1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <dev/isci/isci.h> 35 36 #include <sys/conf.h> 37 #include <sys/malloc.h> 38 39 #include <cam/cam_periph.h> 40 #include <cam/cam_xpt_periph.h> 41 42 #include <dev/isci/scil/sci_memory_descriptor_list.h> 43 #include <dev/isci/scil/sci_memory_descriptor_list_decorator.h> 44 45 #include <dev/isci/scil/scif_controller.h> 46 #include <dev/isci/scil/scif_library.h> 47 #include <dev/isci/scil/scif_io_request.h> 48 #include <dev/isci/scil/scif_task_request.h> 49 #include <dev/isci/scil/scif_remote_device.h> 50 #include <dev/isci/scil/scif_domain.h> 51 #include <dev/isci/scil/scif_user_callback.h> 52 #include <dev/isci/scil/scic_sgpio.h> 53 54 #include <dev/led/led.h> 55 56 void isci_action(struct cam_sim *sim, union ccb *ccb); 57 void isci_poll(struct cam_sim *sim); 58 59 #define ccb_sim_ptr sim_priv.entries[0].ptr 60 61 /** 62 * @brief This user callback will inform the user that the controller has 63 * had a serious unexpected error. The user should not the error, 64 * disable interrupts, and wait for current ongoing processing to 65 * complete. Subsequently, the user should reset the controller. 66 * 67 * @param[in] controller This parameter specifies the controller that had 68 * an error. 69 * 70 * @return none 71 */ 72 void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller, 73 SCI_CONTROLLER_ERROR error) 74 { 75 76 isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n", 77 error); 78 } 79 80 /** 81 * @brief This user callback will inform the user that the controller has 82 * finished the start process. 83 * 84 * @param[in] controller This parameter specifies the controller that was 85 * started. 86 * @param[in] completion_status This parameter specifies the results of 87 * the start operation. SCI_SUCCESS indicates successful 88 * completion. 89 * 90 * @return none 91 */ 92 void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller, 93 SCI_STATUS completion_status) 94 { 95 uint32_t index; 96 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 97 sci_object_get_association(controller); 98 99 isci_controller->is_started = TRUE; 100 101 /* Set bits for all domains. We will clear them one-by-one once 102 * the domains complete discovery, or return error when calling 103 * scif_domain_discover. Once all bits are clear, we will register 104 * the controller with CAM. 105 */ 106 isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1; 107 108 for(index = 0; index < SCI_MAX_DOMAINS; index++) { 109 SCI_STATUS status; 110 SCI_DOMAIN_HANDLE_T domain = 111 isci_controller->domain[index].sci_object; 112 113 status = scif_domain_discover( 114 domain, 115 scif_domain_get_suggested_discover_timeout(domain), 116 DEVICE_TIMEOUT 117 ); 118 119 if (status != SCI_SUCCESS) 120 { 121 isci_controller_domain_discovery_complete( 122 isci_controller, &isci_controller->domain[index]); 123 } 124 } 125 } 126 127 /** 128 * @brief This user callback will inform the user that the controller has 129 * finished the stop process. Note, after user calls 130 * scif_controller_stop(), before user receives this controller stop 131 * complete callback, user should not expect any callback from 132 * framework, such like scif_cb_domain_change_notification(). 133 * 134 * @param[in] controller This parameter specifies the controller that was 135 * stopped. 136 * @param[in] completion_status This parameter specifies the results of 137 * the stop operation. SCI_SUCCESS indicates successful 138 * completion. 139 * 140 * @return none 141 */ 142 void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller, 143 SCI_STATUS completion_status) 144 { 145 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 146 sci_object_get_association(controller); 147 148 isci_controller->is_started = FALSE; 149 } 150 151 static void 152 isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) 153 { 154 SCI_PHYSICAL_ADDRESS *phys_addr = arg; 155 156 *phys_addr = seg[0].ds_addr; 157 } 158 159 /** 160 * @brief This method will be invoked to allocate memory dynamically. 