1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <dev/isci/isci.h> 35 36 #include <sys/conf.h> 37 #include <sys/malloc.h> 38 39 #include <dev/isci/scil/sci_memory_descriptor_list.h> 40 #include <dev/isci/scil/sci_memory_descriptor_list_decorator.h> 41 42 #include <dev/isci/scil/scif_controller.h> 43 #include <dev/isci/scil/scif_library.h> 44 #include <dev/isci/scil/scif_io_request.h> 45 #include <dev/isci/scil/scif_task_request.h> 46 #include <dev/isci/scil/scif_remote_device.h> 47 #include <dev/isci/scil/scif_domain.h> 48 #include <dev/isci/scil/scif_user_callback.h> 49 50 void isci_action(struct cam_sim *sim, union ccb *ccb); 51 void isci_poll(struct cam_sim *sim); 52 53 #define ccb_sim_ptr sim_priv.entries[0].ptr 54 55 /** 56 * @brief This user callback will inform the user that the controller has 57 * had a serious unexpected error. The user should not the error, 58 * disable interrupts, and wait for current ongoing processing to 59 * complete. Subsequently, the user should reset the controller. 60 * 61 * @param[in] controller This parameter specifies the controller that had 62 * an error. 63 * 64 * @return none 65 */ 66 void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller, 67 SCI_CONTROLLER_ERROR error) 68 { 69 70 isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n", 71 error); 72 } 73 74 /** 75 * @brief This user callback will inform the user that the controller has 76 * finished the start process. 77 * 78 * @param[in] controller This parameter specifies the controller that was 79 * started. 80 * @param[in] completion_status This parameter specifies the results of 81 * the start operation. SCI_SUCCESS indicates successful 82 * completion. 83 * 84 * @return none 85 */ 86 void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller, 87 SCI_STATUS completion_status) 88 { 89 uint32_t index; 90 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 91 sci_object_get_association(controller); 92 93 isci_controller->is_started = TRUE; 94 95 /* Set bits for all domains. We will clear them one-by-one once 96 * the domains complete discovery, or return error when calling 97 * scif_domain_discover. Once all bits are clear, we will register 98 * the controller with CAM. 99 */ 100 isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1; 101 102 for(index = 0; index < SCI_MAX_DOMAINS; index++) { 103 SCI_STATUS status; 104 SCI_DOMAIN_HANDLE_T domain = 105 isci_controller->domain[index].sci_object; 106 107 status = scif_domain_discover( 108 domain, 109 scif_domain_get_suggested_discover_timeout(domain), 110 DEVICE_TIMEOUT 111 ); 112 113 if (status != SCI_SUCCESS) 114 { 115 isci_controller_domain_discovery_complete( 116 isci_controller, &isci_controller->domain[index]); 117 } 118 } 119 } 120 121 /** 122 * @brief This user callback will inform the user that the controller has 123 * finished the stop process. Note, after user calls 124 * scif_controller_stop(), before user receives this controller stop 125 * complete callback, user should not expect any callback from 126 * framework, such like scif_cb_domain_change_notification(). 127 * 128 * @param[in] controller This parameter specifies the controller that was 129 * stopped. 130 * @param[in] completion_status This parameter specifies the results of 131 * the stop operation. SCI_SUCCESS indicates successful 132 * completion. 133 * 134 * @return none 135 */ 136 void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller, 137 SCI_STATUS completion_status) 138 { 139 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 140 sci_object_get_association(controller); 141 142 isci_controller->is_started = FALSE; 143 } 144 145 /** 146 * @brief This method will be invoked to allocate memory dynamically. 147 * 148 * @param[in] controller This parameter represents the controller 149 * object for which to allocate memory. 150 * @param[out] mde This parameter represents the memory descriptor to 151 * be filled in by the user that will reference the newly 152 * allocated memory. 153 * 154 * @return none 155 */ 156 void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller, 157 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde) 158 { 159 160 } 161 162 /** 163 * @brief This method will be invoked to allocate memory dynamically. 