xref: /freebsd/sys/dev/isci/scil/scic_controller.h (revision 8d20be1e22095c27faf8fe8b2f0d089739cc742e)
1 /*-
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
41  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
42  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
43  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
44  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
46  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
47  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
48  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
49  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
50  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
51  *
52  * $FreeBSD$
53  */
54 #ifndef _SCIC_CONTROLLER_H_
55 #define _SCIC_CONTROLLER_H_
56 
57 /**
58  * @file
59  *
60  * @brief This file contains all of the interface methods that can be called
61  *        by an SCIC user on a controller object.
62  */
63 
64 #ifdef __cplusplus
65 extern "C" {
66 #endif // __cplusplus
67 
68 #include <dev/isci/scil/sci_types.h>
69 #include <dev/isci/scil/sci_status.h>
70 #include <dev/isci/scil/sci_controller.h>
71 #include <dev/isci/scil/scic_config_parameters.h>
72 
73 /**
74  * @enum
75  *
76  * Allowed PORT configuration modes
77  *
78  * APC Automatic PORT configuration mode is defined by the OEM configuration
79  * parameters providing no PHY_MASK parameters for any PORT. i.e. There are
80  * no phys assigned to any of the ports at start.
81  *
82  * MPC Manual PORT configuration mode is defined by the OEM configuration
83  * parameters providing a PHY_MASK value for any PORT.  It is assumed that
84  * any PORT with no PHY_MASK is an invalid port and not all PHYs must be
85  * assigned. A PORT_PHY mask that assigns just a single PHY to a port and no
86  * other PHYs being assigned is sufficient to declare manual PORT configuration.
87  */
88 enum SCIC_PORT_CONFIGURATION_MODE
89 {
90    SCIC_PORT_MANUAL_CONFIGURATION_MODE,
91    SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE
92 };
93 
94 /**
95  * @enum _SCIC_INTERRUPT_TYPE
96  *
97  * @brief This enumeration depicts the various types of interrupts that
98  *        are potentially supported by a SCI Core implementation.
99  */
100 typedef enum _SCIC_INTERRUPT_TYPE
101 {
102    SCIC_LEGACY_LINE_INTERRUPT_TYPE,
103    SCIC_MSIX_INTERRUPT_TYPE,
104 
105    /**
106     * This enumeration value indicates the use of polling.
107     */
108    SCIC_NO_INTERRUPTS
109 
110 } SCIC_INTERRUPT_TYPE;
111 
112 /**
113  * @typedef SCIC_CONTROLLER_INTERRUPT_HANDLER
114  *
115  * @brief This method is called by the SCI user in order to have the SCI
116  *        implementation handle the interrupt.  This method performs
117  *        minimal processing to allow for streamlined interrupt time usage.
118  * @note
119  *        TRUE: returned if there is an interrupt to process and it was
120  *              processed.
121  *        FALSE: returned if no interrupt was processed.
122  *
123  */
124 typedef BOOL (*SCIC_CONTROLLER_INTERRUPT_HANDLER)(
125    SCI_CONTROLLER_HANDLE_T  controller
126 );
127 
128 /**
129  * @brief This method is called by the SCI user to process completions
130  *        generated as a result of a previously handled interrupt.  This
131  *        method will result in the completion of IO requests and handling
132  *        of other controller generated events.  This method should be
133  *        called some time after the interrupt handler.
134  *
135  * @note  Most, if not all, of the user callback APIs are invoked from within
136  *        this API.  As a result, the user should be cognizent of the operating
137  *        level at which they invoke this API.
138  *
139  */
140 typedef void (*SCIC_CONTROLLER_COMPLETION_HANDLER)(
141    SCI_CONTROLLER_HANDLE_T  controller
142 );
143 
144 /**
145  * @struct SCIC_CONTROLLER_HANDLER_METHODS
146  *
147  * @brief This structure contains an interrupt handler and completion
148  *        handler function pointers.
149  */
150 typedef struct SCIC_CONTROLLER_HANDLER_METHODS
151 {
152    SCIC_CONTROLLER_INTERRUPT_HANDLER  interrupt_handler;
153    SCIC_CONTROLLER_COMPLETION_HANDLER completion_handler;
154 
155 } SCIC_CONTROLLER_HANDLER_METHODS_T;
156 
157 /**
158  * @brief This method will attempt to construct a controller object
159  *        utilizing the supplied parameter information.