161 * 162 * @param[in] controller This parameter represents the controller 163 * object for which to allocate memory. 164 * @param[out] mde This parameter represents the memory descriptor to 165 * be filled in by the user that will reference the newly 166 * allocated memory. 167 * 168 * @return none 169 */ 170 void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller, 171 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde) 172 { 173 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 174 sci_object_get_association(controller); 175 176 /* 177 * Note this routine is only used for buffers needed to translate 178 * SCSI UNMAP commands to ATA DSM commands for SATA disks. 179 * 180 * We first try to pull a buffer from the controller's pool, and only 181 * call contigmalloc if one isn't there. 182 */ 183 if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) { 184 sci_pool_get(isci_controller->unmap_buffer_pool, 185 mde->virtual_address); 186 } else 187 mde->virtual_address = contigmalloc(PAGE_SIZE, 188 M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR, 189 mde->constant_memory_alignment, 0); 190 191 if (mde->virtual_address != NULL) 192 bus_dmamap_load(isci_controller->buffer_dma_tag, 193 NULL, mde->virtual_address, PAGE_SIZE, 194 isci_single_map, &mde->physical_address, 195 BUS_DMA_NOWAIT); 196 } 197 198 /** 199 * @brief This method will be invoked to allocate memory dynamically. 200 * 201 * @param[in] controller This parameter represents the controller 202 * object for which to allocate memory. 203 * @param[out] mde This parameter represents the memory descriptor to 204 * be filled in by the user that will reference the newly 205 * allocated memory. 206 * 207 * @return none 208 */ 209 void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller, 210 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde) 211 { 212 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 213 sci_object_get_association(controller); 214 215 /* 216 * Put the buffer back into the controller's buffer pool, rather 217 * than invoking configfree. This helps reduce chance we won't 218 * have buffers available when system is under memory pressure. 219 */ 220 sci_pool_put(isci_controller->unmap_buffer_pool, 221 mde->virtual_address); 222 } 223 224 void isci_controller_construct(struct ISCI_CONTROLLER *controller, 225 struct isci_softc *isci) 226 { 227 SCI_CONTROLLER_HANDLE_T scif_controller_handle; 228 229 scif_library_allocate_controller(isci->sci_library_handle, 230 &scif_controller_handle); 231 232 scif_controller_construct(isci->sci_library_handle, 233 scif_controller_handle, NULL); 234 235 controller->isci = isci; 236 controller->scif_controller_handle = scif_controller_handle; 237 238 /* This allows us to later use 239 * sci_object_get_association(scif_controller_handle) 240 * inside of a callback routine to get our struct ISCI_CONTROLLER object 241 */ 242 sci_object_set_association(scif_controller_handle, (void *)controller); 243 244 controller->is_started = FALSE; 245 controller->is_frozen = FALSE; 246 controller->release_queued_ccbs = FALSE; 247 controller->sim = NULL; 248 controller->initial_discovery_mask = 0; 249 250 sci_fast_list_init(&controller->pending_device_reset_list); 251 252 mtx_init(&controller->lock, "isci", NULL, MTX_DEF); 253 254 uint32_t domain_index; 255 256 for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) { 257 isci_domain_construct( &controller->domain[domain_index], 258 domain_index, controller); 259 } 260 261 controller->timer_memory = malloc( 262 sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI, 263 M_NOWAIT | M_ZERO); 264 265 sci_pool_initialize(controller->timer_pool); 266 267 struct ISCI_TIMER *timer = (struct ISCI_TIMER *) 268 controller->timer_memory; 269 270 for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) { 271 sci_pool_put(controller->timer_pool, timer++); 272 } 273 274 sci_pool_initialize(controller->unmap_buffer_pool); 275 } 276 277 static void isci_led_fault_func(void *priv, int onoff) 278 { 279 struct ISCI_PHY *phy = priv; 280 281 /* map onoff to the fault LED */ 282 phy->led_fault = onoff; 283 scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 284 phy->led_fault, phy->led_locate, 0); 285 } 286 287 static void isci_led_locate_func(void *priv, int onoff) 288 { 289 struct ISCI_PHY *phy = priv; 290 291 /* map onoff to the locate LED */ 292 phy->led_locate = onoff; 293 scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 294 phy->led_fault, phy->led_locate, 0); 295 } 296 297 SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller) 298 { 299 SCIC_USER_PARAMETERS_T scic_user_parameters; 300 SCI_CONTROLLER_HANDLE_T scic_controller_handle; 301 char led_name[64]; 302 unsigned long tunable; 303 int i; 304 305 scic_controller_handle = 306 scif_controller_get_scic_handle(controller->scif_controller_handle); 307 308 if (controller->isci->oem_parameters_found == TRUE) 309 { 310 scic_oem_parameters_set( 311 scic_controller_handle, 312 &controller->oem_parameters, 313 (uint8_t)(controller->oem_parameters_version)); 314 } 315 316 scic_user_parameters_get(scic_controller_handle, &scic_user_parameters); 317 318 if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable)) 319 scic_user_parameters.sds1.no_outbound_task_timeout = 320 (uint8_t)tunable; 321 322 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable)) 323 scic_user_parameters.sds1.ssp_max_occupancy_timeout = 324 (uint16_t)tunable; 325 326 if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable)) 327 scic_user_parameters.sds1.stp_max_occupancy_timeout = 328 (uint16_t)tunable; 329 330 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable)) 331 scic_user_parameters.sds1.ssp_inactivity_timeout = 332 (uint16_t)tunable; 333 334 if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable)) 335 scic_user_parameters.sds1.stp_inactivity_timeout = 336 (uint16_t)tunable; 337 338 if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable)) 339 for (i = 0; i < SCI_MAX_PHYS; i++) 340 scic_user_parameters.sds1.phys[i].max_speed_generation = 341 (uint8_t)tunable; 342 343 scic_user_parameters_set(scic_controller_handle, &scic_user_parameters); 344 345 /* Scheduler bug in SCU requires SCIL to reserve some task contexts as a 346 * a workaround - one per domain. 347 */ 348 controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS; 349 350 if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth", 351 &controller->queue_depth)) { 352 controller->queue_depth = max(1, min(controller->queue_depth, 353 SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS)); 354 } 355 356 /* Reserve one request so that we can ensure we have one available TC 357 * to do internal device resets. 358 */ 359 controller->sim_queue_depth = controller->queue_depth - 1; 360 361 /* Although we save one TC to do internal device resets, it is possible 362 * we could end up using several TCs for simultaneous device resets 363 * while at the same time having CAM fill our controller queue. To 364 * simulate this condition, and how our driver handles it, we can set 365 * this io_shortage parameter, which will tell CAM that we have a 366 * large queue depth than we really do. 367 */ 368 uint32_t io_shortage = 0; 369 TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage); 370 controller->sim_queue_depth += io_shortage; 371 372 /* Attach to CAM using xpt_bus_register now, then immediately freeze 373 * the simq. It will get released later when initial domain discovery 374 * is complete. 