164 * 165 * @param[in] controller This parameter represents the controller 166 * object for which to allocate memory. 167 * @param[out] mde This parameter represents the memory descriptor to 168 * be filled in by the user that will reference the newly 169 * allocated memory. 170 * 171 * @return none 172 */ 173 void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller, 174 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde) 175 { 176 177 } 178 179 void isci_controller_construct(struct ISCI_CONTROLLER *controller, 180 struct isci_softc *isci) 181 { 182 SCI_CONTROLLER_HANDLE_T scif_controller_handle; 183 184 scif_library_allocate_controller(isci->sci_library_handle, 185 &scif_controller_handle); 186 187 scif_controller_construct(isci->sci_library_handle, 188 scif_controller_handle, NULL); 189 190 controller->isci = isci; 191 controller->scif_controller_handle = scif_controller_handle; 192 193 /* This allows us to later use 194 * sci_object_get_association(scif_controller_handle) 195 * inside of a callback routine to get our struct ISCI_CONTROLLER object 196 */ 197 sci_object_set_association(scif_controller_handle, (void *)controller); 198 199 controller->is_started = FALSE; 200 controller->is_frozen = FALSE; 201 controller->sim = NULL; 202 controller->initial_discovery_mask = 0; 203 204 sci_fast_list_init(&controller->pending_device_reset_list); 205 206 mtx_init(&controller->lock, "isci", NULL, MTX_DEF); 207 208 uint32_t domain_index; 209 210 for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) { 211 isci_domain_construct( &controller->domain[domain_index], 212 domain_index, controller); 213 } 214 215 controller->timer_memory = malloc( 216 sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI, 217 M_NOWAIT | M_ZERO); 218 219 sci_pool_initialize(controller->timer_pool); 220 221 struct ISCI_TIMER *timer = (struct ISCI_TIMER *) 222 controller->timer_memory; 223 224 for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) { 225 sci_pool_put(controller->timer_pool, timer++); 226 } 227 } 228 229 SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller) 230 { 231 SCIC_USER_PARAMETERS_T scic_user_parameters; 232 SCI_CONTROLLER_HANDLE_T scic_controller_handle; 233 unsigned long tunable; 234 int i; 235 236 scic_controller_handle = 237 scif_controller_get_scic_handle(controller->scif_controller_handle); 238 239 if (controller->isci->oem_parameters_found == TRUE) 240 { 241 scic_oem_parameters_set( 242 scic_controller_handle, 243 &controller->oem_parameters, 244 (uint8_t)(controller->oem_parameters_version)); 245 } 246 247 scic_user_parameters_get(scic_controller_handle, &scic_user_parameters); 248 249 if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable)) 250 scic_user_parameters.sds1.no_outbound_task_timeout = 251 (uint8_t)tunable; 252 253 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable)) 254 scic_user_parameters.sds1.ssp_max_occupancy_timeout = 255 (uint16_t)tunable; 256 257 if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable)) 258 scic_user_parameters.sds1.stp_max_occupancy_timeout = 259 (uint16_t)tunable; 260 261 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable)) 262 scic_user_parameters.sds1.ssp_inactivity_timeout = 263 (uint16_t)tunable; 264 265 if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable)) 266 scic_user_parameters.sds1.stp_inactivity_timeout = 267 (uint16_t)tunable; 268 269 if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable)) 270 for (i = 0; i < SCI_MAX_PHYS; i++) 271 scic_user_parameters.sds1.phys[i].max_speed_generation = 272 (uint8_t)tunable; 273 274 scic_user_parameters_set(scic_controller_handle, &scic_user_parameters); 275 276 /* Scheduler bug in SCU requires SCIL to reserve some task contexts as a 277 * a workaround - one per domain. 278 */ 279 controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS; 280 281 if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth", 282 &controller->queue_depth)) { 283 controller->queue_depth = max(1, min(controller->queue_depth, 284 SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS)); 285 } 286 287 /* Reserve one request so that we can ensure we have one available TC 288 * to do internal device resets. 