (XS_T **) * isp->isp_maxcmds; 886 isp->isp_xflist = (XS_T **) malloc(len, M_DEVBUF, M_WAITOK | M_ZERO); 887 if (isp->isp_xflist == NULL) { 888 isp_prt(isp, ISP_LOGERR, "cannot alloc xflist array"); 889 return (1); 890 } 891 len = sizeof (bus_dmamap_t) * isp->isp_maxcmds; 892 pci->dmaps = (bus_dmamap_t *) malloc(len, M_DEVBUF, M_WAITOK); 893 if (pci->dmaps == NULL) { 894 isp_prt(isp, ISP_LOGERR, "can't alloc dma maps"); 895 free(isp->isp_xflist, M_DEVBUF); 896 return (1); 897 } 898 899 if (IS_FC(isp) || IS_ULTRA2(isp)) 900 lim = BUS_SPACE_MAXADDR + 1; 901 else 902 lim = BUS_SPACE_MAXADDR_24BIT + 1; 903 904 /* 905 * Allocate and map the request, result queues, plus FC scratch area. 906 */ 907 len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)); 908 len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)); 909 if (IS_FC(isp)) { 910 len += ISP2100_SCRLEN; 911 } 912 if (bus_dma_tag_create(pci->parent_dmat, PAGE_SIZE, lim, 913 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, len, 1, 914 BUS_SPACE_MAXSIZE_32BIT, 0, &pci->cntrol_dmat) != 0) { 915 isp_prt(isp, ISP_LOGERR, 916 "cannot create a dma tag for control spaces"); 917 free(isp->isp_xflist, M_DEVBUF); 918 free(pci->dmaps, M_DEVBUF); 919 return (1); 920 } 921 if (bus_dmamem_alloc(pci->cntrol_dmat, (void **)&base, 922 BUS_DMA_NOWAIT, &pci->cntrol_dmap) != 0) { 923 isp_prt(isp, ISP_LOGERR, 924 "cannot allocate %d bytes of CCB memory", len); 925 free(isp->isp_xflist, M_DEVBUF); 926 free(pci->dmaps, M_DEVBUF); 927 return (1); 928 } 929 930 isp->isp_rquest = base; 931 im.isp = isp; 932 im.error = 0; 933 bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_rquest, 934 ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)), isp_map_rquest, &im, 0); 935 if (im.error) { 936 isp_prt(isp, ISP_LOGERR, 937 "error %d loading dma map for DMA request queue", im.error); 938 free(isp->isp_xflist, M_DEVBUF); 939 free(pci->dmaps, M_DEVBUF); 940 isp->isp_rquest = NULL; 941 return (1); 942 } 943 isp->isp_result = base + ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)); 944 im.error = 0; 945 bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_result, 946 ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)), isp_map_result, &im, 0); 947 if (im.error) { 948 isp_prt(isp, ISP_LOGERR, 949 "error %d loading dma map for DMA result queue", im.error); 950 free(isp->isp_xflist, M_DEVBUF); 951 free(pci->dmaps, M_DEVBUF); 952 isp->isp_rquest = NULL; 953 return (1); 954 } 955 956 for (i = 0; i < isp->isp_maxcmds; i++) { 957 error = bus_dmamap_create(pci->parent_dmat, 0, &pci->dmaps[i]); 958 if (error) { 959 isp_prt(isp, ISP_LOGERR, 960 "error %d creating per-cmd DMA maps", error); 961 free(isp->isp_xflist, M_DEVBUF); 962 free(pci->dmaps, M_DEVBUF); 963 isp->isp_rquest = NULL; 964 return (1); 965 } 966 } 967 968 if (IS_FC(isp)) { 969 fcparam *fcp = (fcparam *) isp->isp_param; 970 fcp->isp_scratch = base + 971 ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)) + 972 ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)); 973 im.error = 0; 974 bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, 975 fcp->isp_scratch, ISP2100_SCRLEN, isp_map_fcscrt, &im, 0); 976 if (im.error) { 977 isp_prt(isp, ISP_LOGERR, 978 "error %d loading FC scratch area", im.error); 979 free(isp->isp_xflist, M_DEVBUF); 980 free(pci->dmaps, M_DEVBUF); 981 isp->isp_rquest = NULL; 982 return (1); 983 } 984 } 985 return (0); 986 } 987 988 typedef struct { 989 struct ispsoftc *isp; 990 void *cmd_token; 991 void *rq; 992 u_int16_t *iptrp; 993 u_int16_t optr; 994 u_int error; 995 } mush_t; 996 997 #define MUSHERR_NOQENTRIES -2 998 999 #ifdef ISP_TARGET_MODE 1000 /* 1001 * We need to handle DMA for target mode differently from initiator mode. 1002 * 1003 * DMA mapping and construction and submission of CTIO Request Entries 1004 * and rendevous for completion are very tightly coupled because we start 1005 * out by knowing (per platform) how much data we have to move, but we 1006 * don't know, up front, how many DMA mapping segments will have to be used 1007 * cover that data, so we don't know how many CTIO Request Entries we 1008 * will end up using. Further, for performance reasons we may want to 1009 * (on the last CTIO for Fibre Channel), send status too (if all went well). 