375 */ 376 controller->has_been_scanned = FALSE; 377 mtx_lock(&controller->lock); 378 isci_controller_attach_to_cam(controller); 379 xpt_freeze_simq(controller->sim, 1); 380 mtx_unlock(&controller->lock); 381 382 for (i = 0; i < SCI_MAX_PHYS; i++) { 383 controller->phys[i].handle = scic_controller_handle; 384 controller->phys[i].index = i; 385 386 /* fault */ 387 controller->phys[i].led_fault = 0; 388 sprintf(led_name, "isci.bus%d.port%d.fault", controller->index, i); 389 controller->phys[i].cdev_fault = led_create(isci_led_fault_func, 390 &controller->phys[i], led_name); 391 392 /* locate */ 393 controller->phys[i].led_locate = 0; 394 sprintf(led_name, "isci.bus%d.port%d.locate", controller->index, i); 395 controller->phys[i].cdev_locate = led_create(isci_led_locate_func, 396 &controller->phys[i], led_name); 397 } 398 399 return (scif_controller_initialize(controller->scif_controller_handle)); 400 } 401 402 int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller) 403 { 404 int error; 405 device_t device = controller->isci->device; 406 uint32_t max_segment_size = isci_io_request_get_max_io_size(); 407 uint32_t status = 0; 408 struct ISCI_MEMORY *uncached_controller_memory = 409 &controller->uncached_controller_memory; 410 struct ISCI_MEMORY *cached_controller_memory = 411 &controller->cached_controller_memory; 412 struct ISCI_MEMORY *request_memory = 413 &controller->request_memory; 414 POINTER_UINT virtual_address; 415 bus_addr_t physical_address; 416 417 controller->mdl = sci_controller_get_memory_descriptor_list_handle( 418 controller->scif_controller_handle); 419 420 uncached_controller_memory->size = sci_mdl_decorator_get_memory_size( 421 controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS); 422 423 error = isci_allocate_dma_buffer(device, uncached_controller_memory); 424 425 if (error != 0) 426 return (error); 427 428 sci_mdl_decorator_assign_memory( controller->mdl, 429 SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, 430 uncached_controller_memory->virtual_address, 431 uncached_controller_memory->physical_address); 432 433 cached_controller_memory->size = sci_mdl_decorator_get_memory_size( 434 controller->mdl, 435 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS 436 ); 437 438 error = isci_allocate_dma_buffer(device, cached_controller_memory); 439 440 if (error != 0) 441 return (error); 442 443 sci_mdl_decorator_assign_memory(controller->mdl, 444 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, 445 cached_controller_memory->virtual_address, 446 cached_controller_memory->physical_address); 447 448 request_memory->size = 449 controller->queue_depth * isci_io_request_get_object_size(); 450 451 error = isci_allocate_dma_buffer(device, request_memory); 452 453 if (error != 0) 454 return (error); 455 456 /* For STP PIO testing, we want to ensure we can force multiple SGLs 457 * since this has been a problem area in SCIL. This tunable parameter 458 * will allow us to force DMA segments to a smaller size, ensuring 459 * that even if a physically contiguous buffer is attached to this 460 * I/O, the DMA subsystem will pass us multiple segments in our DMA 461 * load callback. 462 */ 463 TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size); 464 465 /* Create DMA tag for our I/O requests. Then we can create DMA maps based off 466 * of this tag and store them in each of our ISCI_IO_REQUEST objects. This 467 * will enable better performance than creating the DMA maps everytime we get 468 * an I/O. 469 */ 470 status = bus_dma_tag_create(bus_get_dma_tag(device), 0x1, 0x0, 471 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 472 isci_io_request_get_max_io_size(), 473 SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0, NULL, NULL, 474 &controller->buffer_dma_tag); 