xref: /freebsd/sys/dev/isci/scil/scic_sds_phy.c (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of version 2 of the GNU General Public License as
13  * published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
23  * The full GNU General Public License is included in this distribution
24  * in the file called LICENSE.GPL.
25  *
26  * BSD LICENSE
27  *
28  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  *
35  *   * Redistributions of source code must retain the above copyright
36  *     notice, this list of conditions and the following disclaimer.
37  *   * Redistributions in binary form must reproduce the above copyright
38  *     notice, this list of conditions and the following disclaimer in
39  *     the documentation and/or other materials provided with the
40  *     distribution.
41  *
42  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
43  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
44  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
45  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
46  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
47  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
48  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
49  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
50  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
51  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
52  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
53  */
54 
55 #include <sys/cdefs.h>
56 /**
57  * @file
58  *
59  * @brief This file contains the implementation of the SCIC_SDS_PHY public and
60  *        protected methods.
61  */
62 
63 #include <dev/isci/scil/scic_user_callback.h>
64 #include <dev/isci/scil/scic_phy.h>
65 #include <dev/isci/scil/scic_sds_phy.h>
66 #include <dev/isci/scil/scic_sds_port.h>
67 #include <dev/isci/scil/scic_sds_controller_registers.h>
68 #include <dev/isci/scil/scic_sds_phy_registers.h>
69 #include <dev/isci/scil/scic_sds_logger.h>
70 #include <dev/isci/scil/scic_sds_remote_node_context.h>
71 #include <dev/isci/scil/sci_util.h>
72 #include <dev/isci/scil/scic_sds_controller.h>
73 #include <dev/isci/scil/scu_event_codes.h>
74 #include <dev/isci/scil/sci_base_state.h>
75 #include <dev/isci/scil/intel_ata.h>
76 #include <dev/isci/scil/intel_sata.h>
77 #include <dev/isci/scil/sci_base_state_machine.h>
78 #include <dev/isci/scil/scic_sds_port_registers.h>
79 
80 #define SCIC_SDS_PHY_MIN_TIMER_COUNT  (SCI_MAX_PHYS)
81 #define SCIC_SDS_PHY_MAX_TIMER_COUNT  (SCI_MAX_PHYS)
82 
83 // Maximum arbitration wait time in micro-seconds
84 #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME  (700)
85 
86 #define AFE_REGISTER_WRITE_DELAY 10
87 
88 //*****************************************************************************
89 //* SCIC SDS PHY Internal Methods
90 //*****************************************************************************
91 
92 /**
93  * @brief This method will initialize the phy transport layer registers
94  *
95  * @param[in] this_phy
96  * @param[in] transport_layer_registers
97  *
98  * @return SCI_STATUS
99  */
100 static
101 SCI_STATUS scic_sds_phy_transport_layer_initialization(
102    SCIC_SDS_PHY_T                  *this_phy,
103    SCU_TRANSPORT_LAYER_REGISTERS_T *transport_layer_registers
104 )
105 {
106    U32 tl_control;
107 
108    SCIC_LOG_TRACE((
109       sci_base_object_get_logger(this_phy),
110       SCIC_LOG_OBJECT_PHY,
111       "scic_sds_phy_link_layer_initialization(this_phy:0x%x, link_layer_registers:0x%x)\n",
112       this_phy, transport_layer_registers
113    ));
114 
115    this_phy->transport_layer_registers = transport_layer_registers;
116 
117    SCU_STPTLDARNI_WRITE(this_phy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
118 
119    // Hardware team recommends that we enable the STP prefetch for all transports
120    tl_control = SCU_TLCR_READ(this_phy);
121    tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
122    SCU_TLCR_WRITE(this_phy, tl_control);
123 
124    return SCI_SUCCESS;
125 }
126 
127 /**
128  * @brief This method will initialize the phy link layer registers
129  *
130  * @param[in] this_phy
131  * @param[in] link_layer_registers
132  *
133  * @return SCI_STATUS
134  */
135 static
136 SCI_STATUS scic_sds_phy_link_layer_initialization(
137    SCIC_SDS_PHY_T             *this_phy,
138    SCU_LINK_LAYER_REGISTERS_T *link_layer_registers
139 )
140 {
141    U32                phy_configuration;
142    SAS_CAPABILITIES_T phy_capabilities;
143    U32                parity_check = 0;
144    U32                parity_count = 0;
145    U32                link_layer_control;
146    U32                phy_timer_timeout_values;
147    U32                clksm_value = 0;
148 
149    SCIC_LOG_TRACE((
150       sci_base_object_get_logger(this_phy),
151       SCIC_LOG_OBJECT_PHY,
152       "scic_sds_phy_link_layer_initialization(this_phy:0x%x, link_layer_registers:0x%x)\n",
153       this_phy, link_layer_registers
154    ));
155 
156    this_phy->link_layer_registers = link_layer_registers;
157 
158    // Set our IDENTIFY frame data
159    #define SCI_END_DEVICE 0x01
160 
161    SCU_SAS_TIID_WRITE(
162       this_phy,
163       (   SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR)
164         | SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR)
165         | SCU_SAS_TIID_GEN_BIT(STP_INITIATOR)
166         | SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST)
167         | SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE) )
168       );
169 
170    // Write the device SAS Address
171    SCU_SAS_TIDNH_WRITE(this_phy, 0xFEDCBA98);
172    SCU_SAS_TIDNL_WRITE(this_phy, this_phy->phy_index);
173 
174    // Write the source SAS Address
175    SCU_SAS_TISSAH_WRITE(
176       this_phy,
177       this_phy->owning_port->owning_controller->oem_parameters.sds1.phys[
178           this_phy->phy_index].sas_address.sci_format.high
179    );
180    SCU_SAS_TISSAL_WRITE(
181       this_phy,
182       this_phy->owning_port->owning_controller->oem_parameters.sds1.phys[
183           this_phy->phy_index].sas_address.sci_format.low
184    );
185 
186    // Clear and Set the PHY Identifier
187    SCU_SAS_TIPID_WRITE(this_phy, 0x00000000);
188    SCU_SAS_TIPID_WRITE(this_phy, SCU_SAS_TIPID_GEN_VALUE(ID, this_phy->phy_index));
189 
190    // Change the initial state of the phy configuration register
191    phy_configuration = SCU_SAS_PCFG_READ(this_phy);
192 
193    // Hold OOB state machine in reset
194    phy_configuration |=  SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
195    SCU_SAS_PCFG_WRITE(this_phy, phy_configuration);
196 
197    // Configure the SNW capabilities
198    phy_capabilities.u.all = 0;
199    phy_capabilities.u.bits.start                      = 1;
200    phy_capabilities.u.bits.gen3_without_ssc_supported = 1;
201    phy_capabilities.u.bits.gen2_without_ssc_supported = 1;
202    phy_capabilities.u.bits.gen1_without_ssc_supported = 1;
203 
204    /*
205     * Set up SSC settings according to version of OEM Parameters.
206     */
207    {
208        U8 header_version, enable_sata, enable_sas,
209           sata_spread, sas_type, sas_spread;
210        OEM_SSC_PARAMETERS_T ssc;
211 
212        header_version = this_phy->owning_port->owning_controller->
213                         oem_parameters_version;
214 
215        ssc.bf.ssc_sata_tx_spread_level =
216           this_phy->owning_port->owning_controller->oem_parameters.sds1.controller.ssc_sata_tx_spread_level;
217        ssc.bf.ssc_sas_tx_spread_level =
218           this_phy->owning_port->owning_controller->oem_parameters.sds1.controller.ssc_sas_tx_spread_level;
219        ssc.bf.ssc_sas_tx_type =
220           this_phy->owning_port->owning_controller->oem_parameters.sds1.controller.ssc_sas_tx_type;
221        enable_sata = enable_sas = sata_spread = sas_type = sas_spread = 0;
222 
223        if (header_version == SCI_OEM_PARAM_VER_1_0)
224        {
225            /*
226             * Version 1.0 is merely turning SSC on to default values.;
227             */
228            if (ssc.do_enable_ssc != 0)
229            {
230                enable_sas = enable_sata = TRUE;
231                sas_type = 0x0;      // Downspreading
232                sata_spread = 0x2;   // +0 to -1419 PPM
233                sas_spread = 0x2;    // +0 to -1419 PPM
234            }
235        }
236        else // header_version >= SCI_OEM_PARAM_VER_1_1
237        {
238           /*
239            * Version 1.1 can turn on SAS and SATA independently and
240            * specify spread levels. Also can specify spread type for SAS.
241            */
242           if ((sata_spread = ssc.bf.ssc_sata_tx_spread_level) != 0)
243              enable_sata = TRUE;  // Downspreading only
244           if ((sas_spread = ssc.bf.ssc_sas_tx_spread_level) != 0)
245           {
246              enable_sas = TRUE;
247              sas_type = ssc.bf.ssc_sas_tx_type;
248           }
249        }
250 
251        if (enable_sas == TRUE)
252        {
253            U32 reg_val = scu_afe_register_read(
254                              this_phy->owning_port->owning_controller,
255                              scu_afe_xcvr[this_phy->phy_index].
256                              afe_xcvr_control0);
257            reg_val |= (0x00100000 | (((U32)sas_type) << 19));
258            scu_afe_register_write(
259                this_phy->owning_port->owning_controller,
260                scu_afe_xcvr[this_phy->phy_index].afe_xcvr_control0,
261                reg_val);
262 
263            reg_val = scu_afe_register_read(
264                              this_phy->owning_port->owning_controller,
265                              scu_afe_xcvr[this_phy->phy_index].
266                              afe_tx_ssc_control);
267            reg_val |= (((U32)(sas_spread)) << 8);
268            scu_afe_register_write(
269                this_phy->owning_port->owning_controller,
270                scu_afe_xcvr[this_phy->phy_index].afe_tx_ssc_control,
271                reg_val);
272       phy_capabilities.u.bits.gen3_with_ssc_supported = 1;
273       phy_capabilities.u.bits.gen2_with_ssc_supported = 1;
274       phy_capabilities.u.bits.gen1_with_ssc_supported = 1;
275    }
276 
277        if (enable_sata == TRUE)
278        {
279            U32 reg_val = scu_afe_register_read(
280                          this_phy->owning_port->owning_controller,
281                          scu_afe_xcvr[this_phy->phy_index].
282                          afe_tx_ssc_control);
283            reg_val |= (U32)sata_spread;
284            scu_afe_register_write(
285                this_phy->owning_port->owning_controller,
286                scu_afe_xcvr[this_phy->phy_index].afe_tx_ssc_control,
287                reg_val);
288 
289            reg_val = scu_link_layer_register_read(
290                          this_phy,
291                          stp_control);
292            reg_val |= (U32)(1 << 12);
293            scu_link_layer_register_write(
294                this_phy,
295                stp_control,
296                reg_val);
297        }
298    }
299 
300    // The SAS specification indicates that the phy_capabilities that
301    // are transmitted shall have an even parity.  Calculate the parity.
302    parity_check = phy_capabilities.u.all;
303    while (parity_check != 0)
304    {
305       if (parity_check & 0x1)
306          parity_count++;
307       parity_check >>= 1;
308    }
309 
310    // If parity indicates there are an odd number of bits set, then
311    // set the parity bit to 1 in the phy capabilities.
312    if ((parity_count % 2) != 0)
313       phy_capabilities.u.bits.parity = 1;
314 
315    SCU_SAS_PHYCAP_WRITE(this_phy, phy_capabilities.u.all);
316 
317    // Set the enable spinup period but disable the ability to send notify enable spinup
318    SCU_SAS_ENSPINUP_WRITE(
319      this_phy,
320      SCU_ENSPINUP_GEN_VAL(
321         COUNT,
322         this_phy->owning_port->owning_controller->user_parameters.sds1.
323            phys[this_phy->phy_index].notify_enable_spin_up_insertion_frequency
324      )
325    );
326 
327    // Write the ALIGN Insertion Ferequency for connected phy and inpendent of connected state
328    clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL (
329                      CONNECTED,
330                      this_phy->owning_port->owning_controller->user_parameters.sds1.
331                         phys[this_phy->phy_index].in_connection_align_insertion_frequency
332                  );
333 
334    clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL (
335                      GENERAL,
336                      this_phy->owning_port->owning_controller->user_parameters.sds1.
337                         phys[this_phy->phy_index].align_insertion_frequency
338                   );
339 
340    SCU_SAS_CLKSM_WRITE ( this_phy, clksm_value);
341 
342 
343 #if defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD) || defined(PBG_HBA_BETA_BUILD)
344    /// @todo Provide a way to write this register correctly
345    scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x02108421);
346 #elif defined(PBG_BUILD)
347    if (
348          (this_phy->owning_port->owning_controller->pci_revision == SCIC_SDS_PCI_REVISION_C0)
349       || (this_phy->owning_port->owning_controller->pci_revision == SCIC_SDS_PCI_REVISION_C1)
350       )
351    {
352       scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x04210400);
353       scu_link_layer_register_write(this_phy, sas_primitive_timeout, 0x20A7C05);
354    }
355    else
356    {
357       scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x02108421);
358    }
359 #else
360    /// @todo Provide a way to write this register correctly
361    scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x0e739ce7);
362 #endif
363 
364    link_layer_control = SCU_SAS_LLCTL_GEN_VAL(
365                            NO_OUTBOUND_TASK_TIMEOUT,
366                            (U8) this_phy->owning_port->owning_controller->
367                            user_parameters.sds1.no_outbound_task_timeout
368                         );
369 
370 #if PHY_MAX_LINK_SPEED_GENERATION == SCIC_SDS_PARM_GEN1_SPEED
371 #define COMPILED_MAX_LINK_RATE SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1
372 #elif PHY_MAX_LINK_SPEED_GENERATION == SCIC_SDS_PARM_GEN2_SPEED
373 #define COMPILED_MAX_LINK_RATE SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2
374 #else
375 #define COMPILED_MAX_LINK_RATE SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3
376 #endif // PHY_MAX_LINK_SPEED_GENERATION
377 
378    if (this_phy->owning_port->owning_controller->user_parameters.sds1.
379        phys[this_phy->phy_index].max_speed_generation == SCIC_SDS_PARM_GEN3_SPEED)
380    {
381       link_layer_control |= SCU_SAS_LLCTL_GEN_VAL(
382                                MAX_LINK_RATE, COMPILED_MAX_LINK_RATE
383                             );
384    }
385    else if (this_phy->owning_port->owning_controller->user_parameters.sds1.
386        phys[this_phy->phy_index].max_speed_generation == SCIC_SDS_PARM_GEN2_SPEED)
387    {
388       link_layer_control |= SCU_SAS_LLCTL_GEN_VAL(
389                                MAX_LINK_RATE,
390                                MIN(
391                                   SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2,
392                                   COMPILED_MAX_LINK_RATE)
393                             );
394    }
395    else
396    {
397       link_layer_control |= SCU_SAS_LLCTL_GEN_VAL(
398                                MAX_LINK_RATE,
399                                MIN(
400                                   SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1,
401                                   COMPILED_MAX_LINK_RATE)
402                             );
403    }
404 
405    scu_link_layer_register_write(
406       this_phy, link_layer_control, link_layer_control
407    );
408 
409    phy_timer_timeout_values = scu_link_layer_register_read(
410                                  this_phy,
411                                  phy_timer_timeout_values
412                               );
413 
414    // Clear the default 0x36 (54us) RATE_CHANGE timeout value.
415    phy_timer_timeout_values &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
416 
417    // Set RATE_CHANGE timeout value to 0x3B (59us).  This ensures SCU can
418    //  lock with 3Gb drive when SCU max rate is set to 1.5Gb.
419    phy_timer_timeout_values |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
420 
421    scu_link_layer_register_write(
422       this_phy, phy_timer_timeout_values, phy_timer_timeout_values
423    );
424 
425    // Program the max ARB time for the PHY to 700us so we inter-operate with
426    // the PMC expander which shuts down PHYs if the expander PHY generates too
427    // many breaks.  This time value will guarantee that the initiator PHY will
428    // generate the break.
429 #if defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD)
430    scu_link_layer_register_write(
431       this_phy,
432       maximum_arbitration_wait_timer_timeout,
433       SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME
434    );
435 #endif // defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD)
436 
437    // Disable the link layer hang detection timer
438    scu_link_layer_register_write(
439       this_phy, link_layer_hang_detection_timeout, 0x00000000
440    );
441 
442    // We can exit the initial state to the stopped state
443    sci_base_state_machine_change_state(
444       scic_sds_phy_get_base_state_machine(this_phy),
445       SCI_BASE_PHY_STATE_STOPPED
446    );
447 
448    return SCI_SUCCESS;
449 }
450 
451 /**
452  * This function will handle the sata SIGNATURE FIS timeout condition.  It
453  * will restart the starting substate machine since we dont know what has
454  * actually happening.
455  *
456  * @param[in] cookie This object is cast to the SCIC_SDS_PHY_T object.
457  *
458  * @return none
459  */
460 void scic_sds_phy_sata_timeout( SCI_OBJECT_HANDLE_T cookie)
461 {
462    SCIC_SDS_PHY_T * this_phy = (SCIC_SDS_PHY_T *)cookie;
463 
464    SCIC_LOG_INFO((
465       sci_base_object_get_logger(this_phy),
466       SCIC_LOG_OBJECT_PHY,
467       "SCIC SDS Phy 0x%x did not receive signature fis before timeout.\n",
468       this_phy
469    ));
470 
471    sci_base_state_machine_stop(
472       scic_sds_phy_get_starting_substate_machine(this_phy));
473 
474    sci_base_state_machine_change_state(
475       scic_sds_phy_get_base_state_machine(this_phy),
476       SCI_BASE_PHY_STATE_STARTING
477    );
478 }
479 
480 //*****************************************************************************
481 //* SCIC SDS PHY External Methods
482 //*****************************************************************************
483 
484 /**
485  * @brief This method returns the object size for a phy object.
