1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <dev/isci/isci.h> 35 36 #include <sys/conf.h> 37 #include <sys/malloc.h> 38 39 #include <cam/cam_periph.h> 40 #include <cam/cam_xpt_periph.h> 41 42 #include <dev/isci/scil/sci_memory_descriptor_list.h> 43 #include <dev/isci/scil/sci_memory_descriptor_list_decorator.h> 44 45 #include <dev/isci/scil/scif_controller.h> 46 #include <dev/isci/scil/scif_library.h> 47 #include <dev/isci/scil/scif_io_request.h> 48 #include <dev/isci/scil/scif_task_request.h> 49 #include <dev/isci/scil/scif_remote_device.h> 50 #include <dev/isci/scil/scif_domain.h> 51 #include <dev/isci/scil/scif_user_callback.h> 52 #include <dev/isci/scil/scic_sgpio.h> 53 54 #include <dev/led/led.h> 55 56 void isci_action(struct cam_sim *sim, union ccb *ccb); 57 void isci_poll(struct cam_sim *sim); 58 59 #define ccb_sim_ptr sim_priv.entries[0].ptr 60 61 /** 62 * @brief This user callback will inform the user that the controller has 63 * had a serious unexpected error. The user should not the error, 64 * disable interrupts, and wait for current ongoing processing to 65 * complete. Subsequently, the user should reset the controller. 66 * 67 * @param[in] controller This parameter specifies the controller that had 68 * an error. 69 * 70 * @return none 71 */ 72 void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller, 73 SCI_CONTROLLER_ERROR error) 74 { 75 76 isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n", 77 error); 78 } 79 80 /** 81 * @brief This user callback will inform the user that the controller has 82 * finished the start process. 83 * 84 * @param[in] controller This parameter specifies the controller that was 85 * started. 86 * @param[in] completion_status This parameter specifies the results of 87 * the start operation. SCI_SUCCESS indicates successful 88 * completion. 89 * 90 * @return none 91 */ 92 void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller, 93 SCI_STATUS completion_status) 94 { 95 uint32_t index; 96 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 97 sci_object_get_association(controller); 98 99 isci_controller->is_started = TRUE; 100 101 /* Set bits for all domains. We will clear them one-by-one once 102 * the domains complete discovery, or return error when calling 103 * scif_domain_discover. Once all bits are clear, we will register 104 * the controller with CAM. 105 */ 106 isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1; 107 108 for(index = 0; index < SCI_MAX_DOMAINS; index++) { 109 SCI_STATUS status; 110 SCI_DOMAIN_HANDLE_T domain = 111 isci_controller->domain[index].sci_object; 112 113 status = scif_domain_discover( 114 domain, 115 scif_domain_get_suggested_discover_timeout(domain), 116 DEVICE_TIMEOUT 117 ); 118 119 if (status != SCI_SUCCESS) 120 { 121 isci_controller_domain_discovery_complete( 122 isci_controller, &isci_controller->domain[index]); 123 } 124 } 125 } 126 127 /** 128 * @brief This user callback will inform the user that the controller has 129 * finished the stop process. Note, after user calls 130 * scif_controller_stop(), before user receives this controller stop 131 * complete callback, user should not expect any callback from 132 * framework, such like scif_cb_domain_change_notification(). 133 * 134 * @param[in] controller This parameter specifies the controller that was 135 * stopped. 136 * @param[in] completion_status This parameter specifies the results of 137 * the stop operation. SCI_SUCCESS indicates successful 138 * completion. 139 * 140 * @return none 141 */ 142 void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller, 143 SCI_STATUS completion_status) 144 { 145 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 146 sci_object_get_association(controller); 147 148 isci_controller->is_started = FALSE; 149 } 150 151 static void 152 isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) 153 { 154 SCI_PHYSICAL_ADDRESS *phys_addr = arg; 155 156 *phys_addr = seg[0].ds_addr; 157 } 158 159 /** 160 * @brief This method will be invoked to allocate memory dynamically. 