1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <dev/isci/isci.h> 35 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 39 #include <cam/cam_periph.h> 40 41 #include <dev/led/led.h> 42 43 #include <dev/pci/pcireg.h> 44 #include <dev/pci/pcivar.h> 45 46 #include <dev/isci/scil/scic_logger.h> 47 #include <dev/isci/scil/scic_library.h> 48 #include <dev/isci/scil/scic_sgpio.h> 49 #include <dev/isci/scil/scic_user_callback.h> 50 51 #include <dev/isci/scil/scif_controller.h> 52 #include <dev/isci/scil/scif_library.h> 53 #include <dev/isci/scil/scif_logger.h> 54 #include <dev/isci/scil/scif_user_callback.h> 55 56 MALLOC_DEFINE(M_ISCI, "isci", "isci driver memory allocations"); 57 58 struct isci_softc *g_isci; 59 uint32_t g_isci_debug_level = 0; 60 61 static int isci_probe(device_t); 62 static int isci_attach(device_t); 63 static int isci_detach(device_t); 64 65 int isci_initialize(struct isci_softc *isci); 66 67 void isci_allocate_dma_buffer_callback(void *arg, bus_dma_segment_t *seg, 68 int nseg, int error); 69 70 static devclass_t isci_devclass; 71 72 static device_method_t isci_pci_methods[] = { 73 /* Device interface */ 74 DEVMETHOD(device_probe, isci_probe), 75 DEVMETHOD(device_attach, isci_attach), 76 DEVMETHOD(device_detach, isci_detach), 77 { 0, 0 } 78 }; 79 80 static driver_t isci_pci_driver = { 81 "isci", 82 isci_pci_methods, 83 sizeof(struct isci_softc), 84 }; 85 86 DRIVER_MODULE(isci, pci, isci_pci_driver, isci_devclass, 0, 0); 87 88 static struct _pcsid 89 { 90 u_int32_t type; 91 const char *desc; 92 } pci_ids[] = { 93 { 0x1d608086, "Intel(R) C600 Series Chipset SAS Controller" }, 94 { 0x1d618086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" }, 95 { 0x1d628086, "Intel(R) C600 Series Chipset SAS Controller" }, 96 { 0x1d638086, "Intel(R) C600 Series Chipset SAS Controller" }, 97 { 0x1d648086, "Intel(R) C600 Series Chipset SAS Controller" }, 98 { 0x1d658086, "Intel(R) C600 Series Chipset SAS Controller" }, 99 { 0x1d668086, "Intel(R) C600 Series Chipset SAS Controller" }, 100 { 0x1d678086, "Intel(R) C600 Series Chipset SAS Controller" }, 101 { 0x1d688086, "Intel(R) C600 Series Chipset SAS Controller" }, 102 { 0x1d698086, "Intel(R) C600 Series Chipset SAS Controller" }, 103 { 0x1d6a8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" }, 104 { 0x1d6b8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" }, 105 { 0x1d6c8086, "Intel(R) C600 Series Chipset SAS Controller" }, 106 { 0x1d6d8086, "Intel(R) C600 Series Chipset SAS Controller" }, 107 { 0x1d6e8086, "Intel(R) C600 Series Chipset SAS Controller" }, 108 { 0x1d6f8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" }, 109 { 0x00000000, NULL } 110 }; 111 112 static int 113 isci_probe (device_t device) 114 { 115 u_int32_t type = pci_get_devid(device); 116 struct _pcsid *ep = pci_ids; 117 118 while (ep->type && ep->type != type) 119 ++ep; 120 121 if (ep->desc) 122 { 123 device_set_desc(device, ep->desc); 124 return (BUS_PROBE_DEFAULT); 125 } 126 else 127 return (ENXIO); 128 } 129 130 static int 131 isci_allocate_pci_memory(struct isci_softc *isci) 132 { 133 int i; 134 135 for (i = 0; i < ISCI_NUM_PCI_BARS; i++) 136 { 137 struct ISCI_PCI_BAR *pci_bar = &isci->pci_bar[i]; 138 139 pci_bar->resource_id = PCIR_BAR(i*2); 140 pci_bar->resource = bus_alloc_resource(isci->device, 141 SYS_RES_MEMORY, &pci_bar->resource_id, 