1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <dev/isci/isci.h> 35 36 #include <sys/conf.h> 37 #include <sys/malloc.h> 38 39 #include <cam/cam_periph.h> 40 #include <cam/cam_xpt_periph.h> 41 42 #include <dev/isci/scil/sci_memory_descriptor_list.h> 43 #include <dev/isci/scil/sci_memory_descriptor_list_decorator.h> 44 45 #include <dev/isci/scil/scif_controller.h> 46 #include <dev/isci/scil/scif_library.h> 47 #include <dev/isci/scil/scif_io_request.h> 48 #include <dev/isci/scil/scif_task_request.h> 49 #include <dev/isci/scil/scif_remote_device.h> 50 #include <dev/isci/scil/scif_domain.h> 51 #include <dev/isci/scil/scif_user_callback.h> 52 #include <dev/isci/scil/scic_sgpio.h> 53 54 #include <dev/led/led.h> 55 56 void isci_action(struct cam_sim *sim, union ccb *ccb); 57 void isci_poll(struct cam_sim *sim); 58 59 #define ccb_sim_ptr sim_priv.entries[0].ptr 60 61 /** 62 * @brief This user callback will inform the user that the controller has 63 * had a serious unexpected error. The user should not the error, 64 * disable interrupts, and wait for current ongoing processing to 65 * complete. Subsequently, the user should reset the controller. 66 * 67 * @param[in] controller This parameter specifies the controller that had 68 * an error. 69 * 70 * @return none 71 */ 72 void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller, 73 SCI_CONTROLLER_ERROR error) 74 { 75 76 isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n", 77 error); 78 } 79 80 /** 81 * @brief This user callback will inform the user that the controller has 82 * finished the start process. 83 * 84 * @param[in] controller This parameter specifies the controller that was 85 * started. 86 * @param[in] completion_status This parameter specifies the results of 87 * the start operation. SCI_SUCCESS indicates successful 88 * completion. 89 * 90 * @return none 91 */ 92 void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller, 93 SCI_STATUS completion_status) 94 { 95 uint32_t index; 96 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 97 sci_object_get_association(controller); 98 99 isci_controller->is_started = TRUE; 100 101 /* Set bits for all domains. We will clear them one-by-one once 102 * the domains complete discovery, or return error when calling 103 * scif_domain_discover. Once all bits are clear, we will register 104 * the controller with CAM. 105 */ 106 isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1; 107 108 for(index = 0; index < SCI_MAX_DOMAINS; index++) { 109 SCI_STATUS status; 110 SCI_DOMAIN_HANDLE_T domain = 111 isci_controller->domain[index].sci_object; 112 113 status = scif_domain_discover( 114 domain, 115 scif_domain_get_suggested_discover_timeout(domain), 116 DEVICE_TIMEOUT 117 ); 118 119 if (status != SCI_SUCCESS) 120 { 121 isci_controller_domain_discovery_complete( 122 isci_controller, &isci_controller->domain[index]); 123 } 124 } 125 } 126 127 /** 128 * @brief This user callback will inform the user that the controller has 129 * finished the stop process. Note, after user calls 130 * scif_controller_stop(), before user receives this controller stop 131 * complete callback, user should not expect any callback from 132 * framework, such like scif_cb_domain_change_notification(). 133 * 134 * @param[in] controller This parameter specifies the controller that was 135 * stopped. 136 * @param[in] completion_status This parameter specifies the results of 137 * the stop operation. SCI_SUCCESS indicates successful 138 * completion. 139 * 140 * @return none 141 */ 142 void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller, 143 SCI_STATUS completion_status) 144 { 145 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 146 sci_object_get_association(controller); 147 148 isci_controller->is_started = FALSE; 149 } 150 151 static void 152 isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) 153 { 154 SCI_PHYSICAL_ADDRESS *phys_addr = arg; 155 156 *phys_addr = seg[0].ds_addr; 157 } 158 159 /** 160 * @brief This method will be invoked to allocate memory dynamically. 