1010 * 1011 * The standard vector still goes through isp_pci_dmasetup, but the callback 1012 * for the DMA mapping routines comes here instead with the whole transfer 1013 * mapped and a pointer to a partially filled in already allocated request 1014 * queue entry. We finish the job. 1015 */ 1016 static void tdma_mk(void *, bus_dma_segment_t *, int, int); 1017 static void tdma_mkfc(void *, bus_dma_segment_t *, int, int); 1018 1019 #define STATUS_WITH_DATA 1 1020 1021 static void 1022 tdma_mk(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) 1023 { 1024 mush_t *mp; 1025 struct ccb_scsiio *csio; 1026 struct isp_pcisoftc *pci; 1027 bus_dmamap_t *dp; 1028 u_int8_t scsi_status; 1029 ct_entry_t *cto; 1030 u_int16_t handle; 1031 u_int32_t totxfr, sflags; 1032 int nctios, send_status; 1033 int32_t resid; 1034 int i, j; 1035 1036 mp = (mush_t *) arg; 1037 if (error) { 1038 mp->error = error; 1039 return; 1040 } 1041 csio = mp->cmd_token; 1042 cto = mp->rq; 1043 1044 cto->ct_xfrlen = 0; 1045 cto->ct_seg_count = 0; 1046 cto->ct_header.rqs_entry_count = 1; 1047 MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg)); 1048 1049 if (nseg == 0) { 1050 cto->ct_header.rqs_seqno = 1; 1051 isp_prt(mp->isp, ISP_LOGTDEBUG1, 1052 "CTIO[%x] lun%d iid%d tag %x flgs %x sts %x ssts %x res %d", 1053 cto->ct_fwhandle, csio->ccb_h.target_lun, cto->ct_iid, 1054 cto->ct_tag_val, cto->ct_flags, cto->ct_status, 1055 cto->ct_scsi_status, cto->ct_resid); 1056 ISP_TDQE(mp->isp, "tdma_mk[no data]", *mp->iptrp, cto); 1057 ISP_SWIZ_CTIO(mp->isp, cto, cto); 1058 return; 1059 } 1060 1061 nctios = nseg / ISP_RQDSEG; 1062 if (nseg % ISP_RQDSEG) { 1063 nctios++; 1064 } 1065 1066 /* 1067 * Check to see that we don't overflow. 1068 */ 1069 for (i = 0, j = *mp->iptrp; i < nctios; i++) { 1070 j = ISP_NXT_QENTRY(j, RQUEST_QUEUE_LEN(isp)); 1071 if (j == mp->optr) { 1072 isp_prt(mp->isp, ISP_LOGWARN, 1073 "Request Queue Overflow [tdma_mk]"); 1074 mp->error = MUSHERR_NOQENTRIES; 1075 return; 1076 } 1077 } 1078 1079 /* 1080 * Save syshandle, and potentially any SCSI status, which we'll 1081 * reinsert on the last CTIO we're going to send. 1082 */ 1083 handle = cto->ct_syshandle; 1084 cto->ct_syshandle = 0; 1085 cto->ct_header.rqs_seqno = 0; 1086 send_status = (cto->ct_flags & CT_SENDSTATUS) != 0; 1087 1088 if (send_status) { 1089 sflags = cto->ct_flags & (CT_SENDSTATUS | CT_CCINCR); 1090 cto->ct_flags &= ~(CT_SENDSTATUS | CT_CCINCR); 1091 /* 1092 * Preserve residual. 1093 */ 1094 resid = cto->ct_resid; 1095 1096 /* 1097 * Save actual SCSI status. 1098 */ 1099 scsi_status = cto->ct_scsi_status; 1100 1101 #ifndef STATUS_WITH_DATA 1102 sflags |= CT_NO_DATA; 1103 /* 1104 * We can't do a status at the same time as a data CTIO, so 1105 * we need to synthesize an extra CTIO at this level. 1106 */ 1107 nctios++; 1108 #endif 1109 } else { 1110 sflags = scsi_status = resid = 0; 1111 } 1112 1113 totxfr = cto->ct_resid = 0; 1114 cto->ct_scsi_status = 0; 1115 1116 pci = (struct isp_pcisoftc *)mp->isp; 1117 dp = &pci->dmaps[isp_handle_index(handle)]; 1118 if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 1119 bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD); 1120 } else { 1121 bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE); 1122 } 1123 1124 1125 while (nctios--) { 1126 int seglim; 1127 1128 seglim = nseg; 1129 if (seglim) { 1130 int seg; 1131 1132 if (seglim > ISP_RQDSEG) 1133 seglim = ISP_RQDSEG; 1134 1135 for (seg = 0; seg < seglim; seg++, nseg--) { 1136 /* 1137 * Unlike normal initiator commands, we don't 1138 * do any swizzling here. 1139 */ 1140 cto->ct_dataseg[seg].ds_count = dm_segs->ds_len; 1141 cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr; 1142 cto->ct_xfrlen += dm_segs->ds_len; 1143 totxfr += dm_segs->ds_len; 1144 dm_segs++; 1145 } 1146 cto->ct_seg_count = seg; 1147 } else { 1148 /* 1149 * This case should only happen when we're sending an 1150 * extra CTIO with final status. 