475 476 sci_pool_initialize(controller->request_pool); 477 478 virtual_address = request_memory->virtual_address; 479 physical_address = request_memory->physical_address; 480 481 for (int i = 0; i < controller->queue_depth; i++) { 482 struct ISCI_REQUEST *request = 483 (struct ISCI_REQUEST *)virtual_address; 484 485 isci_request_construct(request, 486 controller->scif_controller_handle, 487 controller->buffer_dma_tag, physical_address); 488 489 sci_pool_put(controller->request_pool, request); 490 491 virtual_address += isci_request_get_object_size(); 492 physical_address += isci_request_get_object_size(); 493 } 494 495 uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) + 496 scif_remote_device_get_object_size(); 497 498 controller->remote_device_memory = (uint8_t *) malloc( 499 remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI, 500 M_NOWAIT | M_ZERO); 501 502 sci_pool_initialize(controller->remote_device_pool); 503 504 uint8_t *remote_device_memory_ptr = controller->remote_device_memory; 505 506 for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) { 507 struct ISCI_REMOTE_DEVICE *remote_device = 508 (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr; 509 510 controller->remote_device[i] = NULL; 511 remote_device->index = i; 512 remote_device->is_resetting = FALSE; 513 remote_device->frozen_lun_mask = 0; 514 sci_fast_list_element_init(remote_device, 515 &remote_device->pending_device_reset_element); 516 TAILQ_INIT(&remote_device->queued_ccbs); 517 remote_device->release_queued_ccb = FALSE; 518 remote_device->queued_ccb_in_progress = NULL; 519 520 /* 521 * For the first SCI_MAX_DOMAINS device objects, do not put 522 * them in the pool, rather assign them to each domain. This 523 * ensures that any device attached directly to port "i" will 524 * always get CAM target id "i". 525 */ 526 if (i < SCI_MAX_DOMAINS) 527 controller->domain[i].da_remote_device = remote_device; 528 else 529 sci_pool_put(controller->remote_device_pool, 530 remote_device); 531 remote_device_memory_ptr += remote_device_size; 532 } 533 534 return (0); 535 } 536 537 void isci_controller_start(void *controller_handle) 538 { 539 struct ISCI_CONTROLLER *controller = 540 (struct ISCI_CONTROLLER *)controller_handle; 541 SCI_CONTROLLER_HANDLE_T scif_controller_handle = 542 controller->scif_controller_handle; 543 544 scif_controller_start(scif_controller_handle, 545 scif_controller_get_suggested_start_timeout(scif_controller_handle)); 546 547 scic_controller_enable_interrupts( 548 scif_controller_get_scic_handle(controller->scif_controller_handle)); 549 } 550 551 void isci_controller_domain_discovery_complete( 552 struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain) 553 { 554 if (!isci_controller->has_been_scanned) 555 { 556 /* Controller has not been scanned yet. We'll clear 557 * the discovery bit for this domain, then check if all bits 558 * are now clear. That would indicate that all domains are 559 * done with discovery and we can then proceed with initial 560 * scan. 561 */ 562 563 isci_controller->initial_discovery_mask &= 564 ~(1 << isci_domain->index); 565 566 if (isci_controller->initial_discovery_mask == 0) { 567 struct isci_softc *driver = isci_controller->isci; 568 uint8_t next_index = isci_controller->index + 1; 569 570 isci_controller->has_been_scanned = TRUE; 571 572 /* Unfreeze simq to allow initial scan to proceed. */ 573 xpt_release_simq(isci_controller->sim, TRUE); 574 575 #if __FreeBSD_version < 800000 576 /* When driver is loaded after boot, we need to 577 * explicitly rescan here for versions <8.0, because 578 * CAM only automatically scans new buses at boot 579 * time. 580 */ 581 union ccb *ccb = xpt_alloc_ccb_nowait(); 582 583 xpt_create_path(&ccb->ccb_h.path, NULL, 584 cam_sim_path(isci_controller->sim), 585 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 586 587 xpt_rescan(ccb); 588 #endif 589 590 if (next_index < driver->controller_count) { 591 /* There are more controllers that need to 592 * start. So start the next one. 593 */ 594 isci_controller_start( 595 &driver->controllers[next_index]); 596 } 597 else 598 { 599 /* All controllers have been started and completed discovery. 