486  *
487  * @return U32
488  */
489 U32 scic_sds_phy_get_object_size(void)
490 {
491    return sizeof(SCIC_SDS_PHY_T);
492 }
493 
494 /**
495  * @brief This method returns the minimum number of timers required for a
496  *        phy object.
497  *
498  * @return U32
499  */
500 U32 scic_sds_phy_get_min_timer_count(void)
501 {
502    return SCIC_SDS_PHY_MIN_TIMER_COUNT;
503 }
504 
505 /**
506  * @brief This method returns the maximum number of timers required for a
507  *        phy object.
508  *
509  * @return U32
510  */
511 U32 scic_sds_phy_get_max_timer_count(void)
512 {
513    return SCIC_SDS_PHY_MAX_TIMER_COUNT;
514 }
515 
516 #ifdef SCI_LOGGING
517 static
518 void scic_sds_phy_initialize_state_logging(
519    SCIC_SDS_PHY_T *this_phy
520 )
521 {
522    sci_base_state_machine_logger_initialize(
523       &this_phy->parent.state_machine_logger,
524       &this_phy->parent.state_machine,
525       &this_phy->parent.parent,
526       scic_cb_logger_log_states,
527       "SCIC_SDS_PHY_T", "base state machine",
528       SCIC_LOG_OBJECT_PHY
529    );
530 
531    sci_base_state_machine_logger_initialize(
532       &this_phy->starting_substate_machine_logger,
533       &this_phy->starting_substate_machine,
534       &this_phy->parent.parent,
535       scic_cb_logger_log_states,
536       "SCIC_SDS_PHY_T", "starting substate machine",
537       SCIC_LOG_OBJECT_PHY
538    );
539 }
540 #endif // SCI_LOGGING
541 
542 #ifdef SCIC_DEBUG_ENABLED
543 /**
544  * Debug code to record the state transitions in the phy
545  *
546  * @param our_observer
547  * @param the_state_machine
548  */
549 void scic_sds_phy_observe_state_change(
550    SCI_BASE_OBSERVER_T * our_observer,
551    SCI_BASE_SUBJECT_T  * the_subject
552 )
553 {
554    SCIC_SDS_PHY_T           *this_phy;
555    SCI_BASE_STATE_MACHINE_T *the_state_machine;
556 
557    U8  transition_requestor;
558    U32 base_state_id;
559    U32 starting_substate_id;
560 
561    the_state_machine = (SCI_BASE_STATE_MACHINE_T *)the_subject;
562    this_phy = (SCIC_SDS_PHY_T *)the_state_machine->state_machine_owner;
563 
564    if (the_state_machine == &this_phy->parent.state_machine)
565    {
566       transition_requestor = 0x01;
567    }
568    else if (the_state_machine == &this_phy->starting_substate_machine)
569    {
570       transition_requestor = 0x02;
571    }
572    else
573    {
574       transition_requestor = 0xFF;
575    }
576 
577    base_state_id =
578       sci_base_state_machine_get_state(&this_phy->parent.state_machine);
579    starting_substate_id =
580       sci_base_state_machine_get_state(&this_phy->starting_substate_machine);
581 
582    this_phy->state_record.state_transition_table[
583       this_phy->state_record.index++] = ( (transition_requestor << 24)
584                                         | ((U8)base_state_id << 8)
585                                         | ((U8)starting_substate_id));
586 
587    this_phy->state_record.index =
588       this_phy->state_record.index & (MAX_STATE_TRANSITION_RECORD - 1);
589 
590 }
591 #endif // SCIC_DEBUG_ENABLED
592 
593 #ifdef SCIC_DEBUG_ENABLED
594 /**
595  * This method initializes the state record debug information for the phy
596  * object.
597  *
598  * @pre The state machines for the phy object must be constructed before this
599  *      function is called.
600  *
601  * @param this_phy The phy which is being initialized.
602  */
603 void scic_sds_phy_initialize_state_recording(
604    SCIC_SDS_PHY_T *this_phy
605 )
606 {
607    this_phy->state_record.index = 0;
608 
609    sci_base_observer_initialize(
610       &this_phy->state_record.base_state_observer,
611       scic_sds_phy_observe_state_change,
612       &this_phy->parent.state_machine.parent
613    );
614 
615    sci_base_observer_initialize(
616       &this_phy->state_record.starting_state_observer,
617       scic_sds_phy_observe_state_change,
618       &this_phy->starting_substate_machine.parent
619    );
620 }
621 #endif // SCIC_DEBUG_ENABLED
622 
623 /**
624  * @brief This method will construct the SCIC_SDS_PHY object
625  *
626  * @param[in] this_phy
627  * @param[in] owning_port
628  * @param[in] phy_index
629  *
630  * @return none
631  */
632 void scic_sds_phy_construct(
633    SCIC_SDS_PHY_T  *this_phy,
634    SCIC_SDS_PORT_T *owning_port,
635    U8              phy_index
636 )
637 {
638    // Call the base constructor first
639    // Copy the logger from the port (this could be the dummy port)
640    sci_base_phy_construct(
641       &this_phy->parent,
642       sci_base_object_get_logger(owning_port),
643       scic_sds_phy_state_table
644       );
645 
646    // Copy the rest of the input data to our locals
647    this_phy->owning_port = owning_port;
648    this_phy->phy_index = phy_index;
649    this_phy->bcn_received_while_port_unassigned = FALSE;
650    this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
651    this_phy->link_layer_registers = NULL;
652    this_phy->max_negotiated_speed = SCI_SAS_NO_LINK_RATE;
653    this_phy->sata_timeout_timer = NULL;
654 
655    // Clear out the identification buffer data
656    memset(&this_phy->phy_type, 0, sizeof(this_phy->phy_type));
657 
658    // Clear out the error counter data
659    memset(this_phy->error_counter, 0, sizeof(this_phy->error_counter));
660 
661    // Initialize the substate machines
662    sci_base_state_machine_construct(
663       &this_phy->starting_substate_machine,
664       &this_phy->parent.parent,
665       scic_sds_phy_starting_substates,
666       SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL
667       );
668 
669    #ifdef SCI_LOGGING
670    scic_sds_phy_initialize_state_logging(this_phy);
671    #endif // SCI_LOGGING
672 
673    #ifdef SCIC_DEBUG_ENABLED
674    scic_sds_phy_initialize_state_recording(this_phy);
675    #endif // SCIC_DEBUG_ENABLED
676 }
677 
678 /**
679  * @brief This method returns the port currently containing this phy.
680  *        If the phy is currently contained by the dummy port, then
681  *        the phy is considered to not be part of a port.
682  *
683  * @param[in] this_phy This parameter specifies the phy for which to
684  *            retrieve the containing port.
685  *
686  * @return This method returns a handle to a port that contains
687  *         the supplied phy.
688  * @retval SCI_INVALID_HANDLE This value is returned if the phy is not
689  *         part of a real port (i.e. it's contained in the dummy port).
690  * @retval !SCI_INVALID_HANDLE All other values indicate a handle/pointer
691  *         to the port containing the phy.
692  */
693 SCI_PORT_HANDLE_T scic_sds_phy_get_port(
694    SCIC_SDS_PHY_T *this_phy
695 )
696 {
697    SCIC_LOG_TRACE((
698       sci_base_object_get_logger(this_phy),
699       SCIC_LOG_OBJECT_PHY,
700       "scic_phy_get_port(0x%x) enter\n",
701       this_phy
702    ));
703 
704    if (scic_sds_port_get_index(this_phy->owning_port) == SCIC_SDS_DUMMY_PORT)
705       return SCI_INVALID_HANDLE;
706 
707    return this_phy->owning_port;
708 }
709 
710 /**
711  * @brief This method will assign a port to the phy object.
712  *
713  * @param[in, out] this_phy This parameter specifies the phy for which
714  *    to assign a port object.
715  * @param[in] the_port This parameter is the port to assing to the phy.
716  */
717 void scic_sds_phy_set_port(
718    SCIC_SDS_PHY_T * this_phy,
719    SCIC_SDS_PORT_T * the_port
720 )
721 {
722    this_phy->owning_port = the_port;
723 
724    if (this_phy->bcn_received_while_port_unassigned)
725    {
726       this_phy->bcn_received_while_port_unassigned = FALSE;
727       scic_sds_port_broadcast_change_received(this_phy->owning_port, this_phy);
728    }
729 }
730 
731 /**
732  * @brief This method will initialize the constructed phy
733  *
734  * @param[in] this_phy
735  * @param[in] link_layer_registers
736  *
737  * @return SCI_STATUS
738  */
739 SCI_STATUS scic_sds_phy_initialize(
740    SCIC_SDS_PHY_T             *this_phy,
741    void                       *transport_layer_registers,
742    SCU_LINK_LAYER_REGISTERS_T *link_layer_registers
743 )
744 {
745    SCIC_LOG_TRACE((
746       sci_base_object_get_logger(this_phy),
747       SCIC_LOG_OBJECT_PHY,
748       "scic_sds_phy_initialize(this_phy:0x%x, link_layer_registers:0x%x)\n",
749       this_phy, link_layer_registers
750    ));
751 
752    // Perform the initialization of the TL hardware
753    scic_sds_phy_transport_layer_initialization(this_phy, transport_layer_registers);
754 
755    // Perofrm the initialization of the PE hardware
756    scic_sds_phy_link_layer_initialization(this_phy, link_layer_registers);
757 
758    // There is nothing that needs to be done in this state just
759    // transition to the stopped state.
760    sci_base_state_machine_change_state(
761       scic_sds_phy_get_base_state_machine(this_phy),
762       SCI_BASE_PHY_STATE_STOPPED
763    );
764 
765    return SCI_SUCCESS;
766 }
767 
768 /**
769  * This method assigns the direct attached device ID for this phy.
770  *
771  * @param[in] this_phy The phy for which the direct attached device id is to
772  *       be assigned.
773  * @param[in] device_id The direct attached device ID to assign to the phy.
774  *       This will either be the RNi for the device or an invalid RNi if there
775  *       is no current device assigned to the phy.
776  */
777 void scic_sds_phy_setup_transport(
778    SCIC_SDS_PHY_T * this_phy,
779    U32              device_id
780 )
781 {
782    U32 tl_control;
783 
784    SCU_STPTLDARNI_WRITE(this_phy, device_id);
785 
786    // The read should guarntee that the first write gets posted
787    // before the next write
788    tl_control = SCU_TLCR_READ(this_phy);
789    tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
790    SCU_TLCR_WRITE(this_phy, tl_control);
791 }
792 
793 /**
794  * This function will perform the register reads/writes to suspend the SCU
795  * hardware protocol engine.
796  *
797  * @param[in,out] this_phy The phy object to be suspended.
798  *
799  * @return none
800  */
801 void scic_sds_phy_suspend(
802    SCIC_SDS_PHY_T * this_phy
803 )
804 {
805    U32 scu_sas_pcfg_value;
806 
807    scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
808    scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
809    SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
810 
811    scic_sds_phy_setup_transport(
812       this_phy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
813    );
814 }
815 
816 /**
817  * This function will perform the register reads/writes required to resume the
818  * SCU hardware protocol engine.
819  *
820  * @param[in,out] this_phy The phy object to resume.
821  *
822  * @return none
823  */
824 void scic_sds_phy_resume(
825    SCIC_SDS_PHY_T * this_phy
826 )
827 {
828    U32 scu_sas_pcfg_value;
829 
830    scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
831 
832    scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
833 
834    SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
835 }
836 
837 /**
838  * @brief This method returns the local sas address assigned to this phy.
839  *
840  * @param[in] this_phy This parameter specifies the phy for which
841  *            to retrieve the local SAS address.
842  * @param[out] sas_address This parameter specifies the location into
843  *             which to copy the local SAS address.
844  *
845  * @return none
846  */
847 void scic_sds_phy_get_sas_address(
848    SCIC_SDS_PHY_T *this_phy,
849    SCI_SAS_ADDRESS_T *sas_address
850 )
851 {
852    SCIC_LOG_TRACE((
853       sci_base_object_get_logger(this_phy),
854       SCIC_LOG_OBJECT_PHY,
855       "scic_sds_phy_get_sas_address(this_phy:0x%x, sas_address:0x%x)\n",
856       this_phy, sas_address
857    ));
858 
859    sas_address->high = SCU_SAS_TISSAH_READ(this_phy);
860    sas_address->low  = SCU_SAS_TISSAL_READ(this_phy);
861 }
862 
863 /**
864  * @brief This method returns the remote end-point (i.e. attached)
865  *        sas address assigned to this phy.
866  *
867  * @param[in] this_phy This parameter specifies the phy for which
868  *            to retrieve the remote end-point SAS address.
869  * @param[out] sas_address This parameter specifies the location into
870  *             which to copy the remote end-point SAS address.
871  *
872  * @return none
873  */
874 void scic_sds_phy_get_attached_sas_address(
875    SCIC_SDS_PHY_T    *this_phy,
876    SCI_SAS_ADDRESS_T *sas_address
877 )
878 {
879    SCIC_LOG_TRACE((
880       sci_base_object_get_logger(this_phy),
881       SCIC_LOG_OBJECT_PHY,
882       "scic_sds_phy_get_attached_sas_address(0x%x, 0x%x) enter\n",
883       this_phy, sas_address
884    ));
885 
886    sas_address->high
887       = this_phy->phy_type.sas.identify_address_frame_buffer.sas_address.high;
888    sas_address->low
889       = this_phy->phy_type.sas.identify_address_frame_buffer.sas_address.low;
890 }
891 
892 /**
893  * @brief This method returns the supported protocols assigned to
894  *        this phy
895  *
896  * @param[in] this_phy
897  * @param[out] protocols
898  */
899 void scic_sds_phy_get_protocols(
900    SCIC_SDS_PHY_T *this_phy,
901    SCI_SAS_IDENTIFY_ADDRESS_FRAME_PROTOCOLS_T * protocols
902 )
903 {
904    U32 tiid_value = SCU_SAS_TIID_READ(this_phy);
905 
906    //Check each bit of this register. please refer to
907    //SAS Transmit Identification Register (SAS_TIID).
908    if (tiid_value & 0x2)
909       protocols->u.bits.smp_target = 1;
910 
911    if (tiid_value & 0x4)
912       protocols->u.bits.stp_target = 1;
913 
914    if (tiid_value & 0x8)
915       protocols->u.bits.ssp_target = 1;
916 
917    if (tiid_value & 0x200)
918       protocols->u.bits.smp_initiator = 1;
919 
920    if ((tiid_value & 0x400))
921       protocols->u.bits.stp_initiator = 1;
922 
923    if (tiid_value & 0x800)
924       protocols->u.bits.ssp_initiator = 1;
925 
926    SCIC_LOG_TRACE((
927       sci_base_object_get_logger(this_phy),
928       SCIC_LOG_OBJECT_PHY,
929       "scic_sds_phy_get_protocols(this_phy:0x%x, protocols:0x%x)\n",
930       this_phy, protocols->u.all
931    ));
932 }
933 
934 /**
935  * This method returns the supported protocols for the attached phy.  If this
936  * is a SAS phy the protocols are returned from the identify address frame.
937  * If this is a SATA phy then protocols are made up and the target phy is an
938  * STP target phy.
939  *
940  * @note The caller will get the entire set of bits for the protocol value.
941  *
942  * @param[in] this_phy The parameter is the phy object for which the attached
943  *       phy protcols are to be returned.
944  * @param[out] protocols The parameter is the returned protocols for the
945  *       attached phy.
946  */
947 void scic_sds_phy_get_attached_phy_protocols(
948    SCIC_SDS_PHY_T *this_phy,
949    SCI_SAS_IDENTIFY_ADDRESS_FRAME_PROTOCOLS_T * protocols
950 )
951 {
952    SCIC_LOG_TRACE((
953       sci_base_object_get_logger(this_phy),
954       SCIC_LOG_OBJECT_PHY,
955       "scic_sds_phy_get_attached_phy_protocols(this_phy:0x%x, protocols:0x%x[0x%x])\n",
956       this_phy, protocols, protocols->u.all
957    ));
958 
959    protocols->u.all = 0;
960 
961    if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS)
962    {
963       protocols->u.all =
964          this_phy->phy_type.sas.identify_address_frame_buffer.protocols.u.all;
965    }
966    else if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SATA)
967    {
968       protocols->u.bits.stp_target = 1;
969    }
970 }
971 
972 
973 /**
974  * @brief This method release resources in for a scic phy.
975  *
976  * @param[in] controller This parameter specifies the core controller, one of
977  *            its phy's resources are to be released.
978  * @param[in] this_phy This parameter specifies the phy whose resource is to
979  *            be released.
980  */
981 void scic_sds_phy_release_resource(
982    SCIC_SDS_CONTROLLER_T * controller,
983    SCIC_SDS_PHY_T        * this_phy
984 )
985 {
986    SCIC_LOG_TRACE((
987       sci_base_object_get_logger(this_phy),
988       SCIC_LOG_OBJECT_PHY,
989       "scic_sds_phy_release_resource(0x%x, 0x%x)\n",
990       controller, this_phy
991    ));
992 
993    //Currently, the only resource to be released is a timer.