161 * 162 * @param[in] controller This parameter represents the controller 163 * object for which to allocate memory. 164 * @param[out] mde This parameter represents the memory descriptor to 165 * be filled in by the user that will reference the newly 166 * allocated memory. 167 * 168 * @return none 169 */ 170 void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller, 171 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde) 172 { 173 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 174 sci_object_get_association(controller); 175 176 /* 177 * Note this routine is only used for buffers needed to translate 178 * SCSI UNMAP commands to ATA DSM commands for SATA disks. 179 * 180 * We first try to pull a buffer from the controller's pool, and only 181 * call contigmalloc if one isn't there. 182 */ 183 if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) { 184 sci_pool_get(isci_controller->unmap_buffer_pool, 185 mde->virtual_address); 186 } else 187 mde->virtual_address = contigmalloc(PAGE_SIZE, 188 M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR, 189 mde->constant_memory_alignment, 0); 190 191 if (mde->virtual_address != NULL) 192 bus_dmamap_load(isci_controller->buffer_dma_tag, 193 NULL, mde->virtual_address, PAGE_SIZE, 194 isci_single_map, &mde->physical_address, 195 BUS_DMA_NOWAIT); 196 } 197 198 /** 199 * @brief This method will be invoked to allocate memory dynamically. 200 * 201 * @param[in] controller This parameter represents the controller 202 * object for which to allocate memory. 203 * @param[out] mde This parameter represents the memory descriptor to 204 * be filled in by the user that will reference the newly 205 * allocated memory. 206 * 207 * @return none 208 */ 209 void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller, 210 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde) 211 { 212 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 213 sci_object_get_association(controller); 214 215 /* 216 * Put the buffer back into the controller's buffer pool, rather 217 * than invoking configfree. This helps reduce chance we won't 218 * have buffers available when system is under memory pressure. 219 */ 220 sci_pool_put(isci_controller->unmap_buffer_pool, 221 mde->virtual_address); 222 } 223 224 void isci_controller_construct(struct ISCI_CONTROLLER *controller, 225 struct isci_softc *isci) 226 { 227 SCI_CONTROLLER_HANDLE_T scif_controller_handle; 228 229 scif_library_allocate_controller(isci->sci_library_handle, 230 &scif_controller_handle); 231 232 scif_controller_construct(isci->sci_library_handle, 233 scif_controller_handle, NULL); 234 235 controller->isci = isci; 236 controller->scif_controller_handle = scif_controller_handle; 237 238 /* This allows us to later use 239 * sci_object_get_association(scif_controller_handle) 240 * inside of a callback routine to get our struct ISCI_CONTROLLER object 241 */ 242 sci_object_set_association(scif_controller_handle, (void *)controller); 243 244 controller->is_started = FALSE; 245 controller->is_frozen = FALSE; 246 controller->release_queued_ccbs = FALSE; 247 controller->sim = NULL; 248 controller->initial_discovery_mask = 0; 249 250 sci_fast_list_init(&controller->pending_device_reset_list); 251 252 mtx_init(&controller->lock, "isci", NULL, MTX_DEF); 253 254 uint32_t domain_index; 255 256 for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) { 257 isci_domain_construct( &controller->domain[domain_index], 258 domain_index, controller); 259 } 260 261 controller->timer_memory = malloc( 262 sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI, 263 M_NOWAIT | M_ZERO); 264 265 sci_pool_initialize(controller->timer_pool); 