1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * BSD LICENSE 5 * 6 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * * Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * * Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <dev/isci/isci.h> 37 38 #include <sys/conf.h> 39 #include <sys/malloc.h> 40 41 #include <cam/cam_periph.h> 42 #include <cam/cam_xpt_periph.h> 43 44 #include <dev/isci/scil/sci_memory_descriptor_list.h> 45 #include <dev/isci/scil/sci_memory_descriptor_list_decorator.h> 46 47 #include <dev/isci/scil/scif_controller.h> 48 #include <dev/isci/scil/scif_library.h> 49 #include <dev/isci/scil/scif_io_request.h> 50 #include <dev/isci/scil/scif_task_request.h> 51 #include <dev/isci/scil/scif_remote_device.h> 52 #include <dev/isci/scil/scif_domain.h> 53 #include <dev/isci/scil/scif_user_callback.h> 54 #include <dev/isci/scil/scic_sgpio.h> 55 56 #include <dev/led/led.h> 57 58 void isci_action(struct cam_sim *sim, union ccb *ccb); 59 void isci_poll(struct cam_sim *sim); 60 61 #define ccb_sim_ptr sim_priv.entries[0].ptr 62 63 /** 64 * @brief This user callback will inform the user that the controller has 65 * had a serious unexpected error. The user should not the error, 66 * disable interrupts, and wait for current ongoing processing to 67 * complete. Subsequently, the user should reset the controller. 68 * 69 * @param[in] controller This parameter specifies the controller that had 70 * an error. 71 * 72 * @return none 73 */ 74 void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller, 75 SCI_CONTROLLER_ERROR error) 76 { 77 78 isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n", 79 error); 80 } 81 82 /** 83 * @brief This user callback will inform the user that the controller has 84 * finished the start process. 85 * 86 * @param[in] controller This parameter specifies the controller that was 87 * started. 88 * @param[in] completion_status This parameter specifies the results of 89 * the start operation. SCI_SUCCESS indicates successful 90 * completion. 91 * 92 * @return none 93 */ 94 void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller, 95 SCI_STATUS completion_status) 96 { 97 uint32_t index; 98 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 99 sci_object_get_association(controller); 100 101 isci_controller->is_started = TRUE; 102 103 /* Set bits for all domains. We will clear them one-by-one once 104 * the domains complete discovery, or return error when calling 105 * scif_domain_discover. Once all bits are clear, we will register 106 * the controller with CAM. 107 */ 108 isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1; 109 110 for(index = 0; index < SCI_MAX_DOMAINS; index++) { 111 SCI_STATUS status; 112 SCI_DOMAIN_HANDLE_T domain = 113 isci_controller->domain[index].sci_object; 114 115 status = scif_domain_discover( 116 domain, 117 scif_domain_get_suggested_discover_timeout(domain), 118 DEVICE_TIMEOUT 119 ); 120 121 if (status != SCI_SUCCESS) 122 { 123 isci_controller_domain_discovery_complete( 124 isci_controller, &isci_controller->domain[index]); 125 } 126 } 127 } 128 129 /** 130 * @brief This user callback will inform the user that the controller has 131 * finished the stop process. Note, after user calls 132 * scif_controller_stop(), before user receives this controller stop 133 * complete callback, user should not expect any callback from 134 * framework, such like scif_cb_domain_change_notification(). 135 * 136 * @param[in] controller This parameter specifies the controller that was 137 * stopped. 138 * @param[in] completion_status This parameter specifies the results of 139 * the stop operation. SCI_SUCCESS indicates successful 140 * completion. 