994    if (this_phy->sata_timeout_timer != NULL)
995    {
996       scic_cb_timer_destroy(controller, this_phy->sata_timeout_timer);
997       this_phy->sata_timeout_timer = NULL;
998    }
999 }
1000 
1001 
1002 //*****************************************************************************
1003 //* SCIC SDS PHY Handler Redirects
1004 //*****************************************************************************
1005 
1006 /**
1007  * @brief This method will attempt to reset the phy.  This
1008  *        request is only valid when the phy is in an ready
1009  *        state
1010  *
1011  * @param[in] this_phy
1012  *
1013  * @return SCI_STATUS
1014  */
1015 SCI_STATUS scic_sds_phy_reset(
1016    SCIC_SDS_PHY_T * this_phy
1017 )
1018 {
1019    SCIC_LOG_TRACE((
1020       sci_base_object_get_logger(this_phy),
1021       SCIC_LOG_OBJECT_PHY,
1022       "scic_sds_phy_reset(this_phy:0x%08x)\n",
1023       this_phy
1024    ));
1025 
1026    return this_phy->state_handlers->parent.reset_handler(
1027                                              &this_phy->parent
1028                                            );
1029 }
1030 
1031 /**
1032  * @brief This method will process the event code received.
1033  *
1034  * @param[in] this_phy
1035  * @param[in] event_code
1036  *
1037  * @return SCI_STATUS
1038  */
1039 SCI_STATUS scic_sds_phy_event_handler(
1040    SCIC_SDS_PHY_T *this_phy,
1041    U32 event_code
1042 )
1043 {
1044    SCIC_LOG_TRACE((
1045       sci_base_object_get_logger(this_phy),
1046       SCIC_LOG_OBJECT_PHY,
1047       "scic_sds_phy_event_handler(this_phy:0x%08x, event_code:%x)\n",
1048       this_phy, event_code
1049    ));
1050 
1051    return this_phy->state_handlers->event_handler(this_phy, event_code);
1052 }
1053 
1054 /**
1055  * @brief This method will process the frame index received.
1056  *
1057  * @param[in] this_phy
1058  * @param[in] frame_index
1059  *
1060  * @return SCI_STATUS
1061  */
1062 SCI_STATUS scic_sds_phy_frame_handler(
1063    SCIC_SDS_PHY_T *this_phy,
1064    U32 frame_index
1065 )
1066 {
1067    SCIC_LOG_TRACE((
1068       sci_base_object_get_logger(this_phy),
1069       SCIC_LOG_OBJECT_PHY,
1070       "scic_sds_phy_frame_handler(this_phy:0x%08x, frame_index:%d)\n",
1071       this_phy, frame_index
1072    ));
1073 
1074    return this_phy->state_handlers->frame_handler(this_phy, frame_index);
1075 }
1076 
1077 /**
1078  * @brief This method will give the phy permission to consume power
1079  *
1080  * @param[in] this_phy
1081  *
1082  * @return SCI_STATUS
1083  */
1084 SCI_STATUS scic_sds_phy_consume_power_handler(
1085    SCIC_SDS_PHY_T *this_phy
1086 )
1087 {
1088    SCIC_LOG_TRACE((
1089       sci_base_object_get_logger(this_phy),
1090       SCIC_LOG_OBJECT_PHY,
1091       "scic_sds_phy_consume_power_handler(this_phy:0x%08x)\n",
1092       this_phy
1093    ));
1094 
1095    return this_phy->state_handlers->consume_power_handler(this_phy);
1096 }
1097 
1098 //*****************************************************************************
1099 //* SCIC PHY Public Methods
1100 //*****************************************************************************
1101 
1102 SCI_STATUS scic_phy_get_properties(
1103    SCI_PHY_HANDLE_T        phy,
1104    SCIC_PHY_PROPERTIES_T * properties
1105 )
1106 {
1107    SCIC_SDS_PHY_T *this_phy;
1108    U8 max_speed_generation;
1109 
1110    this_phy = (SCIC_SDS_PHY_T *)phy;
1111 
1112    SCIC_LOG_TRACE((
1113       sci_base_object_get_logger(this_phy),
1114       SCIC_LOG_OBJECT_PHY,
1115       "scic_phy_get_properties(0x%x, 0x%x) enter\n",
1116       this_phy, properties
1117    ));
1118 
1119    if (phy == SCI_INVALID_HANDLE)
1120    {
1121       return SCI_FAILURE_INVALID_PHY;
1122    }
1123 
1124    memset(properties, 0, sizeof(SCIC_PHY_PROPERTIES_T));
1125 
1126    //get max link rate of this phy set by user.
1127    max_speed_generation =
1128       this_phy->owning_port->owning_controller->user_parameters.sds1.
1129          phys[this_phy->phy_index].max_speed_generation;
1130 
1131    properties->negotiated_link_rate     = this_phy->max_negotiated_speed;
1132 
1133    if (max_speed_generation == SCIC_SDS_PARM_GEN3_SPEED)
1134       properties->max_link_rate            = SCI_SAS_600_GB;
1135    else if (max_speed_generation == SCIC_SDS_PARM_GEN2_SPEED)
1136       properties->max_link_rate            = SCI_SAS_300_GB;
1137    else
1138       properties->max_link_rate            = SCI_SAS_150_GB;
1139 
1140    properties->index                    = this_phy->phy_index;
1141    properties->owning_port              = scic_sds_phy_get_port(this_phy);
1142 
1143    scic_sds_phy_get_protocols(this_phy, &properties->transmit_iaf.protocols);
1144 
1145    properties->transmit_iaf.sas_address.high =
1146       this_phy->owning_port->owning_controller->oem_parameters.sds1.
1147          phys[this_phy->phy_index].sas_address.sci_format.high;
1148 
1149    properties->transmit_iaf.sas_address.low =
1150       this_phy->owning_port->owning_controller->oem_parameters.sds1.
1151          phys[this_phy->phy_index].sas_address.sci_format.low;
1152 
1153    return SCI_SUCCESS;
1154 }
1155 
1156 // ---------------------------------------------------------------------------
1157 
1158 SCI_STATUS scic_sas_phy_get_properties(
1159    SCI_PHY_HANDLE_T            phy,
1160    SCIC_SAS_PHY_PROPERTIES_T * properties
1161 )
1162 {
1163    SCIC_SDS_PHY_T *this_phy;
1164    this_phy = (SCIC_SDS_PHY_T *)phy;
1165 
1166    SCIC_LOG_TRACE((
1167       sci_base_object_get_logger(this_phy),
1168       SCIC_LOG_OBJECT_PHY,
1169       "scic_sas_phy_get_properties(0x%x, 0x%x) enter\n",
1170       this_phy, properties
1171    ));
1172 
1173    if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS)
1174    {
1175       memcpy(
1176          &properties->received_iaf,
1177          &this_phy->phy_type.sas.identify_address_frame_buffer,
1178          sizeof(SCI_SAS_IDENTIFY_ADDRESS_FRAME_T)
1179       );
1180 
1181       properties->received_capabilities.u.all
1182          = SCU_SAS_RECPHYCAP_READ(this_phy);
1183 
1184       return SCI_SUCCESS;
1185    }
1186 
1187    return SCI_FAILURE;
1188 }
1189 
1190 // ---------------------------------------------------------------------------
1191 
1192 SCI_STATUS scic_sata_phy_get_properties(
1193    SCI_PHY_HANDLE_T             phy,
1194    SCIC_SATA_PHY_PROPERTIES_T * properties
1195 )
1196 {
1197    SCIC_SDS_PHY_T *this_phy;
1198    this_phy = (SCIC_SDS_PHY_T *)phy;
1199 
1200    SCIC_LOG_TRACE((
1201       sci_base_object_get_logger(this_phy),
1202       SCIC_LOG_OBJECT_PHY,
1203       "scic_sata_phy_get_properties(0x%x, 0x%x) enter\n",
1204       this_phy, properties
1205    ));
1206 
1207    if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SATA)
1208    {
1209       memcpy(
1210          &properties->signature_fis,
1211          &this_phy->phy_type.sata.signature_fis_buffer,
1212          sizeof(SATA_FIS_REG_D2H_T)
1213       );
1214 
1215       /// @todo add support for port selectors.
1216       properties->is_port_selector_present = FALSE;
1217 
1218       return SCI_SUCCESS;
1219    }
1220 
1221    return SCI_FAILURE;
1222 }
1223 
1224 // ---------------------------------------------------------------------------
1225 
1226 #if !defined(DISABLE_PORT_SELECTORS)
1227 
1228 SCI_STATUS scic_sata_phy_send_port_selection_signal(
1229    SCI_PHY_HANDLE_T  phy
1230 )
1231 {
1232    SCIC_SDS_PHY_T *this_phy;
1233    this_phy = (SCIC_SDS_PHY_T *)phy;
1234 
1235    SCIC_LOG_TRACE((
1236       sci_base_object_get_logger(this_phy),
1237       SCIC_LOG_OBJECT_PHY,
1238       "scic_sata_phy_send_port_selection_signals(0x%x) enter\n",
1239       this_phy
1240    ));
1241 
1242    /// @todo To be implemented
1243    ASSERT(FALSE);
1244    return SCI_FAILURE;
1245 }
1246 
1247 #endif // !defined(DISABLE_PORT_SELECTORS)
1248 
1249 // ---------------------------------------------------------------------------
1250 
1251 #if !defined(DISABLE_PHY_COUNTERS)
1252 
1253 SCI_STATUS scic_phy_enable_counter(
1254    SCI_PHY_HANDLE_T       phy,
1255    SCIC_PHY_COUNTER_ID_T  counter_id
1256 )
1257 {
1258    SCIC_SDS_PHY_T *this_phy;
1259    SCI_STATUS status = SCI_SUCCESS;
1260    this_phy = (SCIC_SDS_PHY_T *)phy;
1261 
1262    SCIC_LOG_TRACE((
1263       sci_base_object_get_logger(this_phy),
1264       SCIC_LOG_OBJECT_PHY,
1265       "scic_phy_enable_counter(0x%x, 0x%x) enter\n",
1266       this_phy, counter_id
1267    ));
1268 
1269    switch(counter_id)
1270    {
1271       case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT:
1272          {
1273             U32 control = SCU_SAS_ECENCR_READ(this_phy);
1274             control |= (1 << SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX);
1275             SCU_SAS_ECENCR_WRITE(this_phy, control);
1276          }
1277          break;
1278       case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT:
1279          {
1280             U32 control = SCU_SAS_ECENCR_READ(this_phy);
1281             control |= (1 << SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX);
1282             SCU_SAS_ECENCR_WRITE(this_phy, control);
1283          }
1284          break;
1285       case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED:
1286          {
1287             U32 control = SCU_SAS_ECENCR_READ(this_phy);
1288             control |= (1 << SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX);
1289             SCU_SAS_ECENCR_WRITE(this_phy, control);
1290          }
1291          break;
1292       case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT:
1293          {
1294             U32 control = SCU_SAS_ECENCR_READ(this_phy);
1295             control |= (1 << SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX);
1296             SCU_SAS_ECENCR_WRITE(this_phy, control);
1297          }
1298          break;
1299       case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT:
1300          {
1301             U32 control = SCU_SAS_ECENCR_READ(this_phy);
1302             control |= (1 << SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX);
1303             SCU_SAS_ECENCR_WRITE(this_phy, control);
1304          }
1305          break;
1306       case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED:
1307          {
1308             U32 control = SCU_SAS_ECENCR_READ(this_phy);
1309             control |= (1 << SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX);
1310             SCU_SAS_ECENCR_WRITE(this_phy, control);
1311          }
1312          break;
1313 
1314          // These error counters are enabled by default, and cannot be
1315          //  disabled.  Return SCI_SUCCESS to denote that they are
1316          //  enabled, hiding the fact that enabling the counter is
1317          //  a no-op.
1318       case SCIC_PHY_COUNTER_RECEIVED_FRAME:
1319       case SCIC_PHY_COUNTER_TRANSMITTED_FRAME:
1320       case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD:
1321       case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD:
1322       case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR:
1323       case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR:
1324       case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR:
1325       case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME:
1326       case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT:
1327       case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE:
1328       case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR:
1329          break;
1330 
1331       default:
1332          status = SCI_FAILURE;
1333          break;
1334    }
1335    return status;
1336 }
1337 
1338 // ---------------------------------------------------------------------------
1339 
1340 SCI_STATUS scic_phy_disable_counter(
1341    SCI_PHY_HANDLE_T       phy,
1342    SCIC_PHY_COUNTER_ID_T  counter_id
1343 )
1344 {
1345    SCIC_SDS_PHY_T *this_phy;
1346    SCI_STATUS status = SCI_SUCCESS;
1347 
1348    this_phy = (SCIC_SDS_PHY_T *)phy;
1349 
1350    SCIC_LOG_TRACE((
1351       sci_base_object_get_logger(this_phy),
1352       SCIC_LOG_OBJECT_PHY,
1353       "scic_phy_disable_counter(0x%x, 0x%x) enter\n",
1354       this_phy, counter_id
1355    ));
1356 
1357    switch(counter_id)
1358    {
1359       case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT:
1360          {
1361             U32 control = SCU_SAS_ECENCR_READ(this_phy);
1362             control &= ~(1 << SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX);
1363             SCU_SAS_ECENCR_WRITE(this_phy, control);
1364          }
1365          break;
1366       case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT:
1367          {
1368             U32 control = SCU_SAS_ECENCR_READ(this_phy);
1369             control &= ~(1 << SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX);
1370             SCU_SAS_ECENCR_WRITE(this_phy, control);
1371          }
1372          break;
1373       case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED:
1374          {
1375             U32 control = SCU_SAS_ECENCR_READ(this_phy);
1376             control &= ~(1 << SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX);
1377             SCU_SAS_ECENCR_WRITE(this_phy, control);
1378          }
1379          break;
1380       case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT:
1381          {
1382             U32 control = SCU_SAS_ECENCR_READ(this_phy);
1383             control &= ~(1 << SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX);
1384             SCU_SAS_ECENCR_WRITE(this_phy, control);
1385          }
1386          break;
1387       case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT:
1388          {
1389             U32 control = SCU_SAS_ECENCR_READ(this_phy);
1390             control &= ~(1 << SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX);
1391             SCU_SAS_ECENCR_WRITE(this_phy, control);
1392          }
1393          break;
1394       case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED:
1395          {
1396             U32 control = SCU_SAS_ECENCR_READ(this_phy);
1397             control &= ~(1 << SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX);
1398             SCU_SAS_ECENCR_WRITE(this_phy, control);
1399          }
1400          break;
1401 
1402          // These error counters cannot be disabled, so return SCI_FAILURE.