161 * 162 * @param[in] controller This parameter represents the controller 163 * object for which to allocate memory. 164 * @param[out] mde This parameter represents the memory descriptor to 165 * be filled in by the user that will reference the newly 166 * allocated memory. 167 * 168 * @return none 169 */ 170 void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller, 171 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde) 172 { 173 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 174 sci_object_get_association(controller); 175 176 /* 177 * Note this routine is only used for buffers needed to translate 178 * SCSI UNMAP commands to ATA DSM commands for SATA disks. 179 * 180 * We first try to pull a buffer from the controller's pool, and only 181 * call contigmalloc if one isn't there. 182 */ 183 if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) { 184 sci_pool_get(isci_controller->unmap_buffer_pool, 185 mde->virtual_address); 186 } else 187 mde->virtual_address = contigmalloc(PAGE_SIZE, 188 M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR, 189 mde->constant_memory_alignment, 0); 190 191 if (mde->virtual_address != NULL) 192 bus_dmamap_load(isci_controller->buffer_dma_tag, 193 NULL, mde->virtual_address, PAGE_SIZE, 194 isci_single_map, &mde->physical_address, 195 BUS_DMA_NOWAIT); 196 } 197 198 /** 199 * @brief This method will be invoked to allocate memory dynamically. 200 * 201 * @param[in] controller This parameter represents the controller 202 * object for which to allocate memory. 203 * @param[out] mde This parameter represents the memory descriptor to 204 * be filled in by the user that will reference the newly 205 * allocated memory. 206 * 207 * @return none 208 */ 209 void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller, 210 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde) 211 { 212 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 213 sci_object_get_association(controller); 214 215 /* 216 * Put the buffer back into the controller's buffer pool, rather 217 * than invoking configfree. This helps reduce chance we won't 218 * have buffers available when system is under memory pressure. 219 */ 220 sci_pool_put(isci_controller->unmap_buffer_pool, 221 mde->virtual_address); 222 } 223 224 void isci_controller_construct(struct ISCI_CONTROLLER *controller, 225 struct isci_softc *isci) 226 { 227 SCI_CONTROLLER_HANDLE_T scif_controller_handle; 228 229 scif_library_allocate_controller(isci->sci_library_handle, 230 &scif_controller_handle); 231 232 scif_controller_construct(isci->sci_library_handle, 233 scif_controller_handle, NULL); 234 235 controller->isci = isci; 236 controller->scif_controller_handle = scif_controller_handle; 237 238 /* This allows us to later use 239 * sci_object_get_association(scif_controller_handle) 240 * inside of a callback routine to get our struct ISCI_CONTROLLER object 241 */ 242 sci_object_set_association(scif_controller_handle, (void *)controller); 243 244 controller->is_started = FALSE; 245 controller->is_frozen = FALSE; 246 controller->release_queued_ccbs = FALSE; 247 controller->sim = NULL; 248 controller->initial_discovery_mask = 0; 249 250 sci_fast_list_init(&controller->pending_device_reset_list); 251 252 mtx_init(&controller->lock, "isci", NULL, MTX_DEF); 253 254 uint32_t domain_index; 255 256 for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) { 257 isci_domain_construct( &controller->domain[domain_index], 258 domain_index, controller); 259 } 260 261 controller->timer_memory = malloc( 262 sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI, 263 M_NOWAIT | M_ZERO); 264 265 sci_pool_initialize(controller->timer_pool); 