141 * 142 * @return none 143 */ 144 void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller, 145 SCI_STATUS completion_status) 146 { 147 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 148 sci_object_get_association(controller); 149 150 isci_controller->is_started = FALSE; 151 } 152 153 static void 154 isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) 155 { 156 SCI_PHYSICAL_ADDRESS *phys_addr = arg; 157 158 *phys_addr = seg[0].ds_addr; 159 } 160 161 /** 162 * @brief This method will be invoked to allocate memory dynamically. 163 * 164 * @param[in] controller This parameter represents the controller 165 * object for which to allocate memory. 166 * @param[out] mde This parameter represents the memory descriptor to 167 * be filled in by the user that will reference the newly 168 * allocated memory. 169 * 170 * @return none 171 */ 172 void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller, 173 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde) 174 { 175 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 176 sci_object_get_association(controller); 177 178 /* 179 * Note this routine is only used for buffers needed to translate 180 * SCSI UNMAP commands to ATA DSM commands for SATA disks. 181 * 182 * We first try to pull a buffer from the controller's pool, and only 183 * call contigmalloc if one isn't there. 184 */ 185 if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) { 186 sci_pool_get(isci_controller->unmap_buffer_pool, 187 mde->virtual_address); 188 } else 189 mde->virtual_address = contigmalloc(PAGE_SIZE, 190 M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR, 191 mde->constant_memory_alignment, 0); 192 193 if (mde->virtual_address != NULL) 194 bus_dmamap_load(isci_controller->buffer_dma_tag, 195 NULL, mde->virtual_address, PAGE_SIZE, 196 isci_single_map, &mde->physical_address, 197 BUS_DMA_NOWAIT); 198 } 199 200 /** 201 * @brief This method will be invoked to allocate memory dynamically. 202 * 203 * @param[in] controller This parameter represents the controller 204 * object for which to allocate memory. 205 * @param[out] mde This parameter represents the memory descriptor to 206 * be filled in by the user that will reference the newly 207 * allocated memory. 208 * 209 * @return none 210 */ 211 void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller, 212 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde) 213 { 214 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 215 sci_object_get_association(controller); 216 217 /* 218 * Put the buffer back into the controller's buffer pool, rather 219 * than invoking configfree. This helps reduce chance we won't 220 * have buffers available when system is under memory pressure. 221 */ 222 sci_pool_put(isci_controller->unmap_buffer_pool, 223 mde->virtual_address); 224 } 225 226 void isci_controller_construct(struct ISCI_CONTROLLER *controller, 227 struct isci_softc *isci) 228 { 229 SCI_CONTROLLER_HANDLE_T scif_controller_handle; 230 231 scif_library_allocate_controller(isci->sci_library_handle, 232 &scif_controller_handle); 233 234 scif_controller_construct(isci->sci_library_handle, 235 scif_controller_handle, NULL); 236 237 controller->isci = isci; 238 controller->scif_controller_handle = scif_controller_handle; 239 240 /* This allows us to later use 241 * sci_object_get_association(scif_controller_handle) 242 * inside of a callback routine to get our struct ISCI_CONTROLLER object 243 */ 244 sci_object_set_association(scif_controller_handle, (void *)controller); 245 246 controller->is_started = FALSE; 247 controller->is_frozen = FALSE; 248 controller->release_queued_ccbs = FALSE; 249 controller->sim = NULL; 250 controller->initial_discovery_mask = 0; 251 252 sci_fast_list_init(&controller->pending_device_reset_list); 253 254 mtx_init(&controller->lock, "isci", NULL, MTX_DEF); 255 256 uint32_t domain_index; 257 258 for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) { 259 isci_domain_construct( &controller->domain[domain_index], 260 domain_index, controller); 261 } 262 263 controller->timer_memory = malloc( 264 sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI, 