1 /*- 2 * Copyright (c) 2004-2006 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /*- 34 * Intel(R) PRO/Wireless 2100 MiniPCI driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/linker.h> 52 #include <sys/firmware.h> 53 54 #include <machine/bus.h> 55 #include <machine/resource.h> 56 #include <sys/rman.h> 57 58 #include <dev/pci/pcireg.h> 59 #include <dev/pci/pcivar.h> 60 61 #include <net/bpf.h> 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_arp.h> 65 #include <net/ethernet.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 70 #include <net80211/ieee80211_var.h> 71 #include <net80211/ieee80211_radiotap.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/if_ether.h> 78 79 #include <dev/ipw/if_ipwreg.h> 80 #include <dev/ipw/if_ipwvar.h> 81 82 #define IPW_DEBUG 83 #ifdef IPW_DEBUG 84 #define DPRINTF(x) do { if (ipw_debug > 0) printf x; } while (0) 85 #define DPRINTFN(n, x) do { if (ipw_debug >= (n)) printf x; } while (0) 86 int ipw_debug = 0; 87 SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level"); 88 #else 89 #define DPRINTF(x) 90 #define DPRINTFN(n, x) 91 #endif 92 93 MODULE_DEPEND(ipw, pci, 1, 1, 1); 94 MODULE_DEPEND(ipw, wlan, 1, 1, 1); 95 MODULE_DEPEND(ipw, firmware, 1, 1, 1); 96 97 struct ipw_ident { 98 uint16_t vendor; 99 uint16_t device; 100 const char *name; 101 }; 102 103 static const struct ipw_ident ipw_ident_table[] = { 104 { 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" }, 105 106 { 0, 0, NULL } 107 }; 108 109 static struct ieee80211vap *ipw_vap_create(struct ieee80211com *, 110 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 111 const uint8_t [IEEE80211_ADDR_LEN], 112 const uint8_t [IEEE80211_ADDR_LEN]); 113 static void ipw_vap_delete(struct ieee80211vap *); 114 static int ipw_dma_alloc(struct ipw_softc *); 115 static void ipw_release(struct ipw_softc *); 116 static void ipw_media_status(struct ifnet *, struct ifmediareq *); 117 static int ipw_newstate(struct ieee80211vap *, enum ieee80211_state, int); 118 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t); 119 static void ipw_rx_cmd_intr(struct ipw_softc *, struct ipw_soft_buf *); 120 static void ipw_rx_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *); 121 static void ipw_rx_data_intr(struct ipw_softc *, struct ipw_status *, 122 struct ipw_soft_bd *, struct ipw_soft_buf *); 123 static void ipw_rx_intr(struct ipw_softc *); 124 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *); 125 static void ipw_tx_intr(struct ipw_softc *); 126 static void ipw_intr(void *); 127 static void ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int); 128 static const char * ipw_cmdname(int); 129 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t); 130 static int ipw_tx_start(struct ifnet *, struct mbuf *, 131 struct ieee80211_node *); 132 static int ipw_raw_xmit(struct ieee80211_node *, struct mbuf *, 133 const struct ieee80211_bpf_params *); 134 static void ipw_start(struct ifnet *); 135 static void ipw_start_locked(struct ifnet *); 136 static void ipw_watchdog(void *); 137 static int ipw_ioctl(struct ifnet *, u_long, caddr_t); 138 static void ipw_stop_master(struct ipw_softc *); 139 static int ipw_enable(struct ipw_softc *); 140 static int ipw_disable(struct ipw_softc *); 141 static int ipw_reset(struct ipw_softc *); 142 static int ipw_load_ucode(struct ipw_softc *, const char *, int); 143 static int ipw_load_firmware(struct ipw_softc *, const char *, int); 144 static int ipw_config(struct ipw_softc *); 145 static void ipw_assoc(struct ieee80211com *, struct ieee80211vap *); 146 static void ipw_disassoc(struct ieee80211com *, struct ieee80211vap *); 147 static void ipw_init_task(void *, int); 148 static void ipw_init(void *); 149 static void ipw_init_locked(struct ipw_softc *); 150 static void ipw_stop(void *); 151 static void ipw_stop_locked(struct ipw_softc *); 152 static int ipw_sysctl_stats(SYSCTL_HANDLER_ARGS); 153 static int ipw_sysctl_radio(SYSCTL_HANDLER_ARGS); 154 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t); 155 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t); 156 #if 0 157 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, 158 uint32_t *); 159 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, 160 bus_size_t); 161 #endif 162 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, 163 const uint8_t *, bus_size_t); 164 static int ipw_scan(struct ipw_softc *); 165 static void ipw_scan_start(struct ieee80211com *); 166 static void ipw_scan_end(struct ieee80211com *); 167 static void ipw_set_channel(struct ieee80211com *); 168 static void ipw_scan_curchan(struct ieee80211_scan_state *, 169 unsigned long maxdwell); 170 static void ipw_scan_mindwell(struct ieee80211_scan_state *); 171 172 static int ipw_probe(device_t); 173 static int ipw_attach(device_t); 174 static int ipw_detach(device_t); 175 static int ipw_shutdown(device_t); 176 static int ipw_suspend(device_t); 177 static int ipw_resume(device_t); 178 179 static device_method_t ipw_methods[] = { 180 /* Device interface */ 181 DEVMETHOD(device_probe, ipw_probe), 182 DEVMETHOD(device_attach, ipw_attach), 183 DEVMETHOD(device_detach, ipw_detach), 184 DEVMETHOD(device_shutdown, ipw_shutdown), 185 DEVMETHOD(device_suspend, ipw_suspend), 186 DEVMETHOD(device_resume, ipw_resume), 187 188 DEVMETHOD_END 189 }; 190 191 static driver_t ipw_driver = { 192 "ipw", 193 ipw_methods, 194 sizeof (struct ipw_softc) 195 }; 196 197 static devclass_t ipw_devclass; 198 199 DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, NULL, NULL); 200 201 MODULE_VERSION(ipw, 1); 202 203 static int 204 ipw_probe(device_t dev) 205 { 206 const struct ipw_ident *ident; 207 208 for (ident = ipw_ident_table; ident->name != NULL; ident++) { 209 if (pci_get_vendor(dev) == ident->vendor && 210 pci_get_device(dev) == ident->device) { 211 device_set_desc(dev, ident->name); 212 return (BUS_PROBE_DEFAULT); 213 } 214 } 215 return ENXIO; 216 } 217 218 /* Base Address Register */ 219 static int 220 ipw_attach(device_t dev) 221 { 222 struct ipw_softc *sc = device_get_softc(dev); 223 struct ifnet *ifp; 224 struct ieee80211com *ic; 225 struct ieee80211_channel *c; 226 uint16_t val; 227 int error, i; 228 uint8_t macaddr[IEEE80211_ADDR_LEN]; 229 230 sc->sc_dev = dev; 231 232 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 233 MTX_DEF | MTX_RECURSE); 234 235 TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc); 236 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 237 238 pci_write_config(dev, 0x41, 0, 1); 239 240 /* enable bus-mastering */ 241 pci_enable_busmaster(dev); 242 243 i = PCIR_BAR(0); 244 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 245 if (sc->mem == NULL) { 246 device_printf(dev, "could not allocate memory resource\n"); 247 goto fail; 248 } 249 250 sc->sc_st = rman_get_bustag(sc->mem); 251 sc->sc_sh = rman_get_bushandle(sc->mem); 252 253 i = 0; 254 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 255 RF_ACTIVE | RF_SHAREABLE); 256 if (sc->irq == NULL) { 257 device_printf(dev, "could not allocate interrupt resource\n"); 258 goto fail1; 259 } 260 261 if (ipw_reset(sc) != 0) { 262 device_printf(dev, "could not reset adapter\n"); 263 goto fail2; 264 } 265 266 if (ipw_dma_alloc(sc) != 0) { 267 device_printf(dev, "could not allocate DMA resources\n"); 268 goto fail2; 269 } 270 271 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 272 if (ifp == NULL) { 273 device_printf(dev, "can not if_alloc()\n"); 274 goto fail3; 275 } 276 ic = ifp->if_l2com; 277 278 ifp->if_softc = sc; 279 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 280 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 281 ifp->if_init = ipw_init; 282 ifp->if_ioctl = ipw_ioctl; 283 ifp->if_start = ipw_start; 284 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 285 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 286 IFQ_SET_READY(&ifp->if_snd); 287 288 ic->ic_ifp = ifp; 289 ic->ic_opmode = IEEE80211_M_STA; 290 ic->ic_phytype = IEEE80211_T_DS; 291 292 /* set device capabilities */ 293 ic->ic_caps = 294 IEEE80211_C_STA /* station mode supported */ 295 | IEEE80211_C_IBSS /* IBSS mode supported */ 296 | IEEE80211_C_MONITOR /* monitor mode supported */ 297 | IEEE80211_C_PMGT /* power save supported */ 298 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 299 | IEEE80211_C_WPA /* 802.11i supported */ 300 ; 301 302 /* read MAC address from EEPROM */ 303 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0); 304 macaddr[0] = val >> 8; 305 macaddr[1] = val & 0xff; 306 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1); 307 macaddr[2] = val >> 8; 308 macaddr[3] = val & 0xff; 309 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2); 310 macaddr[4] = val >> 8; 311 macaddr[5] = val & 0xff; 312 313 /* set supported .11b channels (read from EEPROM) */ 314 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0) 315 val = 0x7ff; /* default to channels 1-11 */ 316 val <<= 1; 317 for (i = 1; i < 16; i++) { 318 if (val & (1 << i)) { 319 c = &ic->ic_channels[ic->ic_nchans++]; 320 c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 321 c->ic_flags = IEEE80211_CHAN_B; 322 c->ic_ieee = i; 323 } 324 } 325 326 /* check support for radio transmitter switch in EEPROM */ 327 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8)) 328 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH; 329 330 ieee80211_ifattach(ic, macaddr); 331 ic->ic_scan_start = ipw_scan_start; 332 ic->ic_scan_end = ipw_scan_end; 333 ic->ic_set_channel = ipw_set_channel; 334 ic->ic_scan_curchan = ipw_scan_curchan; 335 ic->ic_scan_mindwell = ipw_scan_mindwell; 336 ic->ic_raw_xmit = ipw_raw_xmit; 337 338 ic->ic_vap_create = ipw_vap_create; 339 ic->ic_vap_delete = ipw_vap_delete; 340 341 ieee80211_radiotap_attach(ic, 342 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 343 IPW_TX_RADIOTAP_PRESENT, 344 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 345 IPW_RX_RADIOTAP_PRESENT); 346 347 /* 348 * Add a few sysctl knobs. 349 */ 350 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 351 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio", 352 CTLTYPE_INT | CTLFLAG_RD, sc, 0, ipw_sysctl_radio, "I", 353 "radio transmitter switch state (0=off, 1=on)"); 354 355 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 356 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", 357 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, ipw_sysctl_stats, "S", 358 "statistics"); 359 360 /* 361 * Hook our interrupt after all initialization is complete. 362 */ 363 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 364 NULL, ipw_intr, sc, &sc->sc_ih); 365 if (error != 0) { 366 device_printf(dev, "could not set up interrupt\n"); 367 goto fail4; 368 } 369 370 if (bootverbose) 371 ieee80211_announce(ic); 372 373 return 0; 374 fail4: 375 if_free(ifp); 376 fail3: 377 ipw_release(sc); 378 fail2: 379 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 380 fail1: 381 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 382 sc->mem); 383 fail: 384 mtx_destroy(&sc->sc_mtx); 385 return ENXIO; 386 } 387 388 static int 389 ipw_detach(device_t dev) 390 { 391 struct ipw_softc *sc = device_get_softc(dev); 392 struct ifnet *ifp = sc->sc_ifp; 393 struct ieee80211com *ic = ifp->if_l2com; 394 395 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 396 397 ieee80211_draintask(ic, &sc->sc_init_task); 398 ipw_stop(sc); 399 400 