160  *
161  * @param[in]  library This parameter specifies the handle to the library
162  *             object associated with the controller being constructed.
163  * @param[in]  controller This parameter specifies the controller to be
164  *             constructed.
165  * @param[in]  user_object This parameter is a reference to the SCIL users
166  *             controller object and will be used to associate with the core
167  *             controller.
168  *
169  * @return Indicate if the controller was successfully constructed or if
170  *         it failed in some way.
171  * @retval SCI_SUCCESS This value is returned if the controller was
172  *         successfully constructed.
173  * @retval SCI_WARNING_TIMER_CONFLICT This value is returned if the
174  *         interrupt coalescence timer may cause SAS compliance issues
175  *         for SMP Target mode response processing.
176  * @retval SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE This value is returned if
177  *         the controller does not support the supplied type.
178  * @retval SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned
179  *         if the controller does not support the supplied initialization
180  *         data version.
181  */
182 SCI_STATUS scic_controller_construct(
183    SCI_LIBRARY_HANDLE_T      library,
184    SCI_CONTROLLER_HANDLE_T   controller,
185    void *                    user_object
186 );
187 
188 /**
189  * @brief This method will enable all controller interrupts.
190  *
191  * @param[in]  controller This parameter specifies the controller for which
192  *             to enable interrupts.
193  *
194  * @return none
195  */
196 void scic_controller_enable_interrupts(
197    SCI_CONTROLLER_HANDLE_T      controller
198 );
199 
200 /**
201  * @brief This method will disable all controller interrupts.
202  *
203  * @param[in]  controller This parameter specifies the controller for which
204  *             to disable interrupts.
205  *
206  * @return none
207  */
208 void scic_controller_disable_interrupts(
209    SCI_CONTROLLER_HANDLE_T      controller
210 );
211 
212 /**
213  * @brief This method will return provide function pointers for the
214  *        interrupt handler and completion handler.  The interrupt handler
215  *        is expected to be invoked at interrupt time.  The completion
216  *        handler is scheduled to run as a result of the interrupt handler.
217  *        The completion handler performs the bulk work for processing
218  *        silicon events.
219  *
220  * @param[in]  interrupt_type This parameter informs the core which type
221  *             of interrupt/completion methods are being requested. These
222  *             are the types: SCIC_LEGACY_LINE_INTERRUPT_TYPE,
223  *             SCIC_MSIX_INTERRUPT_TYPE, SCIC_NO_INTERRUPTS (POLLING)
224  * @param[in]  message_count This parameter informs the core the
225  *             number of MSI-X messages to be utilized.  This parameter must
226  *             be 0 when requesting legacy line based handlers.
227  * @param[in]  handler_methods The caller provides a pointer to a buffer of
228  *             type SCIC_CONTROLLER_HANDLER_METHODS_T. The size depends on
229  *             the combination of the interrupt_type and message_count input
230  *             parameters:
231  *             SCIC_LEGACY_LINE_INTERRUPT_TYPE:
232  *             - size = sizeof(SCIC_CONTROLLER_HANDLER_METHODS_T)
233  *             SCIC_MSIX_INTERRUPT_TYPE:
234  *             - size = message_count*sizeof(SCIC_CONTROLLER_HANDLER_METHODS_T)
235  * @param[out] handler_methods SCIC fills out the caller's buffer with the
236  *             appropriate interrupt and completion handlers based on the info
237  *             provided in the interrupt_type and message_count input
238  *             parameters. For SCIC_LEGACY_LINE_INTERRUPT_TYPE, the buffer
239  *             receives a single SCIC_CONTROLLER_HANDLER_METHODS_T element
240  *             regardless that the message_count parameter is zero.
241  *             For SCIC_MSIX_INTERRUPT_TYPE, the buffer receives an array of
242  *             elements of type SCIC_CONTROLLER_HANDLER_METHODS_T where the
243  *             array size is equivalent to the message_count parameter. The
244  *             array is zero-relative where entry zero corresponds to
245  *             message-vector zero, entry one corresponds to message-vector one,
246  *             and so forth.
247  *
248  * @return Indicate if the handler retrieval operation was successful.