265 M_NOWAIT | M_ZERO); 266 267 sci_pool_initialize(controller->timer_pool); 268 269 struct ISCI_TIMER *timer = (struct ISCI_TIMER *) 270 controller->timer_memory; 271 272 for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) { 273 sci_pool_put(controller->timer_pool, timer++); 274 } 275 276 sci_pool_initialize(controller->unmap_buffer_pool); 277 } 278 279 static void isci_led_fault_func(void *priv, int onoff) 280 { 281 struct ISCI_PHY *phy = priv; 282 283 /* map onoff to the fault LED */ 284 phy->led_fault = onoff; 285 scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 286 phy->led_fault, phy->led_locate, 0); 287 } 288 289 static void isci_led_locate_func(void *priv, int onoff) 290 { 291 struct ISCI_PHY *phy = priv; 292 293 /* map onoff to the locate LED */ 294 phy->led_locate = onoff; 295 scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 296 phy->led_fault, phy->led_locate, 0); 297 } 298 299 SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller) 300 { 301 SCIC_USER_PARAMETERS_T scic_user_parameters; 302 SCI_CONTROLLER_HANDLE_T scic_controller_handle; 303 char led_name[64]; 304 unsigned long tunable; 305 uint32_t io_shortage; 306 uint32_t fail_on_timeout; 307 int i; 308 309 scic_controller_handle = 310 scif_controller_get_scic_handle(controller->scif_controller_handle); 311 312 if (controller->isci->oem_parameters_found == TRUE) 313 { 314 scic_oem_parameters_set( 315 scic_controller_handle, 316 &controller->oem_parameters, 317 (uint8_t)(controller->oem_parameters_version)); 318 } 319 320 scic_user_parameters_get(scic_controller_handle, &scic_user_parameters); 321 322 if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable)) 323 scic_user_parameters.sds1.no_outbound_task_timeout = 324 (uint8_t)tunable; 325 326 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable)) 327 scic_user_parameters.sds1.ssp_max_occupancy_timeout = 328 (uint16_t)tunable; 329 330 if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable)) 331 scic_user_parameters.sds1.stp_max_occupancy_timeout = 332 (uint16_t)tunable; 333 334 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable)) 335 scic_user_parameters.sds1.ssp_inactivity_timeout = 336 (uint16_t)tunable; 337 338 if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable)) 339 scic_user_parameters.sds1.stp_inactivity_timeout = 340 (uint16_t)tunable; 341 342 if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable)) 343 for (i = 0; i < SCI_MAX_PHYS; i++) 344 scic_user_parameters.sds1.phys[i].max_speed_generation = 345 (uint8_t)tunable; 346 347 scic_user_parameters_set(scic_controller_handle, &scic_user_parameters); 348 349 /* Scheduler bug in SCU requires SCIL to reserve some task contexts as a 350 * a workaround - one per domain. 351 */ 352 controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS; 353 354 if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth", 355 &controller->queue_depth)) { 356 controller->queue_depth = max(1, min(controller->queue_depth, 357 SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS)); 358 } 359 360 /* Reserve one request so that we can ensure we have one available TC 361 * to do internal device resets. 362 */ 363 controller->sim_queue_depth = controller->queue_depth - 1; 364 365 /* Although we save one TC to do internal device resets, it is possible 366 * we could end up using several TCs for simultaneous device resets 367 * while at the same time having CAM fill our controller queue. To 368 * simulate this condition, and how our driver handles it, we can set 369 * this io_shortage parameter, which will tell CAM that we have a 370 * large queue depth than we really do. 371 */ 372 io_shortage = 0; 373 TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage); 374 controller->sim_queue_depth += io_shortage; 375 376 fail_on_timeout = 1; 377 TUNABLE_INT_FETCH("hw.isci.fail_on_task_timeout", &fail_on_timeout); 378 controller->fail_on_task_timeout = fail_on_timeout; 379 380 /* Attach to CAM using xpt_bus_register now, then immediately freeze 381 * the simq. It will get released later when initial domain discovery 382 * is complete. 