1403       case SCIC_PHY_COUNTER_RECEIVED_FRAME:
1404       case SCIC_PHY_COUNTER_TRANSMITTED_FRAME:
1405       case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD:
1406       case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD:
1407       case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR:
1408       case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR:
1409       case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR:
1410       case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME:
1411       case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT:
1412       case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE:
1413       case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR:
1414       default:
1415          status = SCI_FAILURE;
1416          break;
1417    }
1418    return status;
1419 }
1420 
1421 // ---------------------------------------------------------------------------
1422 
1423 SCI_STATUS scic_phy_get_counter(
1424    SCI_PHY_HANDLE_T        phy,
1425    SCIC_PHY_COUNTER_ID_T   counter_id,
1426    U32                   * data
1427 )
1428 {
1429    SCIC_SDS_PHY_T *this_phy;
1430    SCI_STATUS status = SCI_SUCCESS;
1431    this_phy = (SCIC_SDS_PHY_T *)phy;
1432 
1433    SCIC_LOG_TRACE((
1434       sci_base_object_get_logger(this_phy),
1435       SCIC_LOG_OBJECT_PHY,
1436       "scic_phy_get_counter(0x%x, 0x%x) enter\n",
1437       this_phy, counter_id
1438    ));
1439 
1440    switch(counter_id)
1441    {
1442       case SCIC_PHY_COUNTER_RECEIVED_FRAME:
1443          *data = scu_link_layer_register_read(this_phy, received_frame_count);
1444          break;
1445       case SCIC_PHY_COUNTER_TRANSMITTED_FRAME:
1446          *data = scu_link_layer_register_read(this_phy, transmit_frame_count);
1447          break;
1448       case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD:
1449          *data = scu_link_layer_register_read(this_phy, received_dword_count);
1450          break;
1451       case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD:
1452          *data = scu_link_layer_register_read(this_phy, transmit_dword_count);
1453          break;
1454       case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR:
1455          *data = scu_link_layer_register_read(this_phy, loss_of_sync_error_count);
1456          break;
1457       case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR:
1458          *data = scu_link_layer_register_read(this_phy, running_disparity_error_count);
1459          break;
1460       case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR:
1461          *data = scu_link_layer_register_read(this_phy, received_frame_crc_error_count);
1462          break;
1463       case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT:
1464          *data = this_phy->error_counter[SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX];
1465          break;
1466       case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT:
1467          *data = this_phy->error_counter[SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX];
1468          break;
1469       case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED:
1470          *data = this_phy->error_counter[SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX];
1471          break;
1472       case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT:
1473          *data = this_phy->error_counter[SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX];
1474          break;
1475       case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT:
1476          *data = this_phy->error_counter[SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX];
1477          break;
1478       case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED:
1479          *data = this_phy->error_counter[SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX];
1480          break;
1481       case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME:
1482          *data = scu_link_layer_register_read(this_phy, received_short_frame_count);
1483          break;
1484       case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT:
1485          *data = scu_link_layer_register_read(this_phy, received_frame_without_credit_count);
1486          break;
1487       case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE:
1488          *data = scu_link_layer_register_read(this_phy, received_frame_after_done_count);
1489          break;
1490       case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR:
1491          *data = scu_link_layer_register_read(this_phy, phy_reset_problem_count);
1492          break;
1493       default:
1494          status = SCI_FAILURE;
1495          break;
1496    }
1497 
1498    return status;
1499 }
1500 
1501 // ---------------------------------------------------------------------------
1502 
1503 SCI_STATUS scic_phy_clear_counter(
1504    SCI_PHY_HANDLE_T       phy,
1505    SCIC_PHY_COUNTER_ID_T  counter_id
1506 )
1507 {
1508    SCIC_SDS_PHY_T *this_phy;
1509    SCI_STATUS status = SCI_SUCCESS;
1510    this_phy = (SCIC_SDS_PHY_T *)phy;
1511 
1512    SCIC_LOG_TRACE((
1513       sci_base_object_get_logger(this_phy),
1514       SCIC_LOG_OBJECT_PHY,
1515       "scic_phy_clear_counter(0x%x, 0x%x) enter\n",
1516       this_phy, counter_id
1517    ));
1518 
1519    switch(counter_id)
1520    {
1521       case SCIC_PHY_COUNTER_RECEIVED_FRAME:
1522          scu_link_layer_register_write(this_phy, received_frame_count, 0);
1523          break;
1524       case SCIC_PHY_COUNTER_TRANSMITTED_FRAME:
1525          scu_link_layer_register_write(this_phy, transmit_frame_count, 0);
1526          break;
1527       case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD:
1528          scu_link_layer_register_write(this_phy, received_dword_count, 0);
1529          break;
1530       case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD:
1531          scu_link_layer_register_write(this_phy, transmit_dword_count, 0);
1532          break;
1533       case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR:
1534          scu_link_layer_register_write(this_phy, loss_of_sync_error_count, 0);
1535          break;
1536       case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR:
1537          scu_link_layer_register_write(this_phy, running_disparity_error_count, 0);
1538          break;
1539       case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR:
1540          scu_link_layer_register_write(this_phy, received_frame_crc_error_count, 0);
1541          break;
1542       case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT:
1543          this_phy->error_counter[SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX] = 0;
1544          break;
1545       case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT:
1546          this_phy->error_counter[SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX] = 0;
1547          break;
1548       case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED:
1549          this_phy->error_counter[SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX] = 0;
1550          break;
1551       case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT:
1552          this_phy->error_counter[SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX] = 0;
1553          break;
1554       case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT:
1555          this_phy->error_counter[SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX] = 0;
1556          break;
1557       case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED:
1558          this_phy->error_counter[SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX] = 0;
1559          break;
1560       case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME:
1561          scu_link_layer_register_write(this_phy, received_short_frame_count, 0);
1562          break;
1563       case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT:
1564          scu_link_layer_register_write(this_phy, received_frame_without_credit_count, 0);
1565          break;
1566       case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE:
1567          scu_link_layer_register_write(this_phy, received_frame_after_done_count, 0);
1568          break;
1569       case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR:
1570          scu_link_layer_register_write(this_phy, phy_reset_problem_count, 0);
1571          break;
1572       default:
1573          status = SCI_FAILURE;
1574    }
1575 
1576    return status;
1577 }
1578 
1579 #endif // !defined(DISABLE_PHY_COUNTERS)
1580 
1581 SCI_STATUS scic_phy_stop(
1582    SCI_PHY_HANDLE_T       phy
1583 )
1584 {
1585    SCIC_SDS_PHY_T *this_phy;
1586    this_phy = (SCIC_SDS_PHY_T *)phy;
1587 
1588    SCIC_LOG_TRACE((
1589       sci_base_object_get_logger(this_phy),
1590       SCIC_LOG_OBJECT_PHY,
1591       "scic_phy_stop(this_phy:0x%x)\n",
1592       this_phy
1593    ));
1594 
1595    return this_phy->state_handlers->parent.stop_handler(&this_phy->parent);
1596 }
1597 
1598 SCI_STATUS scic_phy_start(
1599    SCI_PHY_HANDLE_T       phy
1600 )
1601 {
1602    SCIC_SDS_PHY_T *this_phy;
1603    this_phy = (SCIC_SDS_PHY_T *)phy;
1604 
1605    SCIC_LOG_TRACE((
1606       sci_base_object_get_logger(this_phy),
1607       SCIC_LOG_OBJECT_PHY,
1608       "scic_phy_start(this_phy:0x%x)\n",
1609       this_phy
1610    ));
1611 
1612    return this_phy->state_handlers->parent.start_handler(&this_phy->parent);
1613 }
1614 
1615 //******************************************************************************
1616 //* PHY STATE MACHINE
1617 //******************************************************************************
1618 
1619 //***************************************************************************
1620 //*  DEFAULT HANDLERS
1621 //***************************************************************************
1622 
1623 /**
1624  * This is the default method for phy a start request.  It will report a
1625  * warning and exit.
1626  *
1627  * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1628  *       SCIC_SDS_PHY object.
1629  *
1630  * @return SCI_STATUS
1631  * @retval SCI_FAILURE_INVALID_STATE
1632  */
1633 SCI_STATUS scic_sds_phy_default_start_handler(
1634    SCI_BASE_PHY_T *phy
1635 )
1636 {
1637    SCIC_SDS_PHY_T *this_phy;
1638    this_phy = (SCIC_SDS_PHY_T *)phy;
1639 
1640    SCIC_LOG_WARNING((
1641       sci_base_object_get_logger(this_phy),
1642       SCIC_LOG_OBJECT_PHY,
1643       "SCIC Phy 0x%08x requested to start from invalid state %d\n",
1644       this_phy,
1645       sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1646    ));
1647 
1648    return SCI_FAILURE_INVALID_STATE;
1649 
1650 }
1651 
1652 /**
1653  * This is the default method for phy a stop request.  It will report a
1654  * warning and exit.
1655  *
1656  * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1657  *       SCIC_SDS_PHY object.
1658  *
1659  * @return SCI_STATUS
1660  * @retval SCI_FAILURE_INVALID_STATE
1661  */
1662 SCI_STATUS scic_sds_phy_default_stop_handler(
1663    SCI_BASE_PHY_T *phy
1664 )
1665 {
1666    SCIC_SDS_PHY_T *this_phy;
1667    this_phy = (SCIC_SDS_PHY_T *)phy;
1668 
1669    SCIC_LOG_WARNING((
1670       sci_base_object_get_logger(this_phy),
1671       SCIC_LOG_OBJECT_PHY,
1672       "SCIC Phy 0x%08x requested to stop from invalid state %d\n",
1673       this_phy,
1674       sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1675    ));
1676 
1677    return SCI_FAILURE_INVALID_STATE;
1678 }
1679 
1680 /**
1681  * This is the default method for phy a reset request.  It will report a
1682  * warning and exit.
1683  *
1684  * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1685  *       SCIC_SDS_PHY object.
1686  *
1687  * @return SCI_STATUS
1688  * @retval SCI_FAILURE_INVALID_STATE
1689  */
1690 SCI_STATUS scic_sds_phy_default_reset_handler(
1691    SCI_BASE_PHY_T * phy
1692 )
1693 {
1694    SCIC_SDS_PHY_T *this_phy;
1695    this_phy = (SCIC_SDS_PHY_T *)phy;
1696 
1697    SCIC_LOG_WARNING((
1698       sci_base_object_get_logger(this_phy),
1699       SCIC_LOG_OBJECT_PHY,
1700       "SCIC Phy 0x%08x requested to reset from invalid state %d\n",
1701       this_phy,
1702       sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1703    ));
1704 
1705    return SCI_FAILURE_INVALID_STATE;
1706 }
1707 
1708 /**
1709  * This is the default method for phy a destruct request.  It will report a
1710  * warning and exit.
1711  *
1712  * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1713  *       SCIC_SDS_PHY object.
1714  *
1715  * @return SCI_STATUS
1716  * @retval SCI_FAILURE_INVALID_STATE
1717  */
1718 SCI_STATUS scic_sds_phy_default_destroy_handler(
1719    SCI_BASE_PHY_T *phy
1720 )
1721 {
1722    SCIC_SDS_PHY_T *this_phy;
1723    this_phy = (SCIC_SDS_PHY_T *)phy;
1724 
1725    /// @todo Implement something for the default
1726    SCIC_LOG_WARNING((
1727       sci_base_object_get_logger(this_phy),
1728       SCIC_LOG_OBJECT_PHY,
1729       "SCIC Phy 0x%08x requested to destroy from invalid state %d\n",
1730       this_phy,
1731       sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1732    ));
1733 
1734    return SCI_FAILURE_INVALID_STATE;
1735 }
1736 
1737 /**
1738  * This is the default method for a phy frame handling request.  It will
1739  * report a warning, release the frame and exit.
1740  *
1741  * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1742  *       SCIC_SDS_PHY object.
1743  * @param[in] frame_index This is the frame index that was received from the
1744  *       SCU hardware.
1745  *
1746  * @return SCI_STATUS
1747  * @retval SCI_FAILURE_INVALID_STATE
1748  */
1749 SCI_STATUS scic_sds_phy_default_frame_handler(
1750    SCIC_SDS_PHY_T *this_phy,
1751    U32            frame_index
1752 )
1753 {
1754    SCIC_LOG_WARNING((
1755       sci_base_object_get_logger(this_phy),
1756       SCIC_LOG_OBJECT_PHY,
1757       "SCIC Phy 0x%08x received unexpected frame data %d while in state %d\n",
1758       this_phy, frame_index,
1759       sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1760    ));
1761 
1762    scic_sds_controller_release_frame(
1763       scic_sds_phy_get_controller(this_phy), frame_index);
1764 
1765    return SCI_FAILURE_INVALID_STATE;
1766 }
1767 
1768 /**
1769  * This is the default method for a phy event handler.  It will report a
1770  * warning and exit.
1771  *
1772  * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1773  *       SCIC_SDS_PHY object.
1774  * @param[in] event_code This is the event code that was received from the SCU
1775  *       hardware.
1776  *
1777  * @return SCI_STATUS
1778  * @retval SCI_FAILURE_INVALID_STATE
1779  */
1780 SCI_STATUS scic_sds_phy_default_event_handler(
1781    SCIC_SDS_PHY_T *this_phy,
1782    U32            event_code
1783 )
1784 {
1785    SCIC_LOG_WARNING((
1786       sci_base_object_get_logger(this_phy),
1787       SCIC_LOG_OBJECT_PHY,
1788       "SCIC Phy 0x%08x received unexpected event status %x while in state %d\n",
1789       this_phy, event_code,
1790       sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1791    ));
1792 
1793    return SCI_FAILURE_INVALID_STATE;
1794 }
1795 
1796 /**
1797  * This is the default method for a phy consume power handler.  It will report
1798  * a warning and exit.
1799  *
1800  * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1801  *       SCIC_SDS_PHY object.
1802  *
1803  * @return SCI_STATUS
1804  * @retval SCI_FAILURE_INVALID_STATE
1805  */
1806 SCI_STATUS scic_sds_phy_default_consume_power_handler(
1807    SCIC_SDS_PHY_T *this_phy
1808 )
1809 {
1810    SCIC_LOG_WARNING((
1811       sci_base_object_get_logger(this_phy),
1812       SCIC_LOG_OBJECT_PHY,
1813       "SCIC Phy 0x%08x given unexpected permission to consume power while in state %d\n",
1814       this_phy,
1815       sci_base_state_machine_get_state(&this_phy->parent.state_machine)
1816    ));
1817 
1818    return SCI_FAILURE_INVALID_STATE;
1819 }
1820 
1821 //******************************************************************************
1822 //* PHY STOPPED STATE HANDLERS
1823 //******************************************************************************
1824 
1825 /**
1826  * This method takes the SCIC_SDS_PHY from a stopped state and attempts to
1827  * start it.
1828  *    - The phy state machine is transitioned to the
1829  *      SCI_BASE_PHY_STATE_STARTING.
1830  *
1831  * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1832  *       SCIC_SDS_PHY object.
1833  *
1834  * @return SCI_STATUS
1835  * @retval SCI_SUCCESS
1836  */
1837 static
1838 SCI_STATUS scic_sds_phy_stopped_state_start_handler(
1839    SCI_BASE_PHY_T *phy
1840 )
1841 {
1842    SCIC_SDS_PHY_T *this_phy;
1843    this_phy = (SCIC_SDS_PHY_T *)phy;
1844 
1845 
1846 
1847    // Create the SIGNATURE FIS Timeout timer for this phy
1848    this_phy->sata_timeout_timer = scic_cb_timer_create(
1849       scic_sds_phy_get_controller(this_phy),
1850       scic_sds_phy_sata_timeout,
1851       this_phy
1852    );
1853 
1854    if (this_phy->sata_timeout_timer != NULL)
1855    {
1856       sci_base_state_machine_change_state(
1857          scic_sds_phy_get_base_state_machine(this_phy),
1858          SCI_BASE_PHY_STATE_STARTING
1859       );
1860    }
1861 
1862    return SCI_SUCCESS;
1863 }
1864 
1865 /**
1866  * This method takes the SCIC_SDS_PHY from a stopped state and destroys it.
1867  *    - This function takes no action.
1868  *
1869  * @todo Shouldn't this function transition the SCI_BASE_PHY::state_machine to
1870  *        the SCI_BASE_PHY_STATE_FINAL?
1871  *
1872  * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1873  *       SCIC_SDS_PHY object.
1874  *
1875  * @return SCI_STATUS
1876  * @retval SCI_SUCCESS
1877  */
1878 static
1879 SCI_STATUS scic_sds_phy_stopped_state_destroy_handler(
1880    SCI_BASE_PHY_T *phy
1881 )
1882 {
1883    SCIC_SDS_PHY_T *this_phy;
1884    this_phy = (SCIC_SDS_PHY_T *)phy;
1885 
1886    /// @todo what do we actually need to do here?
1887    return SCI_SUCCESS;
1888 }
1889 
1890 //******************************************************************************
1891 //* PHY STARTING STATE HANDLERS
1892 //******************************************************************************
1893 
1894 // All of these state handlers are mapped to the starting sub-state machine
1895 
1896 //******************************************************************************
1897 //* PHY READY STATE HANDLERS
1898 //******************************************************************************
1899 
1900 /**
1901  * This method takes the SCIC_SDS_PHY from a ready state and attempts to stop
1902  * it.
1903  *    - The phy state machine is transitioned to the SCI_BASE_PHY_STATE_STOPPED.
1904  *
1905  * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1906  *       SCIC_SDS_PHY object.
1907  *
1908  * @return SCI_STATUS
1909  * @retval SCI_SUCCESS
1910  */
1911 static
1912 SCI_STATUS scic_sds_phy_ready_state_stop_handler(
1913    SCI_BASE_PHY_T *phy
1914 )
1915 {
1916    SCIC_SDS_PHY_T *this_phy;
1917    this_phy = (SCIC_SDS_PHY_T *)phy;
1918 
1919    sci_base_state_machine_change_state(
1920       scic_sds_phy_get_base_state_machine(this_phy),
1921       SCI_BASE_PHY_STATE_STOPPED
1922    );
1923 
1924    scic_sds_controller_link_down(
1925       scic_sds_phy_get_controller(this_phy),
1926       scic_sds_phy_get_port(this_phy),
1927       this_phy
1928    );
1929 
1930    return SCI_SUCCESS;
1931 }
1932 
1933 /**
1934  * This method takes the SCIC_SDS_PHY from a ready state and attempts to reset
1935  * it.
1936  *    - The phy state machine is transitioned to the SCI_BASE_PHY_STATE_STARTING.
1937  *
1938  * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
1939  *       SCIC_SDS_PHY object.
1940  *
1941  * @return SCI_STATUS
1942  * @retval SCI_SUCCESS
1943  */
1944 static
1945 SCI_STATUS scic_sds_phy_ready_state_reset_handler(
1946    SCI_BASE_PHY_T * phy
1947 )
1948 {
1949    SCIC_SDS_PHY_T * this_phy;
1950    this_phy = (SCIC_SDS_PHY_T *)phy;
1951 
1952    sci_base_state_machine_change_state(
1953       scic_sds_phy_get_base_state_machine(this_phy),
1954       SCI_BASE_PHY_STATE_RESETTING
1955    );
1956 
1957    return SCI_SUCCESS;
1958 }
1959 
1960 /**
1961  * This method request the SCIC_SDS_PHY handle the received event.  The only
1962  * event that we are interested in while in the ready state is the link
1963  * failure event.
1964  *    - decoded event is a link failure
1965  *       - transition the SCIC_SDS_PHY back to the SCI_BASE_PHY_STATE_STARTING
1966  *         state.
1967  *    - any other event received will report a warning message
1968  *
1969  * @param[in] phy This is the SCIC_SDS_PHY object which has received the
1970  *       event.
1971  *
1972  * @return SCI_STATUS
1973  * @retval SCI_SUCCESS if the event received is a link failure
1974  * @retval SCI_FAILURE_INVALID_STATE for any other event received.
1975  */
1976 static
1977 SCI_STATUS scic_sds_phy_ready_state_event_handler(
1978    SCIC_SDS_PHY_T *this_phy,
1979    U32            event_code
1980 )
1981 {
1982    SCI_STATUS result = SCI_FAILURE;
1983 
1984    switch (scu_get_event_code(event_code))
1985    {
1986    case SCU_EVENT_LINK_FAILURE:
1987       // Link failure change state back to the starting state
1988       sci_base_state_machine_change_state(
1989          scic_sds_phy_get_base_state_machine(this_phy),
1990          SCI_BASE_PHY_STATE_STARTING
1991          );
1992 
1993       result = SCI_SUCCESS;
1994       break;
1995 
1996    case SCU_EVENT_BROADCAST_CHANGE:
1997       // Broadcast change received. Notify the port.
