xref: /freebsd/sys/dev/isci/isci.c (revision b7c60aadbbd5c846a250c05791fe7406d6d78bf4)
1 /*-
2  * BSD LICENSE
3  *
4  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  *   * Redistributions of source code must retain the above copyright
12  *     notice, this list of conditions and the following disclaimer.
13  *   * Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in
15  *     the documentation and/or other materials provided with the
16  *     distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <dev/isci/isci.h>
35 
36 #include <sys/sysctl.h>
37 #include <sys/malloc.h>
38 
39 #include <cam/cam_periph.h>
40 
41 #include <dev/pci/pcireg.h>
42 #include <dev/pci/pcivar.h>
43 
44 #include <dev/isci/scil/scic_logger.h>
45 #include <dev/isci/scil/scic_library.h>
46 #include <dev/isci/scil/scic_user_callback.h>
47 
48 #include <dev/isci/scil/scif_controller.h>
49 #include <dev/isci/scil/scif_library.h>
50 #include <dev/isci/scil/scif_logger.h>
51 #include <dev/isci/scil/scif_user_callback.h>
52 
53 MALLOC_DEFINE(M_ISCI, "isci", "isci driver memory allocations");
54 
55 struct isci_softc *g_isci;
56 uint32_t g_isci_debug_level = 0;
57 
58 static int isci_probe(device_t);
59 static int isci_attach(device_t);
60 static int isci_detach(device_t);
61 
62 int isci_initialize(struct isci_softc *isci);
63 
64 void isci_allocate_dma_buffer_callback(void *arg, bus_dma_segment_t *seg,
65     int nseg, int error);
66 
67 static devclass_t isci_devclass;
68 
69 static device_method_t isci_pci_methods[] = {
70 	 /* Device interface */
71 	 DEVMETHOD(device_probe,  isci_probe),
72 	 DEVMETHOD(device_attach, isci_attach),
73 	 DEVMETHOD(device_detach, isci_detach),
74 	 { 0, 0 }
75 };
76 
77 static driver_t isci_pci_driver = {
78 	 "isci",
79 	 isci_pci_methods,
80 	 sizeof(struct isci_softc),
81 };
82 
83 DRIVER_MODULE(isci, pci, isci_pci_driver, isci_devclass, 0, 0);
84 
85 static struct _pcsid
86 {
87 	 u_int32_t	type;
88 	 const char	*desc;
89 } pci_ids[] = {
90 	 { 0x1d608086,	"Intel(R) C600 Series Chipset SAS Controller"  },
91 	 { 0x1d618086,	"Intel(R) C600 Series Chipset SAS Controller (SATA mode)"  },
92 	 { 0x1d628086,	"Intel(R) C600 Series Chipset SAS Controller"  },
93 	 { 0x1d638086,	"Intel(R) C600 Series Chipset SAS Controller"  },
94 	 { 0x1d648086,	"Intel(R) C600 Series Chipset SAS Controller"  },
95 	 { 0x1d658086,	"Intel(R) C600 Series Chipset SAS Controller"  },
96 	 { 0x1d668086,	"Intel(R) C600 Series Chipset SAS Controller"  },
97 	 { 0x1d678086,	"Intel(R) C600 Series Chipset SAS Controller"  },
98 	 { 0x1d688086,	"Intel(R) C600 Series Chipset SAS Controller"  },
99 	 { 0x1d698086,	"Intel(R) C600 Series Chipset SAS Controller"  },
100 	 { 0x1d6a8086,	"Intel(R) C600 Series Chipset SAS Controller (SATA mode)"  },
101 	 { 0x1d6b8086,	"Intel(R) C600 Series Chipset SAS Controller (SATA mode)"  },
102 	 { 0x00000000,	NULL				}
103 };
104 
105 static int
106 isci_probe (device_t device)
107 {
