xref: /freebsd/sys/dev/isci/scil/scif_sas_design.h (revision 5e3190f700637fcfc1a52daeaa4a031fdd2557c7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of version 2 of the GNU General Public License as
13  * published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
23  * The full GNU General Public License is included in this distribution
24  * in the file called LICENSE.GPL.
25  *
26  * BSD LICENSE
27  *
28  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  *
35  *   * Redistributions of source code must retain the above copyright
36  *     notice, this list of conditions and the following disclaimer.
37  *   * Redistributions in binary form must reproduce the above copyright
38  *     notice, this list of conditions and the following disclaimer in
39  *     the documentation and/or other materials provided with the
40  *     distribution.
41  *
42  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
43  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
44  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
45  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
46  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
47  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
48  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
49  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
50  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
51  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
52  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
53  */
54 #ifndef _SCIF_SAS_DESIGN_H_
55 #define _SCIF_SAS_DESIGN_H_
56 
57 /**
58 @page scif_sas_design_page SCIF SAS High Level Design
59 
60 <b>Authors:</b>
61 - Nathan Marushak
62 
63 <b>Key Contributors:</b>
64 - Richard Boyd
65 
66 @section scif_sas_scope_and_audience Scope and Audience
67 
68 This document provides design information relating to the SAS specific
69 implementation of the SCI Framework.  Driver developers are the primary
70 audience for this document.  The reader is expected to have an understanding
71 of the SCU Software Architecture Specification, the Storage Controller
72 Interface Specification, and the SCI Base Design.
73 
74 @section scif_sas_overview Overview
75 
76 To begin, it's important to discuss the utilization of state machines in
77 the design.  State machines are pervasive in this design, because of the
78 abilities they provide.  A properly implemented state machine allows the
79 developer to code for a specific task.  The developer is not encumbered
80 with needed to handle other situations all in a single function.  For
81 example, if a specific event can only occur when the object is in a specific
82 state, then the event handler is added to handle such an event.  Thus, a
83 single function is not spliced to handle multiple events under various
84 potentially disparate conditions.
85 
86 Additionally, the SCI Base Design document specifies a number of state
87 machines, objects, and methods that are heavily utilized by this design.
88 Please refer to Base Design specification for further information.
89 
90 Many of the framework objects have state machines associated with them.
91 As a result, there are a number of state entrance and exit methods as well
92 as event handlers for each individual state.  This design places all of
93 the state entrance and exit methods for a given state machine into a single
94 file (e.g. scif_sas_controller_states.c).  Furthermore, all of the state
95 event handler methods are also placed into a single file (e.g.
96 scif_sas_controller_state_handlers.c).  This format is reused for each
97 object that contains state machine(s).
98 
99 Some of the SAS framework objects contain sub-state machines.  These
100 sub-state machines are started upon entrance to the super-state and stopped
101 upon exit of the super-state.
102 
103 All other method, data, constant description information will be found in
104 the remaining source file (e.g. scif_sas_controller.c).  As a result, please
105 be sure to follow the link to that specific object/file definition for
106 further information.
107 
108 @note Currently a large number of function pointers are utilized during the
109 course of a normal IO request.  Once stability of the driver is achieved,
110 performance improvements will be made as needed.  This likely will include
111 removal of the function pointers from the IO path.
112 
113 @section scif_sas_use_cases Use Cases
114 
115 The following use case diagram depicts the high-level user interactions with
116 the SAS framework.  This diagram does not encompass all use cases implemented
117 in the system.  The low-level design section will contain detailed use cases
118 for each significant object and their associated detailed sequences and/or
119 activities.  For the purposes of readability, the use cases are not directly
120 connected to the associated actor utilizing the use case.  Instead naming
121 is utilized to different which actor is involved with the use case.
122 
123 Actors:
124 - The Framework user also called the OS Specific Driver initiates activities in
125 the Framework.
126 - The SCI Core calls back into the Framework as a result of an operation either
127 started by the OS Specific Driver or by the Framework itself.
128 
129 @image latex Use_Case_Diagram__SCIF_SAS__Use_Cases.eps "SCIF SAS OS Use Cases" width=11cm
130 @image html Use_Case_Diagram__SCIF_SAS__Use_Cases.jpg "SCIF SAS OS Use Cases"
131 
132 @section scif_sas_class_hierarchy Class Hierarchy
133 
134 This section delineates the high-level class organization for the SCIF_SAS
135 component.  Details concerning each class will be found in the corresponding
136 low-level design sections.  Furthermore, additional classes not germane to
137 the overall architecture of the component will also be defined in these
138 low-level design sections.
139 
140 @image latex Class_Diagram__scif_sas__Class_Diagram.eps "SCIF SAS Class Diagram" width=16cm
141 @image html Class_Diagram__scif_sas__Class_Diagram.jpg "SCIF SAS Class Diagram"
142 
143 For more information on each object appearing in the diagram, please
144 reference the subsequent sections.