1998       if (scic_sds_phy_get_port(this_phy) != SCI_INVALID_HANDLE)
1999          scic_sds_port_broadcast_change_received(this_phy->owning_port, this_phy);
2000       else
2001          this_phy->bcn_received_while_port_unassigned = TRUE;
2002       break;
2003 
2004    case SCU_EVENT_ERR_CNT(RX_CREDIT_BLOCKED_RECEIVED):
2005    case SCU_EVENT_ERR_CNT(TX_DONE_CREDIT_TIMEOUT):
2006    case SCU_EVENT_ERR_CNT(RX_DONE_CREDIT_TIMEOUT):
2007    case SCU_EVENT_ERR_CNT(INACTIVITY_TIMER_EXPIRED):
2008    case SCU_EVENT_ERR_CNT(TX_DONE_ACK_NAK_TIMEOUT):
2009    case SCU_EVENT_ERR_CNT(RX_DONE_ACK_NAK_TIMEOUT):
2010       {
2011          U32 error_counter_index =
2012                 scu_get_event_specifier(event_code) >> SCU_EVENT_SPECIFIC_CODE_SHIFT;
2013 
2014          this_phy->error_counter[error_counter_index]++;
2015          result = SCI_SUCCESS;
2016       }
2017       break;
2018 
2019    default:
2020       SCIC_LOG_WARNING((
2021          sci_base_object_get_logger(this_phy),
2022          SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2023          "SCIC PHY 0x%x ready state machine received unexpected event_code %x\n",
2024          this_phy, event_code
2025       ));
2026       result = SCI_FAILURE_INVALID_STATE;
2027       break;
2028    }
2029 
2030    return result;
2031 }
2032 
2033 // ---------------------------------------------------------------------------
2034 
2035 /**
2036  * This is the resetting state event handler.
2037  *
2038  * @param[in] this_phy This is the SCIC_SDS_PHY object which is receiving the
2039  *       event.
2040  * @param[in] event_code This is the event code to be processed.
2041  *
2042  * @return SCI_STATUS
2043  * @retval SCI_FAILURE_INVALID_STATE
2044  */
2045 static
2046 SCI_STATUS scic_sds_phy_resetting_state_event_handler(
2047    SCIC_SDS_PHY_T *this_phy,
2048    U32            event_code
2049 )
2050 {
2051    SCI_STATUS result = SCI_FAILURE;
2052 
2053    switch (scu_get_event_code(event_code))
2054    {
2055    case SCU_EVENT_HARD_RESET_TRANSMITTED:
2056       // Link failure change state back to the starting state
2057       sci_base_state_machine_change_state(
2058          scic_sds_phy_get_base_state_machine(this_phy),
2059          SCI_BASE_PHY_STATE_STARTING
2060          );
2061 
2062       result = SCI_SUCCESS;
2063       break;
2064 
2065    default:
2066       SCIC_LOG_WARNING((
2067          sci_base_object_get_logger(this_phy),
2068          SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2069          "SCIC PHY 0x%x resetting state machine received unexpected event_code %x\n",
2070          this_phy, event_code
2071       ));
2072 
2073       result = SCI_FAILURE_INVALID_STATE;
2074       break;
2075    }
2076 
2077    return result;
2078 }
2079 
2080 // ---------------------------------------------------------------------------
2081 
2082 SCIC_SDS_PHY_STATE_HANDLER_T
2083    scic_sds_phy_state_handler_table[SCI_BASE_PHY_MAX_STATES] =
2084 {
2085    // SCI_BASE_PHY_STATE_INITIAL
2086    {
2087       {
2088          scic_sds_phy_default_start_handler,
2089          scic_sds_phy_default_stop_handler,
2090          scic_sds_phy_default_reset_handler,
2091          scic_sds_phy_default_destroy_handler
2092       },
2093       scic_sds_phy_default_frame_handler,
2094       scic_sds_phy_default_event_handler,
2095       scic_sds_phy_default_consume_power_handler
2096    },
2097    // SCI_BASE_PHY_STATE_STOPPED
2098    {
2099       {
2100          scic_sds_phy_stopped_state_start_handler,
2101          scic_sds_phy_default_stop_handler,
2102          scic_sds_phy_default_reset_handler,
2103          scic_sds_phy_stopped_state_destroy_handler
2104       },
2105       scic_sds_phy_default_frame_handler,
2106       scic_sds_phy_default_event_handler,
2107       scic_sds_phy_default_consume_power_handler
2108    },
2109    // SCI_BASE_PHY_STATE_STARTING
2110    {
2111       {
2112          scic_sds_phy_default_start_handler,
2113          scic_sds_phy_default_stop_handler,
2114          scic_sds_phy_default_reset_handler,
2115          scic_sds_phy_default_destroy_handler
2116       },
2117       scic_sds_phy_default_frame_handler,
2118       scic_sds_phy_default_event_handler,
2119       scic_sds_phy_default_consume_power_handler
2120    },
2121    // SCI_BASE_PHY_STATE_READY
2122    {
2123       {
2124          scic_sds_phy_default_start_handler,
2125          scic_sds_phy_ready_state_stop_handler,
2126          scic_sds_phy_ready_state_reset_handler,
2127          scic_sds_phy_default_destroy_handler
2128       },
2129       scic_sds_phy_default_frame_handler,
2130       scic_sds_phy_ready_state_event_handler,
2131       scic_sds_phy_default_consume_power_handler
2132    },
2133    // SCI_BASE_PHY_STATE_RESETTING
2134    {
2135       {
2136          scic_sds_phy_default_start_handler,
2137          scic_sds_phy_default_stop_handler,
2138          scic_sds_phy_default_reset_handler,
2139          scic_sds_phy_default_destroy_handler
2140       },
2141       scic_sds_phy_default_frame_handler,
2142       scic_sds_phy_resetting_state_event_handler,
2143       scic_sds_phy_default_consume_power_handler
2144    },
2145    // SCI_BASE_PHY_STATE_FINAL
2146    {
2147       {
2148          scic_sds_phy_default_start_handler,
2149          scic_sds_phy_default_stop_handler,
2150          scic_sds_phy_default_reset_handler,
2151          scic_sds_phy_default_destroy_handler
2152       },
2153       scic_sds_phy_default_frame_handler,
2154       scic_sds_phy_default_event_handler,
2155       scic_sds_phy_default_consume_power_handler
2156    }
2157 };
2158 
2159 //****************************************************************************
2160 //*  PHY STATE PRIVATE METHODS
2161 //****************************************************************************
2162 
2163 /**
2164  * This method will stop the SCIC_SDS_PHY object. This does not reset the
2165  * protocol engine it just suspends it and places it in a state where it will
2166  * not cause the end device to power up.
2167  *
2168  * @param[in] this_phy This is the SCIC_SDS_PHY object to stop.
2169  *
2170  * @return none
2171  */
2172 static
2173 void scu_link_layer_stop_protocol_engine(
2174    SCIC_SDS_PHY_T *this_phy
2175 )
2176 {
2177    U32 scu_sas_pcfg_value;
2178    U32 enable_spinup_value;
2179 
2180    // Suspend the protocol engine and place it in a sata spinup hold state
2181    scu_sas_pcfg_value  = SCU_SAS_PCFG_READ(this_phy);
2182    scu_sas_pcfg_value |= (
2183                            SCU_SAS_PCFG_GEN_BIT(OOB_RESET)
2184                          | SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE)
2185                          | SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD)
2186                          );
2187    SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
2188 
2189    // Disable the notify enable spinup primitives
2190    enable_spinup_value = SCU_SAS_ENSPINUP_READ(this_phy);
2191    enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
2192    SCU_SAS_ENSPINUP_WRITE(this_phy, enable_spinup_value);
2193 }
2194 
2195 /**
2196  * This method will start the OOB/SN state machine for this SCIC_SDS_PHY
2197  * object.
2198  *
2199  * @param[in] this_phy This is the SCIC_SDS_PHY object on which to start the
2200  *       OOB/SN state machine.
2201  */
2202 static
2203 void scu_link_layer_start_oob(
2204    SCIC_SDS_PHY_T *this_phy
2205 )
2206 {
2207    U32 scu_sas_pcfg_value;
2208 
2209    /* Reset OOB sequence - start */
2210    scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
2211    scu_sas_pcfg_value &=
2212       ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
2213    SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
2214    SCU_SAS_PCFG_READ(this_phy);
2215    /* Reset OOB sequence - end */
2216 
2217    /* Start OOB sequence - start */
2218    scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
2219    scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
2220    SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
2221    SCU_SAS_PCFG_READ(this_phy);
2222    /* Start OOB sequence - end */
2223 }
2224 
2225 /**
2226  * This method will transmit a hard reset request on the specified phy. The
2227  * SCU hardware requires that we reset the OOB state machine and set the hard
2228  * reset bit in the phy configuration register.
2229  * We then must start OOB over with the hard reset bit set.
2230  *
2231  * @param[in] this_phy
2232  */
2233 static
2234 void scu_link_layer_tx_hard_reset(
2235    SCIC_SDS_PHY_T *this_phy
2236 )
2237 {
2238    U32 phy_configuration_value;
2239 
2240    // SAS Phys must wait for the HARD_RESET_TX event notification to transition
2241    // to the starting state.
2242    phy_configuration_value = SCU_SAS_PCFG_READ(this_phy);
2243    phy_configuration_value |=
2244       (SCU_SAS_PCFG_GEN_BIT(HARD_RESET) | SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
2245    SCU_SAS_PCFG_WRITE(this_phy, phy_configuration_value);
2246 
2247    // Now take the OOB state machine out of reset
2248    phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
2249    phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
2250    SCU_SAS_PCFG_WRITE(this_phy, phy_configuration_value);
2251 }
2252 
2253 //****************************************************************************
2254 //*  PHY BASE STATE METHODS
2255 //****************************************************************************
2256 
2257 /**
2258  * This method will perform the actions required by the SCIC_SDS_PHY on
2259  * entering the SCI_BASE_PHY_STATE_INITIAL.
2260  *    - This function sets the state handlers for the phy object base state
2261  * machine initial state.
2262  *
2263  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2264  *       SCIC_SDS_PHY object.
2265  *
2266  * @return none
2267  */
2268 static
2269 void scic_sds_phy_initial_state_enter(
2270    SCI_BASE_OBJECT_T *object
2271 )
2272 {
2273    SCIC_SDS_PHY_T *this_phy;
2274    this_phy = (SCIC_SDS_PHY_T *)object;
2275 
2276    scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_INITIAL);
2277 }
2278 
2279 /**
2280  * This method will perform the actions required by the SCIC_SDS_PHY on
2281  * entering the SCI_BASE_PHY_STATE_INITIAL.
2282  *    - This function sets the state handlers for the phy object base state
2283  * machine initial state.
2284  *    - The SCU hardware is requested to stop the protocol engine.
2285  *
2286  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2287  *       SCIC_SDS_PHY object.
2288  *
2289  * @return none
2290  */
2291 static
2292 void scic_sds_phy_stopped_state_enter(
2293    SCI_BASE_OBJECT_T *object
2294 )
2295 {
2296    SCIC_SDS_PHY_T *this_phy;
2297    this_phy = (SCIC_SDS_PHY_T *)object;
2298 
2299    /// @todo We need to get to the controller to place this PE in a reset state
2300    scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_STOPPED);
2301 
2302    if (this_phy->sata_timeout_timer != NULL)
2303    {
2304       scic_cb_timer_destroy(
2305          scic_sds_phy_get_controller(this_phy),
2306          this_phy->sata_timeout_timer
2307       );
2308 
2309       this_phy->sata_timeout_timer = NULL;
2310    }
2311 
2312    scu_link_layer_stop_protocol_engine(this_phy);
2313 }
2314 
2315 /**
2316  * This method will perform the actions required by the SCIC_SDS_PHY on
2317  * entering the SCI_BASE_PHY_STATE_STARTING.
2318  *    - This function sets the state handlers for the phy object base state
2319  * machine starting state.
2320  *    - The SCU hardware is requested to start OOB/SN on this protocol engine.
2321  *    - The phy starting substate machine is started.
2322  *    - If the previous state was the ready state then the
2323  *      SCIC_SDS_CONTROLLER is informed that the phy has gone link down.
2324  *
2325  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2326  *       SCIC_SDS_PHY object.
2327  *
2328  * @return none
2329  */
2330 static
2331 void scic_sds_phy_starting_state_enter(
2332    SCI_BASE_OBJECT_T *object
2333 )
2334 {
2335    SCIC_SDS_PHY_T *this_phy;
2336    this_phy = (SCIC_SDS_PHY_T *)object;
2337 
2338    scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_STARTING);
2339 
2340    scu_link_layer_stop_protocol_engine(this_phy);
2341    scu_link_layer_start_oob(this_phy);
2342 
2343    // We don't know what kind of phy we are going to be just yet
2344    this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
2345    this_phy->bcn_received_while_port_unassigned = FALSE;
2346 
2347    // Change over to the starting substate machine to continue
2348    sci_base_state_machine_start(&this_phy->starting_substate_machine);
2349 
2350    if (this_phy->parent.state_machine.previous_state_id
2351        == SCI_BASE_PHY_STATE_READY)
2352    {
2353       scic_sds_controller_link_down(
2354          scic_sds_phy_get_controller(this_phy),
2355          scic_sds_phy_get_port(this_phy),
2356          this_phy
2357       );
2358    }
2359 }
2360 
2361 /**
2362  * This method will perform the actions required by the SCIC_SDS_PHY on
2363  * entering the SCI_BASE_PHY_STATE_READY.
2364  *    - This function sets the state handlers for the phy object base state
2365  * machine ready state.
2366  *    - The SCU hardware protocol engine is resumed.
2367  *    - The SCIC_SDS_CONTROLLER is informed that the phy object has gone link
2368  *      up.
2369  *
2370  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2371  *       SCIC_SDS_PHY object.
2372  *
2373  * @return none
2374  */
2375 static
2376 void scic_sds_phy_ready_state_enter(
2377    SCI_BASE_OBJECT_T *object
2378 )
2379 {
2380    SCIC_SDS_PHY_T *this_phy;
2381    this_phy = (SCIC_SDS_PHY_T *)object;
2382 
2383    scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_READY);
2384 
2385    scic_sds_controller_link_up(
2386       scic_sds_phy_get_controller(this_phy),
2387       scic_sds_phy_get_port(this_phy),
2388       this_phy
2389    );
2390 }
2391 
2392 /**
2393  * This method will perform the actions required by the SCIC_SDS_PHY on
2394  * exiting the SCI_BASE_PHY_STATE_INITIAL. This function suspends the SCU
2395  * hardware protocol engine represented by this SCIC_SDS_PHY object.
2396  *
2397  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2398  *       SCIC_SDS_PHY object.
2399  *
2400  * @return none
2401  */
2402 static
2403 void scic_sds_phy_ready_state_exit(
2404    SCI_BASE_OBJECT_T *object
2405 )
2406 {
2407    SCIC_SDS_PHY_T *this_phy;
2408    this_phy = (SCIC_SDS_PHY_T *)object;
2409 
2410    scic_sds_phy_suspend(this_phy);
2411 }
2412 
2413 /**
2414  * This method will perform the actions required by the SCIC_SDS_PHY on
2415  * entering the SCI_BASE_PHY_STATE_RESETTING.
2416  *    - This function sets the state handlers for the phy object base state
2417  * machine resetting state.
2418  *
2419  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2420  *       SCIC_SDS_PHY object.
2421  *
2422  * @return none
2423  */
2424 static
2425 void scic_sds_phy_resetting_state_enter(
2426    SCI_BASE_OBJECT_T *object
2427 )
2428 {
2429    SCIC_SDS_PHY_T * this_phy;
2430    this_phy = (SCIC_SDS_PHY_T *)object;
2431 
2432    scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_RESETTING);
2433 
2434    // The phy is being reset, therefore deactivate it from the port.
2435    // In the resetting state we don't notify the user regarding
2436    // link up and link down notifications.
2437    scic_sds_port_deactivate_phy(this_phy->owning_port, this_phy, FALSE);
2438 
2439    if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS)
2440    {
2441       scu_link_layer_tx_hard_reset(this_phy);
2442    }
2443    else
2444    {
2445       // The SCU does not need to have a descrete reset state so just go back to
2446       // the starting state.
2447       sci_base_state_machine_change_state(
2448          &this_phy->parent.state_machine,
2449          SCI_BASE_PHY_STATE_STARTING
2450       );
2451    }
2452 }
2453 
2454 /**
2455  * This method will perform the actions required by the SCIC_SDS_PHY on
2456  * entering the SCI_BASE_PHY_STATE_FINAL.
2457  *    - This function sets the state handlers for the phy object base state
2458  * machine final state.
2459  *
2460  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
2461  *       SCIC_SDS_PHY object.
