1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * BSD LICENSE 5 * 6 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * * Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * * Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <dev/isci/isci.h> 37 38 #include <sys/conf.h> 39 #include <sys/malloc.h> 40 41 #include <cam/cam_periph.h> 42 #include <cam/cam_xpt_periph.h> 43 44 #include <dev/isci/scil/sci_memory_descriptor_list.h> 45 #include <dev/isci/scil/sci_memory_descriptor_list_decorator.h> 46 47 #include <dev/isci/scil/scif_controller.h> 48 #include <dev/isci/scil/scif_library.h> 49 #include <dev/isci/scil/scif_io_request.h> 50 #include <dev/isci/scil/scif_task_request.h> 51 #include <dev/isci/scil/scif_remote_device.h> 52 #include <dev/isci/scil/scif_domain.h> 53 #include <dev/isci/scil/scif_user_callback.h> 54 #include <dev/isci/scil/scic_sgpio.h> 55 56 #include <dev/led/led.h> 57 58 void isci_action(struct cam_sim *sim, union ccb *ccb); 59 void isci_poll(struct cam_sim *sim); 60 61 #define ccb_sim_ptr sim_priv.entries[0].ptr 62 63 /** 64 * @brief This user callback will inform the user that the controller has 65 * had a serious unexpected error. The user should not the error, 66 * disable interrupts, and wait for current ongoing processing to 67 * complete. Subsequently, the user should reset the controller. 68 * 69 * @param[in] controller This parameter specifies the controller that had 70 * an error. 71 * 72 * @return none 73 */ 74 void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller, 75 SCI_CONTROLLER_ERROR error) 76 { 77 78 isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n", 79 error); 80 } 81 82 /** 83 * @brief This user callback will inform the user that the controller has 84 * finished the start process. 85 * 86 * @param[in] controller This parameter specifies the controller that was 87 * started. 88 * @param[in] completion_status This parameter specifies the results of 89 * the start operation. SCI_SUCCESS indicates successful 90 * completion. 91 * 92 * @return none 93 */ 94 void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller, 95 SCI_STATUS completion_status) 96 { 97 uint32_t index; 98 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 99 sci_object_get_association(controller); 100 101 isci_controller->is_started = TRUE; 102 103 /* Set bits for all domains. We will clear them one-by-one once 104 * the domains complete discovery, or return error when calling 105 * scif_domain_discover. Once all bits are clear, we will register 106 * the controller with CAM. 107 */ 108 isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1; 109 110 for(index = 0; index < SCI_MAX_DOMAINS; index++) { 111 SCI_STATUS status; 112 SCI_DOMAIN_HANDLE_T domain = 113 isci_controller->domain[index].sci_object; 114 115 status = scif_domain_discover( 116 domain, 117 scif_domain_get_suggested_discover_timeout(domain), 118 DEVICE_TIMEOUT 119 ); 120 121 if (status != SCI_SUCCESS) 122 { 123 isci_controller_domain_discovery_complete( 124 isci_controller, &isci_controller->domain[index]); 125 } 126 } 127 } 128 129 /** 130 * @brief This user callback will inform the user that the controller has 131 * finished the stop process. Note, after user calls 132 * scif_controller_stop(), before user receives this controller stop 133 * complete callback, user should not expect any callback from 134 * framework, such like scif_cb_domain_change_notification(). 135 * 136 * @param[in] controller This parameter specifies the controller that was 137 * stopped. 138 * @param[in] completion_status This parameter specifies the results of 139 * the stop operation. SCI_SUCCESS indicates successful 140 * completion. 