383 */ 384 controller->has_been_scanned = FALSE; 385 mtx_lock(&controller->lock); 386 isci_controller_attach_to_cam(controller); 387 xpt_freeze_simq(controller->sim, 1); 388 mtx_unlock(&controller->lock); 389 390 for (i = 0; i < SCI_MAX_PHYS; i++) { 391 controller->phys[i].handle = scic_controller_handle; 392 controller->phys[i].index = i; 393 394 /* fault */ 395 controller->phys[i].led_fault = 0; 396 sprintf(led_name, "isci.bus%d.port%d.fault", controller->index, i); 397 controller->phys[i].cdev_fault = led_create(isci_led_fault_func, 398 &controller->phys[i], led_name); 399 400 /* locate */ 401 controller->phys[i].led_locate = 0; 402 sprintf(led_name, "isci.bus%d.port%d.locate", controller->index, i); 403 controller->phys[i].cdev_locate = led_create(isci_led_locate_func, 404 &controller->phys[i], led_name); 405 } 406 407 return (scif_controller_initialize(controller->scif_controller_handle)); 408 } 409 410 int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller) 411 { 412 int error; 413 device_t device = controller->isci->device; 414 uint32_t max_segment_size = isci_io_request_get_max_io_size(); 415 uint32_t status = 0; 416 struct ISCI_MEMORY *uncached_controller_memory = 417 &controller->uncached_controller_memory; 418 struct ISCI_MEMORY *cached_controller_memory = 419 &controller->cached_controller_memory; 420 struct ISCI_MEMORY *request_memory = 421 &controller->request_memory; 422 POINTER_UINT virtual_address; 423 bus_addr_t physical_address; 424 425 controller->mdl = sci_controller_get_memory_descriptor_list_handle( 426 controller->scif_controller_handle); 427 428 uncached_controller_memory->size = sci_mdl_decorator_get_memory_size( 429 controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS); 430 431 error = isci_allocate_dma_buffer(device, uncached_controller_memory); 432 433 if (error != 0) 434 return (error); 435 436 sci_mdl_decorator_assign_memory( controller->mdl, 437 SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, 438 uncached_controller_memory->virtual_address, 439 uncached_controller_memory->physical_address); 440 441 cached_controller_memory->size = sci_mdl_decorator_get_memory_size( 442 controller->mdl, 443 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS 444 ); 445 446 error = isci_allocate_dma_buffer(device, cached_controller_memory); 447 448 if (error != 0) 449 return (error); 450 451 sci_mdl_decorator_assign_memory(controller->mdl, 452 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, 453 cached_controller_memory->virtual_address, 454 cached_controller_memory->physical_address); 455 456 request_memory->size = 457 controller->queue_depth * isci_io_request_get_object_size(); 458 459 error = isci_allocate_dma_buffer(device, request_memory); 460 461 if (error != 0) 462 return (error); 463 464 /* For STP PIO testing, we want to ensure we can force multiple SGLs 465 * since this has been a problem area in SCIL. This tunable parameter 466 * will allow us to force DMA segments to a smaller size, ensuring 467 * that even if a physically contiguous buffer is attached to this 468 * I/O, the DMA subsystem will pass us multiple segments in our DMA 469 * load callback. 