2462  *
2463  * @return none
2464  */
2465 static
2466 void scic_sds_phy_final_state_enter(
2467    SCI_BASE_OBJECT_T *object
2468 )
2469 {
2470    SCIC_SDS_PHY_T *this_phy;
2471    this_phy = (SCIC_SDS_PHY_T *)object;
2472 
2473    scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_FINAL);
2474 
2475    // Nothing to do here
2476 }
2477 
2478 // ---------------------------------------------------------------------------
2479 
2480 SCI_BASE_STATE_T scic_sds_phy_state_table[SCI_BASE_PHY_MAX_STATES] =
2481 {
2482    {
2483       SCI_BASE_PHY_STATE_INITIAL,
2484       scic_sds_phy_initial_state_enter,
2485       NULL,
2486    },
2487    {
2488       SCI_BASE_PHY_STATE_STOPPED,
2489       scic_sds_phy_stopped_state_enter,
2490       NULL,
2491    },
2492    {
2493       SCI_BASE_PHY_STATE_STARTING,
2494       scic_sds_phy_starting_state_enter,
2495       NULL,
2496    },
2497    {
2498       SCI_BASE_PHY_STATE_READY,
2499       scic_sds_phy_ready_state_enter,
2500       scic_sds_phy_ready_state_exit,
2501    },
2502    {
2503       SCI_BASE_PHY_STATE_RESETTING,
2504       scic_sds_phy_resetting_state_enter,
2505       NULL,
2506    },
2507    {
2508       SCI_BASE_PHY_STATE_FINAL,
2509       scic_sds_phy_final_state_enter,
2510       NULL,
2511    }
2512 };
2513 
2514 //******************************************************************************
2515 //* PHY STARTING SUB-STATE MACHINE
2516 //******************************************************************************
2517 
2518 //*****************************************************************************
2519 //* SCIC SDS PHY HELPER FUNCTIONS
2520 //*****************************************************************************
2521 
2522 
2523 /**
2524  * This method continues the link training for the phy as if it were a SAS PHY
2525  * instead of a SATA PHY. This is done because the completion queue had a SAS
2526  * PHY DETECTED event when the state machine was expecting a SATA PHY event.
2527  *
2528  * @param[in] this_phy The phy object that received SAS PHY DETECTED.
2529  *
2530  * @return none
2531  */
2532 static
2533 void scic_sds_phy_start_sas_link_training(
2534    SCIC_SDS_PHY_T * this_phy
2535 )
2536 {
2537    U32 phy_control;
2538 
2539    phy_control = SCU_SAS_PCFG_READ(this_phy);
2540    phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
2541    SCU_SAS_PCFG_WRITE(this_phy, phy_control);
2542 
2543    sci_base_state_machine_change_state(
2544       &this_phy->starting_substate_machine,
2545       SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN
2546    );
2547 
2548    this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SAS;
2549 }
2550 
2551 /**
2552  * This method continues the link training for the phy as if it were a SATA
2553  * PHY instead of a SAS PHY.  This is done because the completion queue had a
2554  * SATA SPINUP HOLD event when the state machine was expecting a SAS PHY
2555  * event.
2556  *
2557  * @param[in] this_phy The phy object that received a SATA SPINUP HOLD event
2558  *
2559  * @return none
2560  */
2561 static
2562 void scic_sds_phy_start_sata_link_training(
2563    SCIC_SDS_PHY_T * this_phy
2564 )
2565 {
2566    sci_base_state_machine_change_state(
2567       &this_phy->starting_substate_machine,
2568       SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER
2569    );
2570 
2571    this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
2572 }
2573 
2574 /**
2575  * @brief This method performs processing common to all protocols upon
2576  *        completion of link training.
2577  *
2578  * @param[in,out] this_phy This parameter specifies the phy object for which
2579  *                link training has completed.
2580  * @param[in]     max_link_rate This parameter specifies the maximum link
2581  *                rate to be associated with this phy.
2582  * @param[in]     next_state This parameter specifies the next state for the
2583  *                phy's starting sub-state machine.
2584  *
2585  * @return none
2586  */
2587 static
2588 void scic_sds_phy_complete_link_training(
2589    SCIC_SDS_PHY_T *   this_phy,
2590    SCI_SAS_LINK_RATE  max_link_rate,
2591    U32                next_state
2592 )
2593 {
2594    this_phy->max_negotiated_speed = max_link_rate;
2595 
2596    sci_base_state_machine_change_state(
2597       scic_sds_phy_get_starting_substate_machine(this_phy), next_state
2598    );
2599 }
2600 
2601 /**
2602  * This method restarts the SCIC_SDS_PHY objects base state machine in the
2603  * starting state from any starting substate.
2604  *
2605  * @param[in] this_phy The SCIC_SDS_PHY object to restart.
2606  *
2607  * @return none
2608  */
2609 void scic_sds_phy_restart_starting_state(
2610    SCIC_SDS_PHY_T *this_phy
2611 )
2612 {
2613    // Stop the current substate machine
2614    sci_base_state_machine_stop(
2615       scic_sds_phy_get_starting_substate_machine(this_phy)
2616    );
2617 
2618    // Re-enter the base state machine starting state
2619    sci_base_state_machine_change_state(
2620       scic_sds_phy_get_base_state_machine(this_phy),
2621       SCI_BASE_PHY_STATE_STARTING
2622       );
2623 }
2624 
2625 
2626 //*****************************************************************************
2627 //* SCIC SDS PHY general handlers
2628 //*****************************************************************************
2629 
2630 static
2631 SCI_STATUS scic_sds_phy_starting_substate_general_stop_handler(
2632    SCI_BASE_PHY_T *phy
2633 )
2634 {
2635    SCIC_SDS_PHY_T *this_phy;
2636    this_phy = (SCIC_SDS_PHY_T *)phy;
2637 
2638    sci_base_state_machine_stop(
2639       &this_phy->starting_substate_machine
2640    );
2641 
2642    sci_base_state_machine_change_state(
2643       &phy->state_machine,
2644       SCI_BASE_PHY_STATE_STOPPED
2645    );
2646 
2647    return SCI_SUCCESS;
2648 }
2649 
2650 //*****************************************************************************
2651 //* SCIC SDS PHY EVENT_HANDLERS
2652 //*****************************************************************************
2653 
2654 /**
2655  * This method is called when an event notification is received for the phy
2656  * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SPEED_EN.
2657  *    - decode the event
2658  *       - sas phy detected causes a state transition to the wait for speed
2659  *         event notification.
2660  *       - any other events log a warning message and set a failure status
2661  *
2662  * @param[in] phy This SCIC_SDS_PHY object which has received an event.
2663  * @param[in] event_code This is the event code which the phy object is to
2664  *       decode.
2665  *
2666  * @return SCI_STATUS
2667  * @retval SCI_SUCCESS on any valid event notification
2668  * @retval SCI_FAILURE on any unexpected event notifation
2669  */
2670 static
2671 SCI_STATUS scic_sds_phy_starting_substate_await_ossp_event_handler(
2672    SCIC_SDS_PHY_T *this_phy,
2673    U32 event_code
2674 )
2675 {
2676    U32 result = SCI_SUCCESS;
2677 
2678    switch (scu_get_event_code(event_code))
2679    {
2680    case SCU_EVENT_SAS_PHY_DETECTED:
2681       scic_sds_phy_start_sas_link_training(this_phy);
2682       this_phy->is_in_link_training = TRUE;
2683    break;
2684 
2685    case SCU_EVENT_SATA_SPINUP_HOLD:
2686       scic_sds_phy_start_sata_link_training(this_phy);
2687       this_phy->is_in_link_training = TRUE;
2688    break;
2689 
2690    default:
2691       SCIC_LOG_WARNING((
2692          sci_base_object_get_logger(this_phy),
2693          SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2694          "PHY starting substate machine received unexpected event_code %x\n",
2695          event_code
2696       ));
2697 
2698       result = SCI_FAILURE;
2699    break;
2700    }
2701 
2702    return result;
2703 }
2704 
2705 /**
2706  * This method is called when an event notification is received for the phy
2707  * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SPEED_EN.
2708  *    - decode the event
2709  *       - sas phy detected returns us back to this state.
2710  *       - speed event detected causes a state transition to the wait for iaf.
2711  *       - identify timeout is an un-expected event and the state machine is
2712  *         restarted.
2713  *       - link failure events restart the starting state machine
2714  *       - any other events log a warning message and set a failure status
2715  *
2716  * @param[in] phy This SCIC_SDS_PHY object which has received an event.
2717  * @param[in] event_code This is the event code which the phy object is to
2718  *       decode.
2719  *
2720  * @return SCI_STATUS
2721  * @retval SCI_SUCCESS on any valid event notification
2722  * @retval SCI_FAILURE on any unexpected event notifation
2723  */
2724 static
2725 SCI_STATUS scic_sds_phy_starting_substate_await_sas_phy_speed_event_handler(
2726    SCIC_SDS_PHY_T *this_phy,
2727    U32 event_code
2728 )
2729 {
2730    U32 result = SCI_SUCCESS;
2731 
2732    switch (scu_get_event_code(event_code))
2733    {
2734    case SCU_EVENT_SAS_PHY_DETECTED:
2735       // Why is this being reported again by the controller?
2736       // We would re-enter this state so just stay here
2737    break;
2738 
2739    case SCU_EVENT_SAS_15:
2740    case SCU_EVENT_SAS_15_SSC:
2741       scic_sds_phy_complete_link_training(
2742          this_phy, SCI_SAS_150_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
2743       );
2744    break;
2745 
2746    case SCU_EVENT_SAS_30:
2747    case SCU_EVENT_SAS_30_SSC:
2748       scic_sds_phy_complete_link_training(
2749          this_phy, SCI_SAS_300_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
2750       );
2751    break;
2752 
2753    case SCU_EVENT_SAS_60:
2754    case SCU_EVENT_SAS_60_SSC:
2755       scic_sds_phy_complete_link_training(
2756          this_phy, SCI_SAS_600_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
2757       );
2758    break;
2759 
2760    case SCU_EVENT_SATA_SPINUP_HOLD:
2761       // We were doing SAS PHY link training and received a SATA PHY event
2762       // continue OOB/SN as if this were a SATA PHY
2763       scic_sds_phy_start_sata_link_training(this_phy);
2764    break;
2765 
2766    case SCU_EVENT_LINK_FAILURE:
2767       // Link failure change state back to the starting state
2768       scic_sds_phy_restart_starting_state(this_phy);
2769    break;
2770 
2771    default:
2772       SCIC_LOG_WARNING((
2773          sci_base_object_get_logger(this_phy),
2774          SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2775          "PHY starting substate machine received unexpected event_code %x\n",
2776          event_code
2777       ));
2778 
2779       result = SCI_FAILURE;
2780    break;
2781    }
2782 
2783    return result;
2784 }
2785 
2786 /**
2787  * This method is called when an event notification is received for the phy
2788  * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF.
2789  *    - decode the event
2790  *       - sas phy detected event backs up the state machine to the await
2791  *         speed notification.
2792  *       - identify timeout is an un-expected event and the state machine is
2793  *         restarted.
2794  *       - link failure events restart the starting state machine
2795  *       - any other events log a warning message and set a failure status
2796  *
2797  * @param[in] phy This SCIC_SDS_PHY object which has received an event.
2798  * @param[in] event_code This is the event code which the phy object is to
2799  *       decode.
2800  *
2801  * @return SCI_STATUS
2802  * @retval SCI_SUCCESS on any valid event notification
2803  * @retval SCI_FAILURE on any unexpected event notifation
2804  */
2805 static
2806 SCI_STATUS scic_sds_phy_starting_substate_await_iaf_uf_event_handler(
2807    SCIC_SDS_PHY_T *this_phy,
2808    U32 event_code
2809 )
2810 {
2811    U32 result = SCI_SUCCESS;
2812 
2813    switch (scu_get_event_code(event_code))
2814    {
2815    case SCU_EVENT_SAS_PHY_DETECTED:
2816       // Backup the state machine
2817       scic_sds_phy_start_sas_link_training(this_phy);
2818       break;
2819 
2820    case SCU_EVENT_SATA_SPINUP_HOLD:
2821       // We were doing SAS PHY link training and received a SATA PHY event
2822       // continue OOB/SN as if this were a SATA PHY
2823       scic_sds_phy_start_sata_link_training(this_phy);
2824    break;
2825 
2826    case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
2827    case SCU_EVENT_LINK_FAILURE:
2828    case SCU_EVENT_HARD_RESET_RECEIVED:
2829       // Start the oob/sn state machine over again
2830       scic_sds_phy_restart_starting_state(this_phy);
2831       break;
2832 
2833    default:
2834       SCIC_LOG_WARNING((
2835          sci_base_object_get_logger(this_phy),
2836          SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2837          "PHY starting substate machine received unexpected event_code %x\n",
2838          event_code
2839       ));
2840 
2841       result = SCI_FAILURE;
2842       break;
2843    }
2844 
2845    return result;
2846 }
2847 
2848 /**
2849  * This method is called when an event notification is received for the phy
2850  * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_POWER.
2851  *    - decode the event
2852  *       - link failure events restart the starting state machine
2853  *       - any other events log a warning message and set a failure status
2854  *
2855  * @param[in] phy This SCIC_SDS_PHY object which has received an event.
2856  * @param[in] event_code This is the event code which the phy object is to
2857  *       decode.
2858  *
2859  * @return SCI_STATUS
2860  * @retval SCI_SUCCESS on a link failure event
2861  * @retval SCI_FAILURE on any unexpected event notifation
2862  */
2863 static
2864 SCI_STATUS scic_sds_phy_starting_substate_await_sas_power_event_handler(
2865    SCIC_SDS_PHY_T *this_phy,
2866    U32 event_code
2867 )
2868 {
2869    U32 result = SCI_SUCCESS;
2870 
2871    switch (scu_get_event_code(event_code))
2872    {
2873    case SCU_EVENT_LINK_FAILURE:
2874       // Link failure change state back to the starting state
2875       scic_sds_phy_restart_starting_state(this_phy);
2876       break;
2877 
2878    default:
2879       SCIC_LOG_WARNING((
2880          sci_base_object_get_logger(this_phy),
2881          SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2882          "PHY starting substate machine received unexpected event_code %x\n",
2883          event_code
2884       ));
2885 
2886       result = SCI_FAILURE;
2887       break;
2888    }
2889 
2890    return result;
2891 }
2892 
2893 /**
2894  * This method is called when an event notification is received for the phy
2895  * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER.
2896  *    - decode the event
2897  *       - link failure events restart the starting state machine
2898  *       - sata spinup hold events are ignored since they are expected
2899  *       - any other events log a warning message and set a failure status
2900  *
2901  * @param[in] phy This SCIC_SDS_PHY object which has received an event.
2902  * @param[in] event_code This is the event code which the phy object is to
2903  *       decode.
2904  *
2905  * @return SCI_STATUS
2906  * @retval SCI_SUCCESS on a link failure event
2907  * @retval SCI_FAILURE on any unexpected event notifation
2908  */
2909 static
2910 SCI_STATUS scic_sds_phy_starting_substate_await_sata_power_event_handler(
2911    SCIC_SDS_PHY_T *this_phy,
2912    U32 event_code
2913 )
2914 {
2915    U32 result = SCI_SUCCESS;
2916 
2917    switch (scu_get_event_code(event_code))
2918    {
2919    case SCU_EVENT_LINK_FAILURE:
2920       // Link failure change state back to the starting state
2921       scic_sds_phy_restart_starting_state(this_phy);
2922       break;
2923 
2924    case SCU_EVENT_SATA_SPINUP_HOLD:
2925       // These events are received every 10ms and are expected while in this state
2926       break;
2927 
2928    case SCU_EVENT_SAS_PHY_DETECTED:
2929       // There has been a change in the phy type before OOB/SN for the
2930       // SATA finished start down the SAS link traning path.
2931       scic_sds_phy_start_sas_link_training(this_phy);
2932    break;
2933 
2934    default:
2935       SCIC_LOG_WARNING((
2936          sci_base_object_get_logger(this_phy),
2937          SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
2938          "PHY starting substate machine received unexpected event_code %x\n",
2939          event_code
2940       ));
2941 
2942       result = SCI_FAILURE;
2943       break;
2944    }
2945 
2946    return result;
2947 }
2948 
2949 /**
2950  * This method is called when an event notification is received for the phy
2951  * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN.
2952  *    - decode the event
2953  *       - link failure events restart the starting state machine
2954  *       - sata spinup hold events are ignored since they are expected
2955  *       - sata phy detected event change to the wait speed event
2956  *       - any other events log a warning message and set a failure status
2957  *
2958  * @param[in] phy This SCIC_SDS_PHY object which has received an event.
2959  * @param[in] event_code This is the event code which the phy object is to
2960  *       decode.
2961  *
2962  * @return SCI_STATUS
2963  * @retval SCI_SUCCESS on a link failure event
2964  * @retval SCI_FAILURE on any unexpected event notifation
2965  */
2966 static
2967 SCI_STATUS scic_sds_phy_starting_substate_await_sata_phy_event_handler(
2968    SCIC_SDS_PHY_T *this_phy,
2969    U32 event_code
2970 )
2971 {
2972    U32 result = SCI_SUCCESS;
2973 
2974    switch (scu_get_event_code(event_code))
2975    {
2976    case SCU_EVENT_LINK_FAILURE:
2977       // Link failure change state back to the starting state
2978       scic_sds_phy_restart_starting_state(this_phy);
2979       break;
2980 
2981    case SCU_EVENT_SATA_SPINUP_HOLD:
2982       // These events might be received since we dont know how many may be in
2983       // the completion queue while waiting for power
2984       break;
2985 
2986    case SCU_EVENT_SATA_PHY_DETECTED:
2987       this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
2988 
2989       // We have received the SATA PHY notification change state
2990       sci_base_state_machine_change_state(
2991          scic_sds_phy_get_starting_substate_machine(this_phy),
2992          SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN
2993          );
2994       break;
2995 
2996    case SCU_EVENT_SAS_PHY_DETECTED:
2997       // There has been a change in the phy type before OOB/SN for the
2998       // SATA finished start down the SAS link traning path.
