xref: /freebsd/sys/dev/isp/isp_pci.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * PCI specific probe and attach routines for Qlogic ISP SCSI adapters.
3  * FreeBSD Version.
4  *
5  * Copyright (c) 1997, 1998, 1999, 2000, 2001 by Matthew Jacob
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice immediately at the beginning of the file, without modification,
12  *    this list of conditions, and the following disclaimer.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/bus.h>
37 
38 #include <dev/pci/pcireg.h>
39 #include <dev/pci/pcivar.h>
40 
41 #include <machine/bus.h>
42 #include <machine/resource.h>
43 #include <sys/rman.h>
44 #include <sys/malloc.h>
45 
46 #ifdef	ISP_TARGET_MODE
47 #ifdef	PAE
48 #error	"PAE and ISP_TARGET_MODE not supported yet"
49 #endif
50 #endif
51 
52 #include <dev/isp/isp_freebsd.h>
53 
54 static u_int16_t isp_pci_rd_reg(struct ispsoftc *, int);
55 static void isp_pci_wr_reg(struct ispsoftc *, int, u_int16_t);
56 static u_int16_t isp_pci_rd_reg_1080(struct ispsoftc *, int);
57 static void isp_pci_wr_reg_1080(struct ispsoftc *, int, u_int16_t);
58 static int
59 isp_pci_rd_isr(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
60 static int
61 isp_pci_rd_isr_2300(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
62 static int isp_pci_mbxdma(struct ispsoftc *);
63 static int
64 isp_pci_dmasetup(struct ispsoftc *, XS_T *, ispreq_t *, u_int16_t *, u_int16_t);
65 static void
66 isp_pci_dmateardown(struct ispsoftc *, XS_T *, u_int16_t);
67 
68 static void isp_pci_reset1(struct ispsoftc *);
69 static void isp_pci_dumpregs(struct ispsoftc *, const char *);
70 
71 static struct ispmdvec mdvec = {
72 	isp_pci_rd_isr,
73 	isp_pci_rd_reg,
74 	isp_pci_wr_reg,
75 	isp_pci_mbxdma,
76 	isp_pci_dmasetup,
77 	isp_pci_dmateardown,
78 	NULL,
79 	isp_pci_reset1,
80 	isp_pci_dumpregs,
81 	NULL,
82 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
83 };
84 
85 static struct ispmdvec mdvec_1080 = {
86 	isp_pci_rd_isr,
87 	isp_pci_rd_reg_1080,
88 	isp_pci_wr_reg_1080,
89 	isp_pci_mbxdma,
90 	isp_pci_dmasetup,
91 	isp_pci_dmateardown,
92 	NULL,
93 	isp_pci_reset1,
94 	isp_pci_dumpregs,
95 	NULL,
96 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
97 };
98 
99 static struct ispmdvec mdvec_12160 = {
100 	isp_pci_rd_isr,
101 	isp_pci_rd_reg_1080,
102 	isp_pci_wr_reg_1080,
103 	isp_pci_mbxdma,
104 	isp_pci_dmasetup,
105 	isp_pci_dmateardown,
106 	NULL,
107 	isp_pci_reset1,
108 	isp_pci_dumpregs,
109 	NULL,
110 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
111 };
112 
113 static struct ispmdvec mdvec_2100 = {
114 	isp_pci_rd_isr,
115 	isp_pci_rd_reg,
116 	isp_pci_wr_reg,
117 	isp_pci_mbxdma,
118 	isp_pci_dmasetup,
119 	isp_pci_dmateardown,
120 	NULL,
121 	isp_pci_reset1,
122 	isp_pci_dumpregs
123 };
124 
125 static struct ispmdvec mdvec_2200 = {
126 	isp_pci_rd_isr,
127 	isp_pci_rd_reg,
128 	isp_pci_wr_reg,
129 	isp_pci_mbxdma,
130 	isp_pci_dmasetup,
131 	isp_pci_dmateardown,
132 	NULL,
133 	isp_pci_reset1,
134 	isp_pci_dumpregs
135 };
136 
137 static struct ispmdvec mdvec_2300 = {
138 	isp_pci_rd_isr_2300,
139 	isp_pci_rd_reg,
140 	isp_pci_wr_reg,
141 	isp_pci_mbxdma,
142 	isp_pci_dmasetup,
143 	isp_pci_dmateardown,
144 	NULL,
145 	isp_pci_reset1,
146 	isp_pci_dumpregs
147 };
148 
149 #ifndef	PCIM_CMD_INVEN
150 #define	PCIM_CMD_INVEN			0x10
151 #endif
152 #ifndef	PCIM_CMD_BUSMASTEREN
153 #define	PCIM_CMD_BUSMASTEREN		0x0004
154 #endif
155 #ifndef	PCIM_CMD_PERRESPEN
156 #define	PCIM_CMD_PERRESPEN		0x0040
157 #endif
158 #ifndef	PCIM_CMD_SEREN
159 #define	PCIM_CMD_SEREN			0x0100
160 #endif
161 
162 #ifndef	PCIR_COMMAND
163 #define	PCIR_COMMAND			0x04
164 #endif
165 
166 #ifndef	PCIR_CACHELNSZ
167 #define	PCIR_CACHELNSZ			0x0c
168 #endif
169 
170 #ifndef	PCIR_LATTIMER
171 #define	PCIR_LATTIMER			0x0d
172 #endif
173 
174 #ifndef	PCIR_ROMADDR
175 #define	PCIR_ROMADDR			0x30
176 #endif
177 
178 #ifndef	PCI_VENDOR_QLOGIC
179 #define	PCI_VENDOR_QLOGIC		0x1077
180 #endif
181 
182 #ifndef	PCI_PRODUCT_QLOGIC_ISP1020
183 #define	PCI_PRODUCT_QLOGIC_ISP1020	0x1020
184 #endif
185 
186 #ifndef	PCI_PRODUCT_QLOGIC_ISP1080
187 #define	PCI_PRODUCT_QLOGIC_ISP1080	0x1080
188 #endif
189 
190 #ifndef	PCI_PRODUCT_QLOGIC_ISP10160
191 #define	PCI_PRODUCT_QLOGIC_ISP10160	0x1016
192 #endif
193 
194 #ifndef	PCI_PRODUCT_QLOGIC_ISP12160
195 #define	PCI_PRODUCT_QLOGIC_ISP12160	0x1216
196 #endif
197 
198 #ifndef	PCI_PRODUCT_QLOGIC_ISP1240
199 #define	PCI_PRODUCT_QLOGIC_ISP1240	0x1240
200 #endif
201 
202 #ifndef	PCI_PRODUCT_QLOGIC_ISP1280
203 #define	PCI_PRODUCT_QLOGIC_ISP1280	0x1280
204 #endif
205 
206 #ifndef	PCI_PRODUCT_QLOGIC_ISP2100
207 #define	PCI_PRODUCT_QLOGIC_ISP2100	0x2100
208 #endif
209 
210 #ifndef	PCI_PRODUCT_QLOGIC_ISP2200
211 #define	PCI_PRODUCT_QLOGIC_ISP2200	0x2200
212 #endif
213 
214 #ifndef	PCI_PRODUCT_QLOGIC_ISP2300
215 #define	PCI_PRODUCT_QLOGIC_ISP2300	0x2300
216 #endif
217 
218 #ifndef	PCI_PRODUCT_QLOGIC_ISP2312
219 #define	PCI_PRODUCT_QLOGIC_ISP2312	0x2312
220 #endif
221 
222 #ifndef	PCI_PRODUCT_QLOGIC_ISP6312
223 #define	PCI_PRODUCT_QLOGIC_ISP6312	0x6312
224 #endif
225 
226 #define	PCI_QLOGIC_ISP1020	\
227 	((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC)
228 
229 #define	PCI_QLOGIC_ISP1080	\
230 	((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC)
231 
232 #define	PCI_QLOGIC_ISP10160	\
233 	((PCI_PRODUCT_QLOGIC_ISP10160 << 16) | PCI_VENDOR_QLOGIC)
234 
235 #define	PCI_QLOGIC_ISP12160	\
236 	((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC)
237 
238 #define	PCI_QLOGIC_ISP1240	\
239 	((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC)
240 
241 #define	PCI_QLOGIC_ISP1280	\
242 	((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC)
243 
244 #define	PCI_QLOGIC_ISP2100	\
245 	((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC)
246 
247 #define	PCI_QLOGIC_ISP2200	\
248 	((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC)
249 
250 #define	PCI_QLOGIC_ISP2300	\
251 	((PCI_PRODUCT_QLOGIC_ISP2300 << 16) | PCI_VENDOR_QLOGIC)
252 
253 #define	PCI_QLOGIC_ISP2312	\
254 	((PCI_PRODUCT_QLOGIC_ISP2312 << 16) | PCI_VENDOR_QLOGIC)
255 
256 #define	PCI_QLOGIC_ISP6312	\
257 	((PCI_PRODUCT_QLOGIC_ISP6312 << 16) | PCI_VENDOR_QLOGIC)
258 
259 /*
260  * Odd case for some AMI raid cards... We need to *not* attach to this.