145 
146 @section scif_sas_library SCIF SAS Library
147 
148 First, the SCIF_SAS_LIBRARY object provides an implementation
149 for the roles and responsibilities defined in the Storage Controller
150 Interface (SCI) specification.  It is suggested that the user read the
151 storage controller interface specification for background information on
152 the library object.
153 
154 The SCIF_SAS_LIBRARY object is broken down into 2 individual source files
155 and one direct header file.  These files delineate the methods, members, etc.
156 associated with this object.  Please reference these files directly for
157 further design information:
158 - scif_sas_library.h
159 - scif_sas_library.c
160 
161 @section scif_sas_controller SCIF SAS Controller
162 
163 First, the SCIF_SAS_CONTROLLER object provides an implementation
164 for the roles and responsibilities defined in the Storage Controller
165 Interface (SCI) specification.  It is suggested that the user read the
166 storage controller interface specification for background information on
167 the controller object.
168 
169 The SCIF_SAS_CONTROLLER object is broken down into 3 individual source files
170 and one direct header file.  These files delineate the methods, members, etc.
171 associated with this object.  Please reference these files directly for
172 further design information:
173 - scif_sas_controller.h
174 - scif_sas_controller.c
175 - scif_sas_controller_state_handlers.c
176 - scif_sas_controller_states.c
177 
178 @section scif_sas_domain SCIF SAS Domain
179 
180 First, the SCIF_SAS_DOMAIN object provides an implementation
181 for the roles and responsibilities defined in the Storage Controller
182 Interface (SCI) specification.  It is suggested that the user read the
183 storage controller interface specification for background information on
184 the SCIF_SAS_DOMAIN object.
185 
186 The SCIF_SAS_DOMAIN object is broken down into 3 individual
187 source files and one direct header file.  These files delineate the
188 methods, members, etc. associated with this object.  Please reference
189 these files directly for
190 further design information:
191 - scif_sas_domain.h
192 - scif_sas_domain.c
193 - scif_sas_domain_state_handlers.c
194 - scif_sas_domain_states.c
195 
196 @section scif_sas_remote_device SCIF SAS Remote Device
197 
198 First, the SCIF_SAS_REMOTE_DEVICE object provides an implementation
199 for the roles and responsibilities defined in the Storage Controller
200 Interface (SCI) specification.  It is suggested that the user read the
201 storage controller interface specification for background information on
202 the SCIF_SAS_REMOTE_DEVICE object.
203 
204 The SCIF_SAS_REMOTE_DEVICE object is broken down into 7 individual source files
205 and one direct header file.  These files delineate the methods, members, etc.
206 associated with this object.  Methods, data, and functionality specific to a
207 particular protocol type (e.g. SMP, STP, etc.) are broken out into their own
208 object/file.  SSP specific remote device functionality is covered by the base
209 classes (common files).  Please reference these files directly for further
210 design information:
211 - scif_sas_remote_device.h
212 - scif_sas_smp_remote_device.h
213 - scif_sas_stp_remote_device.h
214 - scif_sas_remote_device.c
215 - scif_sas_remote_device_state_handlers.c
216 - scif_sas_remote_device_states.c
217 - scif_sas_remote_device_starting_substate_handlers.c
218 - scif_sas_remote_device_starting_substates.c
219 - scif_sas_remote_device_ready_substate_handlers.c
220 - scif_sas_remote_device_ready_substates.c
221 - scif_sas_smp_remote_device.c
222 - scif_sas_stp_remote_device.c
223 
224 The SCIF_SAS_REMOTE_DEVICE object has sub-state machines defined for
225 the READY and STARTING super-states.  For more information on the
226 super-state machine please refer to SCI_BASE_REMOTE_DEVICE_STATES
227 in the SCI Base design document.
228 
229 In the SCIF_SAS_REMOTE_DEVICE_STARTING_SUBSTATES sub-state machine,
230 the remote device currently has to wait for the core to
231 return an indication that the remote device has successfully started
232 and become ready.  If all goes well, then the remote device will
233 transition into the READY state.
234 
235 For more information on the starting sub-state machine states please refer
236 to the scif_sas_remote_device.h::_SCIF_SAS_REMOTE_DEVICE_STARTING_SUBSTATES
237 enumeration.
238 
239 @image latex State_Machine_Diagram__STARTING_SUB-STATE__STARTING_SUB-STATE.eps "SCIF SAS Remote Device Starting Sub-state Machine Diagram" width=16cm
240 @image html State_Machine_Diagram__STARTING_SUB-STATE__STARTING_SUB-STATE.jpg "SCIF SAS Remote Device Starting Sub-state Machine Diagram"
241 
242 In the SCIF_SAS_REMOTE_DEVICE_READY_SUBSTATES sub-state machine,
243 the remote device currently only allows new host IO requests during the
244 OPERATIONAL state.  In the TASK MANAGEMENT state only new task management
245 requests are allowed.
246 
247 For more information on the ready sub-state machine states please refer
248 to the scif_sas_remote_device.h::_SCIF_SAS_REMOTE_DEVICE_READY_SUBSTATES
249 enumeration.