266 267 struct ISCI_TIMER *timer = (struct ISCI_TIMER *) 268 controller->timer_memory; 269 270 for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) { 271 sci_pool_put(controller->timer_pool, timer++); 272 } 273 274 sci_pool_initialize(controller->unmap_buffer_pool); 275 } 276 277 static void isci_led_fault_func(void *priv, int onoff) 278 { 279 struct ISCI_PHY *phy = priv; 280 281 /* map onoff to the fault LED */ 282 phy->led_fault = onoff; 283 scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 284 phy->led_fault, phy->led_locate, 0); 285 } 286 287 static void isci_led_locate_func(void *priv, int onoff) 288 { 289 struct ISCI_PHY *phy = priv; 290 291 /* map onoff to the locate LED */ 292 phy->led_locate = onoff; 293 scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 294 phy->led_fault, phy->led_locate, 0); 295 } 296 297 SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller) 298 { 299 SCIC_USER_PARAMETERS_T scic_user_parameters; 300 SCI_CONTROLLER_HANDLE_T scic_controller_handle; 301 char led_name[64]; 302 unsigned long tunable; 303 uint32_t io_shortage; 304 uint32_t fail_on_timeout; 305 int i; 306 307 scic_controller_handle = 308 scif_controller_get_scic_handle(controller->scif_controller_handle); 309 310 if (controller->isci->oem_parameters_found == TRUE) 311 { 312 scic_oem_parameters_set( 313 scic_controller_handle, 314 &controller->oem_parameters, 315 (uint8_t)(controller->oem_parameters_version)); 316 } 317 318 scic_user_parameters_get(scic_controller_handle, &scic_user_parameters); 319 320 if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable)) 321 scic_user_parameters.sds1.no_outbound_task_timeout = 322 (uint8_t)tunable; 323 324 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable)) 325 scic_user_parameters.sds1.ssp_max_occupancy_timeout = 326 (uint16_t)tunable; 327 328 if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable)) 329 scic_user_parameters.sds1.stp_max_occupancy_timeout = 330 (uint16_t)tunable; 331 332 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable)) 333 scic_user_parameters.sds1.ssp_inactivity_timeout = 334 (uint16_t)tunable; 335 336 if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable)) 337 scic_user_parameters.sds1.stp_inactivity_timeout = 338 (uint16_t)tunable; 339 340 if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable)) 341 for (i = 0; i < SCI_MAX_PHYS; i++) 342 scic_user_parameters.sds1.phys[i].max_speed_generation = 343 (uint8_t)tunable; 344 345 scic_user_parameters_set(scic_controller_handle, &scic_user_parameters); 346 347 /* Scheduler bug in SCU requires SCIL to reserve some task contexts as a 348 * a workaround - one per domain. 349 */ 350 controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS; 351 352 if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth", 353 &controller->queue_depth)) { 354 controller->queue_depth = max(1, min(controller->queue_depth, 355 SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS)); 356 } 357 358 /* Reserve one request so that we can ensure we have one available TC 359 * to do internal device resets. 360 */ 361 controller->sim_queue_depth = controller->queue_depth - 1; 362 363 /* Although we save one TC to do internal device resets, it is possible 364 * we could end up using several TCs for simultaneous device resets 365 * while at the same time having CAM fill our controller queue. To 366 * simulate this condition, and how our driver handles it, we can set 367 * this io_shortage parameter, which will tell CAM that we have a 368 * large queue depth than we really do. 369 */ 370 io_shortage = 0; 371 TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage); 372 controller->sim_queue_depth += io_shortage; 373 374 fail_on_timeout = 1; 375 TUNABLE_INT_FETCH("hw.isci.fail_on_task_timeout", &fail_on_timeout); 376 controller->fail_on_task_timeout = fail_on_timeout; 377 378 /* Attach to CAM using xpt_bus_register now, then immediately freeze 379 * the simq. It will get released later when initial domain discovery 380 * is complete. 