2999       scic_sds_phy_start_sas_link_training(this_phy);
3000    break;
3001 
3002    default:
3003       SCIC_LOG_WARNING((
3004          sci_base_object_get_logger(this_phy),
3005          SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
3006          "PHY starting substate machine received unexpected event_code %x\n",
3007          event_code
3008       ));
3009 
3010       result = SCI_FAILURE;
3011       break;
3012    }
3013 
3014    return result;
3015 }
3016 
3017 /**
3018  * This method is called when an event notification is received for the phy
3019  * object when in the state
3020  * SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN.
3021  *    - decode the event
3022  *       - sata phy detected returns us back to this state.
3023  *       - speed event detected causes a state transition to the wait for
3024  *         signature.
3025  *       - link failure events restart the starting state machine
3026  *       - any other events log a warning message and set a failure status
3027  *
3028  * @param[in] phy This SCIC_SDS_PHY object which has received an event.
3029  * @param[in] event_code This is the event code which the phy object is to
3030  *       decode.
3031  *
3032  * @return SCI_STATUS
3033  * @retval SCI_SUCCESS on any valid event notification
3034  * @retval SCI_FAILURE on any unexpected event notifation
3035  */
3036 static
3037 SCI_STATUS scic_sds_phy_starting_substate_await_sata_speed_event_handler(
3038    SCIC_SDS_PHY_T *this_phy,
3039    U32 event_code
3040 )
3041 {
3042    U32 result = SCI_SUCCESS;
3043 
3044    switch (scu_get_event_code(event_code))
3045    {
3046    case SCU_EVENT_SATA_PHY_DETECTED:
3047       // The hardware reports multiple SATA PHY detected events
3048       // ignore the extras
3049    break;
3050 
3051    case SCU_EVENT_SATA_15:
3052    case SCU_EVENT_SATA_15_SSC:
3053       scic_sds_phy_complete_link_training(
3054          this_phy,
3055          SCI_SAS_150_GB,
3056          SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF
3057       );
3058    break;
3059 
3060    case SCU_EVENT_SATA_30:
3061    case SCU_EVENT_SATA_30_SSC:
3062       scic_sds_phy_complete_link_training(
3063          this_phy,
3064          SCI_SAS_300_GB,
3065          SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF
3066       );
3067    break;
3068 
3069    case SCU_EVENT_SATA_60:
3070    case SCU_EVENT_SATA_60_SSC:
3071       scic_sds_phy_complete_link_training(
3072          this_phy,
3073          SCI_SAS_600_GB,
3074          SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF
3075       );
3076    break;
3077 
3078    case SCU_EVENT_LINK_FAILURE:
3079       // Link failure change state back to the starting state
3080       scic_sds_phy_restart_starting_state(this_phy);
3081    break;
3082 
3083    case SCU_EVENT_SAS_PHY_DETECTED:
3084       // There has been a change in the phy type before OOB/SN for the
3085       // SATA finished start down the SAS link traning path.
3086       scic_sds_phy_start_sas_link_training(this_phy);
3087    break;
3088 
3089    default:
3090       SCIC_LOG_WARNING((
3091          sci_base_object_get_logger(this_phy),
3092          SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
3093          "PHY starting substate machine received unexpected event_code %x\n",
3094          event_code
3095       ));
3096 
3097       result = SCI_FAILURE;
3098    break;
3099    }
3100 
3101    return result;
3102 }
3103 
3104 /**
3105  * This method is called when an event notification is received for the phy
3106  * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF.
3107  *    - decode the event
3108  *       - sas phy detected event backs up the state machine to the await
3109  *         speed notification.
3110  *       - identify timeout is an un-expected event and the state machine is
3111  *         restarted.
3112  *       - link failure events restart the starting state machine
3113  *       - any other events log a warning message and set a failure status
3114  *
3115  * @param[in] phy This SCIC_SDS_PHY object which has received an event.
3116  * @param[in] event_code This is the event code which the phy object is to
3117  *       decode.
3118  *
3119  * @return SCI_STATUS
3120  * @retval SCI_SUCCESS on any valid event notification
3121  * @retval SCI_FAILURE on any unexpected event notifation
3122  */
3123 static
3124 SCI_STATUS scic_sds_phy_starting_substate_await_sig_fis_event_handler(
3125    SCIC_SDS_PHY_T *this_phy,
3126    U32 event_code
3127 )
3128 {
3129    U32 result = SCI_SUCCESS;
3130 
3131    switch (scu_get_event_code(event_code))
3132    {
3133    case SCU_EVENT_SATA_PHY_DETECTED:
3134       // Backup the state machine
3135       sci_base_state_machine_change_state(
3136          scic_sds_phy_get_starting_substate_machine(this_phy),
3137          SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN
3138          );
3139       break;
3140 
3141    case SCU_EVENT_LINK_FAILURE:
3142       // Link failure change state back to the starting state
3143       scic_sds_phy_restart_starting_state(this_phy);
3144       break;
3145 
3146    default:
3147       SCIC_LOG_WARNING((
3148          sci_base_object_get_logger(this_phy),
3149          SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS,
3150          "PHY starting substate machine received unexpected event_code %x\n",
3151          event_code
3152       ));
3153 
3154       result = SCI_FAILURE;
3155       break;
3156    }
3157 
3158    return result;
3159 }
3160 
3161 
3162 //*****************************************************************************
3163 //*  SCIC SDS PHY FRAME_HANDLERS
3164 //*****************************************************************************
3165 
3166 /**
3167  * This method decodes the unsolicited frame when the SCIC_SDS_PHY is in the
3168  * SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF.
3169  *    - Get the UF Header
3170  *    - If the UF is an IAF
3171  *       - Copy IAF data to local phy object IAF data buffer.
3172  *       - Change starting substate to wait power.
3173  *    - else
3174  *       - log warning message of unexpected unsolicted frame
3175  *    - release frame buffer
3176  *
3177  * @param[in] phy This is SCIC_SDS_PHY object which is being requested to
3178  *       decode the frame data.
3179  * @param[in] frame_index This is the index of the unsolicited frame which was
3180  *       received for this phy.
3181  *
3182  * @return SCI_STATUS
3183  * @retval SCI_SUCCESS
3184  */
3185 static
3186 SCI_STATUS scic_sds_phy_starting_substate_await_iaf_uf_frame_handler(
3187    SCIC_SDS_PHY_T *this_phy,
3188    U32            frame_index
3189 )
3190 {
3191    SCI_STATUS                        result;
3192    U32                              *frame_words;
3193    SCI_SAS_IDENTIFY_ADDRESS_FRAME_T *identify_frame;
3194 
3195    result = scic_sds_unsolicited_frame_control_get_header(
3196                &(scic_sds_phy_get_controller(this_phy)->uf_control),
3197                frame_index,
3198                (void **)&frame_words);
3199 
3200    if (result != SCI_SUCCESS)
3201    {
3202       return result;
3203    }
3204 
3205    frame_words[0] = SCIC_SWAP_DWORD(frame_words[0]);
3206    identify_frame = (SCI_SAS_IDENTIFY_ADDRESS_FRAME_T *)frame_words;
3207 
3208    if (identify_frame->address_frame_type == 0)
3209    {
3210       // Byte swap the rest of the frame so we can make
3211       // a copy of the buffer
3212       frame_words[1] = SCIC_SWAP_DWORD(frame_words[1]);
3213       frame_words[2] = SCIC_SWAP_DWORD(frame_words[2]);
3214       frame_words[3] = SCIC_SWAP_DWORD(frame_words[3]);
3215       frame_words[4] = SCIC_SWAP_DWORD(frame_words[4]);
3216       frame_words[5] = SCIC_SWAP_DWORD(frame_words[5]);
3217 
3218       memcpy(
3219          &this_phy->phy_type.sas.identify_address_frame_buffer,
3220          identify_frame,
3221          sizeof(SCI_SAS_IDENTIFY_ADDRESS_FRAME_T)
3222       );
3223 
3224       if (identify_frame->protocols.u.bits.smp_target)
3225       {
3226          // We got the IAF for an expander PHY go to the final state since
3227          // there are no power requirements for expander phys.
3228          sci_base_state_machine_change_state(
3229             scic_sds_phy_get_starting_substate_machine(this_phy),
3230             SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
3231          );
3232       }
3233       else
3234       {
3235          // We got the IAF we can now go to the await spinup semaphore state
3236          sci_base_state_machine_change_state(
3237             scic_sds_phy_get_starting_substate_machine(this_phy),
3238             SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER
3239          );
3240       }
3241 
3242       result = SCI_SUCCESS;
3243    }
3244    else
3245    {
3246       SCIC_LOG_WARNING((
3247          sci_base_object_get_logger(this_phy),
3248          SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_UNSOLICITED_FRAMES,
3249          "PHY starting substate machine received unexpected frame id %x\n",
3250          frame_index
3251       ));
3252    }
3253 
3254    // Regardless of the result release this frame since we are done with it
3255    scic_sds_controller_release_frame(
3256       scic_sds_phy_get_controller(this_phy), frame_index
3257       );
3258 
3259    return result;
3260 }
3261 
3262 /**
3263  * This method decodes the unsolicited frame when the SCIC_SDS_PHY is in the
3264  * SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF.
3265  *    - Get the UF Header
3266  *    - If the UF is an SIGNATURE FIS
3267  *       - Copy IAF data to local phy object SIGNATURE FIS data buffer.
3268  *    - else
3269  *       - log warning message of unexpected unsolicted frame
3270  *    - release frame buffer
3271  *
3272  * @param[in] phy This is SCIC_SDS_PHY object which is being requested to
3273  *       decode the frame data.
3274  * @param[in] frame_index This is the index of the unsolicited frame which was
3275  *       received for this phy.
3276  *
3277  * @return SCI_STATUS
3278  * @retval SCI_SUCCESS
3279  *
3280  * @todo Must decode the SIGNATURE FIS data
3281  */
3282 static
3283 SCI_STATUS scic_sds_phy_starting_substate_await_sig_fis_frame_handler(
3284    SCIC_SDS_PHY_T *this_phy,
3285    U32            frame_index
3286 )
3287 {
3288    SCI_STATUS          result;
3289    U32               * frame_words;
3290    SATA_FIS_HEADER_T * fis_frame_header;
3291    U32               * fis_frame_data;
3292 
3293    result = scic_sds_unsolicited_frame_control_get_header(
3294                &(scic_sds_phy_get_controller(this_phy)->uf_control),
3295                frame_index,
3296                (void **)&frame_words);
3297 
3298    if (result != SCI_SUCCESS)
3299    {
3300       return result;
3301    }
3302 
3303    fis_frame_header = (SATA_FIS_HEADER_T *)frame_words;
3304 
3305    if (
3306          (fis_frame_header->fis_type == SATA_FIS_TYPE_REGD2H)
3307       && !(fis_frame_header->status & ATA_STATUS_REG_BSY_BIT)
3308       )
3309    {
3310       scic_sds_unsolicited_frame_control_get_buffer(
3311          &(scic_sds_phy_get_controller(this_phy)->uf_control),
3312          frame_index,
3313          (void **)&fis_frame_data
3314       );
3315 
3316       scic_sds_controller_copy_sata_response(
3317          &this_phy->phy_type.sata.signature_fis_buffer,
3318          frame_words,
3319          fis_frame_data
3320       );
3321 
3322       // We got the IAF we can now go to the await spinup semaphore state
3323       sci_base_state_machine_change_state(
3324          scic_sds_phy_get_starting_substate_machine(this_phy),
3325          SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
3326          );
3327 
3328       result = SCI_SUCCESS;
3329    }
3330    else
3331    {
3332       SCIC_LOG_WARNING((
3333          sci_base_object_get_logger(this_phy),
3334          SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_UNSOLICITED_FRAMES,
3335          "PHY starting substate machine received unexpected frame id %x\n",
3336          frame_index
3337       ));
3338    }
3339 
3340    // Regardless of the result release this frame since we are done with it
3341    scic_sds_controller_release_frame(
3342       scic_sds_phy_get_controller(this_phy), frame_index
3343       );
3344 
3345    return result;
3346 }
3347 
3348 //*****************************************************************************
3349 //* SCIC SDS PHY POWER_HANDLERS
3350 //*****************************************************************************
3351 
3352 /**
3353  * This method is called by the SCIC_SDS_CONTROLLER when the phy object is
3354  * granted power.
3355  *    - The notify enable spinups are turned on for this phy object
3356  *    - The phy state machine is transitioned to the
3357  *    SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL.
3358  *
3359  * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
3360  *       SCIC_SDS_PHY object.
3361  *
3362  * @return SCI_STATUS
3363  * @retval SCI_SUCCESS
3364  */
3365 static
3366 SCI_STATUS scic_sds_phy_starting_substate_await_sas_power_consume_power_handler(
3367    SCIC_SDS_PHY_T *this_phy
3368 )
3369 {
3370    U32 enable_spinup;
3371 
3372    enable_spinup = SCU_SAS_ENSPINUP_READ(this_phy);
3373    enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
3374    SCU_SAS_ENSPINUP_WRITE(this_phy, enable_spinup);
3375 
3376    // Change state to the final state this substate machine has run to completion
3377    sci_base_state_machine_change_state(
3378       scic_sds_phy_get_starting_substate_machine(this_phy),
3379       SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
3380       );
3381 
3382    return SCI_SUCCESS;
3383 }
3384 
3385 /**
3386  * This method is called by the SCIC_SDS_CONTROLLER when the phy object is
3387  * granted power.
3388  *    - The phy state machine is transitioned to the
3389  *    SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN.
3390  *
3391  * @param[in] phy This is the SCI_BASE_PHY object which is cast into a
3392  *       SCIC_SDS_PHY object.
3393  *
3394  * @return SCI_STATUS
3395  * @retval SCI_SUCCESS
3396  */
3397 static
3398 SCI_STATUS scic_sds_phy_starting_substate_await_sata_power_consume_power_handler(
3399    SCIC_SDS_PHY_T *this_phy
3400 )
3401 {
3402    U32 scu_sas_pcfg_value;
3403 
3404    // Release the spinup hold state and reset the OOB state machine
3405    scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy);
3406    scu_sas_pcfg_value &=
3407       ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
3408    scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
3409    SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
3410 
3411    // Now restart the OOB operation
3412    scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
3413    scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
3414    SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value);
3415 
3416    // Change state to the final state this substate machine has run to completion
3417    sci_base_state_machine_change_state(
3418       scic_sds_phy_get_starting_substate_machine(this_phy),
3419       SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN
3420    );
3421 
3422    return SCI_SUCCESS;
3423 }
3424 
3425 // ---------------------------------------------------------------------------
3426 
3427 SCIC_SDS_PHY_STATE_HANDLER_T
3428    scic_sds_phy_starting_substate_handler_table[SCIC_SDS_PHY_STARTING_MAX_SUBSTATES] =
3429 {
3430    // SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL
3431    {
3432       {
3433          scic_sds_phy_default_start_handler,
3434          scic_sds_phy_starting_substate_general_stop_handler,
3435          scic_sds_phy_default_reset_handler,
3436          scic_sds_phy_default_destroy_handler
3437       },
3438       scic_sds_phy_default_frame_handler,
3439       scic_sds_phy_default_event_handler,
3440       scic_sds_phy_default_consume_power_handler
3441    },
3442    // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN
3443    {
3444       {
3445          scic_sds_phy_default_start_handler,
3446          scic_sds_phy_starting_substate_general_stop_handler,
3447          scic_sds_phy_default_reset_handler,
3448          scic_sds_phy_default_destroy_handler
3449       },
3450       scic_sds_phy_default_frame_handler,
3451       scic_sds_phy_starting_substate_await_ossp_event_handler,
3452       scic_sds_phy_default_consume_power_handler
3453    },
3454    // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN
3455    {
3456       {
3457          scic_sds_phy_default_start_handler,
3458          scic_sds_phy_starting_substate_general_stop_handler,
3459          scic_sds_phy_default_reset_handler,
3460          scic_sds_phy_default_destroy_handler
3461       },
3462       scic_sds_phy_default_frame_handler,
3463       scic_sds_phy_starting_substate_await_sas_phy_speed_event_handler,
3464       scic_sds_phy_default_consume_power_handler
3465    },
3466    // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
3467    {
3468       {
3469          scic_sds_phy_default_start_handler,
3470          scic_sds_phy_default_stop_handler,
3471          scic_sds_phy_default_reset_handler,
3472          scic_sds_phy_default_destroy_handler
3473       },
3474       scic_sds_phy_starting_substate_await_iaf_uf_frame_handler,
3475       scic_sds_phy_starting_substate_await_iaf_uf_event_handler,
3476       scic_sds_phy_default_consume_power_handler
3477    },
3478    // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER
3479    {
3480       {
3481          scic_sds_phy_default_start_handler,
3482          scic_sds_phy_starting_substate_general_stop_handler,
3483          scic_sds_phy_default_reset_handler,
3484          scic_sds_phy_default_destroy_handler
3485       },
3486       scic_sds_phy_default_frame_handler,
3487       scic_sds_phy_starting_substate_await_sas_power_event_handler,
3488       scic_sds_phy_starting_substate_await_sas_power_consume_power_handler
3489    },
3490    // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER,
3491    {
3492       {
3493          scic_sds_phy_default_start_handler,
3494          scic_sds_phy_starting_substate_general_stop_handler,
3495          scic_sds_phy_default_reset_handler,
3496          scic_sds_phy_default_destroy_handler
3497       },
3498       scic_sds_phy_default_frame_handler,
3499       scic_sds_phy_starting_substate_await_sata_power_event_handler,
3500       scic_sds_phy_starting_substate_await_sata_power_consume_power_handler
3501    },
3502    // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN,
3503    {
3504       {
3505          scic_sds_phy_default_start_handler,
3506          scic_sds_phy_starting_substate_general_stop_handler,
3507          scic_sds_phy_default_reset_handler,
3508          scic_sds_phy_default_destroy_handler
3509       },
3510       scic_sds_phy_default_frame_handler,
3511       scic_sds_phy_starting_substate_await_sata_phy_event_handler,
3512       scic_sds_phy_default_consume_power_handler
3513    },
3514    // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN,
3515    {
3516       {
3517          scic_sds_phy_default_start_handler,
3518          scic_sds_phy_starting_substate_general_stop_handler,
3519          scic_sds_phy_default_reset_handler,
3520          scic_sds_phy_default_destroy_handler
3521       },
3522       scic_sds_phy_default_frame_handler,
3523       scic_sds_phy_starting_substate_await_sata_speed_event_handler,
3524       scic_sds_phy_default_consume_power_handler
3525    },
3526    // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF,
3527    {
3528       {
3529          scic_sds_phy_default_start_handler,
3530          scic_sds_phy_starting_substate_general_stop_handler,
3531          scic_sds_phy_default_reset_handler,
3532          scic_sds_phy_default_destroy_handler
3533       },
3534       scic_sds_phy_starting_substate_await_sig_fis_frame_handler,
3535       scic_sds_phy_starting_substate_await_sig_fis_event_handler,
3536       scic_sds_phy_default_consume_power_handler
3537    },
3538    // SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
3539    {
3540       {
3541          scic_sds_phy_default_start_handler,
3542          scic_sds_phy_starting_substate_general_stop_handler,
3543          scic_sds_phy_default_reset_handler,
3544          scic_sds_phy_default_destroy_handler
3545       },
3546       scic_sds_phy_default_frame_handler,
3547       scic_sds_phy_default_event_handler,
3548       scic_sds_phy_default_consume_power_handler
3549    }
3550 };
3551 
3552 /**
3553  * This macro sets the starting substate handlers by state_id
3554  */
3555 #define scic_sds_phy_set_starting_substate_handlers(phy, state_id) \
3556    scic_sds_phy_set_state_handlers( \
3557       (phy), \
3558       &scic_sds_phy_starting_substate_handler_table[(state_id)] \
3559    )
3560 
3561 //****************************************************************************
3562 //*  PHY STARTING SUBSTATE METHODS
3563 //****************************************************************************
3564 
3565 /**
3566  * This method will perform the actions required by the SCIC_SDS_PHY on
3567  * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL.