266 267 struct ISCI_TIMER *timer = (struct ISCI_TIMER *) 268 controller->timer_memory; 269 270 for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) { 271 sci_pool_put(controller->timer_pool, timer++); 272 } 273 274 sci_pool_initialize(controller->unmap_buffer_pool); 275 } 276 277 static void isci_led_fault_func(void *priv, int onoff) 278 { 279 struct ISCI_PHY *phy = priv; 280 281 /* map onoff to the fault LED */ 282 phy->led_fault = onoff; 283 scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 284 phy->led_fault, phy->led_locate, 0); 285 } 286 287 static void isci_led_locate_func(void *priv, int onoff) 288 { 289 struct ISCI_PHY *phy = priv; 290 291 /* map onoff to the locate LED */ 292 phy->led_locate = onoff; 293 scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 294 phy->led_fault, phy->led_locate, 0); 295 } 296 297 SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller) 298 { 299 SCIC_USER_PARAMETERS_T scic_user_parameters; 300 SCI_CONTROLLER_HANDLE_T scic_controller_handle; 301 char led_name[64]; 302 unsigned long tunable; 303 uint32_t io_shortage; 304 uint32_t fail_on_timeout; 305 int i; 306 307 scic_controller_handle = 308 scif_controller_get_scic_handle(controller->scif_controller_handle); 309 310 if (controller->isci->oem_parameters_found == TRUE) 311 { 312 scic_oem_parameters_set( 313 scic_controller_handle, 314 &controller->oem_parameters, 315 (uint8_t)(controller->oem_parameters_version)); 316 } 317 318 scic_user_parameters_get(scic_controller_handle, &scic_user_parameters); 319 320 if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable)) 321 scic_user_parameters.sds1.no_outbound_task_timeout = 322 (uint8_t)tunable; 323 324 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable)) 325 scic_user_parameters.sds1.ssp_max_occupancy_timeout = 326 (uint16_t)tunable; 327 328 if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable)) 329 scic_user_parameters.sds1.stp_max_occupancy_timeout = 330 (uint16_t)tunable; 331 332 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable)) 333 scic_user_parameters.sds1.ssp_inactivity_timeout = 334 (uint16_t)tunable; 335 336 if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable)) 337 scic_user_parameters.sds1.stp_inactivity_timeout = 338 (uint16_t)tunable; 339 340 if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable)) 341 for (i = 0; i < SCI_MAX_PHYS; i++) 342 scic_user_parameters.sds1.phys[i].max_speed_generation = 343 (uint8_t)tunable; 344 345 scic_user_parameters_set(scic_controller_handle, &scic_user_parameters); 346 347 /* Scheduler bug in SCU requires SCIL to reserve some task contexts as a 348 * a workaround - one per domain. 349 */ 350 controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS; 351 352 if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth", 353 &controller->queue_depth)) { 354 controller->queue_depth = max(1, min(controller->queue_depth, 355 SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS)); 356 } 357 358 /* Reserve one request so that we can ensure we have one available TC 359 * to do internal device resets. 360 */ 361 controller->sim_queue_depth = controller->queue_depth - 1; 362 363 /* Although we save one TC to do internal device resets, it is possible 364 * we could end up using several TCs for simultaneous device resets 365 * while at the same time having CAM fill our controller queue. To 366 * simulate this condition, and how our driver handles it, we can set 367 * this io_shortage parameter, which will tell CAM that we have a 368 * large queue depth than we really do. 369 */ 370 io_shortage = 0; 371 TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage); 372 controller->sim_queue_depth += io_shortage; 373 374 fail_on_timeout = 1; 375 TUNABLE_INT_FETCH("hw.isci.fail_on_task_timeout", &fail_on_timeout); 376 /* Attach to CAM using xpt_bus_register now, then immediately freeze 377 * the simq. It will get released later when initial domain discovery 378 * is complete. 