381 */ 382 controller->has_been_scanned = FALSE; 383 mtx_lock(&controller->lock); 384 isci_controller_attach_to_cam(controller); 385 xpt_freeze_simq(controller->sim, 1); 386 mtx_unlock(&controller->lock); 387 388 for (i = 0; i < SCI_MAX_PHYS; i++) { 389 controller->phys[i].handle = scic_controller_handle; 390 controller->phys[i].index = i; 391 392 /* fault */ 393 controller->phys[i].led_fault = 0; 394 sprintf(led_name, "isci.bus%d.port%d.fault", controller->index, i); 395 controller->phys[i].cdev_fault = led_create(isci_led_fault_func, 396 &controller->phys[i], led_name); 397 398 /* locate */ 399 controller->phys[i].led_locate = 0; 400 sprintf(led_name, "isci.bus%d.port%d.locate", controller->index, i); 401 controller->phys[i].cdev_locate = led_create(isci_led_locate_func, 402 &controller->phys[i], led_name); 403 } 404 405 return (scif_controller_initialize(controller->scif_controller_handle)); 406 } 407 408 int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller) 409 { 410 int error; 411 device_t device = controller->isci->device; 412 uint32_t max_segment_size = isci_io_request_get_max_io_size(); 413 uint32_t status = 0; 414 struct ISCI_MEMORY *uncached_controller_memory = 415 &controller->uncached_controller_memory; 416 struct ISCI_MEMORY *cached_controller_memory = 417 &controller->cached_controller_memory; 418 struct ISCI_MEMORY *request_memory = 419 &controller->request_memory; 420 POINTER_UINT virtual_address; 421 bus_addr_t physical_address; 422 423 controller->mdl = sci_controller_get_memory_descriptor_list_handle( 424 controller->scif_controller_handle); 425 426 uncached_controller_memory->size = sci_mdl_decorator_get_memory_size( 427 controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS); 428 429 error = isci_allocate_dma_buffer(device, uncached_controller_memory); 430 431 if (error != 0) 432 return (error); 433 434 sci_mdl_decorator_assign_memory( controller->mdl, 435 SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, 436 uncached_controller_memory->virtual_address, 437 uncached_controller_memory->physical_address); 438 439 cached_controller_memory->size = sci_mdl_decorator_get_memory_size( 440 controller->mdl, 441 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS 442 ); 443 444 error = isci_allocate_dma_buffer(device, cached_controller_memory); 445 446 if (error != 0) 447 return (error); 448 449 sci_mdl_decorator_assign_memory(controller->mdl, 450 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, 451 cached_controller_memory->virtual_address, 452 cached_controller_memory->physical_address); 453 454 request_memory->size = 455 controller->queue_depth * isci_io_request_get_object_size(); 456 457 error = isci_allocate_dma_buffer(device, request_memory); 458 459 if (error != 0) 460 return (error); 461 462 /* For STP PIO testing, we want to ensure we can force multiple SGLs 463 * since this has been a problem area in SCIL. This tunable parameter 464 * will allow us to force DMA segments to a smaller size, ensuring 465 * that even if a physically contiguous buffer is attached to this 466 * I/O, the DMA subsystem will pass us multiple segments in our DMA 467 * load callback. 