1151 */ 1152 if (send_status == 0) { 1153 isp_prt(mp->isp, ISP_LOGWARN, 1154 "tdma_mk ran out of segments"); 1155 mp->error = EINVAL; 1156 return; 1157 } 1158 } 1159 1160 /* 1161 * At this point, the fields ct_lun, ct_iid, ct_tagval, 1162 * ct_tagtype, and ct_timeout have been carried over 1163 * unchanged from what our caller had set. 1164 * 1165 * The dataseg fields and the seg_count fields we just got 1166 * through setting. The data direction we've preserved all 1167 * along and only clear it if we're now sending status. 1168 */ 1169 1170 if (nctios == 0) { 1171 /* 1172 * We're the last in a sequence of CTIOs, so mark 1173 * this CTIO and save the handle to the CCB such that 1174 * when this CTIO completes we can free dma resources 1175 * and do whatever else we need to do to finish the 1176 * rest of the command. We *don't* give this to the 1177 * firmware to work on- the caller will do that. 1178 */ 1179 cto->ct_syshandle = handle; 1180 cto->ct_header.rqs_seqno = 1; 1181 1182 if (send_status) { 1183 cto->ct_scsi_status = scsi_status; 1184 cto->ct_flags |= sflags; 1185 cto->ct_resid = resid; 1186 } 1187 if (send_status) { 1188 isp_prt(mp->isp, ISP_LOGTDEBUG1, 1189 "CTIO[%x] lun%d iid %d tag %x ct_flags %x " 1190 "scsi status %x resid %d", 1191 cto->ct_fwhandle, csio->ccb_h.target_lun, 1192 cto->ct_iid, cto->ct_tag_val, cto->ct_flags, 1193 cto->ct_scsi_status, cto->ct_resid); 1194 } else { 1195 isp_prt(mp->isp, ISP_LOGTDEBUG1, 1196 "CTIO[%x] lun%d iid%d tag %x ct_flags 0x%x", 1197 cto->ct_fwhandle, csio->ccb_h.target_lun, 1198 cto->ct_iid, cto->ct_tag_val, 1199 cto->ct_flags); 1200 } 1201 ISP_TDQE(mp->isp, "last tdma_mk", *mp->iptrp, cto); 1202 ISP_SWIZ_CTIO(mp->isp, cto, cto); 1203 } else { 1204 ct_entry_t *octo = cto; 1205 1206 /* 1207 * Make sure syshandle fields are clean 1208 */ 1209 cto->ct_syshandle = 0; 1210 cto->ct_header.rqs_seqno = 0; 1211 1212 isp_prt(mp->isp, ISP_LOGTDEBUG1, 1213 "CTIO[%x] lun%d for ID%d ct_flags 0x%x", 1214 cto->ct_fwhandle, csio->ccb_h.target_lun, 1215 cto->ct_iid, cto->ct_flags); 1216 ISP_TDQE(mp->isp, "tdma_mk", *mp->iptrp, cto); 1217 1218 /* 1219 * Get a new CTIO 1220 */ 1221 cto = (ct_entry_t *) 1222 ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp); 1223 j = *mp->iptrp; 1224 *mp->iptrp = 1225 ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN(isp)); 1226 if (*mp->iptrp == mp->optr) { 1227 isp_prt(mp->isp, ISP_LOGTDEBUG0, 1228 "Queue Overflow in tdma_mk"); 1229 mp->error = MUSHERR_NOQENTRIES; 1230 return; 1231 } 1232 /* 1233 * Fill in the new CTIO with info from the old one. 1234 */ 1235 cto->ct_header.rqs_entry_type = RQSTYPE_CTIO; 1236 cto->ct_header.rqs_entry_count = 1; 1237 cto->ct_fwhandle = octo->ct_fwhandle; 1238 cto->ct_header.rqs_flags = 0; 1239 cto->ct_lun = octo->ct_lun; 1240 cto->ct_iid = octo->ct_iid; 1241 cto->ct_reserved2 = octo->ct_reserved2; 1242 cto->ct_tgt = octo->ct_tgt; 1243 cto->ct_flags = octo->ct_flags; 1244 cto->ct_status = 0; 1245 cto->ct_scsi_status = 0; 1246 cto->ct_tag_val = octo->ct_tag_val; 1247 cto->ct_tag_type = octo->ct_tag_type; 1248 cto->ct_xfrlen = 0; 1249 cto->ct_resid = 0; 1250 cto->ct_timeout = octo->ct_timeout; 1251 cto->ct_seg_count = 0; 1252 MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg)); 1253 /* 1254 * Now swizzle the old one for the consumption 1255 * of the chip and give it