ieee80211_ifdetach(ic); 401 402 callout_drain(&sc->sc_wdtimer); 403 404 ipw_release(sc); 405 406 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 407 408 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 409 sc->mem); 410 411 if_free(ifp); 412 413 if (sc->sc_firmware != NULL) { 414 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 415 sc->sc_firmware = NULL; 416 } 417 418 mtx_destroy(&sc->sc_mtx); 419 420 return 0; 421 } 422 423 static struct ieee80211vap * 424 ipw_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 425 enum ieee80211_opmode opmode, int flags, 426 const uint8_t bssid[IEEE80211_ADDR_LEN], 427 const uint8_t mac[IEEE80211_ADDR_LEN]) 428 { 429 struct ifnet *ifp = ic->ic_ifp; 430 struct ipw_softc *sc = ifp->if_softc; 431 struct ipw_vap *ivp; 432 struct ieee80211vap *vap; 433 const struct firmware *fp; 434 const struct ipw_firmware_hdr *hdr; 435 const char *imagename; 436 437 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 438 return NULL; 439 440 switch (opmode) { 441 case IEEE80211_M_STA: 442 imagename = "ipw_bss"; 443 break; 444 case IEEE80211_M_IBSS: 445 imagename = "ipw_ibss"; 446 break; 447 case IEEE80211_M_MONITOR: 448 imagename = "ipw_monitor"; 449 break; 450 default: 451 return NULL; 452 } 453 454 /* 455 * Load firmware image using the firmware(9) subsystem. Doing 456 * this unlocked is ok since we're single-threaded by the 457 * 802.11 layer. 458 */ 459 if (sc->sc_firmware == NULL || 460 strcmp(sc->sc_firmware->name, imagename) != 0) { 461 if (sc->sc_firmware != NULL) 462 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 463 sc->sc_firmware = firmware_get(imagename); 464 } 465 if (sc->sc_firmware == NULL) { 466 device_printf(sc->sc_dev, 467 "could not load firmware image '%s'\n", imagename); 468 return NULL; 469 } 470 fp = sc->sc_firmware; 471 if (fp->datasize < sizeof *hdr) { 472 device_printf(sc->sc_dev, 473 "firmware image too short %zu\n", fp->datasize); 474 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 475 sc->sc_firmware = NULL; 476 return NULL; 477 } 478 hdr = (const struct ipw_firmware_hdr *)fp->data; 479 if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) + 480 le32toh(hdr->ucodesz)) { 481 device_printf(sc->sc_dev, 482 "firmware image too short %zu\n", fp->datasize); 483 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 484 sc->sc_firmware = NULL; 485 return NULL; 486 } 487 488 ivp = (struct ipw_vap *) malloc(sizeof(struct ipw_vap), 489 M_80211_VAP, M_NOWAIT | M_ZERO); 490 if (ivp == NULL) 491 return NULL; 492 vap = &ivp->vap; 493 494 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 495 /* override with driver methods */ 496 ivp->newstate = vap->iv_newstate; 497 vap->iv_newstate = ipw_newstate; 498 499 /* complete setup */ 500 ieee80211_vap_attach(vap, ieee80211_media_change, ipw_media_status); 501 ic->ic_opmode = opmode; 502 return vap; 503 } 504 505 static void 506 ipw_vap_delete(struct ieee80211vap *vap) 507 { 508 struct ipw_vap *ivp = IPW_VAP(vap); 509 510 ieee80211_vap_detach(vap); 511 free(ivp, M_80211_VAP); 512 } 513 514 static int 515 ipw_dma_alloc(struct ipw_softc *sc) 516 { 517 struct ipw_soft_bd *sbd; 518 struct ipw_soft_hdr *shdr; 519 struct ipw_soft_buf *sbuf; 520 bus_addr_t physaddr; 521 int error, i; 522 523 /* 524 * Allocate parent DMA tag for subsequent allocations. 525 */ 526 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 527 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 528 BUS_SPACE_MAXSIZE_32BIT, BUS_SPACE_UNRESTRICTED, 529 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->parent_dmat); 530 if (error != 0) { 531 device_printf(sc->sc_dev, "could not create parent DMA tag\n"); 532 goto fail; 533 } 534 535 /* 536 * Allocate and map tx ring. 537 */ 538 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 539 BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL, 540 NULL, &sc->tbd_dmat); 541 if (error != 0) { 542 device_printf(sc->sc_dev, "could not create tx ring DMA tag\n"); 543 goto fail; 544 } 545 546 error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list, 547 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map); 548 if (error != 0) { 549 device_printf(sc->sc_dev, 550 "could not allocate tx ring DMA memory\n"); 551 goto fail; 552 } 553 554 error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list, 555 IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0); 556 if (error != 0) { 557 device_printf(sc->sc_dev, "could not map tx ring DMA memory\n"); 558 goto fail; 559 } 560 561 /* 562 * Allocate and map rx ring. 563 */ 564 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 565 BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL, 566 NULL, &sc->rbd_dmat); 567 if (error != 0) { 568 device_printf(sc->sc_dev, "could not create rx ring DMA tag\n"); 569 goto fail; 570 } 571 572 error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list, 573 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map); 574 if (error != 0) { 575 device_printf(sc->sc_dev, 576 "could not allocate rx ring DMA memory\n"); 577 goto fail; 578 } 579 580 error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list, 581 IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0); 582 if (error != 0) { 583 device_printf(sc->sc_dev, "could not map rx ring DMA memory\n"); 584 goto fail; 585 } 586 587 /* 588 * Allocate and map status ring. 589 */ 590 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 591 BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0, 592 NULL, NULL, &sc->status_dmat); 593 if (error != 0) { 594 device_printf(sc->sc_dev, 595 "could not create status ring DMA tag\n"); 596 goto fail; 597 } 598 599 error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list, 