141 * 142 * @return none 143 */ 144 void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller, 145 SCI_STATUS completion_status) 146 { 147 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 148 sci_object_get_association(controller); 149 150 isci_controller->is_started = FALSE; 151 } 152 153 static void 154 isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) 155 { 156 SCI_PHYSICAL_ADDRESS *phys_addr = arg; 157 158 *phys_addr = seg[0].ds_addr; 159 } 160 161 /** 162 * @brief This method will be invoked to allocate memory dynamically. 163 * 164 * @param[in] controller This parameter represents the controller 165 * object for which to allocate memory. 166 * @param[out] mde This parameter represents the memory descriptor to 167 * be filled in by the user that will reference the newly 168 * allocated memory. 169 * 170 * @return none 171 */ 172 void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller, 173 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde) 174 { 175 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 176 sci_object_get_association(controller); 177 178 /* 179 * Note this routine is only used for buffers needed to translate 180 * SCSI UNMAP commands to ATA DSM commands for SATA disks. 181 * 182 * We first try to pull a buffer from the controller's pool, and only 183 * call contigmalloc if one isn't there. 184 */ 185 if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) { 186 sci_pool_get(isci_controller->unmap_buffer_pool, 187 mde->virtual_address); 188 } else 189 mde->virtual_address = contigmalloc(PAGE_SIZE, 190 M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR, 191 mde->constant_memory_alignment, 0); 192 193 if (mde->virtual_address != NULL) 194 bus_dmamap_load(isci_controller->buffer_dma_tag, 195 NULL, mde->virtual_address, PAGE_SIZE, 196 isci_single_map, &mde->physical_address, 197 BUS_DMA_NOWAIT); 198 } 199 200 /** 201 * @brief This method will be invoked to allocate memory dynamically. 202 * 203 * @param[in] controller This parameter represents the controller 204 * object for which to allocate memory. 205 * @param[out] mde This parameter represents the memory descriptor to 206 * be filled in by the user that will reference the newly 207 * allocated memory. 208 * 209 * @return none 210 */ 211 void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller, 212 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde) 213 { 214 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) 215 sci_object_get_association(controller); 216 217 /* 218 * Put the buffer back into the controller's buffer pool, rather 219 * than invoking configfree. This helps reduce chance we won't 220 * have buffers available when system is under memory pressure. 221 */ 222 sci_pool_put(isci_controller->unmap_buffer_pool, 223 mde->virtual_address); 224 } 225 226 void isci_controller_construct(struct ISCI_CONTROLLER *controller, 227 struct isci_softc *isci) 228 { 229 SCI_CONTROLLER_HANDLE_T scif_controller_handle; 230 231 scif_library_allocate_controller(isci->sci_library_handle, 232 &scif_controller_handle); 233 234 scif_controller_construct(isci->sci_library_handle, 235 scif_controller_handle, NULL); 236 237 controller->isci = isci; 238 controller->scif_controller_handle = scif_controller_handle; 239 240 /* This allows us to later use 241 * sci_object_get_association(scif_controller_handle) 242 * inside of a callback routine to get our struct ISCI_CONTROLLER object 243 */ 244 sci_object_set_association(scif_controller_handle, (void *)controller); 245 246 controller->is_started = FALSE; 247 controller->is_frozen = FALSE; 248 controller->release_queued_ccbs = FALSE; 249 controller->sim = NULL; 250 controller->initial_discovery_mask = 0; 251 252 sci_fast_list_init(&controller->pending_device_reset_list); 253 254 mtx_init(&controller->lock, "isci", NULL, MTX_DEF); 255 256 uint32_t domain_index; 257 258 for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) { 259 isci_domain_construct( &controller->domain[domain_index], 