470 */ 471 TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size); 472 473 /* Create DMA tag for our I/O requests. Then we can create DMA maps based off 474 * of this tag and store them in each of our ISCI_IO_REQUEST objects. This 475 * will enable better performance than creating the DMA maps every time we get 476 * an I/O. 477 */ 478 status = bus_dma_tag_create(bus_get_dma_tag(device), 0x1, 0x0, 479 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 480 isci_io_request_get_max_io_size(), 481 SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0, NULL, NULL, 482 &controller->buffer_dma_tag); 483 484 sci_pool_initialize(controller->request_pool); 485 486 virtual_address = request_memory->virtual_address; 487 physical_address = request_memory->physical_address; 488 489 for (int i = 0; i < controller->queue_depth; i++) { 490 struct ISCI_REQUEST *request = 491 (struct ISCI_REQUEST *)virtual_address; 492 493 isci_request_construct(request, 494 controller->scif_controller_handle, 495 controller->buffer_dma_tag, physical_address); 496 497 sci_pool_put(controller->request_pool, request); 498 499 virtual_address += isci_request_get_object_size(); 500 physical_address += isci_request_get_object_size(); 501 } 502 503 uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) + 504 scif_remote_device_get_object_size(); 505 506 controller->remote_device_memory = (uint8_t *) malloc( 507 remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI, 508 M_NOWAIT | M_ZERO); 509 510 sci_pool_initialize(controller->remote_device_pool); 511 512 uint8_t *remote_device_memory_ptr = controller->remote_device_memory; 513 514 for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) { 515 struct ISCI_REMOTE_DEVICE *remote_device = 516 (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr; 517 518 controller->remote_device[i] = NULL; 519 remote_device->index = i; 520 remote_device->is_resetting = FALSE; 521 remote_device->frozen_lun_mask = 0; 522 sci_fast_list_element_init(remote_device, 523 &remote_device->pending_device_reset_element); 524 TAILQ_INIT(&remote_device->queued_ccbs); 525 remote_device->release_queued_ccb = FALSE; 526 remote_device->queued_ccb_in_progress = NULL; 527 528 /* 529 * For the first SCI_MAX_DOMAINS device objects, do not put 530 * them in the pool, rather assign them to each domain. This 531 * ensures that any device attached directly to port "i" will 532 * always get CAM target id "i". 533 */ 534 if (i < SCI_MAX_DOMAINS) 535 controller->domain[i].da_remote_device = remote_device; 536 else 537 sci_pool_put(controller->remote_device_pool, 538 remote_device); 539 remote_device_memory_ptr += remote_device_size; 540 } 541 542 return (0); 543 } 544 545 void isci_controller_start(void *controller_handle) 546 { 547 struct ISCI_CONTROLLER *controller = 548 (struct ISCI_CONTROLLER *)controller_handle; 549 SCI_CONTROLLER_HANDLE_T scif_controller_handle = 550 controller->scif_controller_handle; 551 552 scif_controller_start(scif_controller_handle, 553 scif_controller_get_suggested_start_timeout(scif_controller_handle)); 554 555 scic_controller_enable_interrupts( 556 scif_controller_get_scic_handle(controller->scif_controller_handle)); 557 } 558 559 void isci_controller_domain_discovery_complete( 560 struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain) 561 { 562 if (!isci_controller->has_been_scanned) 563 { 564 /* Controller has not been scanned yet. We'll clear 565 * the discovery bit for this domain, then check if all bits 566 * are now clear. That would indicate that all domains are 567 * done with discovery and we can then proceed with initial 568 * scan. 569 */ 570 571 isci_controller->initial_discovery_mask &= 572 ~(1 << isci_domain->index); 573 574 if (isci_controller->initial_discovery_mask == 0) { 575 struct isci_softc *driver = isci_controller->isci; 576 uint8_t next_index = isci_controller->index + 1; 577 578 isci_controller->has_been_scanned = TRUE; 579 580 /* Unfreeze simq to allow initial scan to proceed. */ 581 xpt_release_simq(isci_controller->sim, TRUE); 582 583 #if __FreeBSD_version < 800000 584 /* When driver is loaded after boot, we need to 585 * explicitly rescan here for versions <8.0, because 586 * CAM only automatically scans new buses at boot 587 * time. 588 */ 589 union ccb *ccb = xpt_alloc_ccb_nowait(); 590 591 xpt_create_path(&ccb->ccb_h.path, NULL, 592 cam_sim_path(isci_controller->sim), 593 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 594 595 xpt_rescan(ccb); 596 #endif 597 598 if (next_index < driver->controller_count) { 599 /* There are more controllers that need to 600 * start. So start the next one. 601 */ 602 isci_controller_start( 603 &driver->controllers[next_index]); 604 } 605 else 606 { 607 /* All controllers have been started and completed discovery. 