468 */ 469 TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size); 470 471 /* Create DMA tag for our I/O requests. Then we can create DMA maps based off 472 * of this tag and store them in each of our ISCI_IO_REQUEST objects. This 473 * will enable better performance than creating the DMA maps everytime we get 474 * an I/O. 475 */ 476 status = bus_dma_tag_create(bus_get_dma_tag(device), 0x1, 0x0, 477 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 478 isci_io_request_get_max_io_size(), 479 SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0, NULL, NULL, 480 &controller->buffer_dma_tag); 481 482 sci_pool_initialize(controller->request_pool); 483 484 virtual_address = request_memory->virtual_address; 485 physical_address = request_memory->physical_address; 486 487 for (int i = 0; i < controller->queue_depth; i++) { 488 struct ISCI_REQUEST *request = 489 (struct ISCI_REQUEST *)virtual_address; 490 491 isci_request_construct(request, 492 controller->scif_controller_handle, 493 controller->buffer_dma_tag, physical_address); 494 495 sci_pool_put(controller->request_pool, request); 496 497 virtual_address += isci_request_get_object_size(); 498 physical_address += isci_request_get_object_size(); 499 } 500 501 uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) + 502 scif_remote_device_get_object_size(); 503 504 controller->remote_device_memory = (uint8_t *) malloc( 505 remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI, 506 M_NOWAIT | M_ZERO); 507 508 sci_pool_initialize(controller->remote_device_pool); 509 510 uint8_t *remote_device_memory_ptr = controller->remote_device_memory; 511 512 for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) { 513 struct ISCI_REMOTE_DEVICE *remote_device = 514 (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr; 515 516 controller->remote_device[i] = NULL; 517 remote_device->index = i; 518 remote_device->is_resetting = FALSE; 519 remote_device->frozen_lun_mask = 0; 520 sci_fast_list_element_init(remote_device, 521 &remote_device->pending_device_reset_element); 522 TAILQ_INIT(&remote_device->queued_ccbs); 523 remote_device->release_queued_ccb = FALSE; 524 remote_device->queued_ccb_in_progress = NULL; 525 526 /* 527 * For the first SCI_MAX_DOMAINS device objects, do not put 528 * them in the pool, rather assign them to each domain. This 529 * ensures that any device attached directly to port "i" will 530 * always get CAM target id "i". 531 */ 532 if (i < SCI_MAX_DOMAINS) 533 controller->domain[i].da_remote_device = remote_device; 534 else 535 sci_pool_put(controller->remote_device_pool, 536 remote_device); 537 remote_device_memory_ptr += remote_device_size; 538 } 539 540 return (0); 541 } 542 543 void isci_controller_start(void *controller_handle) 544 { 545 struct ISCI_CONTROLLER *controller = 546 (struct ISCI_CONTROLLER *)controller_handle; 547 SCI_CONTROLLER_HANDLE_T scif_controller_handle = 548 controller->scif_controller_handle; 549 550 scif_controller_start(scif_controller_handle, 551 scif_controller_get_suggested_start_timeout(scif_controller_handle)); 552 553 scic_controller_enable_interrupts( 554 scif_controller_get_scic_handle(controller->scif_controller_handle)); 555 } 556 557 void isci_controller_domain_discovery_complete( 558 struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain) 559 { 560 if (!isci_controller->has_been_scanned) 561 { 562 /* Controller has not been scanned yet. We'll clear 563 * the discovery bit for this domain, then check if all bits 564 * are now clear. That would indicate that all domains are 565 * done with discovery and we can then proceed with initial 566 * scan. 567 */ 568 569 isci_controller->initial_discovery_mask &= 570 ~(1 << isci_domain->index); 571 572 if (isci_controller->initial_discovery_mask == 0) { 573 struct isci_softc *driver = isci_controller->isci; 574 uint8_t next_index = isci_controller->index + 1; 575 576 isci_controller->has_been_scanned = TRUE; 577 578 /* Unfreeze simq to allow initial scan to proceed. */ 579 xpt_release_simq(isci_controller->sim, TRUE); 580 581 #if __FreeBSD_version < 800000 582 /* When driver is loaded after boot, we need to 583 * explicitly rescan here for versions <8.0, because 584 * CAM only automatically scans new buses at boot 585 * time. 586 */ 587 union ccb *ccb = xpt_alloc_ccb_nowait(); 588 589 xpt_create_path(&ccb->ccb_h.path, NULL, 590 cam_sim_path(isci_controller->sim), 591 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 592 593 xpt_rescan(ccb); 594 #endif 595 596 if (next_index < driver->controller_count) { 597 /* There are more controllers that need to 598 * start. So start the next one. 599 */ 600 isci_controller_start( 601 &driver->controllers[next_index]); 602 } 603 else 604 { 605 /* All controllers have been started and completed discovery. 