250 
251 @image latex State_Machine_Diagram__READY_SUB-STATE__READY_SUB-STATE.eps "SCIF SAS Remote Device Ready Sub-state Machine Diagram" width=16cm
252 @image html State_Machine_Diagram__READY_SUB-STATE__READY_SUB-STATE.jpg "SCIF SAS Remote Device Ready Sub-state Machine Diagram"
253 
254 @section scif_sas_request SCIF SAS Request
255 
256 The SCIF_SAS_REQUEST object provide common functionality for the
257 SCIF_SAS_IO_REQUEST and the SCIF_SAS_TASK_REQUEST objects.  This object
258 does not directly map to an SCI defined object, but its children do.  For
259 additional information, you may reference the SCIF_SAS_IO_REQUEST or
260 SCIF_SAS_TASK_REQUEST objects.
261 
262 The SCIF_SAS_REQUEST object is broken down into 1 individual source file
263 and one direct header file.  These files delineate the methods, members, etc.
264 associated with this object.  Please reference these files directly for
265 further design information:
266 - scif_sas_request.h
267 - scif_sas_request.c
268 
269 @section scif_sas_io_request SCIF SAS IO Request
270 
271 First, the SCIF_SAS_IO_REQUEST object provides an implementation
272 for the roles and responsibilities defined in the Storage Controller
273 Interface (SCI) specification.  It is suggested that the user read the
274 storage controller interface specification for background information on
275 the SCIF_SAS_IO_REQUEST object.
276 
277 The SCIF_SAS_IO_REQUEST object is broken down into 3 individual
278 source files and one direct header file.  These files delineate the
279 methods, members, etc. associated with this object.  Please reference
280 these files directly for further design information:
281 - scif_sas_io_request.h
282 - scif_sas_smp_io_request.h
283 - scif_sas_stp_io_request.h
284 - scif_sas_sati_binding.h
285 - scif_sas_io_request.c
286 - scif_sas_io_request_state_handlers.c
287 - scif_sas_io_request_states.c
288 - scif_sas_smp_io_request.c
289 - scif_sas_stp_io_request.c
290 
291 @section scif_sas_task_request SCIF SAS Task Request
292 
293 First, the SCIF_SAS_TASK_REQUEST object provides an implementation
294 for the roles and responsibilities defined in the Storage Controller
295 Interface (SCI) specification.  It is suggested that the user read the
296 storage controller interface specification for background information on
297 the SCIF_SAS_TASK_REQUEST object.
298 
299 The SCIF_SAS_TASK_REQUEST object is broken down into 3 individual
300 source files and one direct header file.  These files delineate the
301 methods, members, etc. associated with this object.  Please reference
302 these files directly for further design information:
303 - scif_sas_task_request.h
304 - scif_sas_stp_task_request.h
305 - scif_sas_task_request.c
306 - scif_sas_task_request_state_handlers.c
307 - scif_sas_task_request_states.c
308 - scif_sas_stp_task_request.c
309 
310 @section scif_sas_internal_io_request SCIF SAS INTERNAL IO Request
311 
312 The SCIF_SAS_INTERNAL_IO_REQUEST object fulfills the SCI's need to create
313 and send out the internal io request. These internal io requests could be
314 smp request for expander device discover process, or stp request for NCQ
315 error handling. Internal IOs consume the reserved internal io space in
316 scif_sas_controller. When an internal IO is constructed, it is put into an
317 internal high priority queue. A defferred task (start_internal_io_task) will be
318 scheduled at the end of every completion process. The task looks up the high
319 priority queue and starts each internal io in the queue. There is one exception
320 that start_internal_io_task is scheduled immediately when the first internal io
321 is constructed. A retry mechanism is also provided for internal io. When an
322 internal io response is decoded, if the decoding indicates a retry is needed,
323 the internal io will be retried.
324 
325 Please refer to these files directly for further design information:
326 - scif_sas_internal_io_request.h
327 - scif_sas_internal_io_request.c
328 - scif_sas_controller.h
329 
330 @section scif_sas_smp_remote_device SCIF SAS SMP REMOTE DEVICE
331 
332 The SCIF SAS SMP REMOTE DEVICE object represents the expander device and fulfills
333 its SMP discover activities. The discover procedure includes a initial discover
334 phase and a following SATA spinup_hold release phase, if there are expander attached
335 SATA device is discovered and in spinup_hold condition. The SCIF SAS SMP REMOTE DEVICE
336 object also fulfills expander attached device Target Reset (Phy Control) activity.
337 
338 @image latex Discover Process.eps "SMP Discover Activity Diagram" width=10cm
339 @image html Discover Process.jpg "SMP Discover Activity Diagram"
340 
341 Please refer to these files directly for further design information:
342 - scif_sas_smp_remote_device.h
343 - scif_sas_smp_remote_device.c
344 - scif_sas_smp_request.h
345 - scif_sas_smp_request.c
346 */
347 
348 #endif // _SCIF_SAS_DESIGN_H_
349