289 */ 290 controller->sim_queue_depth = controller->queue_depth - 1; 291 292 /* Although we save one TC to do internal device resets, it is possible 293 * we could end up using several TCs for simultaneous device resets 294 * while at the same time having CAM fill our controller queue. To 295 * simulate this condition, and how our driver handles it, we can set 296 * this io_shortage parameter, which will tell CAM that we have a 297 * large queue depth than we really do. 298 */ 299 uint32_t io_shortage = 0; 300 TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage); 301 controller->sim_queue_depth += io_shortage; 302 303 return (scif_controller_initialize(controller->scif_controller_handle)); 304 } 305 306 int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller) 307 { 308 int error; 309 device_t device = controller->isci->device; 310 uint32_t max_segment_size = isci_io_request_get_max_io_size(); 311 uint32_t status = 0; 312 struct ISCI_MEMORY *uncached_controller_memory = 313 &controller->uncached_controller_memory; 314 struct ISCI_MEMORY *cached_controller_memory = 315 &controller->cached_controller_memory; 316 struct ISCI_MEMORY *request_memory = 317 &controller->request_memory; 318 POINTER_UINT virtual_address; 319 bus_addr_t physical_address; 320 321 controller->mdl = sci_controller_get_memory_descriptor_list_handle( 322 controller->scif_controller_handle); 323 324 uncached_controller_memory->size = sci_mdl_decorator_get_memory_size( 325 controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS); 326 327 error = isci_allocate_dma_buffer(device, uncached_controller_memory); 328 329 if (error != 0) 330 return (error); 331 332 sci_mdl_decorator_assign_memory( controller->mdl, 333 SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, 334 uncached_controller_memory->virtual_address, 335 uncached_controller_memory->physical_address); 336 337 cached_controller_memory->size = sci_mdl_decorator_get_memory_size( 338 controller->mdl, 339 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS 340 ); 341 342 error = isci_allocate_dma_buffer(device, cached_controller_memory); 343 344 if (error != 0) 345 return (error); 346 347 sci_mdl_decorator_assign_memory(controller->mdl, 348 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, 349 cached_controller_memory->virtual_address, 350 cached_controller_memory->physical_address); 351 352 request_memory->size = 353 controller->queue_depth * isci_io_request_get_object_size(); 354 355 error = isci_allocate_dma_buffer(device, request_memory); 356 357 if (error != 0) 358 return (error); 359 360 /* For STP PIO testing, we want to ensure we can force multiple SGLs 361 * since this has been a problem area in SCIL. This tunable parameter 362 * will allow us to force DMA segments to a smaller size, ensuring 363 * that even if a physically contiguous buffer is attached to this 364 * I/O, the DMA subsystem will pass us multiple segments in our DMA 365 * load callback. 366 */ 367 TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size); 368 369 /* Create DMA tag for our I/O requests. Then we can create DMA maps based off 370 * of this tag and store them in each of our ISCI_IO_REQUEST objects. This 371 * will enable better performance than creating the DMA maps everytime we get 372 * an I/O. 373 */ 374 status = bus_dma_tag_create(bus_get_dma_tag(device), 0x1, 0x0, 375 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 376 isci_io_request_get_max_io_size(), 377 SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0, NULL, NULL, 378 &controller->buffer_dma_tag); 379 380 sci_pool_initialize(controller->request_pool); 381 382 virtual_address = request_memory->virtual_address; 383 physical_address = request_memory->physical_address; 384 385 for (int i = 0; i < controller->queue_depth; i++) { 386 struct ISCI_REQUEST *request = 387 (struct ISCI_REQUEST *)virtual_address; 388 389 isci_request_construct(request, 390 controller->scif_controller_handle, 391 controller->buffer_dma_tag, physical_address); 392 393 sci_pool_put(controller->request_pool, request); 