108 	u_int32_t	type = pci_get_devid(device);
109 	struct _pcsid	*ep = pci_ids;
110 
111 	while (ep->type && ep->type != type)
112 		++ep;
113 
114 	if (ep->desc)
115 	{
116 		device_set_desc(device, ep->desc);
117 		return (0);
118 	}
119 	else
120 		return (ENXIO);
121 }
122 
123 static int
124 isci_allocate_pci_memory(struct isci_softc *isci)
125 {
126 	int i;
127 
128 	for (i = 0; i < ISCI_NUM_PCI_BARS; i++)
129 	{
130 		struct ISCI_PCI_BAR *pci_bar = &isci->pci_bar[i];
131 
132 		pci_bar->resource_id = PCIR_BAR(i*2);
133 		pci_bar->resource = bus_alloc_resource(isci->device,
134 		    SYS_RES_MEMORY, &pci_bar->resource_id, 0, ~0, 1,
135 		    RF_ACTIVE);
136 
137 		if(pci_bar->resource == NULL)
138 			isci_log_message(0, "ISCI",
139 			    "unable to allocate pci resource\n");
140 		else {
141 			pci_bar->bus_tag = rman_get_bustag(pci_bar->resource);
142 			pci_bar->bus_handle =
143 			    rman_get_bushandle(pci_bar->resource);
144 		}
145 	}
146 
147 	return (0);
148 }
149 
150 static int
151 isci_attach(device_t device)
152 {
153 	int error;
154 	struct isci_softc *isci = DEVICE2SOFTC(device);
155 
156 	g_isci = isci;
157 	isci->device = device;
158 
159 	isci_allocate_pci_memory(isci);
160 
161 	error = isci_initialize(isci);
162 
163 	if (error)
164 	{
165 		isci_detach(device);
166 		return (error);
167 	}
168 
169 	isci_interrupt_setup(isci);
170 	isci_sysctl_initialize(isci);
171 
172 	return (0);
173 }
174 
175 static int
176 isci_detach(device_t device)
177 {
178 	struct isci_softc *isci = DEVICE2SOFTC(device);
179 	int i;
180 
181 	for (i = 0; i < isci->controller_count; i++) {
182 		struct ISCI_CONTROLLER *controller = &isci->controllers[i];
183 		SCI_STATUS status;
184 
185 		if (controller->scif_controller_handle != NULL) {
186 			scic_controller_disable_interrupts(
187 			    scif_controller_get_scic_handle(controller->scif_controller_handle));
188 
189 			mtx_lock(&controller->lock);
190 			status = scif_controller_stop(controller->scif_controller_handle, 0);
191 			mtx_unlock(&controller->lock);
192 
193 			while (controller->is_started == TRUE) {
194 				/* Now poll for interrupts until the controller stop complete
195 				 *  callback is received.
196 				 */
197 				mtx_lock(&controller->lock);
198 				isci_interrupt_poll_handler(controller);
199 				mtx_unlock(&controller->lock);
200 				pause("isci", 1);
201 			}
202 
203 			if(controller->sim != NULL) {
204 				mtx_lock(&controller->lock);
205 				xpt_free_path(controller->path);
206 				xpt_bus_deregister(cam_sim_path(controller->sim));
207 				cam_sim_free(controller->sim, TRUE);
208 				mtx_unlock(&controller->lock);
209 			}
210 		}
211 
212 		if (controller->timer_memory != NULL)
213 			free(controller->timer_memory, M_ISCI);
214 
215 		if (controller->remote_device_memory != NULL)
216 			free(controller->remote_device_memory, M_ISCI);
217 	}
218 
219 	/* The SCIF controllers have been stopped, so we can now
220 	 *  free the SCI library memory.