260 domain_index, controller); 261 } 262 263 controller->timer_memory = malloc( 264 sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI, 265 M_NOWAIT | M_ZERO); 266 267 sci_pool_initialize(controller->timer_pool); 268 269 struct ISCI_TIMER *timer = (struct ISCI_TIMER *) 270 controller->timer_memory; 271 272 for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) { 273 sci_pool_put(controller->timer_pool, timer++); 274 } 275 276 sci_pool_initialize(controller->unmap_buffer_pool); 277 } 278 279 static void isci_led_fault_func(void *priv, int onoff) 280 { 281 struct ISCI_PHY *phy = priv; 282 283 /* map onoff to the fault LED */ 284 phy->led_fault = onoff; 285 scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 286 phy->led_fault, phy->led_locate, 0); 287 } 288 289 static void isci_led_locate_func(void *priv, int onoff) 290 { 291 struct ISCI_PHY *phy = priv; 292 293 /* map onoff to the locate LED */ 294 phy->led_locate = onoff; 295 scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 296 phy->led_fault, phy->led_locate, 0); 297 } 298 299 SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller) 300 { 301 SCIC_USER_PARAMETERS_T scic_user_parameters; 302 SCI_CONTROLLER_HANDLE_T scic_controller_handle; 303 char led_name[64]; 304 unsigned long tunable; 305 uint32_t io_shortage; 306 uint32_t fail_on_timeout; 307 int i; 308 309 scic_controller_handle = 310 scif_controller_get_scic_handle(controller->scif_controller_handle); 311 312 if (controller->isci->oem_parameters_found == TRUE) 313 { 314 scic_oem_parameters_set( 315 scic_controller_handle, 316 &controller->oem_parameters, 317 (uint8_t)(controller->oem_parameters_version)); 318 } 319 320 scic_user_parameters_get(scic_controller_handle, &scic_user_parameters); 321 322 if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable)) 323 scic_user_parameters.sds1.no_outbound_task_timeout = 324 (uint8_t)tunable; 325 326 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable)) 327 scic_user_parameters.sds1.ssp_max_occupancy_timeout = 328 (uint16_t)tunable; 329 330 if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable)) 331 scic_user_parameters.sds1.stp_max_occupancy_timeout = 332 (uint16_t)tunable; 333 334 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable)) 335 scic_user_parameters.sds1.ssp_inactivity_timeout = 336 (uint16_t)tunable; 337 338 if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable)) 339 scic_user_parameters.sds1.stp_inactivity_timeout = 340 (uint16_t)tunable; 341 342 if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable)) 343 for (i = 0; i < SCI_MAX_PHYS; i++) 344 scic_user_parameters.sds1.phys[i].max_speed_generation = 345 (uint8_t)tunable; 346 347 scic_user_parameters_set(scic_controller_handle, &scic_user_parameters); 348 349 /* Scheduler bug in SCU requires SCIL to reserve some task contexts as a 350 * a workaround - one per domain. 351 */ 352 controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS; 353 354 if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth", 355 &controller->queue_depth)) { 356 controller->queue_depth = max(1, min(controller->queue_depth, 357 SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS)); 358 } 359 360 /* Reserve one request so that we can ensure we have one available TC 361 * to do internal device resets. 362 */ 363 controller->sim_queue_depth = controller->queue_depth - 1; 364 365 /* Although we save one TC to do internal device resets, it is possible 366 * we could end up using several TCs for simultaneous device resets 367 * while at the same time having CAM fill our controller queue. To 368 * simulate this condition, and how our driver handles it, we can set 369 * this io_shortage parameter, which will tell CAM that we have a 370 * large queue depth than we really do. 371 */ 372 io_shortage = 0; 373 TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage); 374 controller->sim_queue_depth += io_shortage; 375 376 fail_on_timeout = 1; 377 TUNABLE_INT_FETCH("hw.isci.fail_on_task_timeout", &fail_on_timeout); 378 controller->fail_on_task_timeout = fail_on_timeout; 379 380 /* Attach to CAM using xpt_bus_register now, then immediately freeze 381 * the simq. It will get released later when initial domain discovery 382 * is complete. 