379 */ 380 controller->has_been_scanned = FALSE; 381 mtx_lock(&controller->lock); 382 isci_controller_attach_to_cam(controller); 383 xpt_freeze_simq(controller->sim, 1); 384 mtx_unlock(&controller->lock); 385 386 for (i = 0; i < SCI_MAX_PHYS; i++) { 387 controller->phys[i].handle = scic_controller_handle; 388 controller->phys[i].index = i; 389 390 /* fault */ 391 controller->phys[i].led_fault = 0; 392 sprintf(led_name, "isci.bus%d.port%d.fault", controller->index, i); 393 controller->phys[i].cdev_fault = led_create(isci_led_fault_func, 394 &controller->phys[i], led_name); 395 396 /* locate */ 397 controller->phys[i].led_locate = 0; 398 sprintf(led_name, "isci.bus%d.port%d.locate", controller->index, i); 399 controller->phys[i].cdev_locate = led_create(isci_led_locate_func, 400 &controller->phys[i], led_name); 401 } 402 403 return (scif_controller_initialize(controller->scif_controller_handle)); 404 } 405 406 int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller) 407 { 408 int error; 409 device_t device = controller->isci->device; 410 uint32_t max_segment_size = isci_io_request_get_max_io_size(); 411 uint32_t status = 0; 412 struct ISCI_MEMORY *uncached_controller_memory = 413 &controller->uncached_controller_memory; 414 struct ISCI_MEMORY *cached_controller_memory = 415 &controller->cached_controller_memory; 416 struct ISCI_MEMORY *request_memory = 417 &controller->request_memory; 418 POINTER_UINT virtual_address; 419 bus_addr_t physical_address; 420 421 controller->mdl = sci_controller_get_memory_descriptor_list_handle( 422 controller->scif_controller_handle); 423 424 uncached_controller_memory->size = sci_mdl_decorator_get_memory_size( 425 controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS); 426 427 error = isci_allocate_dma_buffer(device, uncached_controller_memory); 428 429 if (error != 0) 430 return (error); 431 432 sci_mdl_decorator_assign_memory( controller->mdl, 433 SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, 434 uncached_controller_memory->virtual_address, 435 uncached_controller_memory->physical_address); 436 437 cached_controller_memory->size = sci_mdl_decorator_get_memory_size( 438 controller->mdl, 439 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS 440 ); 441 442 error = isci_allocate_dma_buffer(device, cached_controller_memory); 443 444 if (error != 0) 445 return (error); 446 447 sci_mdl_decorator_assign_memory(controller->mdl, 448 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, 449 cached_controller_memory->virtual_address, 450 cached_controller_memory->physical_address); 451 452 request_memory->size = 453 controller->queue_depth * isci_io_request_get_object_size(); 454 455 error = isci_allocate_dma_buffer(device, request_memory); 456 457 if (error != 0) 458 return (error); 459 460 /* For STP PIO testing, we want to ensure we can force multiple SGLs 461 * since this has been a problem area in SCIL. This tunable parameter 462 * will allow us to force DMA segments to a smaller size, ensuring 463 * that even if a physically contiguous buffer is attached to this 464 * I/O, the DMA subsystem will pass us multiple segments in our DMA 465 * load callback. 