600 * Disestablish the config hook while will signal to the 601 * kernel during boot that it is safe to try to find and 602 * mount the root partition. 603 */ 604 config_intrhook_disestablish( 605 &driver->config_hook); 606 } 607 } 608 } 609 } 610 611 int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller) 612 { 613 struct isci_softc *isci = controller->isci; 614 device_t parent = device_get_parent(isci->device); 615 int unit = device_get_unit(isci->device); 616 struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth); 617 618 if(isci_devq == NULL) { 619 isci_log_message(0, "ISCI", "isci_devq is NULL \n"); 620 return (-1); 621 } 622 623 controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci", 624 controller, unit, &controller->lock, controller->sim_queue_depth, 625 controller->sim_queue_depth, isci_devq); 626 627 if(controller->sim == NULL) { 628 isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n"); 629 cam_simq_free(isci_devq); 630 return (-1); 631 } 632 633 if(xpt_bus_register(controller->sim, parent, controller->index) 634 != CAM_SUCCESS) { 635 isci_log_message(0, "ISCI", "xpt_bus_register...fails \n"); 636 cam_sim_free(controller->sim, TRUE); 637 mtx_unlock(&controller->lock); 638 return (-1); 639 } 640 641 if(xpt_create_path(&controller->path, NULL, 642 cam_sim_path(controller->sim), CAM_TARGET_WILDCARD, 643 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 644 isci_log_message(0, "ISCI", "xpt_create_path....fails\n"); 645 xpt_bus_deregister(cam_sim_path(controller->sim)); 646 cam_sim_free(controller->sim, TRUE); 647 mtx_unlock(&controller->lock); 648 return (-1); 649 } 650 651 return (0); 652 } 653 654 void isci_poll(struct cam_sim *sim) 655 { 656 struct ISCI_CONTROLLER *controller = 657 (struct ISCI_CONTROLLER *)cam_sim_softc(sim); 658 659 isci_interrupt_poll_handler(controller); 660 } 661 662 void isci_action(struct cam_sim *sim, union ccb *ccb) 663 { 664 struct ISCI_CONTROLLER *controller = 665 (struct ISCI_CONTROLLER *)cam_sim_softc(sim); 666 667 switch ( ccb->ccb_h.func_code ) { 668 case XPT_PATH_INQ: 669 { 670 struct ccb_pathinq *cpi = &ccb->cpi; 671 int bus = cam_sim_bus(sim); 672 ccb->ccb_h.ccb_sim_ptr = sim; 673 cpi->version_num = 1; 674 cpi->hba_inquiry = PI_TAG_ABLE; 675 cpi->target_sprt = 0; 676 cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN | 677 PIM_UNMAPPED; 678 cpi->hba_eng_cnt = 0; 679 cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1; 680 cpi->max_lun = ISCI_MAX_LUN; 681 #if __FreeBSD_version >= 800102 682 cpi->maxio = isci_io_request_get_max_io_size(); 683 #endif 684 cpi->unit_number = cam_sim_unit(sim); 685 cpi->bus_id = bus; 686 cpi->initiator_id = SCI_MAX_REMOTE_DEVICES; 687 cpi->base_transfer_speed = 300000; 688 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 689 strncpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN); 690 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 691 cpi->transport = XPORT_SAS; 692 cpi->transport_version = 0; 693 cpi->protocol = PROTO_SCSI; 694 cpi->protocol_version = SCSI_REV_SPC2; 695 cpi->ccb_h.status = CAM_REQ_CMP; 696 xpt_done(ccb); 697 } 698 break; 699 case XPT_GET_TRAN_SETTINGS: 700 { 701 struct ccb_trans_settings *general_settings = &ccb->cts; 702 struct ccb_trans_settings_sas *sas_settings = 703 &general_settings->xport_specific.sas; 704 struct ccb_trans_settings_scsi *scsi_settings = 705 &general_settings->proto_specific.scsi; 706 struct ISCI_REMOTE_DEVICE *remote_device; 