249  * @retval SCI_SUCCESS This value is returned if retrieval succeeded.
250  * @retval SCI_FAILURE_UNSUPPORTED_MESSAGE_COUNT This value is returned
251  *         if the user supplied an unsupported number of MSI-X messages.
252  *         For legacy line interrupts the only valid value is 0.
253  */
254 SCI_STATUS scic_controller_get_handler_methods(
255    SCIC_INTERRUPT_TYPE                  interrupt_type,
256    U16                                  message_count,
257    SCIC_CONTROLLER_HANDLER_METHODS_T *  handler_methods
258 );
259 
260 /**
261  * @brief This method will initialize the controller hardware managed by
262  *        the supplied core controller object.  This method will bring the
263  *        physical controller hardware out of reset and enable the core to
264  *        determine the capabilities of the hardware being managed.  Thus,
265  *        the core controller can determine it's exact physical (DMA capable)
266  *        memory requirements.
267  *
268  * @pre   The SCI Core user must have called scic_controller_construct()
269  *        on the supplied controller object previously.
270  *
271  * @param[in]  controller This parameter specifies the controller to be
272  *             initialized.
273  *
274  * @return Indicate if the controller was successfully initialized or if
275  *         it failed in some way.
276  * @retval SCI_SUCCESS This value is returned if the controller hardware
277  *         was successfully initialized.
278  */
279 SCI_STATUS scic_controller_initialize(
280    SCI_CONTROLLER_HANDLE_T   controller
281 );
282 
283 /**
284  * @brief This method returns the suggested scic_controller_start()
285  *        timeout amount.  The user is free to use any timeout value,
286  *        but this method provides the suggested minimum start timeout
287  *        value.  The returned value is based upon empirical information
288  *        determined as a result of interoperability testing.
289  *
290  * @param[in]  controller the handle to the controller object for which
291  *             to return the suggested start timeout.
292  *
293  * @return  This method returns the number of milliseconds for the
294  *          suggested start operation timeout.
295  */
296 U32 scic_controller_get_suggested_start_timeout(
297    SCI_CONTROLLER_HANDLE_T  controller
298 );
299 
300 /**
301  * @brief This method will start the supplied core controller.  This method
302  *        will start the staggered spin up operation.  The SCI User completion
303  *        callback is called when the following conditions are met:
304  *        -# the return status of this method is SCI_SUCCESS.
305  *        -# after all of the phys have successfully started or been given
306  *           the opportunity to start.
307  *
308  * @pre   The SCI Core user must have filled in the physical memory
309  *        descriptor structure via the
310  *        sci_controller_get_memory_descriptor_list() method.
311  * @pre   The SCI Core user must have invoked the scic_controller_initialize()
312  *        method prior to invoking this method.
313  *
314  * @pre   The controller must be in the INITIALIZED or STARTED state.
315  *
316  * @param[in]  controller the handle to the controller object to start.
317  * @param[in]  timeout This parameter specifies the number of milliseconds
318  *             in which the start operation should complete.
319  *
320  * @return Indicate if the controller start method succeeded or failed in
321  *         some way.
322  * @retval SCI_SUCCESS if the start operation succeeded.
323  * @retval SCI_WARNING_ALREADY_IN_STATE if the controller is already in
324  *         the STARTED state.
325  * @retval SCI_FAILURE_INVALID_STATE if the controller is not either in
326  *         the INITIALIZED or STARTED states.
327  * @retval SCI_FAILURE_INVALID_MEMORY_DESCRIPTOR if there are
328  *         inconsistent or invalid values in the supplied
329  *         SCI_PHYSICAL_MEMORY_DESCRIPTOR array.
330  */
331 SCI_STATUS scic_controller_start(
332    SCI_CONTROLLER_HANDLE_T  controller,
333    U32                      timeout
334 );
335 
336 /**
337  * @brief This method will stop an individual controller object.This method
338  *        will invoke the associated user callback upon completion.  The
339  *        completion callback is called when the following conditions are met:
340  *           -# the method return status is SCI_SUCCESS.
341  *           -# the controller has been quiesced.
342  *        This method will ensure that all IO requests are quiesced, phys
343  *        are stopped, and all additional operation by the hardware is halted.
344  *
345  * @pre   The controller must be in the STARTED or STOPPED state.