394 395 virtual_address += isci_request_get_object_size(); 396 physical_address += isci_request_get_object_size(); 397 } 398 399 uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) + 400 scif_remote_device_get_object_size(); 401 402 controller->remote_device_memory = (uint8_t *) malloc( 403 remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI, 404 M_NOWAIT | M_ZERO); 405 406 sci_pool_initialize(controller->remote_device_pool); 407 408 uint8_t *remote_device_memory_ptr = controller->remote_device_memory; 409 410 for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) { 411 struct ISCI_REMOTE_DEVICE *remote_device = 412 (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr; 413 414 controller->remote_device[i] = NULL; 415 remote_device->index = i; 416 remote_device->is_resetting = FALSE; 417 remote_device->frozen_lun_mask = 0; 418 sci_fast_list_element_init(remote_device, 419 &remote_device->pending_device_reset_element); 420 sci_pool_put(controller->remote_device_pool, remote_device); 421 remote_device_memory_ptr += remote_device_size; 422 } 423 424 return (0); 425 } 426 427 void isci_controller_start(void *controller_handle) 428 { 429 struct ISCI_CONTROLLER *controller = 430 (struct ISCI_CONTROLLER *)controller_handle; 431 SCI_CONTROLLER_HANDLE_T scif_controller_handle = 432 controller->scif_controller_handle; 433 434 scif_controller_start(scif_controller_handle, 435 scif_controller_get_suggested_start_timeout(scif_controller_handle)); 436 437 scic_controller_enable_interrupts( 438 scif_controller_get_scic_handle(controller->scif_controller_handle)); 439 } 440 441 void isci_controller_domain_discovery_complete( 442 struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain) 443 { 444 if (isci_controller->sim == NULL) 445 { 446 /* Controller has not been attached to CAM yet. We'll clear 447 * the discovery bit for this domain, then check if all bits 448 * are now clear. That would indicate that all domains are 449 * done with discovery and we can then attach the controller 450 * to CAM. 451 */ 452 453 isci_controller->initial_discovery_mask &= 454 ~(1 << isci_domain->index); 455 456 if (isci_controller->initial_discovery_mask == 0) { 457 struct isci_softc *driver = isci_controller->isci; 458 uint8_t next_index = isci_controller->index + 1; 459 460 isci_controller_attach_to_cam(isci_controller); 461 462 if (next_index < driver->controller_count) { 463 /* There are more controllers that need to 464 * start. So start the next one. 465 */ 466 isci_controller_start( 467 &driver->controllers[next_index]); 468 } 469 else 470 { 471 /* All controllers have been started and completed discovery. 472 * Disestablish the config hook while will signal to the 473 * kernel during boot that it is safe to try to find and 474 * mount the root partition. 475 */ 476 config_intrhook_disestablish( 477 &driver->config_hook); 478 } 479 } 480 } 481 } 482 483 int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller) 484 { 485 struct isci_softc *isci = controller->isci; 486 device_t parent = device_get_parent(isci->device); 487 int unit = device_get_unit(isci->device); 488 struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth); 489 490 if(isci_devq == NULL) { 491 isci_log_message(0, "ISCI", "isci_devq is NULL \n"); 492 return (-1); 493 } 494 495 controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci", 496 controller, unit, &controller->lock, controller->sim_queue_depth, 497 controller->sim_queue_depth, isci_devq); 498 499 if(controller->sim == NULL) { 500 isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n"); 501 cam_simq_free(isci_devq); 502 return (-1); 503 } 504 505 if(xpt_bus_register(controller->sim, parent, controller->index) 506 != CAM_SUCCESS) { 507 isci_log_message(0, "ISCI", "xpt_bus_register...fails \n"); 508 cam_sim_free(controller->sim, TRUE); 509 mtx_unlock(&controller->lock); 510 return (-1); 511 } 512 513 if(xpt_create_path(&controller->path, NULL, 514 cam_sim_path(controller->sim), CAM_TARGET_WILDCARD, 515 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 516 isci_log_message(0, "ISCI", "xpt_create_path....fails\n"); 517 xpt_bus_deregister(cam_sim_path(controller->sim)); 