261  */
262 #define	AMI_RAID_SUBVENDOR_ID	0x101e
263 
264 #define	IO_MAP_REG	0x10
265 #define	MEM_MAP_REG	0x14
266 
267 #define	PCI_DFLT_LTNCY	0x40
268 #define	PCI_DFLT_LNSZ	0x10
269 
270 static int isp_pci_probe (device_t);
271 static int isp_pci_attach (device_t);
272 
273 
274 struct isp_pcisoftc {
275 	struct ispsoftc			pci_isp;
276 	device_t			pci_dev;
277 	struct resource *		pci_reg;
278 	bus_space_tag_t			pci_st;
279 	bus_space_handle_t		pci_sh;
280 	void *				ih;
281 	int16_t				pci_poff[_NREG_BLKS];
282 	bus_dma_tag_t			dmat;
283 	bus_dmamap_t			*dmaps;
284 };
285 extern ispfwfunc *isp_get_firmware_p;
286 
287 static device_method_t isp_pci_methods[] = {
288 	/* Device interface */
289 	DEVMETHOD(device_probe,		isp_pci_probe),
290 	DEVMETHOD(device_attach,	isp_pci_attach),
291 	{ 0, 0 }
292 };
293 static void isp_pci_intr(void *);
294 
295 static driver_t isp_pci_driver = {
296 	"isp", isp_pci_methods, sizeof (struct isp_pcisoftc)
297 };
298 static devclass_t isp_devclass;
299 DRIVER_MODULE(isp, pci, isp_pci_driver, isp_devclass, 0, 0);
300 
301 static int
302 isp_pci_probe(device_t dev)
303 {
304         switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
305 	case PCI_QLOGIC_ISP1020:
306 		device_set_desc(dev, "Qlogic ISP 1020/1040 PCI SCSI Adapter");
307 		break;
308 	case PCI_QLOGIC_ISP1080:
309 		device_set_desc(dev, "Qlogic ISP 1080 PCI SCSI Adapter");
310 		break;
311 	case PCI_QLOGIC_ISP1240:
312 		device_set_desc(dev, "Qlogic ISP 1240 PCI SCSI Adapter");
313 		break;
314 	case PCI_QLOGIC_ISP1280:
315 		device_set_desc(dev, "Qlogic ISP 1280 PCI SCSI Adapter");
316 		break;
317 	case PCI_QLOGIC_ISP10160:
318 		device_set_desc(dev, "Qlogic ISP 10160 PCI SCSI Adapter");
319 		break;
320 	case PCI_QLOGIC_ISP12160:
321 		if (pci_get_subvendor(dev) == AMI_RAID_SUBVENDOR_ID) {
322 			return (ENXIO);
323 		}
324 		device_set_desc(dev, "Qlogic ISP 12160 PCI SCSI Adapter");
325 		break;
326 	case PCI_QLOGIC_ISP2100:
327 		device_set_desc(dev, "Qlogic ISP 2100 PCI FC-AL Adapter");
328 		break;
329 	case PCI_QLOGIC_ISP2200:
330 		device_set_desc(dev, "Qlogic ISP 2200 PCI FC-AL Adapter");
331 		break;
332 	case PCI_QLOGIC_ISP2300:
333 		device_set_desc(dev, "Qlogic ISP 2300 PCI FC-AL Adapter");
334 		break;
335 	case PCI_QLOGIC_ISP2312:
336 		device_set_desc(dev, "Qlogic ISP 2312 PCI FC-AL Adapter");
337 		break;
338 	case PCI_QLOGIC_ISP6312:
339 		device_set_desc(dev, "Qlogic ISP 6312 PCI FC-AL Adapter");
340 		break;
341 	default:
342 		return (ENXIO);
343 	}
344 	if (isp_announced == 0 && bootverbose) {
345 		printf("Qlogic ISP Driver, FreeBSD Version %d.%d, "
346 		    "Core Version %d.%d\n",
347 		    ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR,
348 		    ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR);
349 		isp_announced++;
350 	}
351 	/*
352 	 * XXXX: Here is where we might load the f/w module
353 	 * XXXX: (or increase a reference count to it).
354 	 */
355 	return (BUS_PROBE_DEFAULT);
356 }
357 
358 static int
359 isp_pci_attach(device_t dev)
360 {
361 	struct resource *regs, *irq;
362 	int tval, rtp, rgd, iqd, m1, m2, isp_debug, role;
363 	u_int32_t data, cmd, linesz, psize, basetype;
364 	struct isp_pcisoftc *pcs;
365 	struct ispsoftc *isp = NULL;
366 	struct ispmdvec *mdvp;
367 	const char *sptr;
368 	int locksetup = 0;
369 
370 	/*
371 	 * Figure out if we're supposed to skip this one.
372 	 */
373 
374 	tval = 0;
375 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
376 	    "disable", &tval) == 0 && tval) {
377 		device_printf(dev, "device is disabled\n");
378 		/* but return 0 so the !$)$)*!$*) unit isn't reused */
379 		return (0);
380 	}
381 
382 	role = -1;
383 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
384 	    "role", &role) == 0 && role != -1) {
385 		role &= (ISP_ROLE_INITIATOR|ISP_ROLE_TARGET);
386 		device_printf(dev, "setting role to 0x%x\n", role);
387 	} else {
388 #ifdef	ISP_TARGET_MODE
389 		role = ISP_ROLE_TARGET;
390 #else
391 		role = ISP_DEFAULT_ROLES;
392 #endif
393 	}
394 
395 	pcs = malloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_NOWAIT | M_ZERO);
396 	if (pcs == NULL) {
397 		device_printf(dev, "cannot allocate softc\n");
398 		return (ENOMEM);
399 	}
400 
401 	/*
402 	 * Which we should try first - memory mapping or i/o mapping?
403 	 *
404 	 * We used to try memory first followed by i/o on alpha, otherwise
405 	 * the reverse, but we should just try memory first all the time now.
406 	 */
407 	m1 = PCIM_CMD_MEMEN;
408 	m2 = PCIM_CMD_PORTEN;
409 
410 	tval = 0;
411         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
412             "prefer_iomap", &tval) == 0 && tval != 0) {
413 		m1 = PCIM_CMD_PORTEN;
414 		m2 = PCIM_CMD_MEMEN;
415 	}
416 	tval = 0;
417         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
418             "prefer_memmap", &tval) == 0 && tval != 0) {
419 		m1 = PCIM_CMD_MEMEN;
420 		m2 = PCIM_CMD_PORTEN;
421 	}
422 
423 	linesz = PCI_DFLT_LNSZ;
424 	irq = regs = NULL;
425 	rgd = rtp = iqd = 0;
426 
427 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
428 	if (cmd & m1) {
429 		rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
430 		rgd = (m1 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
431 		regs = bus_alloc_resource_any(dev, rtp, &rgd, RF_ACTIVE);
432 	}
433 	if (regs == NULL && (cmd & m2)) {
434 		rtp = (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
435 		rgd = (m2 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
436 		regs = bus_alloc_resource_any(dev, rtp, &rgd, RF_ACTIVE);
437 	}
438 	if (regs == NULL) {
439 		device_printf(dev, "unable to map any ports\n");
440 		goto bad;
441 	}
442 	if (bootverbose)
443 		device_printf(dev, "using %s space register mapping\n",
444 		    (rgd == IO_MAP_REG)? "I/O" : "Memory");
445 	pcs->pci_dev = dev;
446 	pcs->pci_reg = regs;
447 	pcs->pci_st = rman_get_bustag(regs);
448 	pcs->pci_sh = rman_get_bushandle(regs);
449 
450 	pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF;
451 	pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF;
452 	pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF;
453 	pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF;
454 	pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF;
455 	mdvp = &mdvec;
456 	basetype = ISP_HA_SCSI_UNKNOWN;
457 	psize = sizeof (sdparam);
458 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1020) {
459 		mdvp = &mdvec;
460 		basetype = ISP_HA_SCSI_UNKNOWN;
461 		psize = sizeof (sdparam);
462 	}
463 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1080) {
464 		mdvp = &mdvec_1080;
465 		basetype = ISP_HA_SCSI_1080;
466 		psize = sizeof (sdparam);
467 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
468 		    ISP1080_DMA_REGS_OFF;
469 	}
470 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1240) {
471 		mdvp = &mdvec_1080;
472 		basetype = ISP_HA_SCSI_1240;
473 		psize = 2 * sizeof (sdparam);
474 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
475 		    ISP1080_DMA_REGS_OFF;
476 	}
477 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1280) {
478 		mdvp = &mdvec_1080;
479 		basetype = ISP_HA_SCSI_1280;
480 		psize = 2 * sizeof (sdparam);
481 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
482 		    ISP1080_DMA_REGS_OFF;
483 	}
484 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP10160) {
485 		mdvp = &mdvec_12160;
486 		basetype = ISP_HA_SCSI_10160;
487 		psize = sizeof (sdparam);
488 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
489 		    ISP1080_DMA_REGS_OFF;
490 	}
491 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP12160) {
492 		mdvp = &mdvec_12160;
493 		basetype = ISP_HA_SCSI_12160;
494 		psize = 2 * sizeof (sdparam);
495 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
496 		    ISP1080_DMA_REGS_OFF;
497 	}
498 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2100) {
499 		mdvp = &mdvec_2100;
500 		basetype = ISP_HA_FC_2100;
501 		psize = sizeof (fcparam);
502 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
503 		    PCI_MBOX_REGS2100_OFF;
504 		if (pci_get_revid(dev) < 3) {
505 			/*
506 			 * XXX: Need to get the actual revision
507 			 * XXX: number of the 2100 FB. At any rate,
508 			 * XXX: lower cache line size for early revision
509 			 * XXX; boards.
510 			 */
511 			linesz = 1;
512 		}
513 	}
514 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2200) {
515 		mdvp = &mdvec_2200;
516 		basetype = ISP_HA_FC_2200;
517 		psize = sizeof (fcparam);
518 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
519 		    PCI_MBOX_REGS2100_OFF;
520 	}
521 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2300) {
522 		mdvp = &mdvec_2300;
523 		basetype = ISP_HA_FC_2300;
524 		psize = sizeof (fcparam);
525 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
526 		    PCI_MBOX_REGS2300_OFF;
527 	}
528 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2312 ||
529 	    pci_get_devid(dev) == PCI_QLOGIC_ISP6312) {
530 		mdvp = &mdvec_2300;
531 		basetype = ISP_HA_FC_2312;
532 		psize = sizeof (fcparam);
533 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
534 		    PCI_MBOX_REGS2300_OFF;
535 	}
536 	isp = &pcs->pci_isp;
537 	isp->isp_param = malloc(psize, M_DEVBUF, M_NOWAIT | M_ZERO);
538 	if (isp->isp_param == NULL) {
539 		device_printf(dev, "cannot allocate parameter data\n");
540 		goto bad;
541 	}
542 	isp->isp_mdvec = mdvp;
543 	isp->isp_type = basetype;
544 	isp->isp_revision = pci_get_revid(dev);
545 	isp->isp_role = role;
546 	isp->isp_dev = dev;
547 
548 	/*
549 	 * Try and find firmware for this device.