608 * Disestablish the config hook while will signal to the 609 * kernel during boot that it is safe to try to find and 610 * mount the root partition. 611 */ 612 config_intrhook_disestablish( 613 &driver->config_hook); 614 } 615 } 616 } 617 } 618 619 int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller) 620 { 621 struct isci_softc *isci = controller->isci; 622 device_t parent = device_get_parent(isci->device); 623 int unit = device_get_unit(isci->device); 624 struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth); 625 626 if(isci_devq == NULL) { 627 isci_log_message(0, "ISCI", "isci_devq is NULL \n"); 628 return (-1); 629 } 630 631 controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci", 632 controller, unit, &controller->lock, controller->sim_queue_depth, 633 controller->sim_queue_depth, isci_devq); 634 635 if(controller->sim == NULL) { 636 isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n"); 637 cam_simq_free(isci_devq); 638 return (-1); 639 } 640 641 if(xpt_bus_register(controller->sim, parent, controller->index) 642 != CAM_SUCCESS) { 643 isci_log_message(0, "ISCI", "xpt_bus_register...fails \n"); 644 cam_sim_free(controller->sim, TRUE); 645 mtx_unlock(&controller->lock); 646 return (-1); 647 } 648 649 if(xpt_create_path(&controller->path, NULL, 650 cam_sim_path(controller->sim), CAM_TARGET_WILDCARD, 651 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 652 isci_log_message(0, "ISCI", "xpt_create_path....fails\n"); 653 xpt_bus_deregister(cam_sim_path(controller->sim)); 654 cam_sim_free(controller->sim, TRUE); 655 mtx_unlock(&controller->lock); 656 return (-1); 657 } 658 659 return (0); 660 } 661 662 void isci_poll(struct cam_sim *sim) 663 { 664 struct ISCI_CONTROLLER *controller = 665 (struct ISCI_CONTROLLER *)cam_sim_softc(sim); 666 667 isci_interrupt_poll_handler(controller); 668 } 669 670 void isci_action(struct cam_sim *sim, union ccb *ccb) 671 { 672 struct ISCI_CONTROLLER *controller = 673 (struct ISCI_CONTROLLER *)cam_sim_softc(sim); 674 675 switch ( ccb->ccb_h.func_code ) { 676 case XPT_PATH_INQ: 677 { 678 struct ccb_pathinq *cpi = &ccb->cpi; 679 int bus = cam_sim_bus(sim); 680 ccb->ccb_h.ccb_sim_ptr = sim; 681 cpi->version_num = 1; 682 cpi->hba_inquiry = PI_TAG_ABLE; 683 cpi->target_sprt = 0; 684 cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN | 685 PIM_UNMAPPED; 686 cpi->hba_eng_cnt = 0; 687 cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1; 688 cpi->max_lun = ISCI_MAX_LUN; 689 #if __FreeBSD_version >= 800102 690 cpi->maxio = isci_io_request_get_max_io_size(); 691 #endif 692 cpi->unit_number = cam_sim_unit(sim); 693 cpi->bus_id = bus; 694 cpi->initiator_id = SCI_MAX_REMOTE_DEVICES; 695 cpi->base_transfer_speed = 300000; 696 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 697 strlcpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN); 698 strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 699 cpi->transport = XPORT_SAS; 700 cpi->transport_version = 0; 701 cpi->protocol = PROTO_SCSI; 702 cpi->protocol_version = SCSI_REV_SPC2; 703 cpi->ccb_h.status = CAM_REQ_CMP; 704 xpt_done(ccb); 705 } 706 break; 707 case XPT_GET_TRAN_SETTINGS: 708 { 709 struct ccb_trans_settings *general_settings = &ccb->cts; 710 struct ccb_trans_settings_sas *sas_settings = 711 &general_settings->xport_specific.sas; 712 struct ccb_trans_settings_scsi *scsi_settings = 713 &general_settings->proto_specific.scsi; 714 struct ISCI_REMOTE_DEVICE *remote_device; 715 716 remote_device = controller->remote_device[ccb->ccb_h.target_id]; 