466 */ 467 TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size); 468 469 /* Create DMA tag for our I/O requests. Then we can create DMA maps based off 470 * of this tag and store them in each of our ISCI_IO_REQUEST objects. This 471 * will enable better performance than creating the DMA maps everytime we get 472 * an I/O. 473 */ 474 status = bus_dma_tag_create(bus_get_dma_tag(device), 0x1, 0x0, 475 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 476 isci_io_request_get_max_io_size(), 477 SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0, NULL, NULL, 478 &controller->buffer_dma_tag); 479 480 sci_pool_initialize(controller->request_pool); 481 482 virtual_address = request_memory->virtual_address; 483 physical_address = request_memory->physical_address; 484 485 for (int i = 0; i < controller->queue_depth; i++) { 486 struct ISCI_REQUEST *request = 487 (struct ISCI_REQUEST *)virtual_address; 488 489 isci_request_construct(request, 490 controller->scif_controller_handle, 491 controller->buffer_dma_tag, physical_address); 492 493 sci_pool_put(controller->request_pool, request); 494 495 virtual_address += isci_request_get_object_size(); 496 physical_address += isci_request_get_object_size(); 497 } 498 499 uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) + 500 scif_remote_device_get_object_size(); 501 502 controller->remote_device_memory = (uint8_t *) malloc( 503 remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI, 504 M_NOWAIT | M_ZERO); 505 506 sci_pool_initialize(controller->remote_device_pool); 507 508 uint8_t *remote_device_memory_ptr = controller->remote_device_memory; 509 510 for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) { 511 struct ISCI_REMOTE_DEVICE *remote_device = 512 (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr; 513 514 controller->remote_device[i] = NULL; 515 remote_device->index = i; 516 remote_device->is_resetting = FALSE; 517 remote_device->frozen_lun_mask = 0; 518 sci_fast_list_element_init(remote_device, 519 &remote_device->pending_device_reset_element); 520 TAILQ_INIT(&remote_device->queued_ccbs); 521 remote_device->release_queued_ccb = FALSE; 522 remote_device->queued_ccb_in_progress = NULL; 523 524 /* 525 * For the first SCI_MAX_DOMAINS device objects, do not put 526 * them in the pool, rather assign them to each domain. This 527 * ensures that any device attached directly to port "i" will 528 * always get CAM target id "i". 529 */ 530 if (i < SCI_MAX_DOMAINS) 531 controller->domain[i].da_remote_device = remote_device; 532 else 533 sci_pool_put(controller->remote_device_pool, 534 remote_device); 535 remote_device_memory_ptr += remote_device_size; 536 } 537 538 return (0); 539 } 540 541 void isci_controller_start(void *controller_handle) 542 { 543 struct ISCI_CONTROLLER *controller = 544 (struct ISCI_CONTROLLER *)controller_handle; 545 SCI_CONTROLLER_HANDLE_T scif_controller_handle = 546 controller->scif_controller_handle; 547 548 scif_controller_start(scif_controller_handle, 549 scif_controller_get_suggested_start_timeout(scif_controller_handle)); 550 551 scic_controller_enable_interrupts( 552 scif_controller_get_scic_handle(controller->scif_controller_handle)); 553 } 554 555 void isci_controller_domain_discovery_complete( 556 struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain) 557 { 558 if (!isci_controller->has_been_scanned) 559 { 560 /* Controller has not been scanned yet. We'll clear 561 * the discovery bit for this domain, then check if all bits 562 * are now clear. That would indicate that all domains are 563 * done with discovery and we can then proceed with initial 564 * scan. 565 */ 566 567 isci_controller->initial_discovery_mask &= 568 ~(1 << isci_domain->index); 569 570 if (isci_controller->initial_discovery_mask == 0) { 571 struct isci_softc *driver = isci_controller->isci; 572 uint8_t next_index = isci_controller->index + 1; 573 574 isci_controller->has_been_scanned = TRUE; 575 576 /* Unfreeze simq to allow initial scan to proceed. */ 577 xpt_release_simq(isci_controller->sim, TRUE); 578 579 #if __FreeBSD_version < 800000 580 /* When driver is loaded after boot, we need to 581 * explicitly rescan here for versions <8.0, because 582 * CAM only automatically scans new buses at boot 583 * time. 584 */ 585 union ccb *ccb = xpt_alloc_ccb_nowait(); 586 587 xpt_create_path(&ccb->ccb_h.path, NULL, 588 cam_sim_path(isci_controller->sim), 589 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 590 591 xpt_rescan(ccb); 592 #endif 593 594 if (next_index < driver->controller_count) { 595 /* There are more controllers that need to 596 * start. So start the next one. 597 */ 598 isci_controller_start( 599 &driver->controllers[next_index]); 600 } 601 else 602 { 603 /* All controllers have been started and completed discovery. 