600 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map); 601 if (error != 0) { 602 device_printf(sc->sc_dev, 603 "could not allocate status ring DMA memory\n"); 604 goto fail; 605 } 606 607 error = bus_dmamap_load(sc->status_dmat, sc->status_map, 608 sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys, 609 0); 610 if (error != 0) { 611 device_printf(sc->sc_dev, 612 "could not map status ring DMA memory\n"); 613 goto fail; 614 } 615 616 /* 617 * Allocate command DMA map. 618 */ 619 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 620 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1, 621 sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat); 622 if (error != 0) { 623 device_printf(sc->sc_dev, "could not create command DMA tag\n"); 624 goto fail; 625 } 626 627 error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map); 628 if (error != 0) { 629 device_printf(sc->sc_dev, 630 "could not create command DMA map\n"); 631 goto fail; 632 } 633 634 /* 635 * Allocate headers DMA maps. 636 */ 637 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 638 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1, 639 sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat); 640 if (error != 0) { 641 device_printf(sc->sc_dev, "could not create header DMA tag\n"); 642 goto fail; 643 } 644 645 SLIST_INIT(&sc->free_shdr); 646 for (i = 0; i < IPW_NDATA; i++) { 647 shdr = &sc->shdr_list[i]; 648 error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map); 649 if (error != 0) { 650 device_printf(sc->sc_dev, 651 "could not create header DMA map\n"); 652 goto fail; 653 } 654 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 655 } 656 657 /* 658 * Allocate tx buffers DMA maps. 659 */ 660 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 661 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0, 662 NULL, NULL, &sc->txbuf_dmat); 663 if (error != 0) { 664 device_printf(sc->sc_dev, "could not create tx DMA tag\n"); 665 goto fail; 666 } 667 668 SLIST_INIT(&sc->free_sbuf); 669 for (i = 0; i < IPW_NDATA; i++) { 670 sbuf = &sc->tx_sbuf_list[i]; 671 error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map); 672 if (error != 0) { 673 device_printf(sc->sc_dev, 674 "could not create tx DMA map\n"); 675 goto fail; 676 } 677 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 678 } 679 680 /* 681 * Initialize tx ring. 682 */ 683 for (i = 0; i < IPW_NTBD; i++) { 684 sbd = &sc->stbd_list[i]; 685 sbd->bd = &sc->tbd_list[i]; 686 sbd->type = IPW_SBD_TYPE_NOASSOC; 687 } 688 689 /* 690 * Pre-allocate rx buffers and DMA maps. 691 */ 692 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 693 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, 694 NULL, &sc->rxbuf_dmat); 695 if (error != 0) { 696 device_printf(sc->sc_dev, "could not create rx DMA tag\n"); 697 goto fail; 698 } 699 700 for (i = 0; i < IPW_NRBD; i++) { 701 sbd = &sc->srbd_list[i]; 702 sbuf = &sc->rx_sbuf_list[i]; 703 sbd->bd = &sc->rbd_list[i]; 704 705 sbuf->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 706 if (sbuf->m == NULL) { 707 device_printf(sc->sc_dev, 708 "could not allocate rx mbuf\n"); 709 error = ENOMEM; 710 goto fail; 711 } 712 713 error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map); 714 if (error != 0) { 715 device_printf(sc->sc_dev, 716 "could not create rx DMA map\n"); 717 goto fail; 718 } 719 720 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 721 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 722 &physaddr, 0); 723 if (error != 0) { 724 device_printf(sc->sc_dev, 725 "could not map rx DMA memory\n"); 726 goto fail; 727 } 728 729 sbd->type = IPW_SBD_TYPE_DATA; 730 sbd->priv = sbuf; 731 sbd->bd->physaddr = htole32(physaddr); 732 sbd->bd->len = htole32(MCLBYTES); 733 } 734 735 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 736 737 return 0; 738 739 fail: ipw_release(sc); 740 return error; 741 } 742 743 static void 744 ipw_release(struct ipw_softc *sc) 745 { 746 struct ipw_soft_buf *sbuf; 747 int i; 748 749 if (sc->parent_dmat != NULL) { 750 bus_dma_tag_destroy(sc->parent_dmat); 751 } 752 753 if (sc->tbd_dmat != NULL) { 754 if (sc->stbd_list != NULL) { 755 bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map); 756 bus_dmamem_free(sc->tbd_dmat, sc->tbd_list, 757 sc->tbd_map); 758 } 759 bus_dma_tag_destroy(sc->tbd_dmat); 760 } 761 762 if (sc->rbd_dmat != NULL) { 763 if (sc->rbd_list != NULL) { 764 bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map); 765 bus_dmamem_free(sc->rbd_dmat, sc->rbd_list, 766 sc->rbd_map); 767 } 768 bus_dma_tag_destroy(sc->rbd_dmat); 769 } 770 771 if (sc->status_dmat != NULL) { 772 if (sc->status_list != NULL) { 773 bus_dmamap_unload(sc->status_dmat, sc->status_map); 774 bus_dmamem_free(sc->status_dmat, sc->status_list, 775 sc->status_map); 776 } 777 bus_dma_tag_destroy(sc->status_dmat); 778 } 779 780 for (i = 0; i < IPW_NTBD; i++) 781 ipw_release_sbd(sc, &sc->stbd_list[i]); 782 783 if (sc->cmd_dmat != NULL) { 784 bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map); 785 bus_dma_tag_destroy(sc->cmd_dmat); 786 } 787 788 if (sc->hdr_dmat != NULL) { 789 for (i = 0; i < IPW_NDATA; i++) 790 bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map); 791 bus_dma_tag_destroy(sc->hdr_dmat); 792 } 793 794 if (sc->txbuf_dmat != NULL) { 795 for (i = 0; i < IPW_NDATA; i++) { 796 bus_dmamap_destroy(sc->txbuf_dmat, 797 sc->tx_sbuf_list[i].map); 798 } 799 bus_dma_tag_destroy(sc->txbuf_dmat); 800 } 801 802 if (sc->rxbuf_dmat != NULL) { 803 for (i = 0; i < IPW_NRBD; i++) { 804 sbuf = &sc->rx_sbuf_list[i]; 805 if (sbuf->m != NULL) { 806 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, 807 BUS_DMASYNC_POSTREAD); 808 