to the firmware to 1256 * work on while we do the next. 1257 */ 1258 ISP_SWIZ_CTIO(mp->isp, octo, octo); 1259 ISP_ADD_REQUEST(mp->isp, j); 1260 } 1261 } 1262 } 1263 1264 static void 1265 tdma_mkfc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) 1266 { 1267 mush_t *mp; 1268 struct ccb_scsiio *csio; 1269 struct isp_pcisoftc *pci; 1270 bus_dmamap_t *dp; 1271 ct2_entry_t *cto; 1272 u_int16_t scsi_status, send_status, send_sense, handle; 1273 u_int32_t totxfr, datalen; 1274 u_int8_t sense[QLTM_SENSELEN]; 1275 int nctios, j; 1276 1277 mp = (mush_t *) arg; 1278 if (error) { 1279 mp->error = error; 1280 return; 1281 } 1282 1283 csio = mp->cmd_token; 1284 cto = mp->rq; 1285 1286 if (nseg == 0) { 1287 if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE1) { 1288 isp_prt(mp->isp, ISP_LOGWARN, 1289 "dma2_tgt_fc, a status CTIO2 without MODE1 " 1290 "set (0x%x)", cto->ct_flags); 1291 mp->error = EINVAL; 1292 return; 1293 } 1294 cto->ct_header.rqs_entry_count = 1; 1295 cto->ct_header.rqs_seqno = 1; 1296 /* ct_syshandle contains the handle set by caller */ 1297 /* 1298 * We preserve ct_lun, ct_iid, ct_rxid. We set the data 1299 * flags to NO DATA and clear relative offset flags. 1300 * We preserve the ct_resid and the response area. 1301 */ 1302 cto->ct_flags |= CT2_NO_DATA; 1303 if (cto->ct_resid > 0) 1304 cto->rsp.m1.ct_scsi_status |= CT2_DATA_UNDER; 1305 else if (cto->ct_resid < 0) 1306 cto->rsp.m1.ct_scsi_status |= CT2_DATA_OVER; 1307 cto->ct_seg_count = 0; 1308 cto->ct_reloff = 0; 1309 ISP_TDQE(mp->isp, "dma2_tgt_fc[no data]", *mp->iptrp, cto); 1310 isp_prt(mp->isp, ISP_LOGTDEBUG1, 1311 "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts " 1312 "0x%x res %d", cto->ct_rxid, csio->ccb_h.target_lun, 1313 cto->ct_iid, cto->ct_flags, cto->ct_status, 1314 cto->rsp.m1.ct_scsi_status, cto->ct_resid); 1315 ISP_SWIZ_CTIO2(isp, cto, cto); 1316 return; 1317 } 1318 1319 if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE0) { 1320 isp_prt(mp->isp, ISP_LOGWARN, 1321 "dma2_tgt_fc, a data CTIO2 without MODE0 set " 1322 "(0x%x)", cto->ct_flags); 1323 mp->error = EINVAL; 1324 return; 1325 } 1326 1327 1328 nctios = nseg / ISP_RQDSEG_T2; 1329 if (nseg % ISP_RQDSEG_T2) { 1330 nctios++; 1331 } 1332 1333 /* 1334 * Save the handle, status, reloff, and residual. We'll reinsert the 1335 * handle into the last CTIO2 we're going to send, and reinsert status 1336 * and residual (and possibly sense data) if that's to be sent as well. 1337 * 1338 * We preserve ct_reloff and adjust it for each data CTIO2 we send past 1339 * the first one. This is needed so that the FCP DATA IUs being sent 1340 * out have the correct offset (they can arrive at the other end out 1341 * of order). 1342 */ 1343 1344 handle = cto->ct_syshandle; 1345 cto->ct_syshandle = 0; 1346 send_status = (cto->ct_flags & CT2_SENDSTATUS) != 0; 1347 1348 if (send_status) { 1349 cto->ct_flags &= ~(CT2_SENDSTATUS|CT2_CCINCR); 1350 1351 /* 1352 * Preserve residual, which is actually the total count. 1353 */ 1354 datalen = cto->ct_resid; 1355 1356 /* 1357 * Save actual SCSI status. We'll reinsert the 1358 * CT2_SNSLEN_VALID later if appropriate. 1359 */ 1360 scsi_status = cto->rsp.m0.ct_scsi_status & 0xff; 1361 send_sense = cto->rsp.m0.ct_scsi_status & CT2_SNSLEN_VALID; 1362 1363 /* 1364 * If we're sending status and have a CHECK CONDTION and 1365 * have sense data, we send one more CTIO2 with just the 1366 * status and sense data. The upper layers have stashed 1367 * the sense data in the dataseg structure for us. 1368 */ 1369 1370 if ((scsi_status & 0xf) == SCSI_STATUS_CHECK_COND && 1371 send_sense) { 1372 bcopy(cto->rsp.m0.ct_dataseg, sense, QLTM_SENSELEN); 1373 nctios++; 1374 } 1375 } else { 1376 scsi_status = send_sense = datalen = 0; 1377 } 1378 1379 totxfr = cto->ct_resid = 0; 1380 cto->rsp.m0.ct_scsi_status = 0; 1381 MEMZERO(&cto->rsp, sizeof (cto->rsp)); 1382 1383 pci = (struct isp_pcisoftc *)mp->isp; 1384 dp = &pci->dmaps[isp_handle_index(handle)]; 1385 if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 1386 bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD); 1387 } else { 1388 bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE); 1389 } 1390 1391 while (nctios--) { 1392 int seg, seglim; 1393 1394 seglim = nseg; 1395 if (seglim) { 1396 if (seglim > ISP_RQDSEG_T2) 1397 seglim = ISP_RQDSEG_T2; 1398 1399 for (seg = 0; seg < seglim; seg++) { 1400 cto->rsp.m0.ct_dataseg[seg].ds_base = 1401 dm_segs->ds_addr; 1402 cto->rsp.m0.ct_dataseg[seg].ds_count = 1403 dm_segs->ds_len; 1404 cto->rsp.m0.ct_xfrlen += dm_segs->ds_len; 1405 totxfr += dm_segs->ds_len; 1406 dm_segs++; 1407 } 1408 cto->ct_seg_count = seg; 1409 } else { 1410 /* 1411 * This case should only happen when we're sending a 1412 * synthesized MODE1 final status with sense data. 1413 */ 1414 if (send_sense == 0) { 1415 isp_prt(mp->isp, ISP_LOGWARN, 1416 "dma2_tgt_fc ran out of segments, " 1417 "no SENSE DATA"); 1418 mp->error = EINVAL; 1419 return; 1420 } 1421 } 1422 1423 /* 1424 * At this point, the fields ct_lun, ct_iid, ct_rxid, 1425 * ct_timeout have been carried over unchanged from what 1426 * our caller had set. 1427 * 1428 * The field ct_reloff is either what the caller set, or 1429 * what we've added to below. 1430 * 1431 * The dataseg fields and the seg_count fields we just got 1432 * through setting. The data direction we've preserved all 1433 * along and only clear it if we're sending a MODE1 status 1434 * as the last CTIO. 1435 * 1436 */ 1437 1438 if (nctios == 0) { 1439 1440 /* 1441 * We're the last in a sequence of CTIO2s, so mark this 1442 * CTIO2 and save the handle to the CCB such that when 1443 * this CTIO2 completes we can free dma resources and 1444 * do whatever else we need to do to finish the rest 1445 * of the command. 1446 */ 1447 1448 cto->ct_syshandle = handle; 1449 cto->ct_header.rqs_seqno = 1; 1450 1451 if (send_status) { 1452 /* 1453 * Get 'real' residual and set flags based 1454 * on it. 1455 */ 1456 cto->ct_resid = datalen - totxfr; 1457 if (send_sense) { 1458 MEMCPY(cto->rsp.m1.ct_resp, sense, 1459 QLTM_SENSELEN); 1460 cto->rsp.m1.ct_senselen = 1461 QLTM_SENSELEN; 1462 scsi_status |= CT2_SNSLEN_VALID; 1463 cto->rsp.m1.ct_scsi_status = 1464 scsi_status; 1465 cto->ct_flags &= CT2_FLAG_MMASK; 1466 cto->ct_flags |= CT2_FLAG_MODE1 | 1467 CT2_NO_DATA | CT2_SENDSTATUS | 1468 CT2_CCINCR; 1469 if (cto->ct_resid > 0) 1470 cto->rsp.m1.ct_scsi_status |= 1471 CT2_DATA_UNDER; 1472 else if (cto->ct_resid < 0) 1473 cto->rsp.m1.ct_scsi_status |= 1474 CT2_DATA_OVER; 1475 } else { 1476 cto->rsp.m0.ct_scsi_status = 1477 scsi_status; 1478 cto->ct_flags |= 1479 CT2_SENDSTATUS | CT2_CCINCR; 1480 if (cto->ct_resid > 0) 1481 cto->rsp.m0.ct_scsi_status |= 1482 CT2_DATA_UNDER; 1483 else if (cto->ct_resid < 0) 1484 cto->rsp.m0.ct_scsi_status |= 1485 CT2_DATA_OVER; 1486 } 1487 } 1488 ISP_TDQE(mp->isp, "last dma2_tgt_fc", *mp->iptrp, cto); 1489 isp_prt(mp->isp, ISP_LOGTDEBUG1, 1490 "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x" 1491 " ssts 0x%x res %d", cto->ct_rxid, 1492 csio->ccb_h.target_lun, (int) cto->ct_iid, 1493 cto->ct_flags, cto->ct_status, 1494 cto->rsp.m1.ct_scsi_status, cto->ct_resid); 1495 ISP_SWIZ_CTIO2(isp, cto, cto); 1496 } else { 1497 ct2_entry_t *octo = cto; 1498 1499 /* 1500 * Make sure handle fields are clean 1501 */ 1502 cto->ct_syshandle = 0; 1503 cto->ct_header.rqs_seqno = 0; 1504 1505 ISP_TDQE(mp->isp, "dma2_tgt_fc", *mp->iptrp, cto); 1506 isp_prt(mp->isp, ISP_LOGTDEBUG1, 1507 "CTIO2[%x] lun %d->iid%d flgs 0x%x", 1508 cto->ct_rxid, csio->ccb_h.target_lun, 1509 (int) cto->ct_iid, cto->ct_flags); 1510 /* 1511 * Get a new CTIO2 1512 */ 1513 cto = (ct2_entry_t *) 1514 ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp); 