221 	 */
222 	if (isci->sci_library_memory != NULL)
223 		free(isci->sci_library_memory, M_ISCI);
224 
225 	for (i = 0; i < ISCI_NUM_PCI_BARS; i++)
226 	{
227 		struct ISCI_PCI_BAR *pci_bar = &isci->pci_bar[i];
228 
229 		if (pci_bar->resource != NULL)
230 			bus_release_resource(device, SYS_RES_MEMORY,
231 			    pci_bar->resource_id, pci_bar->resource);
232 	}
233 
234 	for (i = 0; i < isci->num_interrupts; i++)
235 	{
236 		struct ISCI_INTERRUPT_INFO *interrupt_info;
237 
238 		interrupt_info = &isci->interrupt_info[i];
239 
240 		if(interrupt_info->tag != NULL)
241 			bus_teardown_intr(device, interrupt_info->res,
242 			    interrupt_info->tag);
243 
244 		if(interrupt_info->res != NULL)
245 			bus_release_resource(device, SYS_RES_IRQ,
246 			    rman_get_rid(interrupt_info->res),
247 			    interrupt_info->res);
248 
249 		pci_release_msi(device);
250 	}
251 
252 	return (0);
253 }
254 
255 int
256 isci_initialize(struct isci_softc *isci)
257 {
258 	int error;
259 	uint32_t status = 0;
260 	uint32_t library_object_size;
261 	uint32_t verbosity_mask;
262 	uint32_t scic_log_object_mask;
263 	uint32_t scif_log_object_mask;
264 	uint8_t *header_buffer;
265 
266 	library_object_size = scif_library_get_object_size(SCI_MAX_CONTROLLERS);
267 
268 	isci->sci_library_memory =
269 	    malloc(library_object_size, M_ISCI, M_NOWAIT | M_ZERO );
270 
271 	isci->sci_library_handle = scif_library_construct(
272 	    isci->sci_library_memory, SCI_MAX_CONTROLLERS);
273 
274 	sci_object_set_association( isci->sci_library_handle, (void *)isci);
275 
276 	verbosity_mask = (1<<SCI_LOG_VERBOSITY_ERROR) |
277 	    (1<<SCI_LOG_VERBOSITY_WARNING) | (1<<SCI_LOG_VERBOSITY_INFO) |
278 	    (1<<SCI_LOG_VERBOSITY_TRACE);
279 
280 	scic_log_object_mask = 0xFFFFFFFF;
281 	scic_log_object_mask &= ~SCIC_LOG_OBJECT_COMPLETION_QUEUE;
282 	scic_log_object_mask &= ~SCIC_LOG_OBJECT_SSP_IO_REQUEST;
283 	scic_log_object_mask &= ~SCIC_LOG_OBJECT_STP_IO_REQUEST;
284 	scic_log_object_mask &= ~SCIC_LOG_OBJECT_SMP_IO_REQUEST;
285 	scic_log_object_mask &= ~SCIC_LOG_OBJECT_CONTROLLER;
286 
287 	scif_log_object_mask = 0xFFFFFFFF;
288 	scif_log_object_mask &= ~SCIF_LOG_OBJECT_CONTROLLER;
289 	scif_log_object_mask &= ~SCIF_LOG_OBJECT_IO_REQUEST;
290 
291 	TUNABLE_INT_FETCH("hw.isci.debug_level", &g_isci_debug_level);
292 
293 	sci_logger_enable(sci_object_get_logger(isci->sci_library_handle),
294 	    scif_log_object_mask, verbosity_mask);
295 
296 	sci_logger_enable(sci_object_get_logger(
297 	    scif_library_get_scic_handle(isci->sci_library_handle)),
298 	    scic_log_object_mask, verbosity_mask);
299 
300 	header_buffer = (uint8_t *)&isci->pci_common_header;
301 	for (uint8_t i = 0; i < sizeof(isci->pci_common_header); i++)
302 		header_buffer[i] = pci_read_config(isci->device, i, 1);
303 
304 	scic_library_set_pci_info(
305 	    scif_library_get_scic_handle(isci->sci_library_handle),
306 	    &isci->pci_common_header);
307 
308 	isci->oem_parameters_found = FALSE;
309 
310 	isci_get_oem_parameters(isci);
311 
312 	/* trigger interrupt if 32 completions occur before timeout expires */
313 	isci->coalesce_number = 32;
314 
315 	/* trigger interrupt if 2 microseconds elapse after a completion occurs,
316 	 *  regardless if "coalesce_number" completions have occurred
317 	 */
318 	isci->coalesce_timeout = 2;
319 
320 	isci->controller_count = scic_library_get_pci_device_controller_count(
321 	    scif_library_get_scic_handle(isci->sci_library_handle));
322 
323 	for (int index = 0; index < isci->controller_count; index++) {
324 		struct ISCI_CONTROLLER *controller = &isci->controllers[index];
325 		SCI_CONTROLLER_HANDLE_T scif_controller_handle;
326 
327 		controller->index = index;
328 		isci_controller_construct(controller, isci);
329 
330 		scif_controller_handle = controller->scif_controller_handle;
331 
332 		status = isci_controller_initialize(controller);
333 
334 		if(status != SCI_SUCCESS) {
335 			isci_log_message(0, "ISCI",
336 			    "isci_controller_initialize FAILED: %x\n",
337 			    status);
338 			return (status);
339 		}
340 
341 		error = isci_controller_allocate_memory(controller);
342 
343 		if (error != 0)
344 			return (error);
345 
346 		scif_controller_set_interrupt_coalescence(
347 		    scif_controller_handle, isci->coalesce_number,
348 		    isci->coalesce_timeout);
349 	}
350 
351 	/* FreeBSD provides us a hook to ensure we get a chance to start
352 	 *  our controllers and complete initial domain discovery before
353 	 *  it searches for the boot device.  Once we're done, we'll
354 	 *  disestablish the hook, signaling the kernel that is can proceed
355 	 *  with the boot process.