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 809 m_freem(sbuf->m); 810 } 811 bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map); 812 } 813 bus_dma_tag_destroy(sc->rxbuf_dmat); 814 } 815 } 816 817 static int 818 ipw_shutdown(device_t dev) 819 { 820 struct ipw_softc *sc = device_get_softc(dev); 821 822 ipw_stop(sc); 823 824 return 0; 825 } 826 827 static int 828 ipw_suspend(device_t dev) 829 { 830 struct ipw_softc *sc = device_get_softc(dev); 831 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 832 833 ieee80211_suspend_all(ic); 834 return 0; 835 } 836 837 static int 838 ipw_resume(device_t dev) 839 { 840 struct ipw_softc *sc = device_get_softc(dev); 841 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 842 843 pci_write_config(dev, 0x41, 0, 1); 844 845 ieee80211_resume_all(ic); 846 return 0; 847 } 848 849 static int 850 ipw_cvtrate(int ipwrate) 851 { 852 switch (ipwrate) { 853 case IPW_RATE_DS1: return 2; 854 case IPW_RATE_DS2: return 4; 855 case IPW_RATE_DS5: return 11; 856 case IPW_RATE_DS11: return 22; 857 } 858 return 0; 859 } 860 861 /* 862 * The firmware automatically adapts the transmit speed. We report its current 863 * value here. 864 */ 865 static void 866 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr) 867 { 868 struct ieee80211vap *vap = ifp->if_softc; 869 struct ieee80211com *ic = vap->iv_ic; 870 struct ipw_softc *sc = ic->ic_ifp->if_softc; 871 872 /* read current transmission rate from adapter */ 873 vap->iv_bss->ni_txrate = ipw_cvtrate( 874 ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf); 875 ieee80211_media_status(ifp, imr); 876 } 877 878 static int 879 ipw_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 880 { 881 struct ipw_vap *ivp = IPW_VAP(vap); 882 struct ieee80211com *ic = vap->iv_ic; 883 struct ifnet *ifp = ic->ic_ifp; 884 struct ipw_softc *sc = ifp->if_softc; 885 enum ieee80211_state ostate; 886 887 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 888 ieee80211_state_name[vap->iv_state], 889 ieee80211_state_name[nstate], sc->flags)); 890 891 ostate = vap->iv_state; 892 IEEE80211_UNLOCK(ic); 893 894 switch (nstate) { 895 case IEEE80211_S_RUN: 896 if (ic->ic_opmode == IEEE80211_M_IBSS) { 897 /* 898 * XXX when joining an ibss network we are called 899 * with a SCAN -> RUN transition on scan complete. 900 * Use that to call ipw_assoc. On completing the 901 * join we are then called again with an AUTH -> RUN 902 * transition and we want to do nothing. This is 903 * all totally bogus and needs to be redone. 904 */ 905 if (ostate == IEEE80211_S_SCAN) 906 ipw_assoc(ic, vap); 907 } 908 break; 909 910 case IEEE80211_S_INIT: 911 if (sc->flags & IPW_FLAG_ASSOCIATED) 912 ipw_disassoc(ic, vap); 913 break; 914 915 case IEEE80211_S_AUTH: 916 /* 917 * Move to ASSOC state after the ipw_assoc() call. Firmware 918 * takes care of authentication, after the call we'll receive 919 * only an assoc response which would otherwise be discared 920 * if we are still in AUTH state. 921 */ 922 nstate = IEEE80211_S_ASSOC; 923 ipw_assoc(ic, vap); 924 break; 925 926 case IEEE80211_S_ASSOC: 927 /* 928 * If we are not transitioning from AUTH then resend the 929 * association request. 930 */ 931 if (ostate != IEEE80211_S_AUTH) 932 ipw_assoc(ic, vap); 933 break; 934 935 default: 936 break; 937 } 938 IEEE80211_LOCK(ic); 939 return ivp->newstate(vap, nstate, arg); 940 } 941 942 /* 943 * Read 16 bits at address 'addr' from the serial EEPROM. 944 */ 945 static uint16_t 946 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr) 947 { 948 uint32_t tmp; 949 uint16_t val; 950 int n; 951 952 /* clock C once before the first command */ 953 IPW_EEPROM_CTL(sc, 0); 954 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 955 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 956 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 957 958 /* write start bit (1) */ 959 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 960 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 961 962 /* write READ opcode (10) */ 963 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 964 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 965 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 966 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 967 968 /* write address A7-A0 */ 969 for (n = 7; n >= 0; n--) { 970 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 971 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D)); 972 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 973 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C); 974 } 975 976 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 977 978 /* read data Q15-Q0 */ 979 val = 0; 980 for (n = 15; n >= 0; n--) { 981 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 982 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 983 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL); 984 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n; 985 } 986 987 IPW_EEPROM_CTL(sc, 0); 988 989 /* clear Chip Select and clock C */ 990 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 991 IPW_EEPROM_CTL(sc, 0); 992 IPW_EEPROM_CTL(sc, IPW_EEPROM_C); 993 994 return le16toh(val); 995 } 996 997 static void 998 ipw_rx_cmd_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 999 { 1000 struct ipw_cmd *cmd; 1001 1002 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1003 1004 cmd = mtod(sbuf->m, struct ipw_cmd *); 1005 1006 DPRINTFN(9, ("cmd ack'ed %s(%u, %u, %u, %u, %u)\n", 1007 ipw_cmdname(le32toh(cmd->type)), le32toh(cmd->type), 1008 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len), 1009 le32toh(cmd->status))); 1010 1011 sc->flags &= ~IPW_FLAG_BUSY; 1012 wakeup(sc); 1013 } 1014 