550 	 */
551 
552 	if (isp_get_firmware_p) {
553 		int device = (int) pci_get_device(dev);
554 #ifdef	ISP_TARGET_MODE
555 		(*isp_get_firmware_p)(0, 1, device, &mdvp->dv_ispfw);
556 #else
557 		(*isp_get_firmware_p)(0, 0, device, &mdvp->dv_ispfw);
558 #endif
559 	}
560 
561 	/*
562 	 * Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER
563 	 * are set.
564 	 */
565 	cmd |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN |
566 		PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN;
567 	if (IS_2300(isp)) {	/* per QLogic errata */
568 		cmd &= ~PCIM_CMD_INVEN;
569 	}
570 	if (IS_23XX(isp)) {
571 		/*
572 		 * Can't tell if ROM will hang on 'ABOUT FIRMWARE' command.
573 		 */
574 		isp->isp_touched = 1;
575 
576 	}
577 	pci_write_config(dev, PCIR_COMMAND, cmd, 2);
578 
579 	/*
580 	 * Make sure the Cache Line Size register is set sensibly.
581 	 */
582 	data = pci_read_config(dev, PCIR_CACHELNSZ, 1);
583 	if (data != linesz) {
584 		data = PCI_DFLT_LNSZ;
585 		isp_prt(isp, ISP_LOGCONFIG, "set PCI line size to %d", data);
586 		pci_write_config(dev, PCIR_CACHELNSZ, data, 1);
587 	}
588 
589 	/*
590 	 * Make sure the Latency Timer is sane.
591 	 */
592 	data = pci_read_config(dev, PCIR_LATTIMER, 1);
593 	if (data < PCI_DFLT_LTNCY) {
594 		data = PCI_DFLT_LTNCY;
595 		isp_prt(isp, ISP_LOGCONFIG, "set PCI latency to %d", data);
596 		pci_write_config(dev, PCIR_LATTIMER, data, 1);
597 	}
598 
599 	/*
600 	 * Make sure we've disabled the ROM.
601 	 */
602 	data = pci_read_config(dev, PCIR_ROMADDR, 4);
603 	data &= ~1;
604 	pci_write_config(dev, PCIR_ROMADDR, data, 4);
605 
606 	iqd = 0;
607 	irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &iqd,
608 	    RF_ACTIVE | RF_SHAREABLE);
609 	if (irq == NULL) {
610 		device_printf(dev, "could not allocate interrupt\n");
611 		goto bad;
612 	}
613 
614 	tval = 0;
615         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
616             "fwload_disable", &tval) == 0 && tval != 0) {
617 		isp->isp_confopts |= ISP_CFG_NORELOAD;
618 	}
619 	tval = 0;
620         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
621             "ignore_nvram", &tval) == 0 && tval != 0) {
622 		isp->isp_confopts |= ISP_CFG_NONVRAM;
623 	}
624 	tval = 0;
625         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
626             "fullduplex", &tval) == 0 && tval != 0) {
627 		isp->isp_confopts |= ISP_CFG_FULL_DUPLEX;
628 	}
629 #ifdef	ISP_FW_CRASH_DUMP
630 	tval = 0;
631         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
632             "fw_dump_enable", &tval) == 0 && tval != 0) {
633 		size_t amt = 0;
634 		if (IS_2200(isp)) {
635 			amt = QLA2200_RISC_IMAGE_DUMP_SIZE;
636 		} else if (IS_23XX(isp)) {
637 			amt = QLA2300_RISC_IMAGE_DUMP_SIZE;
638 		}
639 		if (amt) {
640 			FCPARAM(isp)->isp_dump_data =
641 			    malloc(amt, M_DEVBUF, M_WAITOK | M_ZERO);
642 		} else {
643 			device_printf(dev,
644 			    "f/w crash dumps not supported for this model\n");
645 		}
646 	}
647 #endif
648 
649 	sptr = 0;
650         if (resource_string_value(device_get_name(dev), device_get_unit(dev),
651             "topology", (const char **) &sptr) == 0 && sptr != 0) {
652 		if (strcmp(sptr, "lport") == 0) {
653 			isp->isp_confopts |= ISP_CFG_LPORT;
654 		} else if (strcmp(sptr, "nport") == 0) {
655 			isp->isp_confopts |= ISP_CFG_NPORT;
656 		} else if (strcmp(sptr, "lport-only") == 0) {
657 			isp->isp_confopts |= ISP_CFG_LPORT_ONLY;
658 		} else if (strcmp(sptr, "nport-only") == 0) {
659 			isp->isp_confopts |= ISP_CFG_NPORT_ONLY;
660 		}
661 	}
662 
663 	/*
664 	 * Because the resource_*_value functions can neither return
665 	 * 64 bit integer values, nor can they be directly coerced
666 	 * to interpret the right hand side of the assignment as
667 	 * you want them to interpret it, we have to force WWN
668 	 * hint replacement to specify WWN strings with a leading
669 	 * 'w' (e..g w50000000aaaa0001). Sigh.
670 	 */
671 	sptr = 0;
672 	tval = resource_string_value(device_get_name(dev), device_get_unit(dev),
673             "portwwn", (const char **) &sptr);
674 	if (tval == 0 && sptr != 0 && *sptr++ == 'w') {
675 		char *eptr = 0;
676 		isp->isp_osinfo.default_port_wwn = strtouq(sptr, &eptr, 16);
677 		if (eptr < sptr + 16 || isp->isp_osinfo.default_port_wwn == 0) {
678 			device_printf(dev, "mangled portwwn hint '%s'\n", sptr);
679 			isp->isp_osinfo.default_port_wwn = 0;
680 		} else {
681 			isp->isp_confopts |= ISP_CFG_OWNWWPN;
682 		}
683 	}
684 	if (isp->isp_osinfo.default_port_wwn == 0) {
685 		isp->isp_osinfo.default_port_wwn = 0x400000007F000009ull;
686 	}
687 
688 	sptr = 0;
689 	tval = resource_string_value(device_get_name(dev), device_get_unit(dev),
690             "nodewwn", (const char **) &sptr);
691 	if (tval == 0 && sptr != 0 && *sptr++ == 'w') {
692 		char *eptr = 0;
693 		isp->isp_osinfo.default_node_wwn = strtouq(sptr, &eptr, 16);
694 		if (eptr < sptr + 16 || isp->isp_osinfo.default_node_wwn == 0) {
695 			device_printf(dev, "mangled nodewwn hint '%s'\n", sptr);
696 			isp->isp_osinfo.default_node_wwn = 0;
697 		} else {
698 			isp->isp_confopts |= ISP_CFG_OWNWWNN;
699 		}
700 	}
701 	if (isp->isp_osinfo.default_node_wwn == 0) {
702 		isp->isp_osinfo.default_node_wwn = 0x400000007F000009ull;
703 	}
704 
705 	isp->isp_osinfo.default_id = -1;
706 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
707             "iid", &tval) == 0) {
708 		isp->isp_osinfo.default_id = tval;
709 		isp->isp_confopts |= ISP_CFG_OWNLOOPID;
710 	}
711 	if (isp->isp_osinfo.default_id == -1) {
712 		if (IS_FC(isp)) {
713 			isp->isp_osinfo.default_id = 109;
714 		} else {
715 			isp->isp_osinfo.default_id = 7;
716 		}
717 	}
718 
719 	isp_debug = 0;
720         (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
721             "debug", &isp_debug);
722 
723 	/* Make sure the lock is set up. */
724 	mtx_init(&isp->isp_osinfo.lock, "isp", NULL, MTX_DEF);
725 	locksetup++;
726 
727 	if (bus_setup_intr(dev, irq, ISP_IFLAGS, isp_pci_intr, isp, &pcs->ih)) {
728 		device_printf(dev, "could not setup interrupt\n");
729 		goto bad;
730 	}
731 
732 	/*
733 	 * Set up logging levels.
734 	 */
735 	if (isp_debug) {
736 		isp->isp_dblev = isp_debug;
737 	} else {
738 		isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR;
739 	}
740 	if (bootverbose)
741 		isp->isp_dblev |= ISP_LOGCONFIG|ISP_LOGINFO;
742 
743 	/*
744 	 * Last minute checks...
745 	 */
746 	if (IS_2312(isp)) {
747 		isp->isp_port = pci_get_function(dev);
748 	}
749 
750 	/*
751 	 * Make sure we're in reset state.
752 	 */
753 	ISP_LOCK(isp);
754 	isp_reset(isp);
755 	if (isp->isp_state != ISP_RESETSTATE) {
756 		ISP_UNLOCK(isp);
757 		goto bad;
758 	}
759 	isp_init(isp);
760 	if (isp->isp_role != ISP_ROLE_NONE && isp->isp_state != ISP_INITSTATE) {
761 		isp_uninit(isp);
762 		ISP_UNLOCK(isp);
763 		goto bad;
764 	}
765 	isp_attach(isp);
766 	if (isp->isp_role != ISP_ROLE_NONE && isp->isp_state != ISP_RUNSTATE) {
767 		isp_uninit(isp);
768 		ISP_UNLOCK(isp);
769 		goto bad;
770 	}
771 	/*
772 	 * XXXX: Here is where we might unload the f/w module
773 	 * XXXX: (or decrease the reference count to it).
774 	 */
775 	ISP_UNLOCK(isp);
776 	return (0);
777 
778 bad:
779 
780 	if (pcs && pcs->ih) {
781 		(void) bus_teardown_intr(dev, irq, pcs->ih);
782 	}
783 
784 	if (locksetup && isp) {
785 		mtx_destroy(&isp->isp_osinfo.lock);
786 	}
787 
788 	if (irq) {
789 		(void) bus_release_resource(dev, SYS_RES_IRQ, iqd, irq);
790 	}
791 
792 
793 	if (regs) {
794 		(void) bus_release_resource(dev, rtp, rgd, regs);
795 	}
796 
797 	if (pcs) {
798 		if (pcs->pci_isp.isp_param)
799 			free(pcs->pci_isp.isp_param, M_DEVBUF);
800 		free(pcs, M_DEVBUF);
801 	}
802 
803 	/*
804 	 * XXXX: Here is where we might unload the f/w module
805 	 * XXXX: (or decrease the reference count to it).