707 708 remote_device = controller->remote_device[ccb->ccb_h.target_id]; 709 710 if (remote_device == NULL) { 711 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 712 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 713 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 714 xpt_done(ccb); 715 break; 716 } 717 718 general_settings->protocol = PROTO_SCSI; 719 general_settings->transport = XPORT_SAS; 720 general_settings->protocol_version = SCSI_REV_SPC2; 721 general_settings->transport_version = 0; 722 scsi_settings->valid = CTS_SCSI_VALID_TQ; 723 scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB; 724 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 725 ccb->ccb_h.status |= CAM_REQ_CMP; 726 727 sas_settings->bitrate = 728 isci_remote_device_get_bitrate(remote_device); 729 730 if (sas_settings->bitrate != 0) 731 sas_settings->valid = CTS_SAS_VALID_SPEED; 732 733 xpt_done(ccb); 734 } 735 break; 736 case XPT_SCSI_IO: 737 isci_io_request_execute_scsi_io(ccb, controller); 738 break; 739 #if __FreeBSD_version >= 900026 740 case XPT_SMP_IO: 741 isci_io_request_execute_smp_io(ccb, controller); 742 break; 743 #endif 744 case XPT_SET_TRAN_SETTINGS: 745 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 746 ccb->ccb_h.status |= CAM_REQ_CMP; 747 xpt_done(ccb); 748 break; 749 case XPT_CALC_GEOMETRY: 750 cam_calc_geometry(&ccb->ccg, /*extended*/1); 751 xpt_done(ccb); 752 break; 753 case XPT_RESET_DEV: 754 { 755 struct ISCI_REMOTE_DEVICE *remote_device = 756 controller->remote_device[ccb->ccb_h.target_id]; 757 758 if (remote_device != NULL) 759 isci_remote_device_reset(remote_device, ccb); 760 else { 761 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 762 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 763 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 764 xpt_done(ccb); 765 } 766 } 767 break; 768 case XPT_RESET_BUS: 769 ccb->ccb_h.status = CAM_REQ_CMP; 770 xpt_done(ccb); 771 break; 772 default: 773 isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n", 774 ccb->ccb_h.func_code); 775 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 776 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 777 ccb->ccb_h.status |= CAM_REQ_INVALID; 778 xpt_done(ccb); 779 break; 780 } 781 } 782 783 /* 784 * Unfortunately, SCIL doesn't cleanly handle retry conditions. 785 * CAM_REQUEUE_REQ works only when no one is using the pass(4) interface. So 786 * when SCIL denotes an I/O needs to be retried (typically because of mixing 787 * tagged/non-tagged ATA commands, or running out of NCQ slots), we queue 788 * these I/O internally. Once SCIL completes an I/O to this device, or we get 789 * a ready notification, we will retry the first I/O on the queue. 790 * Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within 791 * the context of the completion handler, so we need to retry these I/O after 792 * the completion handler is done executing. 793 */ 794 void 795 isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller) 796 { 797 struct ISCI_REMOTE_DEVICE *dev; 798 struct ccb_hdr *ccb_h; 799 int dev_idx; 800 801 KASSERT(mtx_owned(&controller->lock), ("controller lock not owned")); 802 803 controller->release_queued_ccbs = FALSE; 804 for (dev_idx = 0; 805 dev_idx < SCI_MAX_REMOTE_DEVICES; 806 dev_idx++) { 807 808 dev = controller->remote_device[dev_idx]; 809 if (dev != NULL && 810 dev->release_queued_ccb == TRUE && 811 dev->queued_ccb_in_progress == NULL) { 812 dev->release_queued_ccb = FALSE; 813 ccb_h = TAILQ_FIRST(&dev->queued_ccbs); 814 815 if (ccb_h == NULL) 816 continue; 817 818 isci_log_message(1, "ISCI", "release %p %x\n", ccb_h, 819 ((union ccb *)ccb_h)->csio.cdb_io.cdb_bytes[0]); 820 821 dev->queued_ccb_in_progress = (union ccb *)ccb_h; 822 isci_io_request_execute_scsi_io( 823 (union ccb *)ccb_h, controller); 824 } 825 } 826 } 827