604 * Disestablish the config hook while will signal to the 605 * kernel during boot that it is safe to try to find and 606 * mount the root partition. 607 */ 608 config_intrhook_disestablish( 609 &driver->config_hook); 610 } 611 } 612 } 613 } 614 615 int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller) 616 { 617 struct isci_softc *isci = controller->isci; 618 device_t parent = device_get_parent(isci->device); 619 int unit = device_get_unit(isci->device); 620 struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth); 621 622 if(isci_devq == NULL) { 623 isci_log_message(0, "ISCI", "isci_devq is NULL \n"); 624 return (-1); 625 } 626 627 controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci", 628 controller, unit, &controller->lock, controller->sim_queue_depth, 629 controller->sim_queue_depth, isci_devq); 630 631 if(controller->sim == NULL) { 632 isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n"); 633 cam_simq_free(isci_devq); 634 return (-1); 635 } 636 637 if(xpt_bus_register(controller->sim, parent, controller->index) 638 != CAM_SUCCESS) { 639 isci_log_message(0, "ISCI", "xpt_bus_register...fails \n"); 640 cam_sim_free(controller->sim, TRUE); 641 mtx_unlock(&controller->lock); 642 return (-1); 643 } 644 645 if(xpt_create_path(&controller->path, NULL, 646 cam_sim_path(controller->sim), CAM_TARGET_WILDCARD, 647 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 648 isci_log_message(0, "ISCI", "xpt_create_path....fails\n"); 649 xpt_bus_deregister(cam_sim_path(controller->sim)); 650 cam_sim_free(controller->sim, TRUE); 651 mtx_unlock(&controller->lock); 652 return (-1); 653 } 654 655 return (0); 656 } 657 658 void isci_poll(struct cam_sim *sim) 659 { 660 struct ISCI_CONTROLLER *controller = 661 (struct ISCI_CONTROLLER *)cam_sim_softc(sim); 662 663 isci_interrupt_poll_handler(controller); 664 } 665 666 void isci_action(struct cam_sim *sim, union ccb *ccb) 667 { 668 struct ISCI_CONTROLLER *controller = 669 (struct ISCI_CONTROLLER *)cam_sim_softc(sim); 670 671 switch ( ccb->ccb_h.func_code ) { 672 case XPT_PATH_INQ: 673 { 674 struct ccb_pathinq *cpi = &ccb->cpi; 675 int bus = cam_sim_bus(sim); 676 ccb->ccb_h.ccb_sim_ptr = sim; 677 cpi->version_num = 1; 678 cpi->hba_inquiry = PI_TAG_ABLE; 679 cpi->target_sprt = 0; 680 cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN | 681 PIM_UNMAPPED; 682 cpi->hba_eng_cnt = 0; 683 cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1; 684 cpi->max_lun = ISCI_MAX_LUN; 685 #if __FreeBSD_version >= 800102 686 cpi->maxio = isci_io_request_get_max_io_size(); 687 #endif 688 cpi->unit_number = cam_sim_unit(sim); 689 cpi->bus_id = bus; 690 cpi->initiator_id = SCI_MAX_REMOTE_DEVICES; 691 cpi->base_transfer_speed = 300000; 692 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 693 strncpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN); 694 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 695 cpi->transport = XPORT_SAS; 696 cpi->transport_version = 0; 697 cpi->protocol = PROTO_SCSI; 698 cpi->protocol_version = SCSI_REV_SPC2; 699 cpi->ccb_h.status = CAM_REQ_CMP; 700 xpt_done(ccb); 701 } 702 break; 703 case XPT_GET_TRAN_SETTINGS: 704 { 705 struct ccb_trans_settings *general_settings = &ccb->cts; 706 struct ccb_trans_settings_sas *sas_settings = 707 &general_settings->xport_specific.sas; 708 struct ccb_trans_settings_scsi *scsi_settings = 709 &general_settings->proto_specific.scsi; 710 struct ISCI_REMOTE_DEVICE *remote_device; 711 712 remote_device = controller->remote_device[ccb->ccb_h.target_id]; 713 714 if (remote_device == NULL) { 715 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 716 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 717 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 718 xpt_done(ccb); 719 break; 720 } 721 722 general_settings->protocol = PROTO_SCSI; 723 general_settings->transport = XPORT_SAS; 724 general_settings->protocol_version = SCSI_REV_SPC2; 725 general_settings->transport_version = 0; 726 scsi_settings->valid = CTS_SCSI_VALID_TQ; 727 scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB; 728 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 729 ccb->ccb_h.status |= CAM_REQ_CMP; 730 731 sas_settings->bitrate = 732 isci_remote_device_get_bitrate(remote_device); 733 734 if (sas_settings->bitrate != 0) 735 sas_settings->valid = CTS_SAS_VALID_SPEED; 736 737 xpt_done(ccb); 738 } 739 break; 740 case XPT_SCSI_IO: 741 isci_io_request_execute_scsi_io(ccb, controller); 742 break; 743 #if __FreeBSD_version >= 900026 744 case XPT_SMP_IO: 745 isci_io_request_execute_smp_io(ccb, controller); 746 break; 747 #endif 748 case XPT_SET_TRAN_SETTINGS: 749 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 750 ccb->ccb_h.status |= CAM_REQ_CMP; 751 xpt_done(ccb); 752 break; 753 case XPT_CALC_GEOMETRY: 754 cam_calc_geometry(&ccb->ccg, /*extended*/1); 755 xpt_done(ccb); 756 break; 757 case XPT_RESET_DEV: 758 { 759 struct ISCI_REMOTE_DEVICE *remote_device = 760 controller->remote_device[ccb->ccb_h.target_id]; 761 762 if (remote_device != NULL) 763 isci_remote_device_reset(remote_device, ccb); 764 else { 765 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 766 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 767 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 768 xpt_done(ccb); 769 } 770 } 771 break; 772 case XPT_RESET_BUS: 773 ccb->ccb_h.status = CAM_REQ_CMP; 774 xpt_done(ccb); 775 break; 776 default: 777 isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n", 778 ccb->ccb_h.func_code); 779 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 780 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 781 ccb->ccb_h.status |= CAM_REQ_INVALID; 782 xpt_done(ccb); 783 break; 784 } 785 } 786 787 /* 788 * Unfortunately, SCIL doesn't cleanly handle retry conditions. 789 * CAM_REQUEUE_REQ works only when no one is using the pass(4) interface. So 790 * when SCIL denotes an I/O needs to be retried (typically because of mixing 791 * tagged/non-tagged ATA commands, or running out of NCQ slots), we queue 792 * these I/O internally. Once SCIL completes an I/O to this device, or we get 793 * a ready notification, we will retry the first I/O on the queue. 794 * Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within 795 * the context of the completion handler, so we need to retry these I/O after 796 * the completion handler is done executing. 797 */ 798 void 799 isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller) 800 { 801 struct ISCI_REMOTE_DEVICE *dev; 802 struct ccb_hdr *ccb_h; 803 int dev_idx; 804 805 KASSERT(mtx_owned(&controller->lock), ("controller lock not owned")); 806 807 controller->release_queued_ccbs = FALSE; 808 for (dev_idx = 0; 809 dev_idx < SCI_MAX_REMOTE_DEVICES; 810 dev_idx++) { 811 812 dev = controller->remote_device[dev_idx]; 813 if (dev != NULL && 814 dev->release_queued_ccb == TRUE && 815 dev->queued_ccb_in_progress == NULL) { 816 dev->release_queued_ccb = FALSE; 817 ccb_h = TAILQ_FIRST(&dev->queued_ccbs); 818 819 if (ccb_h == NULL) 820 continue; 821 822 isci_log_message(1, "ISCI", "release %p %x\n", ccb_h, 823 ((union ccb *)ccb_h)->csio.cdb_io.cdb_bytes[0]); 824 825 dev->queued_ccb_in_progress = (union ccb *)ccb_h; 826 isci_io_request_execute_scsi_io( 827 (union ccb *)ccb_h, controller); 828 } 829 } 830 } 831