806 	 */
807 	return (ENXIO);
808 }
809 
810 static void
811 isp_pci_intr(void *arg)
812 {
813 	struct ispsoftc *isp = arg;
814 	u_int16_t isr, sema, mbox;
815 
816 	ISP_LOCK(isp);
817 	isp->isp_intcnt++;
818 	if (ISP_READ_ISR(isp, &isr, &sema, &mbox) == 0) {
819 		isp->isp_intbogus++;
820 	} else {
821 		int iok = isp->isp_osinfo.intsok;
822 		isp->isp_osinfo.intsok = 0;
823 		isp_intr(isp, isr, sema, mbox);
824 		isp->isp_osinfo.intsok = iok;
825 	}
826 	ISP_UNLOCK(isp);
827 }
828 
829 
830 #define	IspVirt2Off(a, x)	\
831 	(((struct isp_pcisoftc *)a)->pci_poff[((x) & _BLK_REG_MASK) >> \
832 	_BLK_REG_SHFT] + ((x) & 0xff))
833 
834 #define	BXR2(pcs, off)		\
835 	bus_space_read_2(pcs->pci_st, pcs->pci_sh, off)
836 #define	BXW2(pcs, off, v)	\
837 	bus_space_write_2(pcs->pci_st, pcs->pci_sh, off, v)
838 
839 
840 static INLINE int
841 isp_pci_rd_debounced(struct ispsoftc *isp, int off, u_int16_t *rp)
842 {
843 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
844 	u_int16_t val0, val1;
845 	int i = 0;
846 
847 	do {
848 		val0 = BXR2(pcs, IspVirt2Off(isp, off));
849 		val1 = BXR2(pcs, IspVirt2Off(isp, off));
850 	} while (val0 != val1 && ++i < 1000);
851 	if (val0 != val1) {
852 		return (1);
853 	}
854 	*rp = val0;
855 	return (0);
856 }
857 
858 static int
859 isp_pci_rd_isr(struct ispsoftc *isp, u_int16_t *isrp,
860     u_int16_t *semap, u_int16_t *mbp)
861 {
862 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
863 	u_int16_t isr, sema;
864 
865 	if (IS_2100(isp)) {
866 		if (isp_pci_rd_debounced(isp, BIU_ISR, &isr)) {
867 		    return (0);
868 		}
869 		if (isp_pci_rd_debounced(isp, BIU_SEMA, &sema)) {
870 		    return (0);
871 		}
872 	} else {
873 		isr = BXR2(pcs, IspVirt2Off(isp, BIU_ISR));
874 		sema = BXR2(pcs, IspVirt2Off(isp, BIU_SEMA));
875 	}
876 	isp_prt(isp, ISP_LOGDEBUG3, "ISR 0x%x SEMA 0x%x", isr, sema);
877 	isr &= INT_PENDING_MASK(isp);
878 	sema &= BIU_SEMA_LOCK;
879 	if (isr == 0 && sema == 0) {
880 		return (0);
881 	}
882 	*isrp = isr;
883 	if ((*semap = sema) != 0) {
884 		if (IS_2100(isp)) {
885 			if (isp_pci_rd_debounced(isp, OUTMAILBOX0, mbp)) {
886 				return (0);
887 			}
888 		} else {
889 			*mbp = BXR2(pcs, IspVirt2Off(isp, OUTMAILBOX0));
890 		}
891 	}
892 	return (1);
893 }
894 
895 static int
896 isp_pci_rd_isr_2300(struct ispsoftc *isp, u_int16_t *isrp,
897     u_int16_t *semap, u_int16_t *mbox0p)
898 {
899 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
900 	u_int32_t r2hisr;
901 
902 	if (!(BXR2(pcs, IspVirt2Off(isp, BIU_ISR) & BIU2100_ISR_RISC_INT))) {
903 		*isrp = 0;
904 		return (0);
905 	}
906 	r2hisr = bus_space_read_4(pcs->pci_st, pcs->pci_sh,
907 	    IspVirt2Off(pcs, BIU_R2HSTSLO));
908 	isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr);
909 	if ((r2hisr & BIU_R2HST_INTR) == 0) {
910 		*isrp = 0;
911 		return (0);
912 	}
913 	switch (r2hisr & BIU_R2HST_ISTAT_MASK) {
914 	case ISPR2HST_ROM_MBX_OK:
915 	case ISPR2HST_ROM_MBX_FAIL:
916 	case ISPR2HST_MBX_OK:
917 	case ISPR2HST_MBX_FAIL:
918 	case ISPR2HST_ASYNC_EVENT:
919 		*isrp = r2hisr & 0xffff;
920 		*mbox0p = (r2hisr >> 16);
921 		*semap = 1;
922 		return (1);
923 	case ISPR2HST_RIO_16:
924 		*isrp = r2hisr & 0xffff;
925 		*mbox0p = ASYNC_RIO1;
926 		*semap = 1;
927 		return (1);
928 	case ISPR2HST_FPOST:
929 		*isrp = r2hisr & 0xffff;
930 		*mbox0p = ASYNC_CMD_CMPLT;
931 		*semap = 1;
932 		return (1);
933 	case ISPR2HST_FPOST_CTIO:
934 		*isrp = r2hisr & 0xffff;
935 		*mbox0p = ASYNC_CTIO_DONE;
936 		*semap = 1;
937 		return (1);
938 	case ISPR2HST_RSPQ_UPDATE:
939 		*isrp = r2hisr & 0xffff;
940 		*mbox0p = 0;
941 		*semap = 0;
942 		return (1);
943 	default:
944 		return (0);
945 	}
946 }
947 
948 static u_int16_t
949 isp_pci_rd_reg(struct ispsoftc *isp, int regoff)
950 {
951 	u_int16_t rv;
952 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
953 	int oldconf = 0;
954 
955 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
956 		/*
957 		 * We will assume that someone has paused the RISC processor.
958 		 */
959 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
960 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
961 		    oldconf | BIU_PCI_CONF1_SXP);
962 	}
963 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
964 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
965 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
966 	}
967 	return (rv);
968 }
969 
970 static void
971 isp_pci_wr_reg(struct ispsoftc *isp, int regoff, u_int16_t val)
972 {
973 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
974 	int oldconf = 0;
975 
976 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
977 		/*
978 		 * We will assume that someone has paused the RISC processor.
979 		 */
980 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
981 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
982 		    oldconf | BIU_PCI_CONF1_SXP);
983 	}
984 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
985 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
986 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
987 	}
988 }
989 
990 static u_int16_t
991 isp_pci_rd_reg_1080(struct ispsoftc *isp, int regoff)
992 {
993 	u_int16_t rv, oc = 0;
994 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
995 
996 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
997 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
998 		u_int16_t tc;
999 		/*
1000 		 * We will assume that someone has paused the RISC processor.
1001 		 */
1002 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
1003 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
1004 		if (regoff & SXP_BANK1_SELECT)
1005 			tc |= BIU_PCI1080_CONF1_SXP1;
1006 		else
1007 			tc |= BIU_PCI1080_CONF1_SXP0;
1008 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
1009 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
1010 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
1011 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
1012 		    oc | BIU_PCI1080_CONF1_DMA);
1013 	}
1014 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
1015 	if (oc) {
1016 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
1017 	}
1018 	return (rv);
1019 }
1020 
1021 static void
1022 isp_pci_wr_reg_1080(struct ispsoftc *isp, int regoff, u_int16_t val)
1023 {
1024 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
1025 	int oc = 0;
1026 
1027 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
1028 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
1029 		u_int16_t tc;
1030 		/*
1031 		 * We will assume that someone has paused the RISC processor.
1032 		 */
1033 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
1034 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
1035 		if (regoff & SXP_BANK1_SELECT)
1036 			tc |= BIU_PCI1080_CONF1_SXP1;
1037 		else
1038 			tc |= BIU_PCI1080_CONF1_SXP0;
1039 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
1040 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
1041 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
1042 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
1043 		    oc | BIU_PCI1080_CONF1_DMA);
1044 	}
1045 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
1046 	if (oc) {
1047 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
1048 	}
1049 }
1050 
1051 
1052 struct imush {
1053 	struct ispsoftc *isp;
1054 	int error;
1055 };
1056 
1057 static void imc(void *, bus_dma_segment_t *, int, int);
1058 
1059 static void
1060 imc(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1061 {
1062 	struct imush *imushp = (struct imush *) arg;
1063 	if (error) {
1064 		imushp->error = error;
1065 	} else {
1066 		struct ispsoftc *isp =imushp->isp;
1067 		bus_addr_t addr = segs->ds_addr;
1068 
1069 		isp->isp_rquest_dma = addr;
1070 		addr += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1071 		isp->isp_result_dma = addr;
1072 		if (IS_FC(isp)) {
1073 			addr += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1074 			FCPARAM(isp)->isp_scdma = addr;
1075 		}
1076 	}
1077 }
1078 
1079 /*
1080  * Should be BUS_SPACE_MAXSIZE, but MAXPHYS is larger than BUS_SPACE_MAXSIZE
1081  */
1082 #define ISP_NSEGS ((MAXPHYS / PAGE_SIZE) + 1)
1083 
1084 static int
1085 isp_pci_mbxdma(struct ispsoftc *isp)
1086 {
1087 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1088 	caddr_t base;
1089 	u_int32_t len;
1090 	int i, error, ns;
1091 	bus_size_t alim, slim, xlim;
1092 	struct imush im;
1093 
1094 	/*
1095 	 * Already been here? If so, leave...