0, ~0, 1, 142 RF_ACTIVE); 143 144 if(pci_bar->resource == NULL) 145 isci_log_message(0, "ISCI", 146 "unable to allocate pci resource\n"); 147 else { 148 pci_bar->bus_tag = rman_get_bustag(pci_bar->resource); 149 pci_bar->bus_handle = 150 rman_get_bushandle(pci_bar->resource); 151 } 152 } 153 154 return (0); 155 } 156 157 static int 158 isci_attach(device_t device) 159 { 160 int error; 161 struct isci_softc *isci = DEVICE2SOFTC(device); 162 163 g_isci = isci; 164 isci->device = device; 165 166 isci_allocate_pci_memory(isci); 167 168 error = isci_initialize(isci); 169 170 if (error) 171 { 172 isci_detach(device); 173 return (error); 174 } 175 176 isci_interrupt_setup(isci); 177 isci_sysctl_initialize(isci); 178 179 return (0); 180 } 181 182 static int 183 isci_detach(device_t device) 184 { 185 struct isci_softc *isci = DEVICE2SOFTC(device); 186 int i, phy; 187 188 for (i = 0; i < isci->controller_count; i++) { 189 struct ISCI_CONTROLLER *controller = &isci->controllers[i]; 190 SCI_STATUS status; 191 void *unmap_buffer; 192 193 if (controller->scif_controller_handle != NULL) { 194 scic_controller_disable_interrupts( 195 scif_controller_get_scic_handle(controller->scif_controller_handle)); 196 197 mtx_lock(&controller->lock); 198 status = scif_controller_stop(controller->scif_controller_handle, 0); 199 mtx_unlock(&controller->lock); 200 201 while (controller->is_started == TRUE) { 202 /* Now poll for interrupts until the controller stop complete 203 * callback is received. 204 */ 205 mtx_lock(&controller->lock); 206 isci_interrupt_poll_handler(controller); 207 mtx_unlock(&controller->lock); 208 pause("isci", 1); 209 } 210 211 if(controller->sim != NULL) { 212 mtx_lock(&controller->lock); 213 xpt_free_path(controller->path); 214 xpt_bus_deregister(cam_sim_path(controller->sim)); 215 cam_sim_free(controller->sim, TRUE); 216 mtx_unlock(&controller->lock); 217 } 218 } 219 220 if (controller->timer_memory != NULL) 221 free(controller->timer_memory, M_ISCI); 222 223 if (controller->remote_device_memory != NULL) 224 free(controller->remote_device_memory, M_ISCI); 225 226 for (phy = 0; phy < SCI_MAX_PHYS; phy++) 227 if (controller->led[phy].cdev) 228 led_destroy(controller->led[phy].cdev); 229 230 while (1) { 231 sci_pool_get(controller->unmap_buffer_pool, unmap_buffer); 232 if (unmap_buffer == NULL) 233 break; 234 contigfree(unmap_buffer, PAGE_SIZE, M_ISCI); 235 } 236 } 237 238 /* The SCIF controllers have been stopped, so we can now 239 * free the SCI library memory. 240 */ 241 if (isci->sci_library_memory != NULL) 242 free(isci->sci_library_memory, M_ISCI); 243 244 for (i = 0; i < ISCI_NUM_PCI_BARS; i++) 245 { 246 struct ISCI_PCI_BAR *pci_bar = &isci->pci_bar[i]; 247 248 if (pci_bar->resource != NULL) 249 bus_release_resource(device, SYS_RES_MEMORY, 250 pci_bar->resource_id, pci_bar->resource); 251 } 252 253 for (i = 0; i < isci->num_interrupts; i++) 254 { 255 struct ISCI_INTERRUPT_INFO *interrupt_info; 256 257 interrupt_info = &isci->interrupt_info[i]; 258 259 if(interrupt_info->tag != NULL) 260 bus_teardown_intr(device, interrupt_info->res, 261 interrupt_info->tag); 262 263 if(interrupt_info->res != NULL) 264 bus_release_resource(device, SYS_RES_IRQ, 265 rman_get_rid(interrupt_info->res), 266 interrupt_info->res); 267 268 pci_release_msi(device); 269 } 270 271 return (0); 272 } 273 274 int 