346  *
347  * @param[in]  controller the handle to the controller object to stop.
348  * @param[in]  timeout This parameter specifies the number of milliseconds
349  *             in which the stop operation should complete.
350  *
351  * @return Indicate if the controller stop method succeeded or failed in
352  *         some way.
353  * @retval SCI_SUCCESS if the stop operation successfully began.
354  * @retval SCI_WARNING_ALREADY_IN_STATE if the controller is already in
355  *         the STOPPED state.
356  * @retval SCI_FAILURE_INVALID_STATE if the controller is not either in
357  *         the STARTED or STOPPED states.
358  */
359 SCI_STATUS scic_controller_stop(
360    SCI_CONTROLLER_HANDLE_T  controller,
361    U32                      timeout
362 );
363 
364 /**
365  * @brief This method will reset the supplied core controller regardless of
366  *        the state of said controller.  This operation is considered
367  *        destructive.  In other words, all current operations are wiped
368  *        out.  No IO completions for outstanding devices occur.  Outstanding
369  *        IO requests are not aborted or completed at the actual remote
370  *        device.
371  *
372  * @param[in]  controller the handle to the controller object to reset.
373  *
374  * @return Indicate if the controller reset method succeeded or failed in
375  *         some way.
376  * @retval SCI_SUCCESS if the reset operation successfully started.
377  * @retval SCI_FATAL_ERROR if the controller reset operation is unable to
378  *         complete.
379  */
380 SCI_STATUS scic_controller_reset(
381    SCI_CONTROLLER_HANDLE_T  controller
382 );
383 
384 /**
385  * @brief This method is called by the SCI user to send/start an IO request.
386  *        If the method invocation is successful, then the IO request has
387  *        been queued to the hardware for processing.
388  *
389  * @warning
390  *         - IO tags are a protected resource.  It is incumbent upon the
391  *           SCI Core user to ensure that each of the methods that may
392  *           allocate or free available IO tags are handled in a mutually
393  *           exclusive manner.  This method is one of said methods requiring
394  *           proper critical code section protection (e.g. semaphore,
395  *           spin-lock, etc.).
396  *         - For SATA, the user is required to manage NCQ tags.  As a
397  *           result, it is expected the user will have set the NCQ tag
398  *           field in the host to device register FIS prior to calling
399  *           this method.  There is also a requirement for the user
400  *           to call scic_stp_io_set_ncq_tag() prior to invoking the
401  *           scic_controller_start_io() method.
402  *
403  * @param[in]  controller the handle to the controller object for which
404  *             to start an IO request.
405  * @param[in]  remote_device the handle to the remote device object for which
406  *             to start an IO request.
407  * @param[in]  io_request the handle to the io request object to start.
408  * @param[in]  io_tag This parameter specifies a previously allocated IO tag
409  *             that the user desires to be utilized for this request.
410  *             This parameter is optional.  The user is allowed to supply
411  *             SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
412  *             @see scic_controller_allocate_tag() for more information
413  *             on allocating a tag.
414  *
415  * @return Indicate if the controller successfully started the IO request.
416  * @retval SCI_IO_SUCCESS if the IO request was successfully started.
417  *
418  * @todo Determine the failure situations and return values.
419  */
420 SCI_IO_STATUS scic_controller_start_io(
421    SCI_CONTROLLER_HANDLE_T     controller,
422    SCI_REMOTE_DEVICE_HANDLE_T  remote_device,
423    SCI_IO_REQUEST_HANDLE_T     io_request,
424    U16                         io_tag
425 );
426 
427 #if !defined(DISABLE_TASK_MANAGEMENT)
428 
429 /**
430  * @brief This method is called by the SCIC user to send/start a framework
431  *        task management request.
432  *
433  * @warning
434  *         - IO tags are a protected resource.  It is incumbent upon the
435  *           SCI Core user to ensure that each of the methods that may
436  *           allocate or free available IO tags are handled in a mutually
437  *           exclusive manner.  This method is one of said methods requiring
438  *           proper critical code section protection (e.g. semaphore,
439  *           spin-lock, etc.).
440  *         - The user must synchronize this task with completion queue
441  *           processing.  If they are not synchronized then it is possible
442  *           for the io requests that are being managed by the task request
443  *           can complete before starting the task request.