1515 j = *mp->iptrp; 1516 *mp->iptrp = 1517 ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN(isp)); 1518 if (*mp->iptrp == mp->optr) { 1519 isp_prt(mp->isp, ISP_LOGWARN, 1520 "Queue Overflow in dma2_tgt_fc"); 1521 mp->error = MUSHERR_NOQENTRIES; 1522 return; 1523 } 1524 1525 /* 1526 * Fill in the new CTIO2 with info from the old one. 1527 */ 1528 cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2; 1529 cto->ct_header.rqs_entry_count = 1; 1530 cto->ct_header.rqs_flags = 0; 1531 /* ct_header.rqs_seqno && ct_syshandle done later */ 1532 cto->ct_fwhandle = octo->ct_fwhandle; 1533 cto->ct_lun = octo->ct_lun; 1534 cto->ct_iid = octo->ct_iid; 1535 cto->ct_rxid = octo->ct_rxid; 1536 cto->ct_flags = octo->ct_flags; 1537 cto->ct_status = 0; 1538 cto->ct_resid = 0; 1539 cto->ct_timeout = octo->ct_timeout; 1540 cto->ct_seg_count = 0; 1541 /* 1542 * Adjust the new relative offset by the amount which 1543 * is recorded in the data segment of the old CTIO2 we 1544 * just finished filling out. 1545 */ 1546 cto->ct_reloff += octo->rsp.m0.ct_xfrlen; 1547 MEMZERO(&cto->rsp, sizeof (cto->rsp)); 1548 ISP_SWIZ_CTIO2(isp, octo, octo); 1549 ISP_ADD_REQUEST(mp->isp, j); 1550 } 1551 } 1552 } 1553 #endif 1554 1555 static void dma2 __P((void *, bus_dma_segment_t *, int, int)); 1556 1557 static void 1558 dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) 1559 { 1560 mush_t *mp; 1561 struct ccb_scsiio *csio; 1562 struct isp_pcisoftc *pci; 1563 bus_dmamap_t *dp; 1564 bus_dma_segment_t *eseg; 1565 ispreq_t *rq; 1566 ispcontreq_t *crq; 1567 int seglim, datalen; 1568 1569 mp = (mush_t *) arg; 1570 if (error) { 1571 mp->error = error; 1572 return; 1573 } 1574 1575 if (nseg < 1) { 1576 isp_prt(mp->isp, ISP_LOGERR, "bad segment count (%d)", nseg); 1577 mp->error = EFAULT; 1578 return; 1579 } 1580 csio = mp->cmd_token; 1581 rq = mp->rq; 1582 pci = (struct isp_pcisoftc *)mp->isp; 1583 dp = &pci->dmaps[isp_handle_index(rq->req_handle)]; 1584 1585 if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 1586 bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD); 1587 } else { 1588 bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE); 1589 } 1590 1591 datalen = XS_XFRLEN(csio); 1592 1593 /* 1594 * We're passed an initial partially filled in entry that 1595 * has most fields filled in except for data transfer 1596 * related values. 1597 * 1598 * Our job is to fill in the initial request queue entry and 1599 * then to start allocating and filling in continuation entries 1600 * until we've covered the entire transfer. 1601 */ 1602 1603 if (IS_FC(mp->isp)) { 1604 seglim = ISP_RQDSEG_T2; 1605 ((ispreqt2_t *)rq)->req_totalcnt = datalen; 1606 if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 1607 ((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN; 1608 } else { 1609 ((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT; 1610 } 1611 } else { 1612 if (csio->cdb_len > 12) { 1613 seglim = 0; 1614 } else { 1615 seglim = ISP_RQDSEG; 1616 } 1617 if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 1618 rq->req_flags |= REQFLAG_DATA_IN; 1619 } else { 1620 rq->req_flags |= REQFLAG_DATA_OUT; 1621 } 1622 } 1623 1624 eseg = dm_segs + nseg; 1625 1626 while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) { 1627 if (IS_FC(mp->isp)) { 1628 ispreqt2_t *rq2 = (ispreqt2_t *)rq; 1629 rq2->req_dataseg[rq2->req_seg_count].ds_base = 1630 dm_segs->ds_addr; 1631 rq2->req_dataseg[rq2->req_seg_count].ds_count = 1632 dm_segs->ds_len; 1633 } else { 1634 rq->req_dataseg[rq->req_seg_count].ds_base = 1635 dm_segs->ds_addr; 1636 rq->req_dataseg[rq->req_seg_count].ds_count = 1637 dm_segs->ds_len; 1638 } 1639 datalen -= dm_segs->ds_len; 1640 #if 0 1641 if (IS_FC(mp->isp)) { 1642 ispreqt2_t *rq2 = (ispreqt2_t *)rq; 1643 device_printf(mp->isp->isp_dev, 1644 "seg0[%d] cnt 0x%x paddr 0x%08x\n", 1645 