383 */ 384 controller->has_been_scanned = FALSE; 385 mtx_lock(&controller->lock); 386 isci_controller_attach_to_cam(controller); 387 xpt_freeze_simq(controller->sim, 1); 388 mtx_unlock(&controller->lock); 389 390 for (i = 0; i < SCI_MAX_PHYS; i++) { 391 controller->phys[i].handle = scic_controller_handle; 392 controller->phys[i].index = i; 393 394 /* fault */ 395 controller->phys[i].led_fault = 0; 396 sprintf(led_name, "isci.bus%d.port%d.fault", controller->index, i); 397 controller->phys[i].cdev_fault = led_create(isci_led_fault_func, 398 &controller->phys[i], led_name); 399 400 /* locate */ 401 controller->phys[i].led_locate = 0; 402 sprintf(led_name, "isci.bus%d.port%d.locate", controller->index, i); 403 controller->phys[i].cdev_locate = led_create(isci_led_locate_func, 404 &controller->phys[i], led_name); 405 } 406 407 return (scif_controller_initialize(controller->scif_controller_handle)); 408 } 409 410 int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller) 411 { 412 int error; 413 device_t device = controller->isci->device; 414 uint32_t max_segment_size = isci_io_request_get_max_io_size(); 415 struct ISCI_MEMORY *uncached_controller_memory = 416 &controller->uncached_controller_memory; 417 struct ISCI_MEMORY *cached_controller_memory = 418 &controller->cached_controller_memory; 419 struct ISCI_MEMORY *request_memory = 420 &controller->request_memory; 421 POINTER_UINT virtual_address; 422 bus_addr_t physical_address; 423 424 controller->mdl = sci_controller_get_memory_descriptor_list_handle( 425 controller->scif_controller_handle); 426 427 uncached_controller_memory->size = sci_mdl_decorator_get_memory_size( 428 controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS); 429 430 error = isci_allocate_dma_buffer(device, controller, 431 uncached_controller_memory); 432 433 if (error != 0) 434 return (error); 435 436 sci_mdl_decorator_assign_memory( controller->mdl, 437 SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, 438 uncached_controller_memory->virtual_address, 439 uncached_controller_memory->physical_address); 440 441 cached_controller_memory->size = sci_mdl_decorator_get_memory_size( 442 controller->mdl, 443 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS 444 ); 445 446 error = isci_allocate_dma_buffer(device, controller, 447 cached_controller_memory); 448 449 if (error != 0) 450 return (error); 451 452 sci_mdl_decorator_assign_memory(controller->mdl, 453 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, 454 cached_controller_memory->virtual_address, 455 cached_controller_memory->physical_address); 456 457 request_memory->size = 458 controller->queue_depth * isci_io_request_get_object_size(); 459 460 error = isci_allocate_dma_buffer(device, controller, request_memory); 461 462 if (error != 0) 463 return (error); 464 465 /* For STP PIO testing, we want to ensure we can force multiple SGLs 466 * since this has been a problem area in SCIL. This tunable parameter 467 * will allow us to force DMA segments to a smaller size, ensuring 468 * that even if a physically contiguous buffer is attached to this 469 * I/O, the DMA subsystem will pass us multiple segments in our DMA 470 * load callback. 