444  *
445  * @param[in]  controller the handle to the controller object for which
446  *             to start the task management request.
447  * @param[in]  remote_device the handle to the remote device object for which
448  *             to start the task management request.
449  * @param[in]  task_request the handle to the task request object to start.
450  * @param[in]  io_tag This parameter specifies a previously allocated IO tag
451  *             that the user desires to be utilized for this request.  Note
452  *             this not the io_tag of the request being managed.  It is to
453  *             be utilized for the task request itself.
454  *             This parameter is optional.  The user is allowed to supply
455  *             SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
456  *             @see scic_controller_allocate_tag() for more information
457  *             on allocating a tag.
458  *
459  * @return Indicate if the controller successfully started the IO request.
460  * @retval SCI_TASK_SUCCESS if the task request was successfully started.
461  * @retval SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is returned if
462  *         there is/are task(s) outstanding that require termination or
463  *         completion before this request can succeed.
464  */
465 SCI_TASK_STATUS scic_controller_start_task(
466    SCI_CONTROLLER_HANDLE_T     controller,
467    SCI_REMOTE_DEVICE_HANDLE_T  remote_device,
468    SCI_TASK_REQUEST_HANDLE_T   task_request,
469    U16                         io_tag
470 );
471 
472 /**
473  * @brief This method will perform core specific completion operations for
474  *        task management request. After this method is invoked, the user should
475  *        consider the task request as invalid until it is properly reused
476  *        (i.e. re-constructed).
477  *
478  * @param[in]  controller The handle to the controller object for which
479  *             to complete the task management request.
480  * @param[in]  remote_device The handle to the remote device object for which
481  *             to complete the task management request.
482  * @param[in]  task_request the handle to the task management request object
483  *             to complete.
484  *
485  * @return Indicate if the controller successfully completed the task
486  *         management request.
487  * @retval SCI_SUCCESS if the completion process was successful.
488  */
489 SCI_STATUS scic_controller_complete_task(
490    SCI_CONTROLLER_HANDLE_T     controller,
491    SCI_REMOTE_DEVICE_HANDLE_T  remote_device,
492    SCI_TASK_REQUEST_HANDLE_T   task_request
493 );
494 
495 #else // !defined(DISABLE_TASK_MANAGEMENT)
496 
497 #define scic_controller_start_task(controller, dev, task, tag) SCI_TASK_FAILURE
498 #define scic_controller_complete_task(controller, dev, task) SCI_FAILURE
499 
500 #endif // !defined(DISABLE_TASK_MANAGEMENT)
501 
502 /**
503  * @brief This method is called by the SCI Core user to terminate an ongoing
504  *        (i.e. started) core IO request.  This does not abort the IO request
505  *        at the target, but rather removes the IO request from the host
506  *        controller.
507  *
508  * @param[in]  controller the handle to the controller object for which
509  *             to terminate a request.
510  * @param[in]  remote_device the handle to the remote device object for which
511  *             to terminate a request.
512  * @param[in]  request the handle to the io or task management request
513  *             object to terminate.
514  *
515  * @return Indicate if the controller successfully began the terminate process
516  *         for the IO request.
517  * @retval SCI_SUCCESS if the terminate process was successfully started for
518  *         the request.
519  *
520  * @todo Determine the failure situations and return values.
521  */
522 SCI_STATUS scic_controller_terminate_request(
523    SCI_CONTROLLER_HANDLE_T     controller,
524    SCI_REMOTE_DEVICE_HANDLE_T  remote_device,
525    SCI_IO_REQUEST_HANDLE_T     request
526 );
527 
528 /**
529  * @brief This method will perform core specific completion operations for
530  *        an IO request.  After this method is invoked, the user should
531  *        consider the IO request as invalid until it is properly reused
532  *        (i.e. re-constructed).
533  *
534  * @warning
535  *        - IO tags are a protected resource.  It is incumbent upon the
536  *          SCI Core user to ensure that each of the methods that may
537  *          allocate or free available IO tags are handled in a mutually
538  *          exclusive manner.  This method is one of said methods requiring
539  *          proper critical code section protection (e.g. semaphore,
540  *          spin-lock, etc.).