1015 static void 1016 ipw_rx_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 1017 { 1018 #define IEEESTATE(vap) ieee80211_state_name[vap->iv_state] 1019 struct ifnet *ifp = sc->sc_ifp; 1020 struct ieee80211com *ic = ifp->if_l2com; 1021 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1022 uint32_t state; 1023 1024 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1025 1026 state = le32toh(*mtod(sbuf->m, uint32_t *)); 1027 1028 switch (state) { 1029 case IPW_STATE_ASSOCIATED: 1030 DPRINTFN(2, ("Association succeeded (%s flags 0x%x)\n", 1031 IEEESTATE(vap), sc->flags)); 1032 /* XXX suppress state change in case the fw auto-associates */ 1033 if ((sc->flags & IPW_FLAG_ASSOCIATING) == 0) { 1034 DPRINTF(("Unexpected association (%s, flags 0x%x)\n", 1035 IEEESTATE(vap), sc->flags)); 1036 break; 1037 } 1038 sc->flags &= ~IPW_FLAG_ASSOCIATING; 1039 sc->flags |= IPW_FLAG_ASSOCIATED; 1040 break; 1041 1042 case IPW_STATE_SCANNING: 1043 DPRINTFN(3, ("Scanning (%s flags 0x%x)\n", 1044 IEEESTATE(vap), sc->flags)); 1045 /* 1046 * NB: Check driver state for association on assoc 1047 * loss as the firmware will immediately start to 1048 * scan and we would treat it as a beacon miss if 1049 * we checked the 802.11 layer state. 1050 */ 1051 if (sc->flags & IPW_FLAG_ASSOCIATED) { 1052 IPW_UNLOCK(sc); 1053 /* XXX probably need to issue disassoc to fw */ 1054 ieee80211_beacon_miss(ic); 1055 IPW_LOCK(sc); 1056 } 1057 break; 1058 1059 case IPW_STATE_SCAN_COMPLETE: 1060 /* 1061 * XXX For some reason scan requests generate scan 1062 * started + scan done events before any traffic is 1063 * received (e.g. probe response frames). We work 1064 * around this by marking the HACK flag and skipping 1065 * the first scan complete event. 1066 */ 1067 DPRINTFN(3, ("Scan complete (%s flags 0x%x)\n", 1068 IEEESTATE(vap), sc->flags)); 1069 if (sc->flags & IPW_FLAG_HACK) { 1070 sc->flags &= ~IPW_FLAG_HACK; 1071 break; 1072 } 1073 if (sc->flags & IPW_FLAG_SCANNING) { 1074 IPW_UNLOCK(sc); 1075 ieee80211_scan_done(vap); 1076 IPW_LOCK(sc); 1077 sc->flags &= ~IPW_FLAG_SCANNING; 1078 sc->sc_scan_timer = 0; 1079 } 1080 break; 1081 1082 case IPW_STATE_ASSOCIATION_LOST: 1083 DPRINTFN(2, ("Association lost (%s flags 0x%x)\n", 1084 IEEESTATE(vap), sc->flags)); 1085 sc->flags &= ~(IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1086 if (vap->iv_state == IEEE80211_S_RUN) { 1087 IPW_UNLOCK(sc); 1088 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1089 IPW_LOCK(sc); 1090 } 1091 break; 1092 1093 case IPW_STATE_DISABLED: 1094 /* XXX? is this right? */ 1095 sc->flags &= ~(IPW_FLAG_HACK | IPW_FLAG_SCANNING | 1096 IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1097 DPRINTFN(2, ("Firmware disabled (%s flags 0x%x)\n", 1098 IEEESTATE(vap), sc->flags)); 1099 break; 1100 1101 case IPW_STATE_RADIO_DISABLED: 1102 device_printf(sc->sc_dev, "radio turned off\n"); 1103 ieee80211_notify_radio(ic, 0); 1104 ipw_stop_locked(sc); 1105 /* XXX start polling thread to detect radio on */ 1106 break; 1107 1108 default: 1109 DPRINTFN(2, ("%s: unhandled state %u %s flags 0x%x\n", 1110 __func__, state, IEEESTATE(vap), sc->flags)); 1111 break; 1112 } 1113 #undef IEEESTATE 1114 } 1115 1116 /* 1117 * Set driver state for current channel. 1118 */ 1119 static void 1120 ipw_setcurchan(struct ipw_softc *sc, struct ieee80211_channel *chan) 1121 { 1122 struct ifnet *ifp = sc->sc_ifp; 1123 struct ieee80211com *ic = ifp->if_l2com; 1124 1125 ic->ic_curchan = chan; 1126 ieee80211_radiotap_chan_change(ic); 1127 } 1128 1129 /* 1130 * XXX: Hack to set the current channel to the value advertised in beacons or 1131 * probe responses. Only used during AP detection. 1132 */ 1133 static void 1134 ipw_fix_channel(struct ipw_softc *sc, struct mbuf *m) 1135 { 1136 struct ifnet *ifp = sc->sc_ifp; 1137 struct ieee80211com *ic = ifp->if_l2com; 1138 struct ieee80211_channel *c; 1139 struct ieee80211_frame *wh; 1140 uint8_t subtype; 1141 uint8_t *frm, *efrm; 1142 1143 wh = mtod(m, struct ieee80211_frame *); 1144 1145 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 1146 return; 1147 1148 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1149 1150 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 1151 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1152 return; 1153 1154 /* XXX use ieee80211_parse_beacon */ 1155 frm = (uint8_t *)(wh + 1); 1156 efrm = mtod(m, uint8_t *) + m->m_len; 1157 1158 frm += 12; /* skip tstamp, bintval and capinfo fields */ 1159 while (frm < efrm) { 1160 if (*frm == IEEE80211_ELEMID_DSPARMS) 1161 #if IEEE80211_CHAN_MAX < 255 1162 if (frm[2] <= IEEE80211_CHAN_MAX) 1163 #endif 1164 { 1165 DPRINTF(("Fixing channel to %d\n", frm[2])); 1166 c = ieee80211_find_channel(ic, 1167 ieee80211_ieee2mhz(frm[2], 0), 1168 IEEE80211_CHAN_B); 1169 if (c == NULL) 1170 c = &ic->ic_channels[0]; 1171 ipw_setcurchan(sc, c); 1172 } 1173 1174 frm += frm[1] + 2; 1175 } 1176 } 1177 1178 static void 1179 ipw_rx_data_intr(struct ipw_softc *sc, struct ipw_status *status, 1180 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf) 1181 { 1182 struct ifnet *ifp = sc->sc_ifp; 1183 struct ieee80211com *ic = ifp->if_l2com; 1184 struct mbuf *mnew, *m; 1185 struct ieee80211_node *ni; 1186 bus_addr_t physaddr; 1187 int error; 1188 int8_t rssi, nf; 1189 1190 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len), 1191 status->rssi)); 1192 1193 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) || 1194 le32toh(status->len) > MCLBYTES) 1195 return; 1196 1197 /* 1198 * Try to allocate a new mbuf for this ring element and load it before 1199 * processing the current mbuf. If the ring element cannot be loaded, 1200 * drop the received packet and reuse the old mbuf. In the unlikely 1201 * case that the old mbuf can't be reloaded either, explicitly panic. 