606 * Disestablish the config hook while will signal to the 607 * kernel during boot that it is safe to try to find and 608 * mount the root partition. 609 */ 610 config_intrhook_disestablish( 611 &driver->config_hook); 612 } 613 } 614 } 615 } 616 617 int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller) 618 { 619 struct isci_softc *isci = controller->isci; 620 device_t parent = device_get_parent(isci->device); 621 int unit = device_get_unit(isci->device); 622 struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth); 623 624 if(isci_devq == NULL) { 625 isci_log_message(0, "ISCI", "isci_devq is NULL \n"); 626 return (-1); 627 } 628 629 controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci", 630 controller, unit, &controller->lock, controller->sim_queue_depth, 631 controller->sim_queue_depth, isci_devq); 632 633 if(controller->sim == NULL) { 634 isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n"); 635 cam_simq_free(isci_devq); 636 return (-1); 637 } 638 639 if(xpt_bus_register(controller->sim, parent, controller->index) 640 != CAM_SUCCESS) { 641 isci_log_message(0, "ISCI", "xpt_bus_register...fails \n"); 642 cam_sim_free(controller->sim, TRUE); 643 mtx_unlock(&controller->lock); 644 return (-1); 645 } 646 647 if(xpt_create_path(&controller->path, NULL, 648 cam_sim_path(controller->sim), CAM_TARGET_WILDCARD, 649 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 650 isci_log_message(0, "ISCI", "xpt_create_path....fails\n"); 651 xpt_bus_deregister(cam_sim_path(controller->sim)); 652 cam_sim_free(controller->sim, TRUE); 653 mtx_unlock(&controller->lock); 654 return (-1); 655 } 656 657 return (0); 658 } 659 660 void isci_poll(struct cam_sim *sim) 661 { 662 struct ISCI_CONTROLLER *controller = 663 (struct ISCI_CONTROLLER *)cam_sim_softc(sim); 664 665 isci_interrupt_poll_handler(controller); 666 } 667 668 void isci_action(struct cam_sim *sim, union ccb *ccb) 669 { 670 struct ISCI_CONTROLLER *controller = 671 (struct ISCI_CONTROLLER *)cam_sim_softc(sim); 672 673 switch ( ccb->ccb_h.func_code ) { 674 case XPT_PATH_INQ: 675 { 676 struct ccb_pathinq *cpi = &ccb->cpi; 677 int bus = cam_sim_bus(sim); 678 ccb->ccb_h.ccb_sim_ptr = sim; 679 cpi->version_num = 1; 680 cpi->hba_inquiry = PI_TAG_ABLE; 681 cpi->target_sprt = 0; 682 cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN | 683 PIM_UNMAPPED; 684 cpi->hba_eng_cnt = 0; 685 cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1; 686 cpi->max_lun = ISCI_MAX_LUN; 687 #if __FreeBSD_version >= 800102 688 cpi->maxio = isci_io_request_get_max_io_size(); 689 #endif 690 cpi->unit_number = cam_sim_unit(sim); 691 cpi->bus_id = bus; 692 cpi->initiator_id = SCI_MAX_REMOTE_DEVICES; 693 cpi->base_transfer_speed = 300000; 694 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 695 strncpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN); 696 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 697 cpi->transport = XPORT_SAS; 698 cpi->transport_version = 0; 699 cpi->protocol = PROTO_SCSI; 700 cpi->protocol_version = SCSI_REV_SPC2; 701 cpi->ccb_h.status = CAM_REQ_CMP; 702 xpt_done(ccb); 703 } 704 break; 705 case XPT_GET_TRAN_SETTINGS: 706 { 707 struct ccb_trans_settings *general_settings = &ccb->cts; 708 struct ccb_trans_settings_sas *sas_settings = 709 &general_settings->xport_specific.sas; 710 struct ccb_trans_settings_scsi *scsi_settings = 711 &general_settings->proto_specific.scsi; 712 struct