1096 	 */
1097 	if (isp->isp_rquest) {
1098 		return (0);
1099 	}
1100 
1101 #ifdef	ISP_DAC_SUPPORTED
1102 	alim = BUS_SPACE_UNRESTRICTED;
1103 	xlim = BUS_SPACE_MAXADDR_32BIT;
1104 #else
1105 	xlim = alim = BUS_SPACE_MAXADDR_32BIT;
1106 #endif
1107 	if (IS_ULTRA2(isp) || IS_FC(isp) || IS_1240(isp)) {
1108 		slim = BUS_SPACE_MAXADDR_32BIT;
1109 	} else {
1110 		slim = BUS_SPACE_MAXADDR_24BIT;
1111 	}
1112 
1113 	ISP_UNLOCK(isp);
1114 	if (bus_dma_tag_create(NULL, 1, slim+1, alim, alim,
1115 	    NULL, NULL, BUS_SPACE_MAXSIZE, ISP_NSEGS, slim, 0,
1116 	    busdma_lock_mutex, &Giant, &pcs->dmat)) {
1117 		isp_prt(isp, ISP_LOGERR, "could not create master dma tag");
1118 		ISP_LOCK(isp);
1119 		return(1);
1120 	}
1121 
1122 
1123 	len = sizeof (XS_T **) * isp->isp_maxcmds;
1124 	isp->isp_xflist = (XS_T **) malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
1125 	if (isp->isp_xflist == NULL) {
1126 		isp_prt(isp, ISP_LOGERR, "cannot alloc xflist array");
1127 		ISP_LOCK(isp);
1128 		return (1);
1129 	}
1130 #ifdef	ISP_TARGET_MODE
1131 	len = sizeof (void **) * isp->isp_maxcmds;
1132 	isp->isp_tgtlist = (void **) malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
1133 	if (isp->isp_tgtlist == NULL) {
1134 		isp_prt(isp, ISP_LOGERR, "cannot alloc tgtlist array");
1135 		ISP_LOCK(isp);
1136 		return (1);
1137 	}
1138 #endif
1139 	len = sizeof (bus_dmamap_t) * isp->isp_maxcmds;
1140 	pcs->dmaps = (bus_dmamap_t *) malloc(len, M_DEVBUF,  M_WAITOK);
1141 	if (pcs->dmaps == NULL) {
1142 		isp_prt(isp, ISP_LOGERR, "can't alloc dma map storage");
1143 		free(isp->isp_xflist, M_DEVBUF);
1144 #ifdef	ISP_TARGET_MODE
1145 		free(isp->isp_tgtlist, M_DEVBUF);
1146 #endif
1147 		ISP_LOCK(isp);
1148 		return (1);
1149 	}
1150 
1151 	/*
1152 	 * Allocate and map the request, result queues, plus FC scratch area.
1153 	 */
1154 	len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1155 	len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1156 	if (IS_FC(isp)) {
1157 		len += ISP2100_SCRLEN;
1158 	}
1159 
1160 	ns = (len / PAGE_SIZE) + 1;
1161 	if (bus_dma_tag_create(pcs->dmat, QENTRY_LEN, slim+1, xlim, xlim,
1162 	    NULL, NULL, len, ns, slim, 0, busdma_lock_mutex, &Giant,
1163 	    &isp->isp_cdmat)) {
1164 		isp_prt(isp, ISP_LOGERR,
1165 		    "cannot create a dma tag for control spaces");
1166 		free(pcs->dmaps, M_DEVBUF);
1167 		free(isp->isp_xflist, M_DEVBUF);
1168 #ifdef	ISP_TARGET_MODE
1169 		free(isp->isp_tgtlist, M_DEVBUF);
1170 #endif
1171 		ISP_LOCK(isp);
1172 		return (1);
1173 	}
1174 
1175 	if (bus_dmamem_alloc(isp->isp_cdmat, (void **)&base, BUS_DMA_NOWAIT,
1176 	    &isp->isp_cdmap) != 0) {
1177 		isp_prt(isp, ISP_LOGERR,
1178 		    "cannot allocate %d bytes of CCB memory", len);
1179 		bus_dma_tag_destroy(isp->isp_cdmat);
1180 		free(isp->isp_xflist, M_DEVBUF);
1181 #ifdef	ISP_TARGET_MODE
1182 		free(isp->isp_tgtlist, M_DEVBUF);
1183 #endif
1184 		free(pcs->dmaps, M_DEVBUF);
1185 		ISP_LOCK(isp);
1186 		return (1);
1187 	}
1188 
1189 	for (i = 0; i < isp->isp_maxcmds; i++) {
1190 		error = bus_dmamap_create(pcs->dmat, 0, &pcs->dmaps[i]);
1191 		if (error) {
1192 			isp_prt(isp, ISP_LOGERR,
1193 			    "error %d creating per-cmd DMA maps", error);
1194 			while (--i >= 0) {
1195 				bus_dmamap_destroy(pcs->dmat, pcs->dmaps[i]);
1196 			}
1197 			goto bad;
1198 		}
1199 	}
1200 
1201 	im.isp = isp;
1202 	im.error = 0;
1203 	bus_dmamap_load(isp->isp_cdmat, isp->isp_cdmap, base, len, imc, &im, 0);
1204 	if (im.error) {
1205 		isp_prt(isp, ISP_LOGERR,
1206 		    "error %d loading dma map for control areas", im.error);
1207 		goto bad;
1208 	}
1209 
1210 	isp->isp_rquest = base;
1211 	base += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1212 	isp->isp_result = base;
1213 	if (IS_FC(isp)) {
1214 		base += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1215 		FCPARAM(isp)->isp_scratch = base;
1216 	}
1217 	ISP_LOCK(isp);
1218 	return (0);
1219 
1220 bad:
1221 	bus_dmamem_free(isp->isp_cdmat, base, isp->isp_cdmap);
1222 	bus_dma_tag_destroy(isp->isp_cdmat);
1223 	free(isp->isp_xflist, M_DEVBUF);
1224 #ifdef	ISP_TARGET_MODE
1225 	free(isp->isp_tgtlist, M_DEVBUF);
1226 #endif
1227 	free(pcs->dmaps, M_DEVBUF);
1228 	ISP_LOCK(isp);
1229 	isp->isp_rquest = NULL;
1230 	return (1);
1231 }
1232 
1233 typedef struct {
1234 	struct ispsoftc *isp;
1235 	void *cmd_token;
1236 	void *rq;
1237 	u_int16_t *nxtip;
1238 	u_int16_t optr;
1239 	u_int error;
1240 } mush_t;
1241 
1242 #define	MUSHERR_NOQENTRIES	-2
1243 
1244 #ifdef	ISP_TARGET_MODE
1245 /*
1246  * We need to handle DMA for target mode differently from initiator mode.
1247  *
1248  * DMA mapping and construction and submission of CTIO Request Entries
1249  * and rendevous for completion are very tightly coupled because we start
1250  * out by knowing (per platform) how much data we have to move, but we
1251  * don't know, up front, how many DMA mapping segments will have to be used
1252  * cover that data, so we don't know how many CTIO Request Entries we
1253  * will end up using. Further, for performance reasons we may want to
1254  * (on the last CTIO for Fibre Channel), send status too (if all went well).
1255  *
1256  * The standard vector still goes through isp_pci_dmasetup, but the callback
1257  * for the DMA mapping routines comes here instead with the whole transfer
1258  * mapped and a pointer to a partially filled in already allocated request
1259  * queue entry. We finish the job.
1260  */
1261 static void tdma_mk(void *, bus_dma_segment_t *, int, int);
1262 static void tdma_mkfc(void *, bus_dma_segment_t *, int, int);
1263 
1264 #define	STATUS_WITH_DATA	1
1265 
1266 static void
1267 tdma_mk(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1268 {
1269 	mush_t *mp;
1270 	struct ccb_scsiio *csio;
1271 	struct ispsoftc *isp;
1272 	struct isp_pcisoftc *pcs;
1273 	bus_dmamap_t *dp;
1274 	ct_entry_t *cto, *qe;
1275 	u_int8_t scsi_status;
1276 	u_int16_t curi, nxti, handle;
1277 	u_int32_t sflags;
1278 	int32_t resid;
1279 	int nth_ctio, nctios, send_status;
1280 
1281 	mp = (mush_t *) arg;
1282 	if (error) {
1283 		mp->error = error;
1284 		return;
1285 	}
1286 
1287 	isp = mp->isp;
1288 	csio = mp->cmd_token;
1289 	cto = mp->rq;
1290 	curi = isp->isp_reqidx;
1291 	qe = (ct_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1292 
1293 	cto->ct_xfrlen = 0;
1294 	cto->ct_seg_count = 0;
1295 	cto->ct_header.rqs_entry_count = 1;
1296 	MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1297 
1298 	if (nseg == 0) {
1299 		cto->ct_header.rqs_seqno = 1;
1300 		isp_prt(isp, ISP_LOGTDEBUG1,
1301 		    "CTIO[%x] lun%d iid%d tag %x flgs %x sts %x ssts %x res %d",
1302 		    cto->ct_fwhandle, csio->ccb_h.target_lun, cto->ct_iid,
1303 		    cto->ct_tag_val, cto->ct_flags, cto->ct_status,
1304 		    cto->ct_scsi_status, cto->ct_resid);
1305 		ISP_TDQE(isp, "tdma_mk[no data]", curi, cto);
1306 		isp_put_ctio(isp, cto, qe);
1307 		return;
1308 	}
1309 
1310 	nctios = nseg / ISP_RQDSEG;
1311 	if (nseg % ISP_RQDSEG) {
1312 		nctios++;
1313 	}
1314 
1315 	/*
1316 	 * Save syshandle, and potentially any SCSI status, which we'll
1317 	 * reinsert on the last CTIO we're going to send.
1318 	 */
1319 
1320 	handle = cto->ct_syshandle;
1321 	cto->ct_syshandle = 0;
1322 	cto->ct_header.rqs_seqno = 0;
1323 	send_status = (cto->ct_flags & CT_SENDSTATUS) != 0;
1324 
1325 	if (send_status) {
1326 		sflags = cto->ct_flags & (CT_SENDSTATUS | CT_CCINCR);
1327 		cto->ct_flags &= ~(CT_SENDSTATUS | CT_CCINCR);
1328 		/*
1329 		 * Preserve residual.
1330 		 */
1331 		resid = cto->ct_resid;
1332 
1333 		/*
1334 		 * Save actual SCSI status.
1335 		 */
1336 		scsi_status = cto->ct_scsi_status;
1337 
1338 #ifndef	STATUS_WITH_DATA
1339 		sflags |= CT_NO_DATA;
1340 		/*
1341 		 * We can't do a status at the same time as a data CTIO, so
1342 		 * we need to synthesize an extra CTIO at this level.