1202 */ 1203 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1204 if (mnew == NULL) { 1205 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1206 return; 1207 } 1208 1209 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1210 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 1211 1212 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *), 1213 MCLBYTES, ipw_dma_map_addr, &physaddr, 0); 1214 if (error != 0) { 1215 m_freem(mnew); 1216 1217 /* try to reload the old mbuf */ 1218 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 1219 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 1220 &physaddr, 0); 1221 if (error != 0) { 1222 /* very unlikely that it will fail... */ 1223 panic("%s: could not load old rx mbuf", 1224 device_get_name(sc->sc_dev)); 1225 } 1226 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1227 return; 1228 } 1229 1230 /* 1231 * New mbuf successfully loaded, update Rx ring and continue 1232 * processing. 1233 */ 1234 m = sbuf->m; 1235 sbuf->m = mnew; 1236 sbd->bd->physaddr = htole32(physaddr); 1237 1238 /* finalize mbuf */ 1239 m->m_pkthdr.rcvif = ifp; 1240 m->m_pkthdr.len = m->m_len = le32toh(status->len); 1241 1242 rssi = status->rssi + IPW_RSSI_TO_DBM; 1243 nf = -95; 1244 if (ieee80211_radiotap_active(ic)) { 1245 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap; 1246 1247 tap->wr_flags = 0; 1248 tap->wr_antsignal = rssi; 1249 tap->wr_antnoise = nf; 1250 } 1251 1252 if (sc->flags & IPW_FLAG_SCANNING) 1253 ipw_fix_channel(sc, m); 1254 1255 IPW_UNLOCK(sc); 1256 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1257 if (ni != NULL) { 1258 (void) ieee80211_input(ni, m, rssi - nf, nf); 1259 ieee80211_free_node(ni); 1260 } else 1261 (void) ieee80211_input_all(ic, m, rssi - nf, nf); 1262 IPW_LOCK(sc); 1263 1264 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1265 } 1266 1267 static void 1268 ipw_rx_intr(struct ipw_softc *sc) 1269 { 1270 struct ipw_status *status; 1271 struct ipw_soft_bd *sbd; 1272 struct ipw_soft_buf *sbuf; 1273 uint32_t r, i; 1274 1275 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1276 return; 1277 1278 r = CSR_READ_4(sc, IPW_CSR_RX_READ); 1279 1280 bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD); 1281 1282 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) { 1283 status = &sc->status_list[i]; 1284 sbd = &sc->srbd_list[i]; 1285 sbuf = sbd->priv; 1286 1287 switch (le16toh(status->code) & 0xf) { 1288 case IPW_STATUS_CODE_COMMAND: 1289 ipw_rx_cmd_intr(sc, sbuf); 1290 break; 1291 1292 case IPW_STATUS_CODE_NEWSTATE: 1293 ipw_rx_newstate_intr(sc, sbuf); 1294 break; 1295 1296 case IPW_STATUS_CODE_DATA_802_3: 1297 case IPW_STATUS_CODE_DATA_802_11: 1298 ipw_rx_data_intr(sc, status, sbd, sbuf); 1299 break; 1300 1301 case IPW_STATUS_CODE_NOTIFICATION: 1302 DPRINTFN(2, ("notification status, len %u flags 0x%x\n", 1303 le32toh(status->len), status->flags)); 1304 /* XXX maybe drive state machine AUTH->ASSOC? */ 1305 break; 1306 1307 default: 1308 device_printf(sc->sc_dev, "unexpected status code %u\n", 1309 le16toh(status->code)); 1310 } 1311 1312 /* firmware was killed, stop processing received frames */ 1313 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1314 return; 1315 1316 sbd->bd->flags = 0; 1317 } 1318 1319 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1320 1321 /* kick the firmware */ 1322 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1; 1323 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 1324 } 1325 1326 static void 1327 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd) 1328 { 1329 struct ipw_soft_hdr *shdr; 1330 struct ipw_soft_buf *sbuf; 1331 1332 switch (sbd->type) { 1333 case IPW_SBD_TYPE_COMMAND: 1334 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, 1335 BUS_DMASYNC_POSTWRITE); 1336 bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map); 1337 break; 1338 1339 case IPW_SBD_TYPE_HEADER: 1340 shdr = sbd->priv; 1341 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE); 1342 bus_dmamap_unload(sc->hdr_dmat, shdr->map); 1343 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 1344 break; 1345 1346 case IPW_SBD_TYPE_DATA: 1347 sbuf = sbd->priv; 1348 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, 1349 BUS_DMASYNC_POSTWRITE); 1350 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1351 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 1352 1353 if (sbuf->m->m_flags & M_TXCB) 1354 ieee80211_process_callback(sbuf->ni, sbuf->m, 0/*XXX*/); 1355 m_freem(sbuf->m); 1356 ieee80211_free_node(sbuf->ni); 1357 1358 sc->sc_tx_timer = 0; 1359 break; 1360 } 1361 1362 sbd->type = IPW_SBD_TYPE_NOASSOC; 1363 } 1364 1365 static void 1366 ipw_tx_intr(struct ipw_softc *sc) 1367 { 1368 struct ifnet *ifp = sc->sc_ifp; 1369 struct ipw_soft_bd *sbd; 1370 uint32_t r, i; 1371 1372 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1373 return; 1374 1375 r = CSR_READ_4(sc, IPW_CSR_TX_READ); 1376 1377 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) { 1378 sbd = &sc->stbd_list[i]; 1379 1380 if (sbd->type == IPW_SBD_TYPE_DATA) 1381 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1382 1383 ipw_release_sbd(sc, sbd); 1384 sc->txfree++; 1385 } 1386 1387 /* remember what the firmware has processed */ 1388 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1; 1389 1390 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1391 ipw_start_locked(ifp); 1392 } 1393 1394 static void 1395 ipw_fatal_error_intr(struct ipw_softc *sc) 1396 { 1397 struct ifnet *ifp = sc->sc_ifp; 1398 struct ieee80211com *ic = ifp->if_l2com; 1399 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1400 