3568  *    - The initial state handlers are put in place for the SCIC_SDS_PHY
3569  *      object.
3570  *    - The state is changed to the wait phy type event notification.
3571  *
3572  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3573  *       SCIC_SDS_PHY object.
3574  *
3575  * @return none
3576  */
3577 static
3578 void scic_sds_phy_starting_initial_substate_enter(
3579    SCI_BASE_OBJECT_T *object
3580 )
3581 {
3582    SCIC_SDS_PHY_T *this_phy;
3583    this_phy = (SCIC_SDS_PHY_T *)object;
3584 
3585    scic_sds_phy_set_starting_substate_handlers(
3586       this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL);
3587 
3588    // This is just an temporary state go off to the starting state
3589    sci_base_state_machine_change_state(
3590       scic_sds_phy_get_starting_substate_machine(this_phy),
3591       SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN
3592    );
3593 }
3594 
3595 /**
3596  * This method will perform the actions required by the SCIC_SDS_PHY on
3597  * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_PHY_TYPE_EN.
3598  *    - Set the SCIC_SDS_PHY object state handlers for this state.
3599  *
3600  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3601  *       SCIC_SDS_PHY object.
3602  *
3603  * @return none
3604  */
3605 static
3606 void scic_sds_phy_starting_await_ossp_en_substate_enter(
3607    SCI_BASE_OBJECT_T *object
3608 )
3609 {
3610    SCIC_SDS_PHY_T *this_phy;
3611    this_phy = (SCIC_SDS_PHY_T *)object;
3612 
3613    scic_sds_phy_set_starting_substate_handlers(
3614       this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN
3615       );
3616 }
3617 
3618 /**
3619  * This method will perform the actions required by the SCIC_SDS_PHY on
3620  * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SPEED_EN.
3621  *    - Set the SCIC_SDS_PHY object state handlers for this state.
3622  *
3623  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3624  *       SCIC_SDS_PHY object.
3625  *
3626  * @return none
3627  */
3628 static
3629 void scic_sds_phy_starting_await_sas_speed_en_substate_enter(
3630    SCI_BASE_OBJECT_T *object
3631 )
3632 {
3633    SCIC_SDS_PHY_T *this_phy;
3634    this_phy = (SCIC_SDS_PHY_T *)object;
3635 
3636    scic_sds_phy_set_starting_substate_handlers(
3637       this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN
3638       );
3639 }
3640 
3641 /**
3642  * This method will perform the actions required by the SCIC_SDS_PHY on
3643  * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF.
3644  *    - Set the SCIC_SDS_PHY object state handlers for this state.
3645  *
3646  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3647  *       SCIC_SDS_PHY object.
3648  *
3649  * @return none
3650  */
3651 static
3652 void scic_sds_phy_starting_await_iaf_uf_substate_enter(
3653    SCI_BASE_OBJECT_T *object
3654 )
3655 {
3656    SCIC_SDS_PHY_T *this_phy;
3657    this_phy = (SCIC_SDS_PHY_T *)object;
3658 
3659    scic_sds_phy_set_starting_substate_handlers(
3660       this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF
3661       );
3662 }
3663 
3664 /**
3665  * This method will perform the actions required by the SCIC_SDS_PHY on
3666  * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER.
3667  *    - Set the SCIC_SDS_PHY object state handlers for this state.
3668  *    - Add this phy object to the power control queue
3669  *
3670  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3671  *       SCIC_SDS_PHY object.
3672  *
3673  * @return none
3674  */
3675 static
3676 void scic_sds_phy_starting_await_sas_power_substate_enter(
3677    SCI_BASE_OBJECT_T *object
3678 )
3679 {
3680    SCIC_SDS_PHY_T *this_phy;
3681    this_phy = (SCIC_SDS_PHY_T *)object;
3682 
3683    scic_sds_phy_set_starting_substate_handlers(
3684       this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER
3685       );
3686 
3687    scic_sds_controller_power_control_queue_insert(
3688       scic_sds_phy_get_controller(this_phy),
3689       this_phy
3690       );
3691 }
3692 
3693 /**
3694  * This method will perform the actions required by the SCIC_SDS_PHY on
3695  * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER.
3696  *    - Remove the SCIC_SDS_PHY object from the power control queue.
3697  *
3698  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3699  *       SCIC_SDS_PHY object.
3700  *
3701  * @return none
3702  */
3703 static
3704 void scic_sds_phy_starting_await_sas_power_substate_exit(
3705    SCI_BASE_OBJECT_T *object
3706 )
3707 {
3708    SCIC_SDS_PHY_T *this_phy;
3709    this_phy = (SCIC_SDS_PHY_T *)object;
3710 
3711    scic_sds_controller_power_control_queue_remove(
3712       scic_sds_phy_get_controller(this_phy), this_phy
3713    );
3714 }
3715 
3716 /**
3717  * This method will perform the actions required by the SCIC_SDS_PHY on
3718  * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER.
3719  *    - Set the SCIC_SDS_PHY object state handlers for this state.
3720  *    - Add this phy object to the power control queue
3721  *
3722  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3723  *       SCIC_SDS_PHY object.
3724  *
3725  * @return none
3726  */
3727 static
3728 void scic_sds_phy_starting_await_sata_power_substate_enter(
3729    SCI_BASE_OBJECT_T *object
3730 )
3731 {
3732    SCIC_SDS_PHY_T *this_phy;
3733    this_phy = (SCIC_SDS_PHY_T *)object;
3734 
3735    scic_sds_phy_set_starting_substate_handlers(
3736       this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER
3737       );
3738 
3739    scic_sds_controller_power_control_queue_insert(
3740       scic_sds_phy_get_controller(this_phy),
3741       this_phy
3742       );
3743 }
3744 
3745 /**
3746  * This method will perform the actions required by the SCIC_SDS_PHY on
3747  * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER.
3748  *    - Remove the SCIC_SDS_PHY object from the power control queue.
3749  *
3750  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3751  *       SCIC_SDS_PHY object.
3752  *
3753  * @return none
3754  */
3755 static
3756 void scic_sds_phy_starting_await_sata_power_substate_exit(
3757    SCI_BASE_OBJECT_T *object
3758 )
3759 {
3760    SCIC_SDS_PHY_T *this_phy;
3761    this_phy = (SCIC_SDS_PHY_T *)object;
3762 
3763    scic_sds_controller_power_control_queue_remove(
3764       scic_sds_phy_get_controller(this_phy),
3765       this_phy
3766       );
3767 }
3768 
3769 /**
3770  * This method will perform the actions required by the SCIC_SDS_PHY on
3771  * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN.
3772  *    - Set the SCIC_SDS_PHY object state handlers for this state.
3773  *
3774  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3775  *       SCIC_SDS_PHY object.
3776  *
3777  * @return none
3778  */
3779 static
3780 void scic_sds_phy_starting_await_sata_phy_substate_enter(
3781    SCI_BASE_OBJECT_T *object
3782 )
3783 {
3784    SCIC_SDS_PHY_T *this_phy;
3785    this_phy = (SCIC_SDS_PHY_T *)object;
3786 
3787    scic_sds_phy_set_starting_substate_handlers(
3788       this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN
3789       );
3790 
3791    scic_cb_timer_start(
3792       scic_sds_phy_get_controller(this_phy),
3793       this_phy->sata_timeout_timer,
3794       SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT
3795    );
3796 }
3797 
3798 /**
3799  * This method will perform the actions required by the SCIC_SDS_PHY on
3800  * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN.
3801  *    - stop the timer that was started on entry to await sata phy
3802  *      event notification
3803  *
3804  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3805  *       SCIC_SDS_PHY object.
3806  *
3807  * @return none
3808  */
3809 static
3810 void scic_sds_phy_starting_await_sata_phy_substate_exit(
3811    SCI_BASE_OBJECT_T *object
3812 )
3813 {
3814    SCIC_SDS_PHY_T *this_phy;
3815    this_phy = (SCIC_SDS_PHY_T *)object;
3816 
3817    scic_cb_timer_stop(
3818       scic_sds_phy_get_controller(this_phy),
3819       this_phy->sata_timeout_timer
3820    );
3821 }
3822 
3823 /**
3824  * This method will perform the actions required by the SCIC_SDS_PHY on
3825  * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN.
3826  *    - Set the SCIC_SDS_PHY object state handlers for this state.
3827  *
3828  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3829  *       SCIC_SDS_PHY object.
3830  *
3831  * @return none
3832  */
3833 static
3834 void scic_sds_phy_starting_await_sata_speed_substate_enter(
3835    SCI_BASE_OBJECT_T *object
3836 )
3837 {
3838    SCIC_SDS_PHY_T *this_phy;
3839    this_phy = (SCIC_SDS_PHY_T *)object;
3840 
3841    scic_sds_phy_set_starting_substate_handlers(
3842       this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN
3843       );
3844 
3845    scic_cb_timer_start(
3846       scic_sds_phy_get_controller(this_phy),
3847       this_phy->sata_timeout_timer,
3848       SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT
3849    );
3850 }
3851 
3852 /**
3853  * This method will perform the actions required by the SCIC_SDS_PHY on
3854  * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN.
3855  *    - stop the timer that was started on entry to await sata phy
3856  *      event notification
3857  *
3858  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3859  *       SCIC_SDS_PHY object.
3860  *
3861  * @return none
3862  */
3863 static
3864 void scic_sds_phy_starting_await_sata_speed_substate_exit(
3865    SCI_BASE_OBJECT_T *object
3866 )
3867 {
3868    SCIC_SDS_PHY_T *this_phy;
3869    this_phy = (SCIC_SDS_PHY_T *)object;
3870 
3871    scic_cb_timer_stop(
3872       scic_sds_phy_get_controller(this_phy),
3873       this_phy->sata_timeout_timer
3874    );
3875 }
3876 
3877 /**
3878  * This method will perform the actions required by the SCIC_SDS_PHY on
3879  * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF.
3880  *    - Set the SCIC_SDS_PHY object state handlers for this state.
3881  *    - Start the SIGNATURE FIS timeout timer
3882  *
3883  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3884  *       SCIC_SDS_PHY object.
3885  *
3886  * @return none
3887  */
3888 static
3889 void scic_sds_phy_starting_await_sig_fis_uf_substate_enter(
3890    SCI_BASE_OBJECT_T *object
3891 )
3892 {
3893    BOOL             continue_to_ready_state;
3894    SCIC_SDS_PHY_T * this_phy;
3895 
3896    this_phy = (SCIC_SDS_PHY_T *)object;
3897 
3898    scic_sds_phy_set_starting_substate_handlers(
3899       this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF
3900    );
3901 
3902    continue_to_ready_state = scic_sds_port_link_detected(
3903                                  this_phy->owning_port,
3904                                  this_phy
3905                              );
3906 
3907    if (continue_to_ready_state)
3908    {
3909       // Clear the PE suspend condition so we can actually receive SIG FIS
3910       // The hardware will not respond to the XRDY until the PE suspend
3911       // condition is cleared.
3912       scic_sds_phy_resume(this_phy);
3913 
3914       scic_cb_timer_start(
3915          scic_sds_phy_get_controller(this_phy),
3916          this_phy->sata_timeout_timer,
3917          SCIC_SDS_SIGNATURE_FIS_TIMEOUT
3918       );
3919    }
3920    else
3921    {
3922       this_phy->is_in_link_training = FALSE;
3923    }
3924 }
3925 
3926 /**
3927  * This method will perform the actions required by the SCIC_SDS_PHY on
3928  * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF.
3929  *    - Stop the SIGNATURE FIS timeout timer.
3930  *
3931  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3932  *       SCIC_SDS_PHY object.
3933  *
3934  * @return none
3935  */
3936 static
3937 void scic_sds_phy_starting_await_sig_fis_uf_substate_exit(
3938    SCI_BASE_OBJECT_T *object
3939 )
3940 {
3941    SCIC_SDS_PHY_T *this_phy;
3942    this_phy = (SCIC_SDS_PHY_T *)object;
3943 
3944    scic_cb_timer_stop(
3945       scic_sds_phy_get_controller(this_phy),
3946       this_phy->sata_timeout_timer
3947    );
3948 }
3949 
3950 /**
3951  * This method will perform the actions required by the SCIC_SDS_PHY on
3952  * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL.
3953  *    - Set the SCIC_SDS_PHY object state handlers for this state.
3954  *    - Change base state machine to the ready state.
3955  *
3956  * @param[in] object This is the SCI_BASE_OBJECT which is cast to a
3957  *       SCIC_SDS_PHY object.
3958  *
3959  * @return none
3960  */
3961 static
3962 void scic_sds_phy_starting_final_substate_enter(
3963    SCI_BASE_OBJECT_T *object
3964 )
3965 {
3966    SCIC_SDS_PHY_T *this_phy;
3967    this_phy = (SCIC_SDS_PHY_T *)object;
3968 
3969    scic_sds_phy_set_starting_substate_handlers(
3970       this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL
3971       );
3972 
3973    // State machine has run to completion so exit out and change
3974    // the base state machine to the ready state
3975    sci_base_state_machine_change_state(
3976       scic_sds_phy_get_base_state_machine(this_phy),
3977       SCI_BASE_PHY_STATE_READY);
3978 }
3979 
3980 // ---------------------------------------------------------------------------
3981 
3982 SCI_BASE_STATE_T
3983    scic_sds_phy_starting_substates[SCIC_SDS_PHY_STARTING_MAX_SUBSTATES] =
3984 {
3985    {
3986       SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL,
3987       scic_sds_phy_starting_initial_substate_enter,
3988       NULL,
3989    },
3990    {
3991       SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN,
3992       scic_sds_phy_starting_await_ossp_en_substate_enter,
3993       NULL,
3994    },
3995    {
3996       SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN,
3997       scic_sds_phy_starting_await_sas_speed_en_substate_enter,
3998       NULL,
3999    },
4000    {
4001       SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF,
4002       scic_sds_phy_starting_await_iaf_uf_substate_enter,
4003       NULL,
4004    },
4005    {
4006       SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER,
4007       scic_sds_phy_starting_await_sas_power_substate_enter,
4008       scic_sds_phy_starting_await_sas_power_substate_exit,
4009    },
4010    {
4011       SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER,
4012       scic_sds_phy_starting_await_sata_power_substate_enter,
4013       scic_sds_phy_starting_await_sata_power_substate_exit
4014    },
4015    {
4016       SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN,
4017       scic_sds_phy_starting_await_sata_phy_substate_enter,
4018       scic_sds_phy_starting_await_sata_phy_substate_exit
4019    },
4020    {
4021       SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN,
4022       scic_sds_phy_starting_await_sata_speed_substate_enter,
4023       scic_sds_phy_starting_await_sata_speed_substate_exit
4024    },
4025    {
4026       SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF,
4027       scic_sds_phy_starting_await_sig_fis_uf_substate_enter,
4028       scic_sds_phy_starting_await_sig_fis_uf_substate_exit
4029    },
4030    {
4031       SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL,
4032       scic_sds_phy_starting_final_substate_enter,
4033       NULL,
4034    }
4035 };
4036 
4037