275 isci_initialize(struct isci_softc *isci) 276 { 277 int error; 278 uint32_t status = 0; 279 uint32_t library_object_size; 280 uint32_t verbosity_mask; 281 uint32_t scic_log_object_mask; 282 uint32_t scif_log_object_mask; 283 uint8_t *header_buffer; 284 285 library_object_size = scif_library_get_object_size(SCI_MAX_CONTROLLERS); 286 287 isci->sci_library_memory = 288 malloc(library_object_size, M_ISCI, M_NOWAIT | M_ZERO ); 289 290 isci->sci_library_handle = scif_library_construct( 291 isci->sci_library_memory, SCI_MAX_CONTROLLERS); 292 293 sci_object_set_association( isci->sci_library_handle, (void *)isci); 294 295 verbosity_mask = (1<<SCI_LOG_VERBOSITY_ERROR) | 296 (1<<SCI_LOG_VERBOSITY_WARNING) | (1<<SCI_LOG_VERBOSITY_INFO) | 297 (1<<SCI_LOG_VERBOSITY_TRACE); 298 299 scic_log_object_mask = 0xFFFFFFFF; 300 scic_log_object_mask &= ~SCIC_LOG_OBJECT_COMPLETION_QUEUE; 301 scic_log_object_mask &= ~SCIC_LOG_OBJECT_SSP_IO_REQUEST; 302 scic_log_object_mask &= ~SCIC_LOG_OBJECT_STP_IO_REQUEST; 303 scic_log_object_mask &= ~SCIC_LOG_OBJECT_SMP_IO_REQUEST; 304 scic_log_object_mask &= ~SCIC_LOG_OBJECT_CONTROLLER; 305 306 scif_log_object_mask = 0xFFFFFFFF; 307 scif_log_object_mask &= ~SCIF_LOG_OBJECT_CONTROLLER; 308 scif_log_object_mask &= ~SCIF_LOG_OBJECT_IO_REQUEST; 309 310 TUNABLE_INT_FETCH("hw.isci.debug_level", &g_isci_debug_level); 311 312 sci_logger_enable(sci_object_get_logger(isci->sci_library_handle), 313 scif_log_object_mask, verbosity_mask); 314 315 sci_logger_enable(sci_object_get_logger( 316 scif_library_get_scic_handle(isci->sci_library_handle)), 317 scic_log_object_mask, verbosity_mask); 318 319 header_buffer = (uint8_t *)&isci->pci_common_header; 320 for (uint8_t i = 0; i < sizeof(isci->pci_common_header); i++) 321 header_buffer[i] = pci_read_config(isci->device, i, 1); 322 323 scic_library_set_pci_info( 324 scif_library_get_scic_handle(isci->sci_library_handle), 325 &isci->pci_common_header); 326 327 isci->oem_parameters_found = FALSE; 328 329 isci_get_oem_parameters(isci); 330 331 /* trigger interrupt if 32 completions occur before timeout expires */ 332 isci->coalesce_number = 32; 333 334 /* trigger interrupt if 2 microseconds elapse after a completion occurs, 335 * regardless if "coalesce_number" completions have occurred 336 */ 337 isci->coalesce_timeout = 2; 338 339 isci->controller_count = scic_library_get_pci_device_controller_count( 340 scif_library_get_scic_handle(isci->sci_library_handle)); 341 342 for (int index = 0; index < isci->controller_count; index++) { 343 struct ISCI_CONTROLLER *controller = &isci->controllers[index]; 344 SCI_CONTROLLER_HANDLE_T scif_controller_handle; 345 346 controller->index = index; 347 isci_controller_construct(controller, isci); 348 349 scif_controller_handle = controller->scif_controller_handle; 350 351 status = isci_controller_initialize(controller); 352 353 if(status != SCI_SUCCESS) { 354 isci_log_message(0, "ISCI", 355 "isci_controller_initialize FAILED: %x\n", 356 status); 357 return (status); 358 } 359 360 error = isci_controller_allocate_memory(controller); 361 362 if (error != 0) 363 return (error); 364 365 scif_controller_set_interrupt_coalescence( 366 scif_controller_handle, isci->coalesce_number, 367 isci->coalesce_timeout); 368 } 369 370 /* FreeBSD provides us a hook to ensure we get a chance to start 371 * our controllers and complete initial domain discovery before 372 * it searches for the boot device. Once we're done, we'll 373 * disestablish the hook, signaling the kernel that is can proceed 374 * with the boot process. 