1343 		 */
1344 		nctios++;
1345 #endif
1346 	} else {
1347 		sflags = scsi_status = resid = 0;
1348 	}
1349 
1350 	cto->ct_resid = 0;
1351 	cto->ct_scsi_status = 0;
1352 
1353 	pcs = (struct isp_pcisoftc *)isp;
1354 	dp = &pcs->dmaps[isp_handle_index(handle)];
1355 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1356 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1357 	} else {
1358 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1359 	}
1360 
1361 	nxti = *mp->nxtip;
1362 
1363 	for (nth_ctio = 0; nth_ctio < nctios; nth_ctio++) {
1364 		int seglim;
1365 
1366 		seglim = nseg;
1367 		if (seglim) {
1368 			int seg;
1369 
1370 			if (seglim > ISP_RQDSEG)
1371 				seglim = ISP_RQDSEG;
1372 
1373 			for (seg = 0; seg < seglim; seg++, nseg--) {
1374 				/*
1375 				 * Unlike normal initiator commands, we don't
1376 				 * do any swizzling here.
1377 				 */
1378 				cto->ct_dataseg[seg].ds_count = dm_segs->ds_len;
1379 				cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr;
1380 				cto->ct_xfrlen += dm_segs->ds_len;
1381 				dm_segs++;
1382 			}
1383 			cto->ct_seg_count = seg;
1384 		} else {
1385 			/*
1386 			 * This case should only happen when we're sending an
1387 			 * extra CTIO with final status.
1388 			 */
1389 			if (send_status == 0) {
1390 				isp_prt(isp, ISP_LOGWARN,
1391 				    "tdma_mk ran out of segments");
1392 				mp->error = EINVAL;
1393 				return;
1394 			}
1395 		}
1396 
1397 		/*
1398 		 * At this point, the fields ct_lun, ct_iid, ct_tagval,
1399 		 * ct_tagtype, and ct_timeout have been carried over
1400 		 * unchanged from what our caller had set.
1401 		 *
1402 		 * The dataseg fields and the seg_count fields we just got
1403 		 * through setting. The data direction we've preserved all
1404 		 * along and only clear it if we're now sending status.
1405 		 */
1406 
1407 		if (nth_ctio == nctios - 1) {
1408 			/*
1409 			 * We're the last in a sequence of CTIOs, so mark
1410 			 * this CTIO and save the handle to the CCB such that
1411 			 * when this CTIO completes we can free dma resources
1412 			 * and do whatever else we need to do to finish the
1413 			 * rest of the command. We *don't* give this to the
1414 			 * firmware to work on- the caller will do that.
1415 			 */
1416 
1417 			cto->ct_syshandle = handle;
1418 			cto->ct_header.rqs_seqno = 1;
1419 
1420 			if (send_status) {
1421 				cto->ct_scsi_status = scsi_status;
1422 				cto->ct_flags |= sflags;
1423 				cto->ct_resid = resid;
1424 			}
1425 			if (send_status) {
1426 				isp_prt(isp, ISP_LOGTDEBUG1,
1427 				    "CTIO[%x] lun%d iid %d tag %x ct_flags %x "
1428 				    "scsi status %x resid %d",
1429 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1430 				    cto->ct_iid, cto->ct_tag_val, cto->ct_flags,
1431 				    cto->ct_scsi_status, cto->ct_resid);
1432 			} else {
1433 				isp_prt(isp, ISP_LOGTDEBUG1,
1434 				    "CTIO[%x] lun%d iid%d tag %x ct_flags 0x%x",
1435 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1436 				    cto->ct_iid, cto->ct_tag_val,
1437 				    cto->ct_flags);
1438 			}
1439 			isp_put_ctio(isp, cto, qe);
1440 			ISP_TDQE(isp, "last tdma_mk", curi, cto);
1441 			if (nctios > 1) {
1442 				MEMORYBARRIER(isp, SYNC_REQUEST,
1443 				    curi, QENTRY_LEN);
1444 			}
1445 		} else {
1446 			ct_entry_t *oqe = qe;
1447 
1448 			/*
1449 			 * Make sure syshandle fields are clean
1450 			 */
1451 			cto->ct_syshandle = 0;
1452 			cto->ct_header.rqs_seqno = 0;
1453 
1454 			isp_prt(isp, ISP_LOGTDEBUG1,
1455 			    "CTIO[%x] lun%d for ID%d ct_flags 0x%x",
1456 			    cto->ct_fwhandle, csio->ccb_h.target_lun,
1457 			    cto->ct_iid, cto->ct_flags);
1458 
1459 			/*
1460 			 * Get a new CTIO
1461 			 */
1462 			qe = (ct_entry_t *)
1463 			    ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1464 			nxti = ISP_NXT_QENTRY(nxti, RQUEST_QUEUE_LEN(isp));
1465 			if (nxti == mp->optr) {
1466 				isp_prt(isp, ISP_LOGTDEBUG0,
1467 				    "Queue Overflow in tdma_mk");
1468 				mp->error = MUSHERR_NOQENTRIES;
1469 				return;
1470 			}
1471 
1472 			/*
1473 			 * Now that we're done with the old CTIO,
1474 			 * flush it out to the request queue.
1475 			 */
1476 			ISP_TDQE(isp, "dma_tgt_fc", curi, cto);
1477 			isp_put_ctio(isp, cto, oqe);
1478 			if (nth_ctio != 0) {
1479 				MEMORYBARRIER(isp, SYNC_REQUEST, curi,
1480 				    QENTRY_LEN);
1481 			}
1482 			curi = ISP_NXT_QENTRY(curi, RQUEST_QUEUE_LEN(isp));
1483 
1484 			/*
1485 			 * Reset some fields in the CTIO so we can reuse
1486 			 * for the next one we'll flush to the request
1487 			 * queue.
1488 			 */
1489 			cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
1490 			cto->ct_header.rqs_entry_count = 1;
1491 			cto->ct_header.rqs_flags = 0;
1492 			cto->ct_status = 0;
1493 			cto->ct_scsi_status = 0;
1494 			cto->ct_xfrlen = 0;
1495 			cto->ct_resid = 0;
1496 			cto->ct_seg_count = 0;
1497 			MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1498 		}
1499 	}
1500 	*mp->nxtip = nxti;
1501 }
1502 
1503 /*
1504  * We don't have to do multiple CTIOs here. Instead, we can just do
1505  * continuation segments as needed. This greatly simplifies the code
1506  * improves performance.
1507  */
1508 
1509 static void
1510 tdma_mkfc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1511 {
1512 	mush_t *mp;
1513 	struct ccb_scsiio *csio;
1514 	struct ispsoftc *isp;
1515 	ct2_entry_t *cto, *qe;
1516 	u_int16_t curi, nxti;
1517 	int segcnt;
1518 
1519 	mp = (mush_t *) arg;
1520 	if (error) {
1521 		mp->error = error;
1522 		return;
1523 	}
1524 
1525 	isp = mp->isp;
1526 	csio = mp->cmd_token;
1527 	cto = mp->rq;
1528 
1529 	curi = isp->isp_reqidx;
1530 	qe = (ct2_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1531 
1532 	if (nseg == 0) {
1533 		if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE1) {
1534 			isp_prt(isp, ISP_LOGWARN,
1535 			    "dma2_tgt_fc, a status CTIO2 without MODE1 "
1536 			    "set (0x%x)", cto->ct_flags);
1537 			mp->error = EINVAL;
1538 			return;
1539 		}
1540 		/*
1541 		 * We preserve ct_lun, ct_iid, ct_rxid. We set the data
1542 		 * flags to NO DATA and clear relative offset flags.
1543 		 * We preserve the ct_resid and the response area.
1544 		 */
1545 		cto->ct_header.rqs_seqno = 1;
1546 		cto->ct_seg_count = 0;
1547 		cto->ct_reloff = 0;
1548 		isp_prt(isp, ISP_LOGTDEBUG1,
1549 		    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts "
1550 		    "0x%x res %d", cto->ct_rxid, csio->ccb_h.target_lun,
1551 		    cto->ct_iid, cto->ct_flags, cto->ct_status,
1552 		    cto->rsp.m1.ct_scsi_status, cto->ct_resid);
1553 		isp_put_ctio2(isp, cto, qe);
1554 		ISP_TDQE(isp, "dma2_tgt_fc[no data]", curi, qe);
1555 		return;
1556 	}
1557 
1558 	if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE0) {
1559 		isp_prt(isp, ISP_LOGERR,
1560 		    "dma2_tgt_fc, a data CTIO2 without MODE0 set "
1561 		    "(0x%x)", cto->ct_flags);
1562 		mp->error = EINVAL;
1563 		return;
1564 	}
1565 
1566 
1567 	nxti = *mp->nxtip;
1568 
1569 	/*
1570 	 * Set up the CTIO2 data segments.