717 718 if (remote_device == NULL) { 719 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 720 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 721 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 722 xpt_done(ccb); 723 break; 724 } 725 726 general_settings->protocol = PROTO_SCSI; 727 general_settings->transport = XPORT_SAS; 728 general_settings->protocol_version = SCSI_REV_SPC2; 729 general_settings->transport_version = 0; 730 scsi_settings->valid = CTS_SCSI_VALID_TQ; 731 scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB; 732 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 733 ccb->ccb_h.status |= CAM_REQ_CMP; 734 735 sas_settings->bitrate = 736 isci_remote_device_get_bitrate(remote_device); 737 738 if (sas_settings->bitrate != 0) 739 sas_settings->valid = CTS_SAS_VALID_SPEED; 740 741 xpt_done(ccb); 742 } 743 break; 744 case XPT_SCSI_IO: 745 if (ccb->ccb_h.flags & CAM_CDB_PHYS) { 746 ccb->ccb_h.status = CAM_REQ_INVALID; 747 xpt_done(ccb); 748 break; 749 } 750 isci_io_request_execute_scsi_io(ccb, controller); 751 break; 752 #if __FreeBSD_version >= 900026 753 case XPT_SMP_IO: 754 isci_io_request_execute_smp_io(ccb, controller); 755 break; 756 #endif 757 case XPT_SET_TRAN_SETTINGS: 758 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 759 ccb->ccb_h.status |= CAM_REQ_CMP; 760 xpt_done(ccb); 761 break; 762 case XPT_CALC_GEOMETRY: 763 cam_calc_geometry(&ccb->ccg, /*extended*/1); 764 xpt_done(ccb); 765 break; 766 case XPT_RESET_DEV: 767 { 768 struct ISCI_REMOTE_DEVICE *remote_device = 769 controller->remote_device[ccb->ccb_h.target_id]; 770 771 if (remote_device != NULL) 772 isci_remote_device_reset(remote_device, ccb); 773 else { 774 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 775 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 776 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 777 xpt_done(ccb); 778 } 779 } 780 break; 781 case XPT_RESET_BUS: 782 ccb->ccb_h.status = CAM_REQ_CMP; 783 xpt_done(ccb); 784 break; 785 default: 786 isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n", 787 ccb->ccb_h.func_code); 788 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 789 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 790 ccb->ccb_h.status |= CAM_REQ_INVALID; 791 xpt_done(ccb); 792 break; 793 } 794 } 795 796 /* 797 * Unfortunately, SCIL doesn't cleanly handle retry conditions. 798 * CAM_REQUEUE_REQ works only when no one is using the pass(4) interface. So 799 * when SCIL denotes an I/O needs to be retried (typically because of mixing 800 * tagged/non-tagged ATA commands, or running out of NCQ slots), we queue 801 * these I/O internally. Once SCIL completes an I/O to this device, or we get 802 * a ready notification, we will retry the first I/O on the queue. 803 * Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within 804 * the context of the completion handler, so we need to retry these I/O after 805 * the completion handler is done executing. 806 */ 807 void 808 isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller) 809 { 810 struct ISCI_REMOTE_DEVICE *dev; 811 struct ccb_hdr *ccb_h; 812 uint8_t *ptr; 813 int dev_idx; 814 815 KASSERT(mtx_owned(&controller->lock), ("controller lock not owned")); 816 817 controller->release_queued_ccbs = FALSE; 818 for (dev_idx = 0; 819 dev_idx < SCI_MAX_REMOTE_DEVICES; 820 dev_idx++) { 821 822 dev = controller->remote_device[dev_idx]; 823 if (dev != NULL && 824 dev->release_queued_ccb == TRUE && 825 dev->queued_ccb_in_progress == NULL) { 826 dev->release_queued_ccb = FALSE; 827 ccb_h = TAILQ_FIRST(&dev->queued_ccbs); 828 829 if (ccb_h == NULL) 830 continue; 831 832 ptr = scsiio_cdb_ptr(&((union ccb *)ccb_h)->csio); 833 isci_log_message(1, "ISCI", "release %p %x\n", ccb_h, *ptr); 834 835 dev->queued_ccb_in_progress = (union ccb *)ccb_h; 836 isci_io_request_execute_scsi_io( 837 (union ccb *)ccb_h, controller); 838 } 839 } 840 } 841