471 */ 472 TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size); 473 474 /* Create DMA tag for our I/O requests. Then we can create DMA maps based off 475 * of this tag and store them in each of our ISCI_IO_REQUEST objects. This 476 * will enable better performance than creating the DMA maps every time we get 477 * an I/O. 478 */ 479 error = bus_dma_tag_create(bus_get_dma_tag(device), 0x1, 480 ISCI_DMA_BOUNDARY, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 481 NULL, NULL, isci_io_request_get_max_io_size(), 482 SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0, 483 busdma_lock_mutex, &controller->lock, 484 &controller->buffer_dma_tag); 485 486 if (error != 0) 487 return (error); 488 489 sci_pool_initialize(controller->request_pool); 490 491 virtual_address = request_memory->virtual_address; 492 physical_address = request_memory->physical_address; 493 494 for (int i = 0; i < controller->queue_depth; i++) { 495 struct ISCI_REQUEST *request = 496 (struct ISCI_REQUEST *)virtual_address; 497 498 isci_request_construct(request, 499 controller->scif_controller_handle, 500 controller->buffer_dma_tag, physical_address); 501 502 sci_pool_put(controller->request_pool, request); 503 504 virtual_address += isci_request_get_object_size(); 505 physical_address += isci_request_get_object_size(); 506 } 507 508 uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) + 509 scif_remote_device_get_object_size(); 510 511 controller->remote_device_memory = (uint8_t *) malloc( 512 remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI, 513 M_NOWAIT | M_ZERO); 514 515 sci_pool_initialize(controller->remote_device_pool); 516 517 uint8_t *remote_device_memory_ptr = controller->remote_device_memory; 518 519 for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) { 520 struct ISCI_REMOTE_DEVICE *remote_device = 521 (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr; 522 523 controller->remote_device[i] = NULL; 524 remote_device->index = i; 525 remote_device->is_resetting = FALSE; 526 remote_device->frozen_lun_mask = 0; 527 sci_fast_list_element_init(remote_device, 528 &remote_device->pending_device_reset_element); 529 TAILQ_INIT(&remote_device->queued_ccbs); 530 remote_device->release_queued_ccb = FALSE; 531 remote_device->queued_ccb_in_progress = NULL; 532 533 /* 534 * For the first SCI_MAX_DOMAINS device objects, do not put 535 * them in the pool, rather assign them to each domain. This 536 * ensures that any device attached directly to port "i" will 537 * always get CAM target id "i". 538 */ 539 if (i < SCI_MAX_DOMAINS) 540 controller->domain[i].da_remote_device = remote_device; 541 else 542 sci_pool_put(controller->remote_device_pool, 543 remote_device); 544 remote_device_memory_ptr += remote_device_size; 545 } 546 547 return (0); 548 } 549 550 void isci_controller_start(void *controller_handle) 551 { 552 struct ISCI_CONTROLLER *controller = 553 (struct ISCI_CONTROLLER *)controller_handle; 554 SCI_CONTROLLER_HANDLE_T scif_controller_handle = 555 controller->scif_controller_handle; 556 557 scif_controller_start(scif_controller_handle, 558 scif_controller_get_suggested_start_timeout(scif_controller_handle)); 559 560 scic_controller_enable_interrupts( 561 scif_controller_get_scic_handle(controller->scif_controller_handle)); 562 } 563 564 void isci_controller_domain_discovery_complete( 565 struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain) 566 { 567 if (!isci_controller->has_been_scanned) 568 { 569 /* Controller has not been scanned yet. We'll clear 570 * the discovery bit for this domain, then check if all bits 571 * are now clear. That would indicate that all domains are 572 * done with discovery and we can then proceed with initial 573 * scan. 574 */ 575 576 isci_controller->initial_discovery_mask &= 577 ~(1 << isci_domain->index); 578 579 if (isci_controller->initial_discovery_mask == 0) { 580 struct isci_softc *driver = isci_controller->isci; 581 uint8_t next_index = isci_controller->index + 1; 582 583 isci_controller->has_been_scanned = TRUE; 584 585 /* Unfreeze simq to allow initial scan to proceed. */ 586 xpt_release_simq(isci_controller->sim, TRUE); 587 588 if (next_index < driver->controller_count) { 589 /* There are more controllers that need to 590 * start. So start the next one. 591 */ 592 isci_controller_start( 593 &driver->controllers[next_index]); 594 } 595 else 596 { 597 /* All controllers have been started and completed discovery. 