356 	 */
357 	isci->config_hook.ich_func = &isci_controller_start;
358 	isci->config_hook.ich_arg = &isci->controllers[0];
359 
360 	if (config_intrhook_establish(&isci->config_hook) != 0)
361 		isci_log_message(0, "ISCI",
362 		    "config_intrhook_establish failed!\n");
363 
364 	return (status);
365 }
366 
367 void
368 isci_allocate_dma_buffer_callback(void *arg, bus_dma_segment_t *seg,
369     int nseg, int error)
370 {
371 	struct ISCI_MEMORY *memory = (struct ISCI_MEMORY *)arg;
372 
373 	memory->error = error;
374 
375 	if (nseg != 1 || error != 0)
376 		isci_log_message(0, "ISCI",
377 		    "Failed to allocate physically contiguous memory!\n");
378 	else
379 		memory->physical_address = seg->ds_addr;
380 }
381 
382 int
383 isci_allocate_dma_buffer(device_t device, struct ISCI_MEMORY *memory)
384 {
385 	uint32_t status;
386 
387 	status = bus_dma_tag_create(bus_get_dma_tag(device),
388 	    0x40 /* cacheline alignment */, 0x0, BUS_SPACE_MAXADDR,
389 	    BUS_SPACE_MAXADDR, NULL, NULL, memory->size,
390 	    0x1 /* we want physically contiguous */,
391 	    memory->size, 0, NULL, NULL, &memory->dma_tag);
392 
393 	if(status == ENOMEM) {
394 		isci_log_message(0, "ISCI", "bus_dma_tag_create failed\n");
395 		return (status);
396 	}
397 
398 	status = bus_dmamem_alloc(memory->dma_tag,
399 	    (void **)&memory->virtual_address, BUS_DMA_ZERO, &memory->dma_map);
400 
401 	if(status == ENOMEM)
402 	{
403 		isci_log_message(0, "ISCI", "bus_dmamem_alloc failed\n");
404 		return (status);
405 	}
406 
407 	status = bus_dmamap_load(memory->dma_tag, memory->dma_map,
408 	    (void *)memory->virtual_address, memory->size,
409 	    isci_allocate_dma_buffer_callback, memory, 0);
410 
411 	if(status == EINVAL)
412 	{
413 		isci_log_message(0, "ISCI", "bus_dmamap_load failed\n");
414 		return (status);
415 	}
416 
417 	return (0);
418 }
419 
420 /**
421  * @brief This callback method asks the user to associate the supplied
422  *        lock with an operating environment specific locking construct.
423  *
424  * @param[in]  controller This parameter specifies the controller with
425  *             which this lock is to be associated.
426  * @param[in]  lock This parameter specifies the lock for which the
427  *             user should associate an operating environment specific
428  *             locking object.
429  *
430  * @see The SCI_LOCK_LEVEL enumeration for more information.
431  *
432  * @return none.