541  *        - If the IO tag for a request was allocated, by the SCI Core user,
542  *          using the scic_controller_allocate_io_tag() method, then it is
543  *          the responsibility of the caller to invoke the
544  *          scic_controller_free_io_tag() method to free the tag (i.e. this
545  *          method will not free the IO tag).
546  *
547  * @param[in]  controller The handle to the controller object for which
548  *             to complete the IO request.
549  * @param[in]  remote_device The handle to the remote device object for which
550  *             to complete the IO request.
551  * @param[in]  io_request the handle to the io request object to complete.
552  *
553  * @return Indicate if the controller successfully completed the IO request.
554  * @retval SCI_SUCCESS if the completion process was successful.
555  */
556 SCI_STATUS scic_controller_complete_io(
557    SCI_CONTROLLER_HANDLE_T     controller,
558    SCI_REMOTE_DEVICE_HANDLE_T  remote_device,
559    SCI_IO_REQUEST_HANDLE_T     io_request
560 );
561 
562 
563 /**
564  * @brief This method simply provides the user with a unique handle for a
565  *        given SAS/SATA core port index.
566  *
567  * @param[in]  controller This parameter represents the handle to the
568  *             controller object from which to retrieve a port (SAS or
569  *             SATA) handle.
570  * @param[in]  port_index This parameter specifies the port index in
571  *             the controller for which to retrieve the port handle.
572  *             0 <= port_index < maximum number of phys.
573  * @param[out] port_handle This parameter specifies the retrieved port handle
574  *             to be provided to the caller.
575  *
576  * @return Indicate if the retrieval of the port handle was successful.
577  * @retval SCI_SUCCESS This value is returned if the retrieval was successful.
578  * @retval SCI_FAILURE_INVALID_PORT This value is returned if the supplied
579  *         port id is not in the supported range.
580  */
581 SCI_STATUS scic_controller_get_port_handle(
582    SCI_CONTROLLER_HANDLE_T   controller,
583    U8                        port_index,
584    SCI_PORT_HANDLE_T       * port_handle
585 );
586 
587 /**
588  * @brief This method simply provides the user with a unique handle for a
589  *        given SAS/SATA phy index/identifier.
590  *
591  * @param[in]  controller This parameter represents the handle to the
592  *             controller object from which to retrieve a phy (SAS or
593  *             SATA) handle.
594  * @param[in]  phy_index This parameter specifies the phy index in
595  *             the controller for which to retrieve the phy handle.
596  *             0 <= phy_index < maximum number of phys.
597  * @param[out] phy_handle This parameter specifies the retrieved phy handle
598  *             to be provided to the caller.
599  *
600  * @return Indicate if the retrieval of the phy handle was successful.
601  * @retval SCI_SUCCESS This value is returned if the retrieval was successful.
602  * @retval SCI_FAILURE_INVALID_PHY This value is returned if the supplied phy
603  *         id is not in the supported range.
604  */
605 SCI_STATUS scic_controller_get_phy_handle(
606    SCI_CONTROLLER_HANDLE_T   controller,
607    U8                        phy_index,
608    SCI_PHY_HANDLE_T        * phy_handle
609 );
610 
611 /**
612  * @brief This method will allocate a tag from the pool of free IO tags.
613  *        Direct allocation of IO tags by the SCI Core user is optional.
614  *        The scic_controller_start_io() method will allocate an IO
615  *        tag if this method is not utilized and the tag is not
616  *        supplied to the IO construct routine.  Direct allocation of IO tags
617  *        may provide additional performance improvements in environments
618  *        capable of supporting this usage model.  Additionally, direct
619  *        allocation of IO tags also provides additional flexibility to the
620  *        SCI Core user.  Specifically, the user may retain IO tags across
621  *        the lives of multiple IO requests.
622  *
623  * @warning IO tags are a protected resource.  It is incumbent upon the
624  *          SCI Core user to ensure that each of the methods that may
625  *          allocate or free available IO tags are handled in a mutually
626  *          exclusive manner.  This method is one of said methods requiring
627  *          proper critical code section protection (e.g. semaphore,
628  *          spin-lock, etc.).
629  *
630  * @param[in]  controller the handle to the controller object for which to
631  *             allocate the tag.
632  *
633  * @return An unsigned integer representing an available IO tag.
634  * @retval SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there
635  *         are no currently available tags to be allocated.