375 */ 376 isci->config_hook.ich_func = &isci_controller_start; 377 isci->config_hook.ich_arg = &isci->controllers[0]; 378 379 if (config_intrhook_establish(&isci->config_hook) != 0) 380 isci_log_message(0, "ISCI", 381 "config_intrhook_establish failed!\n"); 382 383 return (status); 384 } 385 386 void 387 isci_allocate_dma_buffer_callback(void *arg, bus_dma_segment_t *seg, 388 int nseg, int error) 389 { 390 struct ISCI_MEMORY *memory = (struct ISCI_MEMORY *)arg; 391 392 memory->error = error; 393 394 if (nseg != 1 || error != 0) 395 isci_log_message(0, "ISCI", 396 "Failed to allocate physically contiguous memory!\n"); 397 else 398 memory->physical_address = seg->ds_addr; 399 } 400 401 int 402 isci_allocate_dma_buffer(device_t device, struct ISCI_MEMORY *memory) 403 { 404 uint32_t status; 405 406 status = bus_dma_tag_create(bus_get_dma_tag(device), 407 0x40 /* cacheline alignment */, 0x0, BUS_SPACE_MAXADDR, 408 BUS_SPACE_MAXADDR, NULL, NULL, memory->size, 409 0x1 /* we want physically contiguous */, 410 memory->size, 0, NULL, NULL, &memory->dma_tag); 411 412 if(status == ENOMEM) { 413 isci_log_message(0, "ISCI", "bus_dma_tag_create failed\n"); 414 return (status); 415 } 416 417 status = bus_dmamem_alloc(memory->dma_tag, 418 (void **)&memory->virtual_address, BUS_DMA_ZERO, &memory->dma_map); 419 420 if(status == ENOMEM) 421 { 422 isci_log_message(0, "ISCI", "bus_dmamem_alloc failed\n"); 423 return (status); 424 } 425 426 status = bus_dmamap_load(memory->dma_tag, memory->dma_map, 427 (void *)memory->virtual_address, memory->size, 428 isci_allocate_dma_buffer_callback, memory, 0); 429 430 if(status == EINVAL) 431 { 432 isci_log_message(0, "ISCI", "bus_dmamap_load failed\n"); 433 return (status); 434 } 435 436 return (0); 437 } 438 439 /** 440 * @brief This callback method asks the user to associate the supplied 441 * lock with an operating environment specific locking construct. 442 * 443 * @param[in] controller This parameter specifies the controller with 444 * which this lock is to be associated. 445 * @param[in] lock This parameter specifies the lock for which the 446 * user should associate an operating environment specific 447 * locking object. 448 * 449 * @see The SCI_LOCK_LEVEL enumeration for more information. 450 * 451 * @return none. 452 */ 453 void 454 scif_cb_lock_associate(SCI_CONTROLLER_HANDLE_T controller, 455 SCI_LOCK_HANDLE_T lock) 456 { 457 458 } 459 460 /** 461 * @brief This callback method asks the user to de-associate the supplied 462 * lock with an operating environment specific locking construct. 463 * 464 * @param[in] controller This parameter specifies the controller with 465 * which this lock is to be de-associated. 466 * @param[in] lock This parameter specifies the lock for which the 467 * user should de-associate an operating environment specific 468 * locking object. 469 * 470 * @see The SCI_LOCK_LEVEL enumeration for more information. 471 * 472 * @return none. 473 */ 474 void 475 scif_cb_lock_disassociate(SCI_CONTROLLER_HANDLE_T controller, 476 SCI_LOCK_HANDLE_T lock) 477 { 478 479 } 480 481 482 /** 483 * @brief This callback method asks the user to acquire/get the lock. 484 * This method should pend until the lock has been acquired. 