433  */
434 void
435 scif_cb_lock_associate(SCI_CONTROLLER_HANDLE_T controller,
436     SCI_LOCK_HANDLE_T lock)
437 {
438 
439 }
440 
441 /**
442  * @brief This callback method asks the user to de-associate the supplied
443  *        lock with an operating environment specific locking construct.
444  *
445  * @param[in]  controller This parameter specifies the controller with
446  *             which this lock is to be de-associated.
447  * @param[in]  lock This parameter specifies the lock for which the
448  *             user should de-associate an operating environment specific
449  *             locking object.
450  *
451  * @see The SCI_LOCK_LEVEL enumeration for more information.
452  *
453  * @return none.
454  */
455 void
456 scif_cb_lock_disassociate(SCI_CONTROLLER_HANDLE_T controller,
457     SCI_LOCK_HANDLE_T lock)
458 {
459 
460 }
461 
462 
463 /**
464  * @brief This callback method asks the user to acquire/get the lock.
465  *        This method should pend until the lock has been acquired.
466  *
467  * @param[in]  controller This parameter specifies the controller with
468  *             which this lock is associated.
469  * @param[in]  lock This parameter specifies the lock to be acquired.
470  *
471  * @return none
472  */
473 void
474 scif_cb_lock_acquire(SCI_CONTROLLER_HANDLE_T controller,
475     SCI_LOCK_HANDLE_T lock)
476 {
477 
478 }
479 
480 /**
481  * @brief This callback method asks the user to release a lock.
482  *
483  * @param[in]  controller This parameter specifies the controller with
484  *             which this lock is associated.
485  * @param[in]  lock This parameter specifies the lock to be released.
486  *
487  * @return none
488  */
489 void
490 scif_cb_lock_release(SCI_CONTROLLER_HANDLE_T controller,
491     SCI_LOCK_HANDLE_T lock)
492 {
493 }
494 
495 /**
496  * @brief This callback method creates an OS specific deferred task
497  *        for internal usage. The handler to deferred task is stored by OS
498  *        driver.
499  *
500  * @param[in] controller This parameter specifies the controller object
501  *            with which this callback is associated.
502  *
503  * @return none
504  */
505 void
506 scif_cb_start_internal_io_task_create(SCI_CONTROLLER_HANDLE_T controller)
507 {
508 
509 }
510 
511 /**
512  * @brief This callback method schedules a OS specific deferred task.
513  *
514  * @param[in] controller This parameter specifies the controller
515  *            object with which this callback is associated.
516  * @param[in] start_internal_io_task_routine This parameter specifies the
517  *            sci start_internal_io routine.
518  * @param[in] context This parameter specifies a handle to a parameter
519  *            that will be passed into the "start_internal_io_task_routine"
520  *            when it is invoked.
521  *
522  * @return none
523  */
524 void
525 scif_cb_start_internal_io_task_schedule(SCI_CONTROLLER_HANDLE_T scif_controller,
526     FUNCPTR start_internal_io_task_routine, void *context)
527 {
528 	/** @todo Use FreeBSD tasklet to defer this routine to a later time,
529 	 *  rather than calling the routine inline.
530 	 */
531 	SCI_START_INTERNAL_IO_ROUTINE sci_start_internal_io_routine =
532 	    (SCI_START_INTERNAL_IO_ROUTINE)start_internal_io_task_routine;
533 
534 	sci_start_internal_io_routine(context);
535 }
536 
537 /**
538  * @brief In this method the user must write to PCI memory via access.
539  *        This method is used for access to memory space and IO space.
540  *
541  * @param[in]  controller The controller for which to read a DWORD.
542  * @param[in]  address This parameter depicts the address into
543  *             which to write.
544  * @param[out] write_value This parameter depicts the value being written
545  *             into the PCI memory location.
546  *
547  * @todo These PCI memory access calls likely needs to be optimized into macros?