636  * @retval All return other values indicate a legitimate tag.
637  */
638 U16 scic_controller_allocate_io_tag(
639    SCI_CONTROLLER_HANDLE_T  controller
640 );
641 
642 /**
643  * @brief This method will free an IO tag to the pool of free IO tags.
644  *        This method provides the SCI Core user more flexibility with
645  *        regards to IO tags.  The user may desire to keep an IO tag after
646  *        an IO request has completed, because they plan on re-using the
647  *        tag for a subsequent IO request.  This method is only legal if
648  *        the tag was allocated via scic_controller_allocate_io_tag().
649  *
650  * @warning
651  *        - IO tags are a protected resource.  It is incumbent upon the
652  *          SCI Core user to ensure that each of the methods that may
653  *          allocate or free available IO tags are handled in a mutually
654  *          exclusive manner.  This method is one of said methods requiring
655  *          proper critical code section protection (e.g. semaphore,
656  *          spin-lock, etc.).
657  *        - If the IO tag for a request was allocated, by the SCI Core user,
658  *          using the scic_controller_allocate_io_tag() method, then it is
659  *          the responsibility of the caller to invoke this method to free
660  *          the tag.
661  *
662  * @param[in]  controller This parameter specifies the handle to the
663  *             controller object for which to free/return the tag.
664  * @param[in]  io_tag This parameter represents the tag to be freed to the
665  *             pool of available tags.
666  *
667  * @return This method returns an indication of whether the tag was
668  *         successfully put back (freed) to the pool of available tags.
669  * @retval SCI_SUCCESS This return value indicates the tag was successfully
670  *         placed into the pool of available IO tags.
671  * @retval SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied
672  *         tag is not a valid IO tag value.
673  */
674 SCI_STATUS scic_controller_free_io_tag(
675    SCI_CONTROLLER_HANDLE_T  controller,
676    U16                      io_tag
677 );
678 
679 /**
680  * @brief This method returns the size of the core's scratch RAM.
681  *
682  * @return Size of the scratch RAM in dwords.
683  */
684 U32 scic_controller_get_scratch_ram_size(
685    SCI_CONTROLLER_HANDLE_T   controller
686 );
687 
688 /**
689  * @brief This method allows the user to read a U32 from the core's
690  *        scratch RAM.
691  *
692  * @param[in]  controller This parameter represents the handle to the
693  *             controller object for which to read scratch RAM.
694  * @param[in]  offset The offset (in dwords) into the scratch RAM.
695  * @param[out] value The location where the read value should be stored.
696  *
697  * @return Indicate if the user specified a valid offset into the
698  *         scratch RAM.
699  * @retval SCI_SUCCESS The scratch RAM was successfully read.
700  * @retval SCI_FAILURE_INVALID_PARAMETER_VALUE The user specified an
701  *          invalid offset.
702  */
703 SCI_STATUS scic_controller_read_scratch_ram_dword(
704    SCI_CONTROLLER_HANDLE_T   controller,
705    U32                       offset,
706    U32                     * value
707 );
708 
709 /**
710  * @brief This method allows the user to write a U32 to the core's
711  *        scratch RAM.
712  *
713  * @param[in]  controller This parameter represents the handle to the
714  *             controller object for which to write scratch RAM.
715  * @param[in]  offset The offset (in dwords) into the scratch RAM.
716  * @param[out] value The value to be written to scratch RAM.
717  *
718  * @return Indicate if the user specified a valid offset into the
719  *         scratch RAM.
720  * @retval SCI_SUCCESS The scratch RAM was successfully written.
721  * @retval SCI_FAILURE_INVALID_PARAMETER_VALUE The user specified an
722  *          invalid offset.
723  */
724 SCI_STATUS scic_controller_write_scratch_ram_dword(
725     SCI_CONTROLLER_HANDLE_T   controller,
726     U32                       offset,
727     U32                       value
728 );
729 
730 /**
731  * @brief This method allows the user to configure the SCI core into
732  *        either a performance mode or a memory savings mode.
733  *
734  * @param[in]  controller This parameter represents the handle to the
735  *             controller object for which to update the operating
736  *             mode.
737  * @param[in]  mode This parameter specifies the new mode for the
738  *             controller.
739  *
740  * @return Indicate if the user successfully change the operating mode
741  *         of the controller.