485 * 486 * @param[in] controller This parameter specifies the controller with 487 * which this lock is associated. 488 * @param[in] lock This parameter specifies the lock to be acquired. 489 * 490 * @return none 491 */ 492 void 493 scif_cb_lock_acquire(SCI_CONTROLLER_HANDLE_T controller, 494 SCI_LOCK_HANDLE_T lock) 495 { 496 497 } 498 499 /** 500 * @brief This callback method asks the user to release a lock. 501 * 502 * @param[in] controller This parameter specifies the controller with 503 * which this lock is associated. 504 * @param[in] lock This parameter specifies the lock to be released. 505 * 506 * @return none 507 */ 508 void 509 scif_cb_lock_release(SCI_CONTROLLER_HANDLE_T controller, 510 SCI_LOCK_HANDLE_T lock) 511 { 512 } 513 514 /** 515 * @brief This callback method creates an OS specific deferred task 516 * for internal usage. The handler to deferred task is stored by OS 517 * driver. 518 * 519 * @param[in] controller This parameter specifies the controller object 520 * with which this callback is associated. 521 * 522 * @return none 523 */ 524 void 525 scif_cb_start_internal_io_task_create(SCI_CONTROLLER_HANDLE_T controller) 526 { 527 528 } 529 530 /** 531 * @brief This callback method schedules a OS specific deferred task. 532 * 533 * @param[in] controller This parameter specifies the controller 534 * object with which this callback is associated. 535 * @param[in] start_internal_io_task_routine This parameter specifies the 536 * sci start_internal_io routine. 537 * @param[in] context This parameter specifies a handle to a parameter 538 * that will be passed into the "start_internal_io_task_routine" 539 * when it is invoked. 540 * 541 * @return none 542 */ 543 void 544 scif_cb_start_internal_io_task_schedule(SCI_CONTROLLER_HANDLE_T scif_controller, 545 FUNCPTR start_internal_io_task_routine, void *context) 546 { 547 /** @todo Use FreeBSD tasklet to defer this routine to a later time, 548 * rather than calling the routine inline. 549 */ 550 SCI_START_INTERNAL_IO_ROUTINE sci_start_internal_io_routine = 551 (SCI_START_INTERNAL_IO_ROUTINE)start_internal_io_task_routine; 552 553 sci_start_internal_io_routine(context); 554 } 555 556 /** 557 * @brief In this method the user must write to PCI memory via access. 558 * This method is used for access to memory space and IO space. 559 * 560 * @param[in] controller The controller for which to read a DWORD. 561 * @param[in] address This parameter depicts the address into 562 * which to write. 563 * @param[out] write_value This parameter depicts the value being written 564 * into the PCI memory location. 565 * 566 * @todo These PCI memory access calls likely needs to be optimized into macros? 567 */ 568 void 569 scic_cb_pci_write_dword(SCI_CONTROLLER_HANDLE_T scic_controller, 570 void *address, uint32_t write_value) 571 { 572 SCI_CONTROLLER_HANDLE_T scif_controller = 573 (SCI_CONTROLLER_HANDLE_T) sci_object_get_association(scic_controller); 574 struct ISCI_CONTROLLER *isci_controller = 575 (struct ISCI_CONTROLLER *) sci_object_get_association(scif_controller); 576 struct isci_softc *isci = isci_controller->isci; 577 uint32_t bar = (uint32_t)(((POINTER_UINT)address & 0xF0000000) >> 28); 578 bus_size_t offset = (bus_size_t)((POINTER_UINT)address & 0x0FFFFFFF); 579 580 bus_space_write_4(isci->pci_bar[bar].bus_tag, 581 isci->pci_bar[bar].bus_handle, offset, write_value); 582 } 583 584 /** 585 * @brief In this method the user must read from PCI memory via access. 