518 cam_sim_free(controller->sim, TRUE); 519 mtx_unlock(&controller->lock); 520 return (-1); 521 } 522 523 return (0); 524 } 525 526 void isci_poll(struct cam_sim *sim) 527 { 528 struct ISCI_CONTROLLER *controller = 529 (struct ISCI_CONTROLLER *)cam_sim_softc(sim); 530 531 isci_interrupt_poll_handler(controller); 532 } 533 534 void isci_action(struct cam_sim *sim, union ccb *ccb) 535 { 536 struct ISCI_CONTROLLER *controller = 537 (struct ISCI_CONTROLLER *)cam_sim_softc(sim); 538 539 switch ( ccb->ccb_h.func_code ) { 540 case XPT_PATH_INQ: 541 { 542 struct ccb_pathinq *cpi = &ccb->cpi; 543 int bus = cam_sim_bus(sim); 544 ccb->ccb_h.ccb_sim_ptr = sim; 545 cpi->version_num = 1; 546 cpi->hba_inquiry = PI_TAG_ABLE; 547 cpi->target_sprt = 0; 548 cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN; 549 cpi->hba_eng_cnt = 0; 550 cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1; 551 cpi->max_lun = ISCI_MAX_LUN; 552 #if __FreeBSD_version >= 704100 553 cpi->maxio = isci_io_request_get_max_io_size(); 554 #endif 555 cpi->unit_number = cam_sim_unit(sim); 556 cpi->bus_id = bus; 557 cpi->initiator_id = SCI_MAX_REMOTE_DEVICES; 558 cpi->base_transfer_speed = 300000; 559 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 560 strncpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN); 561 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 562 cpi->transport = XPORT_SAS; 563 cpi->transport_version = 0; 564 cpi->protocol = PROTO_SCSI; 565 cpi->protocol_version = SCSI_REV_SPC2; 566 cpi->ccb_h.status = CAM_REQ_CMP; 567 xpt_done(ccb); 568 } 569 break; 570 case XPT_GET_TRAN_SETTINGS: 571 { 572 struct ccb_trans_settings *general_settings = &ccb->cts; 573 struct ccb_trans_settings_sas *sas_settings = 574 &general_settings->xport_specific.sas; 575 struct ccb_trans_settings_scsi *scsi_settings = 576 &general_settings->proto_specific.scsi; 577 struct ISCI_REMOTE_DEVICE *remote_device; 578 579 remote_device = controller->remote_device[ccb->ccb_h.target_id]; 580 581 if (remote_device == NULL) { 582 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 583 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 584 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 585 xpt_done(ccb); 586 break; 587 } 588 589 general_settings->protocol = PROTO_SCSI; 590 general_settings->transport = XPORT_SAS; 591 general_settings->protocol_version = SCSI_REV_SPC2; 592 general_settings->transport_version = 0; 593 scsi_settings->valid = CTS_SCSI_VALID_TQ; 594 scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB; 595 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 596 ccb->ccb_h.status |= CAM_REQ_CMP; 597 598 sas_settings->bitrate = 599 isci_remote_device_get_bitrate(remote_device); 600 601 if (sas_settings->bitrate != 0) 602 sas_settings->valid = CTS_SAS_VALID_SPEED; 603 604 xpt_done(ccb); 605 } 606 break; 607 case XPT_SCSI_IO: 608 isci_io_request_execute_scsi_io(ccb, controller); 609 break; 610 #if __FreeBSD_version >= 900026 611 case XPT_SMP_IO: 612 isci_io_request_execute_smp_io(ccb, controller); 613 break; 614 #endif 615 case XPT_SET_TRAN_SETTINGS: 616 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 617 ccb->ccb_h.status |= CAM_REQ_CMP; 618 xpt_done(ccb); 619 break; 620 case XPT_CALC_GEOMETRY: 621 cam_calc_geometry(&ccb->ccg, /*extended*/1); 622 xpt_done(ccb); 623 break; 624 case XPT_RESET_DEV: 625 { 626 struct ISCI_REMOTE_DEVICE *remote_device = 627 controller->remote_device[ccb->ccb_h.target_id]; 628 629 if (remote_device != NULL) 630 isci_remote_device_reset(remote_device, ccb); 631 else { 632 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 633 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 634 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 635 xpt_done(ccb); 636 } 637 } 638 break; 639 case XPT_RESET_BUS: 640 ccb->ccb_h.status = CAM_REQ_CMP; 641 xpt_done(ccb); 642 break; 643 default: 644 isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n", 645 ccb->ccb_h.func_code); 646 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 647 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 648 ccb->ccb_h.status |= CAM_REQ_INVALID; 649 xpt_done(ccb); 650 break; 651 } 652 } 653 654