548  */
549 void
550 scic_cb_pci_write_dword(SCI_CONTROLLER_HANDLE_T scic_controller,
551     void *address, uint32_t write_value)
552 {
553 	SCI_CONTROLLER_HANDLE_T scif_controller =
554 	    (SCI_CONTROLLER_HANDLE_T) sci_object_get_association(scic_controller);
555 	struct ISCI_CONTROLLER *isci_controller =
556 	    (struct ISCI_CONTROLLER *) sci_object_get_association(scif_controller);
557 	struct isci_softc *isci = isci_controller->isci;
558 	uint32_t bar = (uint32_t)(((POINTER_UINT)address & 0xF0000000) >> 28);
559 	bus_size_t offset = (bus_size_t)((POINTER_UINT)address & 0x0FFFFFFF);
560 
561 	bus_space_write_4(isci->pci_bar[bar].bus_tag,
562 	    isci->pci_bar[bar].bus_handle, offset, write_value);
563 }
564 
565 /**
566  * @brief In this method the user must read from PCI memory via access.
567  *        This method is used for access to memory space and IO space.
568  *
569  * @param[in]  controller The controller for which to read a DWORD.
570  * @param[in]  address This parameter depicts the address from
571  *             which to read.
572  *
573  * @return The value being returned from the PCI memory location.
574  *
575  * @todo This PCI memory access calls likely need to be optimized into macro?
576  */
577 uint32_t
578 scic_cb_pci_read_dword(SCI_CONTROLLER_HANDLE_T scic_controller, void *address)
579 {
580 	SCI_CONTROLLER_HANDLE_T scif_controller =
581 		(SCI_CONTROLLER_HANDLE_T)sci_object_get_association(scic_controller);
582 	struct ISCI_CONTROLLER *isci_controller =
583 		(struct ISCI_CONTROLLER *)sci_object_get_association(scif_controller);
584 	struct isci_softc *isci = isci_controller->isci;
585 	uint32_t bar = (uint32_t)(((POINTER_UINT)address & 0xF0000000) >> 28);
586 	bus_size_t offset = (bus_size_t)((POINTER_UINT)address & 0x0FFFFFFF);
587 
588 	return (bus_space_read_4(isci->pci_bar[bar].bus_tag,
589 	    isci->pci_bar[bar].bus_handle, offset));
590 }
591 
592 /**
593  * @brief This method is called when the core requires the OS driver
594  *        to stall execution.  This method is utilized during initialization
595  *        or non-performance paths only.
596  *
597  * @param[in]  microseconds This parameter specifies the number of
598  *             microseconds for which to stall.  The operating system driver
599  *             is allowed to round this value up where necessary.
600  *
601  * @return none.
602  */
603 void
604 scic_cb_stall_execution(uint32_t microseconds)
605 {
606 
607 	DELAY(microseconds);
608 }
609 
610 /**
611  * @brief In this method the user must return the base address register (BAR)
612  *        value for the supplied base address register number.
613  *
614  * @param[in] controller The controller for which to retrieve the bar number.
615  * @param[in] bar_number This parameter depicts the BAR index/number to be read.
616  *
617  * @return Return a pointer value indicating the contents of the BAR.
618  * @retval NULL indicates an invalid BAR index/number was specified.
619  * @retval All other values indicate a valid VIRTUAL address from the BAR.
620  */
621 void *
622 scic_cb_pci_get_bar(SCI_CONTROLLER_HANDLE_T controller,
623     uint16_t bar_number)
624 {
625 
626 	return ((void *)(POINTER_UINT)((uint32_t)bar_number << 28));
627 }
628 
629 /**
630  * @brief This method informs the SCI Core user that a phy/link became
631  *        ready, but the phy is not allowed in the port.  In some
632  *        situations the underlying hardware only allows for certain phy
633  *        to port mappings.  If these mappings are violated, then this
634  *        API is invoked.
635  *
636  * @param[in] controller This parameter represents the controller which
637  *            contains the port.
638  * @param[in] port This parameter specifies the SCI port object for which
639  *            the callback is being invoked.
640  * @param[in] phy This parameter specifies the phy that came ready, but the
641  *            phy can't be a valid member of the port.
642  *
643  * @return none
644  */
645 void
646 scic_cb_port_invalid_link_up(SCI_CONTROLLER_HANDLE_T controller,
647     SCI_PORT_HANDLE_T port, SCI_PHY_HANDLE_T phy)
648 {
649 
650 }
651