586 * This method is used for access to memory space and IO space. 587 * 588 * @param[in] controller The controller for which to read a DWORD. 589 * @param[in] address This parameter depicts the address from 590 * which to read. 591 * 592 * @return The value being returned from the PCI memory location. 593 * 594 * @todo This PCI memory access calls likely need to be optimized into macro? 595 */ 596 uint32_t 597 scic_cb_pci_read_dword(SCI_CONTROLLER_HANDLE_T scic_controller, void *address) 598 { 599 SCI_CONTROLLER_HANDLE_T scif_controller = 600 (SCI_CONTROLLER_HANDLE_T)sci_object_get_association(scic_controller); 601 struct ISCI_CONTROLLER *isci_controller = 602 (struct ISCI_CONTROLLER *)sci_object_get_association(scif_controller); 603 struct isci_softc *isci = isci_controller->isci; 604 uint32_t bar = (uint32_t)(((POINTER_UINT)address & 0xF0000000) >> 28); 605 bus_size_t offset = (bus_size_t)((POINTER_UINT)address & 0x0FFFFFFF); 606 607 return (bus_space_read_4(isci->pci_bar[bar].bus_tag, 608 isci->pci_bar[bar].bus_handle, offset)); 609 } 610 611 /** 612 * @brief This method is called when the core requires the OS driver 613 * to stall execution. This method is utilized during initialization 614 * or non-performance paths only. 615 * 616 * @param[in] microseconds This parameter specifies the number of 617 * microseconds for which to stall. The operating system driver 618 * is allowed to round this value up where necessary. 619 * 620 * @return none. 621 */ 622 void 623 scic_cb_stall_execution(uint32_t microseconds) 624 { 625 626 DELAY(microseconds); 627 } 628 629 /** 630 * @brief In this method the user must return the base address register (BAR) 631 * value for the supplied base address register number. 632 * 633 * @param[in] controller The controller for which to retrieve the bar number. 634 * @param[in] bar_number This parameter depicts the BAR index/number to be read. 635 * 636 * @return Return a pointer value indicating the contents of the BAR. 637 * @retval NULL indicates an invalid BAR index/number was specified. 638 * @retval All other values indicate a valid VIRTUAL address from the BAR. 639 */ 640 void * 641 scic_cb_pci_get_bar(SCI_CONTROLLER_HANDLE_T controller, 642 uint16_t bar_number) 643 { 644 645 return ((void *)(POINTER_UINT)((uint32_t)bar_number << 28)); 646 } 647 648 /** 649 * @brief This method informs the SCI Core user that a phy/link became 650 * ready, but the phy is not allowed in the port. In some 651 * situations the underlying hardware only allows for certain phy 652 * to port mappings. If these mappings are violated, then this 653 * API is invoked. 654 * 655 * @param[in] controller This parameter represents the controller which 656 * contains the port. 657 * @param[in] port This parameter specifies the SCI port object for which 658 * the callback is being invoked. 659 * @param[in] phy This parameter specifies the phy that came ready, but the 660 * phy can't be a valid member of the port. 661 * 662 * @return none 663 */ 664 void 665 scic_cb_port_invalid_link_up(SCI_CONTROLLER_HANDLE_T controller, 666 SCI_PORT_HANDLE_T port, SCI_PHY_HANDLE_T phy) 667 { 668 669 } 670