598 * Disestablish the config hook while will signal to the 599 * kernel during boot that it is safe to try to find and 600 * mount the root partition. 601 */ 602 config_intrhook_disestablish( 603 &driver->config_hook); 604 } 605 } 606 } 607 } 608 609 int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller) 610 { 611 struct isci_softc *isci = controller->isci; 612 device_t parent = device_get_parent(isci->device); 613 int unit = device_get_unit(isci->device); 614 struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth); 615 616 if(isci_devq == NULL) { 617 isci_log_message(0, "ISCI", "isci_devq is NULL \n"); 618 return (-1); 619 } 620 621 controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci", 622 controller, unit, &controller->lock, controller->sim_queue_depth, 623 controller->sim_queue_depth, isci_devq); 624 625 if(controller->sim == NULL) { 626 isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n"); 627 cam_simq_free(isci_devq); 628 return (-1); 629 } 630 631 if(xpt_bus_register(controller->sim, parent, controller->index) 632 != CAM_SUCCESS) { 633 isci_log_message(0, "ISCI", "xpt_bus_register...fails \n"); 634 cam_sim_free(controller->sim, TRUE); 635 mtx_unlock(&controller->lock); 636 return (-1); 637 } 638 639 if(xpt_create_path(&controller->path, NULL, 640 cam_sim_path(controller->sim), CAM_TARGET_WILDCARD, 641 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 642 isci_log_message(0, "ISCI", "xpt_create_path....fails\n"); 643 xpt_bus_deregister(cam_sim_path(controller->sim)); 644 cam_sim_free(controller->sim, TRUE); 645 mtx_unlock(&controller->lock); 646 return (-1); 647 } 648 649 return (0); 650 } 651 652 void isci_poll(struct cam_sim *sim) 653 { 654 struct ISCI_CONTROLLER *controller = 655 (struct ISCI_CONTROLLER *)cam_sim_softc(sim); 656 657 isci_interrupt_poll_handler(controller); 658 } 659 660 void isci_action(struct cam_sim *sim, union ccb *ccb) 661 { 662 struct ISCI_CONTROLLER *controller = 663 (struct ISCI_CONTROLLER *)cam_sim_softc(sim); 664 665 switch ( ccb->ccb_h.func_code ) { 666 case XPT_PATH_INQ: 667 { 668 struct ccb_pathinq *cpi = &ccb->cpi; 669 int bus = cam_sim_bus(sim); 670 ccb->ccb_h.ccb_sim_ptr = sim; 671 cpi->version_num = 1; 672 cpi->hba_inquiry = PI_TAG_ABLE; 673 cpi->target_sprt = 0; 674 cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN | 675 PIM_UNMAPPED; 676 cpi->hba_eng_cnt = 0; 677 cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1; 678 cpi->max_lun = ISCI_MAX_LUN; 679 cpi->maxio = isci_io_request_get_max_io_size(); 680 cpi->unit_number = cam_sim_unit(sim); 681 cpi->bus_id = bus; 682 cpi->initiator_id = SCI_MAX_REMOTE_DEVICES; 683 cpi->base_transfer_speed = 300000; 684 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 685 strlcpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN); 686 strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 687 cpi->transport = XPORT_SAS; 688 cpi->transport_version = 0; 689 cpi->protocol = PROTO_SCSI; 690 cpi->protocol_version = SCSI_REV_SPC2; 691 cpi->ccb_h.status = CAM_REQ_CMP; 692 xpt_done(ccb); 693 } 694 break; 695 case XPT_GET_TRAN_SETTINGS: 696 { 697 struct ccb_trans_settings *general_settings = &ccb->cts; 698 struct ccb_trans_settings_sas *sas_settings = 699 &general_settings->xport_specific.sas; 700 struct ccb_trans_settings_scsi *scsi_settings = 701 &general_settings->proto_specific.scsi; 702 struct ISCI_REMOTE_DEVICE *remote_device; 703 704 remote_device = controller->remote_device[ccb->ccb_h.target_id]; 705 706 if (remote_device == NULL) { 707 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 708 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 709 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 710 xpt_done(ccb); 711 break; 712 } 713 714 general_settings->protocol = PROTO_SCSI; 715 general_settings->transport = XPORT_SAS; 716 general_settings->protocol_version = SCSI_REV_SPC2; 717 general_settings->transport_version = 0; 718 scsi_settings->valid = CTS_SCSI_VALID_TQ; 719 scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB; 720 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 721 ccb->ccb_h.status |= CAM_REQ_CMP; 722 723 sas_settings->bitrate = 724 isci_remote_device_get_bitrate(remote_device); 725 726 if (sas_settings->bitrate != 0) 727 sas_settings->valid = CTS_SAS_VALID_SPEED; 728 729 xpt_done(ccb); 730 } 731 break; 732 case XPT_SCSI_IO: 733 if (ccb->ccb_h.flags & CAM_CDB_PHYS) { 734 ccb->ccb_h.status = CAM_REQ_INVALID; 735 xpt_done(ccb); 736 break; 737 } 738 isci_io_request_execute_scsi_io(ccb, controller); 739 break; 740 case XPT_SMP_IO: 741 isci_io_request_execute_smp_io(ccb, controller); 742 break; 743 case XPT_SET_TRAN_SETTINGS: 744 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 745 ccb->ccb_h.status |= CAM_REQ_CMP; 746 xpt_done(ccb); 747 break; 748 case XPT_CALC_GEOMETRY: 749 cam_calc_geometry(&ccb->ccg, /*extended*/1); 750 xpt_done(ccb); 751 break; 752 case XPT_RESET_DEV: 753 { 754 struct ISCI_REMOTE_DEVICE *remote_device = 755 controller->remote_device[ccb->ccb_h.target_id]; 756 757 if (remote_device != NULL) 758 isci_remote_device_reset(remote_device, ccb); 759 else { 760 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 761 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 762 ccb->ccb_h.status |= CAM_DEV_NOT_THERE; 763 xpt_done(ccb); 764 } 765 } 766 break; 767 case XPT_RESET_BUS: 768 ccb->ccb_h.status = CAM_REQ_CMP; 769 xpt_done(ccb); 770 break; 771 default: 772 isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n", 773 ccb->ccb_h.func_code); 774 ccb->ccb_h.status &= ~CAM_SIM_QUEUED; 775 ccb->ccb_h.status &= ~CAM_STATUS_MASK; 776 ccb->ccb_h.status |= CAM_REQ_INVALID; 777 xpt_done(ccb); 778 break; 779 } 780 } 781 782 /* 783 * Unfortunately, SCIL doesn't cleanly handle retry conditions. 784 * CAM_REQUEUE_REQ works only when no one is using the pass(4) interface. So 785 * when SCIL denotes an I/O needs to be retried (typically because of mixing 786 * tagged/non-tagged ATA commands, or running out of NCQ slots), we queue 787 * these I/O internally. Once SCIL completes an I/O to this device, or we get 788 * a ready notification, we will retry the first I/O on the queue. 789 * Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within 790 * the context of the completion handler, so we need to retry these I/O after 791 * the completion handler is done executing. 792 */ 793 void 794 isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller) 795 { 796 struct ISCI_REMOTE_DEVICE *dev; 797 struct ccb_hdr *ccb_h; 798 uint8_t *ptr; 799 int dev_idx; 800 801 KASSERT(mtx_owned(&controller->lock), ("controller lock not owned")); 802 803 controller->release_queued_ccbs = FALSE; 804 for (dev_idx = 0; 805 dev_idx < SCI_MAX_REMOTE_DEVICES; 806 dev_idx++) { 807 808 dev = controller->remote_device[dev_idx]; 809 if (dev != NULL && 810 dev->release_queued_ccb == TRUE && 811 dev->queued_ccb_in_progress == NULL) { 812 dev->release_queued_ccb = FALSE; 813 ccb_h = TAILQ_FIRST(&dev->queued_ccbs); 814 815 if (ccb_h == NULL) 816 continue; 817 818 ptr = scsiio_cdb_ptr(&((union ccb *)ccb_h)->csio); 819 isci_log_message(1, "ISCI", "release %p %x\n", ccb_h, *ptr); 820 821 dev->queued_ccb_in_progress = (union ccb *)ccb_h; 822 isci_io_request_execute_scsi_io( 823 (union ccb *)ccb_h, controller); 824 } 825 } 826 } 827