ISCI_REMOTE_DEVICE *remote_device; 713 714 remote_device = controller->remote_device[ccb->ccb_h.target_id]; 715 716 if (remote_device == NULL) { 717 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 718 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 719 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 720 xpt_done(ccb); 721 break; 722 } 723 724 general_settings->protocol = PROTO_SCSI; 725 general_settings->transport = XPORT_SAS; 726 general_settings->protocol_version = SCSI_REV_SPC2; 727 general_settings->transport_version = 0; 728 scsi_settings->valid = CTS_SCSI_VALID_TQ; 729 scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB; 730 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 731 ccb->ccb_h.status |= CAM_REQ_CMP; 732 733 sas_settings->bitrate = 734 isci_remote_device_get_bitrate(remote_device); 735 736 if (sas_settings->bitrate != 0) 737 sas_settings->valid = CTS_SAS_VALID_SPEED; 738 739 xpt_done(ccb); 740 } 741 break; 742 case XPT_SCSI_IO: 743 isci_io_request_execute_scsi_io(ccb, controller); 744 break; 745 #if __FreeBSD_version >= 900026 746 case XPT_SMP_IO: 747 isci_io_request_execute_smp_io(ccb, controller); 748 break; 749 #endif 750 case XPT_SET_TRAN_SETTINGS: 751 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 752 ccb->ccb_h.status |= CAM_REQ_CMP; 753 xpt_done(ccb); 754 break; 755 case XPT_CALC_GEOMETRY: 756 cam_calc_geometry(&ccb->ccg, /*extended*/1); 757 xpt_done(ccb); 758 break; 759 case XPT_RESET_DEV: 760 { 761 struct ISCI_REMOTE_DEVICE *remote_device = 762 controller->remote_device[ccb->ccb_h.target_id]; 763 764 if (remote_device != NULL) 765 isci_remote_device_reset(remote_device, ccb); 766 else { 767 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 768 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 769 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 770 xpt_done(ccb); 771 } 772 } 773 break; 774 case XPT_RESET_BUS: 775 ccb->ccb_h.status = CAM_REQ_CMP; 776 xpt_done(ccb); 777 break; 778 default: 779 isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n", 780 ccb->ccb_h.func_code); 781 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 782 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 783 ccb->ccb_h.status |= CAM_REQ_INVALID; 784 xpt_done(ccb); 785 break; 786 } 787 } 788 789 /* 790 * Unfortunately, SCIL doesn't cleanly handle retry conditions. 791 * CAM_REQUEUE_REQ works only when no one is using the pass(4) interface. So 792 * when SCIL denotes an I/O needs to be retried (typically because of mixing 793 * tagged/non-tagged ATA commands, or running out of NCQ slots), we queue 794 * these I/O internally. Once SCIL completes an I/O to this device, or we get 795 * a ready notification, we will retry the first I/O on the queue. 796 * Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within 797 * the context of the completion handler, so we need to retry these I/O after 798 * the completion handler is done executing. 799 */ 800 void 801 isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller) 802 { 803 struct ISCI_REMOTE_DEVICE *dev; 804 struct ccb_hdr *ccb_h; 805 int dev_idx; 806 807 KASSERT(mtx_owned(&controller->lock), ("controller lock not owned")); 808 809 controller->release_queued_ccbs = FALSE; 810 for (dev_idx = 0; 811 dev_idx < SCI_MAX_REMOTE_DEVICES; 812 dev_idx++) { 813 814 dev = controller->remote_device[dev_idx]; 815 if (dev != NULL && 816 dev->release_queued_ccb == TRUE && 817 dev->queued_ccb_in_progress == NULL) { 818 dev->release_queued_ccb = FALSE; 819 ccb_h = TAILQ_FIRST(&dev->queued_ccbs); 820 821 if (ccb_h == NULL) 822 continue; 823 824 isci_log_message(1, "ISCI", "release %p %x\n", ccb_h, 825 ((union ccb *)ccb_h)->csio.cdb_io.cdb_bytes[0]); 826 827 dev->queued_ccb_in_progress = (union ccb *)ccb_h; 828 isci_io_request_execute_scsi_io( 829 (union ccb *)ccb_h, controller); 830 } 831 } 832 } 833