742  * @retval SCI_SUCCESS The user successfully updated the mode.
743  */
744 SCI_STATUS scic_controller_set_mode(
745    SCI_CONTROLLER_HANDLE_T   controller,
746    SCI_CONTROLLER_MODE       mode
747 );
748 
749 
750 #if !defined(DISABLE_INTERRUPTS)
751 /**
752  * @brief This method allows the user to configure the interrupt coalescence.
753  *
754  * @param[in]  controller This parameter represents the handle to the
755  *                controller object for which its interrupt coalesce register
756  *                is overridden.
757  *
758  * @param[in]  coalesce_number Used to control the number of entries in the
759  *                Completion Queue before an interrupt is generated. If the
760  *                number of entries exceed this number, an interrupt will be
761  *                generated. The valid range of the input is [0, 256].
762  *                A setting of 0 results in coalescing being disabled.
763  * @param[in]  coalesce_timeout Timeout value in microseconds. The valid range
764  *                of the input is [0, 2700000] . A setting of 0 is allowed and
765  *                results in no interrupt coalescing timeout.
766  *
767  * @return Indicate if the user successfully set the interrupt coalesce parameters.
768  * @retval SCI_SUCCESS The user successfully updated the interrutp coalescence.
769  * @retval SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
770  */
771 SCI_STATUS scic_controller_set_interrupt_coalescence(
772    SCI_CONTROLLER_HANDLE_T controller,
773    U32                     coalesce_number,
774    U32                     coalesce_timeout
775 );
776 
777 /**
778  * @brief This method retrieves the interrupt coalescing values
779  *
780  * @param[in] controller This parameter specifies the controller for
781  *            which its interrupt coalescing number is read.
782  *
783  * @param[out] coalesce_number, interrupt coalescing number read from controller.
784  *
785  * @param[out] coalesce_timeout, timeout value in microseconds.
786  *
787  * @return None
788  */
789 void scic_controller_get_interrupt_coalescence(
790    SCI_CONTROLLER_HANDLE_T   controller,
791    U32                     * coalesce_number,
792    U32                     * coalesce_timeout
793 );
794 #else // !defined(DISABLE_INTERRUPTS)
795 #define scic_controller_set_interrupt_coalescence(controller, num, timeout) \
796         SCI_FAILURE
797 #define scic_controller_get_interrupt_coalescence(controller, num, timeout)
798 #endif // !defined(DISABLE_INTERRUPTS)
799 
800 
801 /**
802  * @brief This method suspend the controller, reinitialize RAMs, then resume
803  *           the controller.
804  *
805  * @param[in] controller This parameter specifies the controller which is transitioning.
806  *
807  * @param[in] restrict_completions This parameter specifies whether the controller should
808  *               ignore completion processing for non-fastpath events.  This will cause
809  *               the completions to be thrown away.
810  *
811  * @return SCI_STATUS The status of controller transition.
812  */
813 SCI_STATUS scic_controller_transition(
814    SCI_CONTROLLER_HANDLE_T   controller,
815    BOOL                      restrict_completions
816 );
817 
818 
819 /**
820  * @brief This method suspends the controller.
821  *
822  * @param[in] controller This parameter specifies the controller which is to be suspended.
823  *
824  * @return SCI_STATUS The status of controller suspend.
825  */
826 SCI_STATUS scic_controller_suspend(
827    SCI_CONTROLLER_HANDLE_T   controller
828 );
829 
830 /**
831  * @brief This method resumes the controller.
832  *
833  * @param[in] controller This parameter specifies the controller which is to be resumed.
834  *
835  * @return SCI_STATUS The status of controller resume.
836  */
837 SCI_STATUS scic_controller_resume(
838    SCI_CONTROLLER_HANDLE_T   controller
839 );
840 
841 SCI_STATUS scic_controller_get_max_ports(
842    SCI_CONTROLLER_HANDLE_T   controller,
843    U8                      * count
844 );
845 
846 SCI_STATUS scic_controller_get_max_phys(
847    SCI_CONTROLLER_HANDLE_T   controller,
848    U8                      * count
849 );
850 
851 #ifdef __cplusplus
852 }
853 #endif // __cplusplus
854 
855 #endif // _SCIC_CONTROLLER_H_
856 
857