1571 	 */
1572 	for (segcnt = 0; cto->ct_seg_count < ISP_RQDSEG_T2 && segcnt < nseg;
1573 	    cto->ct_seg_count++, segcnt++) {
1574 		cto->rsp.m0.ct_dataseg[cto->ct_seg_count].ds_base =
1575 		    dm_segs[segcnt].ds_addr;
1576 		cto->rsp.m0.ct_dataseg[cto->ct_seg_count].ds_count =
1577 		    dm_segs[segcnt].ds_len;
1578 		cto->rsp.m0.ct_xfrlen += dm_segs[segcnt].ds_len;
1579 		isp_prt(isp, ISP_LOGTDEBUG1,
1580 		    "isp_send_ctio2: ent0[%d]0x%llx:%lld",
1581 		    cto->ct_seg_count, (long long)dm_segs[segcnt].ds_addr,
1582 		    (long long)dm_segs[segcnt].ds_len);
1583 	}
1584 
1585 	while (segcnt < nseg) {
1586 		u_int16_t curip;
1587 		int seg;
1588 		ispcontreq_t local, *crq = &local, *qep;
1589 
1590 		qep = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1591 		curip = nxti;
1592 		nxti = ISP_NXT_QENTRY(curip, RQUEST_QUEUE_LEN(isp));
1593 		if (nxti == mp->optr) {
1594 			ISP_UNLOCK(isp);
1595 			isp_prt(isp, ISP_LOGTDEBUG0,
1596 			    "tdma_mkfc: request queue overflow");
1597 			mp->error = MUSHERR_NOQENTRIES;
1598 			return;
1599 		}
1600 		cto->ct_header.rqs_entry_count++;
1601 		MEMZERO((void *)crq, sizeof (*crq));
1602 		crq->req_header.rqs_entry_count = 1;
1603 		crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
1604 		for (seg = 0; segcnt < nseg && seg < ISP_CDSEG;
1605 		    segcnt++, seg++) {
1606 			crq->req_dataseg[seg].ds_base = dm_segs[segcnt].ds_addr;
1607 			crq->req_dataseg[seg].ds_count = dm_segs[segcnt].ds_len;
1608 			isp_prt(isp, ISP_LOGTDEBUG1,
1609 			    "isp_send_ctio2: ent%d[%d]0x%llx:%lld",
1610 			    cto->ct_header.rqs_entry_count-1, seg,
1611 			    (long long) dm_segs[segcnt].ds_addr,
1612 			    (long long) dm_segs[segcnt].ds_len);
1613 			cto->rsp.m0.ct_xfrlen += dm_segs[segcnt].ds_len;
1614 			cto->ct_seg_count++;
1615 		}
1616 		MEMORYBARRIER(isp, SYNC_REQUEST, curip, QENTRY_LEN);
1617 		isp_put_cont_req(isp, crq, qep);
1618 		ISP_TDQE(isp, "cont entry", curi, qep);
1619 	}
1620 
1621 	/*
1622 	 * No do final twiddling for the CTIO itself.
1623 	 */
1624 	cto->ct_header.rqs_seqno = 1;
1625 	isp_prt(isp, ISP_LOGTDEBUG1,
1626 	    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts 0x%x resid %d",
1627 	    cto->ct_rxid, csio->ccb_h.target_lun, (int) cto->ct_iid,
1628 	    cto->ct_flags, cto->ct_status, cto->rsp.m1.ct_scsi_status,
1629 	    cto->ct_resid);
1630 	isp_put_ctio2(isp, cto, qe);
1631 	ISP_TDQE(isp, "last dma2_tgt_fc", curi, qe);
1632 	*mp->nxtip = nxti;
1633 }
1634 #endif
1635 
1636 static void dma2(void *, bus_dma_segment_t *, int, int);
1637 
1638 #ifdef	PAE
1639 #define	LOWD(x)		((uint32_t) x)
1640 #define	HIWD(x)		((uint32_t) (x >> 32))
1641 
1642 static void
1643 dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1644 {
1645 	mush_t *mp;
1646 	struct ispsoftc *isp;
1647 	struct ccb_scsiio *csio;
1648 	struct isp_pcisoftc *pcs;
1649 	bus_dmamap_t *dp;
1650 	bus_dma_segment_t *eseg;
1651 	ispreq64_t *rq;
1652 	int seglim, datalen;
1653 	u_int16_t nxti;
1654 
1655 	mp = (mush_t *) arg;
1656 	if (error) {
1657 		mp->error = error;
1658 		return;
1659 	}
1660 
1661 	if (nseg < 1) {
1662 		isp_prt(mp->isp, ISP_LOGERR, "bad segment count (%d)", nseg);
1663 		mp->error = EFAULT;
1664 		return;
1665 	}
1666 	csio = mp->cmd_token;
1667 	isp = mp->isp;
1668 	rq = mp->rq;
1669 	pcs = (struct isp_pcisoftc *)mp->isp;
1670 	dp = &pcs->dmaps[isp_handle_index(rq->req_handle)];
1671 	nxti = *mp->nxtip;
1672 
1673 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1674 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1675 	} else {
1676 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1677 	}
1678 	datalen = XS_XFRLEN(csio);
1679 
1680 	/*
1681 	 * We're passed an initial partially filled in entry that
1682 	 * has most fields filled in except for data transfer
1683 	 * related values.
1684 	 *
1685 	 * Our job is to fill in the initial request queue entry and
1686 	 * then to start allocating and filling in continuation entries
1687 	 * until we've covered the entire transfer.
1688 	 */
1689 
1690 	if (IS_FC(isp)) {
1691 		rq->req_header.rqs_entry_type = RQSTYPE_T3RQS;
1692 		seglim = ISP_RQDSEG_T3;
1693 		((ispreqt3_t *)rq)->req_totalcnt = datalen;
1694 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1695 			((ispreqt3_t *)rq)->req_flags |= REQFLAG_DATA_IN;
1696 		} else {
1697 			((ispreqt3_t *)rq)->req_flags |= REQFLAG_DATA_OUT;
1698 		}
1699 	} else {
1700 		rq->req_header.rqs_entry_type = RQSTYPE_A64;
1701 		if (csio->cdb_len > 12) {
1702 			seglim = 0;
1703 		} else {
1704 			seglim = ISP_RQDSEG_A64;
1705 		}
1706 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1707 			rq->req_flags |= REQFLAG_DATA_IN;
1708 		} else {
1709 			rq->req_flags |= REQFLAG_DATA_OUT;
1710 		}
1711 	}
1712 
1713 	eseg = dm_segs + nseg;
1714 
1715 	while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
1716 		if (IS_FC(isp)) {
1717 			ispreqt3_t *rq3 = (ispreqt3_t *)rq;
1718 			rq3->req_dataseg[rq3->req_seg_count].ds_base =
1719 			    LOWD(dm_segs->ds_addr);
1720 			rq3->req_dataseg[rq3->req_seg_count].ds_basehi =
1721 			    HIWD(dm_segs->ds_addr);
1722 			rq3->req_dataseg[rq3->req_seg_count].ds_count =
1723 			    dm_segs->ds_len;
1724 		} else {
1725 			rq->req_dataseg[rq->req_seg_count].ds_base =
1726 			    LOWD(dm_segs->ds_addr);
1727 			rq->req_dataseg[rq->req_seg_count].ds_basehi =
1728 			    HIWD(dm_segs->ds_addr);
1729 			rq->req_dataseg[rq->req_seg_count].ds_count =
1730 			    dm_segs->ds_len;
1731 		}
1732 		datalen -= dm_segs->ds_len;
1733 		rq->req_seg_count++;
1734 		dm_segs++;
1735 	}
1736 
1737 	while (datalen > 0 && dm_segs != eseg) {
1738 		u_int16_t onxti;
1739 		ispcontreq64_t local, *crq = &local, *cqe;
1740 
1741 		cqe = (ispcontreq64_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1742 		onxti = nxti;
1743 		nxti = ISP_NXT_QENTRY(onxti, RQUEST_QUEUE_LEN(isp));
1744 		if (nxti == mp->optr) {
1745 			isp_prt(isp, ISP_LOGDEBUG0, "Request Queue Overflow++");
1746 			mp->error = MUSHERR_NOQENTRIES;
1747 			return;
1748 		}
1749 		rq->req_header.rqs_entry_count++;
1750 		MEMZERO((void *)crq, sizeof (*crq));
1751 		crq->req_header.rqs_entry_count = 1;
1752 		crq->req_header.rqs_entry_type = RQSTYPE_A64_CONT;
1753 
1754 		seglim = 0;
1755 		while (datalen > 0 && seglim < ISP_CDSEG64 && dm_segs != eseg) {
1756 			crq->req_dataseg[seglim].ds_base =
1757 			    LOWD(dm_segs->ds_addr);
1758 			crq->req_dataseg[seglim].ds_basehi =
1759 			    HIWD(dm_segs->ds_addr);
1760 			crq->req_dataseg[seglim].ds_count =
1761 			    dm_segs->ds_len;
1762 			rq->req_seg_count++;
1763 			dm_segs++;
1764 			seglim++;
1765 			datalen -= dm_segs->ds_len;
1766 		}
1767 		isp_put_cont64_req(isp, crq, cqe);
1768 		MEMORYBARRIER(isp, SYNC_REQUEST, onxti, QENTRY_LEN);
1769 	}
1770 	*mp->nxtip = nxti;
1771 }
1772 #else
1773 static void
1774 dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1775 {
1776 	mush_t *mp;
1777 	struct ispsoftc *isp;
1778 	struct ccb_scsiio *csio;
1779 	struct isp_pcisoftc *pcs;
1780 	bus_dmamap_t *dp;
1781 	bus_dma_segment_t *eseg;
1782 	ispreq_t *rq;
1783 	int seglim, datalen;
1784 	u_int16_t nxti;
1785 
1786 	mp = (mush_t *) arg;
1787 	if (error) {
1788 		mp->error = error;
1789 		return;
1790 	}
1791 
1792 	if (nseg < 1) {
1793 		isp_prt(mp->isp, ISP_LOGERR, "bad segment count (%d)", nseg);
1794 		mp->error = EFAULT;
1795 		return;
1796 	}
1797 	csio = mp->cmd_token;
1798 	isp = mp->isp;
1799 	rq = mp->rq;
1800 	pcs = (struct isp_pcisoftc *)mp->isp;
1801 	dp = &pcs->dmaps[isp_handle_index(rq->req_handle)];
1802 	nxti = *mp->nxtip;
1803 
1804 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1805 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1806 	} else {
1807 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1808 	}
1809 
1810 	datalen = XS_XFRLEN(csio);
1811 
1812 	/*
1813 	 * We're passed an initial partially filled in entry that
1814 	 * has most fields filled in except for data transfer
1815 	 * related values.
1816 	 *
1817 	 * Our job is to fill in the initial request queue entry and
1818 	 * then to start allocating and filling in continuation entries
1819 	 * until we've covered the entire transfer.