rq->req_seg_count, 1646 rq2->req_dataseg[rq2->req_seg_count].ds_count, 1647 rq2->req_dataseg[rq2->req_seg_count].ds_base); 1648 } else { 1649 device_printf(mp->isp->isp_dev, 1650 "seg0[%d] cnt 0x%x paddr 0x%08x\n", 1651 rq->req_seg_count, 1652 rq->req_dataseg[rq->req_seg_count].ds_count, 1653 rq->req_dataseg[rq->req_seg_count].ds_base); 1654 } 1655 #endif 1656 rq->req_seg_count++; 1657 dm_segs++; 1658 } 1659 1660 while (datalen > 0 && dm_segs != eseg) { 1661 crq = (ispcontreq_t *) 1662 ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp); 1663 *mp->iptrp = ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN(isp)); 1664 if (*mp->iptrp == mp->optr) { 1665 isp_prt(mp->isp, 1666 ISP_LOGDEBUG0, "Request Queue Overflow++"); 1667 mp->error = MUSHERR_NOQENTRIES; 1668 return; 1669 } 1670 rq->req_header.rqs_entry_count++; 1671 bzero((void *)crq, sizeof (*crq)); 1672 crq->req_header.rqs_entry_count = 1; 1673 crq->req_header.rqs_entry_type = RQSTYPE_DATASEG; 1674 1675 seglim = 0; 1676 while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) { 1677 crq->req_dataseg[seglim].ds_base = 1678 dm_segs->ds_addr; 1679 crq->req_dataseg[seglim].ds_count = 1680 dm_segs->ds_len; 1681 #if 0 1682 device_printf(mp->isp->isp_dev, 1683 "seg%d[%d] cnt 0x%x paddr 0x%08x\n", 1684 rq->req_header.rqs_entry_count-1, 1685 seglim, crq->req_dataseg[seglim].ds_count, 1686 crq->req_dataseg[seglim].ds_base); 1687 #endif 1688 rq->req_seg_count++; 1689 dm_segs++; 1690 seglim++; 1691 datalen -= dm_segs->ds_len; 1692 } 1693 } 1694 } 1695 1696 static int 1697 isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq, 1698 u_int16_t *iptrp, u_int16_t optr) 1699 { 1700 struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; 1701 bus_dmamap_t *dp = NULL; 1702 mush_t mush, *mp; 1703 void (*eptr) __P((void *, bus_dma_segment_t *, int, int)); 1704 1705 #ifdef ISP_TARGET_MODE 1706 if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) { 1707 if (IS_FC(isp)) { 1708 eptr = tdma_mkfc; 1709 } else { 1710 eptr = tdma_mk; 1711 } 1712 if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE || 1713 (csio->dxfer_len == 0)) { 1714 mp = &mush; 1715 mp->isp = isp; 1716 mp->cmd_token = csio; 1717 mp->rq = rq; /* really a ct_entry_t or ct2_entry_t */ 1718 mp->iptrp = iptrp; 1719 mp->optr = optr; 1720 mp->error = 0; 1721 (*eptr)(mp, NULL, 0, 0); 1722 goto exit; 1723 } 1724 } else 1725 #endif 1726 eptr = dma2; 1727 1728 /* 1729 * NB: if we need to do request queue entry swizzling, 1730 * NB: this is where it would need to be done for cmds 1731 * NB: that move no data. For commands that move data, 1732 * NB: swizzling would take place in those functions. 1733 */ 1734 if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE || 1735 (csio->dxfer_len == 0)) { 1736 rq->req_seg_count = 1; 1737 return (CMD_QUEUED); 1738 } 1739 1740 /* 1741 * Do a virtual grapevine step to collect info for 1742 * the callback dma allocation that we have to use... 1743 */ 1744 mp = &mush; 1745 mp->isp = isp; 1746 mp->cmd_token = csio; 1747 mp->rq = rq; 1748 mp->iptrp = iptrp; 1749 mp->optr = optr; 1750 mp->error = 0; 1751 1752 if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) { 1753 if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) { 1754 int error, s; 1755 dp = &pci->dmaps[isp_handle_index(rq->req_handle)]; 1756 s = splsoftvm(); 1757 error = bus_dmamap_load(pci->parent_dmat, *dp, 1758 csio->data_ptr, csio->dxfer_len, eptr, mp, 0); 1759 if (error == EINPROGRESS) { 1760 bus_dmamap_unload(pci->parent_dmat, *dp); 1761 mp->error = EINVAL; 1762 isp_prt(isp, ISP_LOGERR, 1763 "deferred dma allocation not supported"); 1764 } else if (error && mp->error == 0) { 1765 #ifdef DIAGNOSTIC 1766 isp_prt(isp, ISP_LOGERR, 1767 "error %d in dma mapping code", error); 1768 #endif 1769 mp->error = error; 1770 } 1771 splx(s); 1772 } else { 1773 /* Pointer to physical buffer */ 1774 struct bus_dma_segment seg; 1775 seg.ds_addr = (bus_addr_t)csio->data_ptr; 1776 seg.ds_len = csio->dxfer_len; 1777 (*eptr)(mp, &seg, 1, 0); 1778 } 1779 } else { 1780 struct bus_dma_segment *segs; 1781 1782 if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) { 1783 isp_prt(isp, ISP_LOGERR, 1784 "Physical segment pointers unsupported"); 1785 mp->error = EINVAL; 1786 } else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) { 1787 isp_prt(isp, ISP_LOGERR, 1788 "Virtual segment addresses unsupported"); 1789 mp->error = EINVAL; 1790 } else { 1791 /* Just use the segments provided */ 1792 segs = (struct bus_dma_segment *) csio->data_ptr; 1793 (*eptr)(mp, segs, csio->sglist_cnt, 0); 1794 } 1795 } 1796 #ifdef ISP_TARGET_MODE 1797 exit: 1798 #endif 1799 if (mp->error) { 1800 int retval = CMD_COMPLETE; 1801 if (mp->error == MUSHERR_NOQENTRIES) { 1802 retval = CMD_EAGAIN; 1803 } else if (mp->error == EFBIG) { 1804 XS_SETERR(csio, CAM_REQ_TOO_BIG); 1805 } else if (mp->error == EINVAL) { 1806 XS_SETERR(csio, CAM_REQ_INVALID); 1807 } else { 1808 XS_SETERR(csio, CAM_UNREC_HBA_ERROR); 1809 } 1810 return (retval); 1811 } else { 1812 /* 1813 * Check to see if we weren't cancelled while sleeping on 1814 * getting DMA resources... 1815 */ 1816 if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { 1817 if (dp) { 1818 bus_dmamap_unload(pci->parent_dmat, *dp); 1819 } 1820 return (CMD_COMPLETE); 1821 } 1822 return (CMD_QUEUED); 1823 } 1824 } 1825 1826 static void 1827 isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int16_t handle) 1828 { 1829 struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; 1830 bus_dmamap_t *dp = &pci->dmaps[isp_handle_index(handle)]; 1831 if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { 1832 bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTREAD); 1833 } else { 1834 bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTWRITE); 1835 } 1836 bus_dmamap_unload(pci->parent_dmat, *dp); 1837 } 1838 1839 1840 static void 1841 isp_pci_reset1(struct ispsoftc *isp) 1842 { 1843 /* Make sure the BIOS is disabled */ 1844 isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS); 1845 /* and enable interrupts */ 1846 ENABLE_INTS(isp); 1847 } 1848 1849 static void 1850 isp_pci_dumpregs(struct ispsoftc *isp, const char *msg) 1851 { 1852 struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; 1853 if (msg) 1854 printf("%s: %s\n", device_get_nameunit(isp->isp_dev), msg); 1855 else 1856 printf("%s:\n", device_get_nameunit(isp->isp_dev)); 1857 if (IS_SCSI(isp)) 1858 printf(" biu_conf1=%x", ISP_READ(isp, BIU_CONF1)); 1859 else 1860 printf(" biu_csr=%x", ISP_READ(isp, BIU2100_CSR)); 1861 printf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR), 1862 ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA)); 1863 printf("risc_hccr=%x\n", ISP_READ(isp, HCCR)); 1864 1865 1866 if (IS_SCSI(isp)) { 1867 ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE); 1868 printf(" cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n", 1869 ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS), 1870 ISP_READ(isp, CDMA_FIFO_STS)); 1871 printf(" ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n", 1872 ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS), 1873 ISP_READ(isp, DDMA_FIFO_STS)); 1874 printf(" sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n", 1875 ISP_READ(isp, SXP_INTERRUPT), 1876 ISP_READ(isp, SXP_GROSS_ERR), 1877 ISP_READ(isp, SXP_PINS_CTRL)); 1878 ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE); 1879 } 1880 printf(" mbox regs: %x %x %x %x %x\n", 1881 ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1), 1882 ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3), 1883 ISP_READ(isp, OUTMAILBOX4)); 1884 printf(" PCI Status Command/Status=%x\n", 1885 pci_read_config(pci->pci_dev, PCIR_COMMAND, 1)); 1886 } 1887