1820 	 */
1821 
1822 	if (IS_FC(isp)) {
1823 		seglim = ISP_RQDSEG_T2;
1824 		((ispreqt2_t *)rq)->req_totalcnt = datalen;
1825 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1826 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN;
1827 		} else {
1828 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT;
1829 		}
1830 	} else {
1831 		if (csio->cdb_len > 12) {
1832 			seglim = 0;
1833 		} else {
1834 			seglim = ISP_RQDSEG;
1835 		}
1836 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1837 			rq->req_flags |= REQFLAG_DATA_IN;
1838 		} else {
1839 			rq->req_flags |= REQFLAG_DATA_OUT;
1840 		}
1841 	}
1842 
1843 	eseg = dm_segs + nseg;
1844 
1845 	while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
1846 		if (IS_FC(isp)) {
1847 			ispreqt2_t *rq2 = (ispreqt2_t *)rq;
1848 			rq2->req_dataseg[rq2->req_seg_count].ds_base =
1849 			    dm_segs->ds_addr;
1850 			rq2->req_dataseg[rq2->req_seg_count].ds_count =
1851 			    dm_segs->ds_len;
1852 		} else {
1853 			rq->req_dataseg[rq->req_seg_count].ds_base =
1854 				dm_segs->ds_addr;
1855 			rq->req_dataseg[rq->req_seg_count].ds_count =
1856 				dm_segs->ds_len;
1857 		}
1858 		datalen -= dm_segs->ds_len;
1859 		rq->req_seg_count++;
1860 		dm_segs++;
1861 	}
1862 
1863 	while (datalen > 0 && dm_segs != eseg) {
1864 		u_int16_t onxti;
1865 		ispcontreq_t local, *crq = &local, *cqe;
1866 
1867 		cqe = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1868 		onxti = nxti;
1869 		nxti = ISP_NXT_QENTRY(onxti, RQUEST_QUEUE_LEN(isp));
1870 		if (nxti == mp->optr) {
1871 			isp_prt(isp, ISP_LOGDEBUG0, "Request Queue Overflow++");
1872 			mp->error = MUSHERR_NOQENTRIES;
1873 			return;
1874 		}
1875 		rq->req_header.rqs_entry_count++;
1876 		MEMZERO((void *)crq, sizeof (*crq));
1877 		crq->req_header.rqs_entry_count = 1;
1878 		crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
1879 
1880 		seglim = 0;
1881 		while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) {
1882 			crq->req_dataseg[seglim].ds_base =
1883 			    dm_segs->ds_addr;
1884 			crq->req_dataseg[seglim].ds_count =
1885 			    dm_segs->ds_len;
1886 			rq->req_seg_count++;
1887 			dm_segs++;
1888 			seglim++;
1889 			datalen -= dm_segs->ds_len;
1890 		}
1891 		isp_put_cont_req(isp, crq, cqe);
1892 		MEMORYBARRIER(isp, SYNC_REQUEST, onxti, QENTRY_LEN);
1893 	}
1894 	*mp->nxtip = nxti;
1895 }
1896 #endif
1897 
1898 static int
1899 isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq,
1900 	u_int16_t *nxtip, u_int16_t optr)
1901 {
1902 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1903 	ispreq_t *qep;
1904 	bus_dmamap_t *dp = NULL;
1905 	mush_t mush, *mp;
1906 	void (*eptr)(void *, bus_dma_segment_t *, int, int);
1907 
1908 	qep = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, isp->isp_reqidx);
1909 #ifdef	ISP_TARGET_MODE
1910 	if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) {
1911 		if (IS_FC(isp)) {
1912 			eptr = tdma_mkfc;
1913 		} else {
1914 			eptr = tdma_mk;
1915 		}
1916 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1917 		    (csio->dxfer_len == 0)) {
1918 			mp = &mush;
1919 			mp->isp = isp;
1920 			mp->cmd_token = csio;
1921 			mp->rq = rq;	/* really a ct_entry_t or ct2_entry_t */
1922 			mp->nxtip = nxtip;
1923 			mp->optr = optr;
1924 			mp->error = 0;
1925 			(*eptr)(mp, NULL, 0, 0);
1926 			goto mbxsync;
1927 		}
1928 	} else
1929 #endif
1930 	eptr = dma2;
1931 
1932 
1933 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1934 	    (csio->dxfer_len == 0)) {
1935 		rq->req_seg_count = 1;
1936 		goto mbxsync;
1937 	}
1938 
1939 	/*
1940 	 * Do a virtual grapevine step to collect info for
1941 	 * the callback dma allocation that we have to use...
1942 	 */
1943 	mp = &mush;
1944 	mp->isp = isp;
1945 	mp->cmd_token = csio;
1946 	mp->rq = rq;
1947 	mp->nxtip = nxtip;
1948 	mp->optr = optr;
1949 	mp->error = 0;
1950 
1951 	if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
1952 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) {
1953 			int error, s;
1954 			dp = &pcs->dmaps[isp_handle_index(rq->req_handle)];
1955 			s = splsoftvm();
1956 			error = bus_dmamap_load(pcs->dmat, *dp,
1957 			    csio->data_ptr, csio->dxfer_len, eptr, mp, 0);
1958 			if (error == EINPROGRESS) {
1959 				bus_dmamap_unload(pcs->dmat, *dp);
1960 				mp->error = EINVAL;
1961 				isp_prt(isp, ISP_LOGERR,
1962 				    "deferred dma allocation not supported");
1963 			} else if (error && mp->error == 0) {
1964 #ifdef	DIAGNOSTIC
1965 				isp_prt(isp, ISP_LOGERR,
1966 				    "error %d in dma mapping code", error);
1967 #endif
1968 				mp->error = error;
1969 			}
1970 			splx(s);
1971 		} else {
1972 			/* Pointer to physical buffer */
1973 			struct bus_dma_segment seg;
1974 			seg.ds_addr = (bus_addr_t)(vm_offset_t)csio->data_ptr;
1975 			seg.ds_len = csio->dxfer_len;
1976 			(*eptr)(mp, &seg, 1, 0);
1977 		}
1978 	} else {
1979 		struct bus_dma_segment *segs;
1980 
1981 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) {
1982 			isp_prt(isp, ISP_LOGERR,
1983 			    "Physical segment pointers unsupported");
1984 			mp->error = EINVAL;
1985 		} else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
1986 			isp_prt(isp, ISP_LOGERR,
1987 			    "Virtual segment addresses unsupported");
1988 			mp->error = EINVAL;
1989 		} else {
1990 			/* Just use the segments provided */
1991 			segs = (struct bus_dma_segment *) csio->data_ptr;
1992 			(*eptr)(mp, segs, csio->sglist_cnt, 0);
1993 		}
1994 	}
1995 	if (mp->error) {
1996 		int retval = CMD_COMPLETE;
1997 		if (mp->error == MUSHERR_NOQENTRIES) {
1998 			retval = CMD_EAGAIN;
1999 		} else if (mp->error == EFBIG) {
2000 			XS_SETERR(csio, CAM_REQ_TOO_BIG);
2001 		} else if (mp->error == EINVAL) {
2002 			XS_SETERR(csio, CAM_REQ_INVALID);
2003 		} else {
2004 			XS_SETERR(csio, CAM_UNREC_HBA_ERROR);
2005 		}
2006 		return (retval);
2007 	}
2008 mbxsync:
2009 	switch (rq->req_header.rqs_entry_type) {
2010 	case RQSTYPE_REQUEST:
2011 		isp_put_request(isp, rq, qep);
2012 		break;
2013 	case RQSTYPE_CMDONLY:
2014 		isp_put_extended_request(isp, (ispextreq_t *)rq,
2015 		    (ispextreq_t *)qep);
2016 		break;
2017 	case RQSTYPE_T2RQS:
2018 		isp_put_request_t2(isp, (ispreqt2_t *) rq, (ispreqt2_t *) qep);
2019 		break;
2020 	case RQSTYPE_A64:
2021 	case RQSTYPE_T3RQS:
2022 		isp_put_request_t3(isp, (ispreqt3_t *) rq, (ispreqt3_t *) qep);
2023 		break;
2024 	}
2025 	return (CMD_QUEUED);
2026 }
2027 
2028 static void
2029 isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int16_t handle)
2030 {
2031 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
2032 	bus_dmamap_t *dp = &pcs->dmaps[isp_handle_index(handle)];
2033 	if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
2034 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_POSTREAD);
2035 	} else {
2036 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_POSTWRITE);
2037 	}
2038 	bus_dmamap_unload(pcs->dmat, *dp);
2039 }
2040 
2041 
2042 static void
2043 isp_pci_reset1(struct ispsoftc *isp)
2044 {
2045 	/* Make sure the BIOS is disabled */
2046 	isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS);
2047 	/* and enable interrupts */
2048 	ENABLE_INTS(isp);
2049 }
2050 
2051 static void
2052 isp_pci_dumpregs(struct ispsoftc *isp, const char *msg)
2053 {
2054 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
2055 	if (msg)
2056 		printf("%s: %s\n", device_get_nameunit(isp->isp_dev), msg);
2057 	else
2058 		printf("%s:\n", device_get_nameunit(isp->isp_dev));
2059 	if (IS_SCSI(isp))
2060 		printf("    biu_conf1=%x", ISP_READ(isp, BIU_CONF1));
2061 	else
2062 		printf("    biu_csr=%x", ISP_READ(isp, BIU2100_CSR));
2063 	printf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR),
2064 	    ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA));
2065 	printf("risc_hccr=%x\n", ISP_READ(isp, HCCR));
2066 
2067 
2068 	if (IS_SCSI(isp)) {
2069 		ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
2070 		printf("    cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n",
2071 			ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS),
2072 			ISP_READ(isp, CDMA_FIFO_STS));
2073 		printf("    ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n",
2074 			ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS),
2075 			ISP_READ(isp, DDMA_FIFO_STS));
2076 		printf("    sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n",
2077 			ISP_READ(isp, SXP_INTERRUPT),
2078 			ISP_READ(isp, SXP_GROSS_ERR),
2079 			ISP_READ(isp, SXP_PINS_CTRL));
2080 		ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
2081 	}
2082 	printf("    mbox regs: %x %x %x %x %x\n",
2083 	    ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1),
2084 	    ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3),
2085 	    ISP_READ(isp, OUTMAILBOX4));
2086 	printf("    PCI Status Command/Status=%x\n",
2087 	    pci_read_config(pcs->pci_dev, PCIR_COMMAND, 1));
2088 }
2089