1401 device_printf(sc->sc_dev, "firmware error\n"); 1402 if (vap != NULL) { 1403 IPW_UNLOCK(sc); 1404 ieee80211_cancel_scan(vap); 1405 IPW_LOCK(sc); 1406 } 1407 ieee80211_runtask(ic, &sc->sc_init_task); 1408 } 1409 1410 static void 1411 ipw_intr(void *arg) 1412 { 1413 struct ipw_softc *sc = arg; 1414 uint32_t r; 1415 1416 IPW_LOCK(sc); 1417 1418 r = CSR_READ_4(sc, IPW_CSR_INTR); 1419 if (r == 0 || r == 0xffffffff) 1420 goto done; 1421 1422 /* disable interrupts */ 1423 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1424 1425 /* acknowledge all interrupts */ 1426 CSR_WRITE_4(sc, IPW_CSR_INTR, r); 1427 1428 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) { 1429 ipw_fatal_error_intr(sc); 1430 goto done; 1431 } 1432 1433 if (r & IPW_INTR_FW_INIT_DONE) 1434 wakeup(sc); 1435 1436 if (r & IPW_INTR_RX_TRANSFER) 1437 ipw_rx_intr(sc); 1438 1439 if (r & IPW_INTR_TX_TRANSFER) 1440 ipw_tx_intr(sc); 1441 1442 /* re-enable interrupts */ 1443 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1444 done: 1445 IPW_UNLOCK(sc); 1446 } 1447 1448 static void 1449 ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1450 { 1451 if (error != 0) 1452 return; 1453 1454 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 1455 1456 *(bus_addr_t *)arg = segs[0].ds_addr; 1457 } 1458 1459 static const char * 1460 ipw_cmdname(int cmd) 1461 { 1462 #define N(a) (sizeof(a) / sizeof(a[0])) 1463 static const struct { 1464 int cmd; 1465 const char *name; 1466 } cmds[] = { 1467 { IPW_CMD_ADD_MULTICAST, "ADD_MULTICAST" }, 1468 { IPW_CMD_BROADCAST_SCAN, "BROADCAST_SCAN" }, 1469 { IPW_CMD_DISABLE, "DISABLE" }, 1470 { IPW_CMD_DISABLE_PHY, "DISABLE_PHY" }, 1471 { IPW_CMD_ENABLE, "ENABLE" }, 1472 { IPW_CMD_PREPARE_POWER_DOWN, "PREPARE_POWER_DOWN" }, 1473 { IPW_CMD_SET_BASIC_TX_RATES, "SET_BASIC_TX_RATES" }, 1474 { IPW_CMD_SET_BEACON_INTERVAL, "SET_BEACON_INTERVAL" }, 1475 { IPW_CMD_SET_CHANNEL, "SET_CHANNEL" }, 1476 { IPW_CMD_SET_CONFIGURATION, "SET_CONFIGURATION" }, 1477 { IPW_CMD_SET_DESIRED_BSSID, "SET_DESIRED_BSSID" }, 1478 { IPW_CMD_SET_ESSID, "SET_ESSID" }, 1479 { IPW_CMD_SET_FRAG_THRESHOLD, "SET_FRAG_THRESHOLD" }, 1480 { IPW_CMD_SET_MAC_ADDRESS, "SET_MAC_ADDRESS" }, 1481 { IPW_CMD_SET_MANDATORY_BSSID, "SET_MANDATORY_BSSID" }, 1482 { IPW_CMD_SET_MODE, "SET_MODE" }, 1483 { IPW_CMD_SET_MSDU_TX_RATES, "SET_MSDU_TX_RATES" }, 1484 { IPW_CMD_SET_POWER_MODE, "SET_POWER_MODE" }, 1485 { IPW_CMD_SET_RTS_THRESHOLD, "SET_RTS_THRESHOLD" }, 1486 { IPW_CMD_SET_SCAN_OPTIONS, "SET_SCAN_OPTIONS" }, 1487 { IPW_CMD_SET_SECURITY_INFO, "SET_SECURITY_INFO" }, 1488 { IPW_CMD_SET_TX_POWER_INDEX, "SET_TX_POWER_INDEX" }, 1489 { IPW_CMD_SET_TX_RATES, "SET_TX_RATES" }, 1490 { IPW_CMD_SET_WEP_FLAGS, "SET_WEP_FLAGS" }, 1491 { IPW_CMD_SET_WEP_KEY, "SET_WEP_KEY" }, 1492 { IPW_CMD_SET_WEP_KEY_INDEX, "SET_WEP_KEY_INDEX" }, 1493 { IPW_CMD_SET_WPA_IE, "SET_WPA_IE" }, 1494 1495 }; 1496 static char buf[12]; 1497 int i; 1498 1499 for (i = 0; i < N(cmds); i++) 1500 if (cmds[i].cmd == cmd) 1501 return cmds[i].name; 1502 snprintf(buf, sizeof(buf), "%u", cmd); 1503 return buf; 1504 #undef N 1505 } 1506 1507 /* 1508 * Send a command to the firmware and wait for the acknowledgement. 1509 */ 1510 static int 1511 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len) 1512 { 1513 struct ipw_soft_bd *sbd; 1514 bus_addr_t physaddr; 1515 int error; 1516 1517 IPW_LOCK_ASSERT(sc); 1518 1519 if (sc->flags & IPW_FLAG_BUSY) { 1520 device_printf(sc->sc_dev, "%s: %s not sent, busy\n", 1521 __func__, ipw_cmdname(type)); 1522 return EAGAIN; 1523 } 1524 sc->flags |= IPW_FLAG_BUSY; 1525 1526 sbd = &sc->stbd_list[sc->txcur]; 1527 1528 error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd, 1529 sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0); 1530 if (error != 0) { 1531 device_printf(sc->sc_dev, "could not map command DMA memory\n"); 1532 sc->flags &= ~IPW_FLAG_BUSY; 1533 return error; 1534 } 1535 1536 sc->cmd.type = htole32(type); 1537 sc->cmd.subtype = 0; 1538 sc->cmd.len = htole32(len); 1539 sc->cmd.seq = 0; 1540 memcpy(sc->cmd.data, data, len); 1541 1542 sbd->type = IPW_SBD_TYPE_COMMAND; 1543 sbd->bd->physaddr = htole32(physaddr); 1544 sbd->bd->len = htole32(sizeof (struct ipw_cmd)); 1545 sbd->bd->nfrag = 1; 1546 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND | 1547 IPW_BD_FLAG_TX_LAST_FRAGMENT; 1548 1549 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE); 1550 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1551 1552 #ifdef IPW_DEBUG 1553 if (ipw_debug >= 4) { 1554 printf("sending %s(%u, %u, %u, %u)", ipw_cmdname(type), type, 1555 0, 0, len); 1556 /* Print the data buffer in the higher debug level */ 1557 if (ipw_debug >= 9 && len > 0) { 1558 printf(" data: 0x"); 1559 for (int i = 1; i <= len; i++) 1560 printf("%1D", (u_char *)data + len - i, ""); 1561 } 1562 printf("\n"); 1563 } 1564 #endif 1565 1566 /* kick firmware */ 1567 sc->txfree--; 1568 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1569 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1570 1571 /* wait at most one second for command to complete */ 1572 error = msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz); 1573 if (error != 0) { 1574 device_printf(sc->sc_dev, "%s: %s failed, timeout (error %u)\n", 1575 __func__, ipw_cmdname(type), error); 1576 sc->flags &= ~IPW_FLAG_BUSY; 1577 return (error); 1578 } 1579 return (0); 1580 } 1581 1582 static int 1583 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni) 1584 { 1585 struct ipw_softc *sc = ifp->if_softc; 1586 struct ieee80211com *ic = ifp->if_l2com; 1587 struct ieee80211vap *vap = ni->ni_vap; 1588 struct ieee80211_frame *wh; 1589 struct ipw_soft_bd *sbd; 1590 struct ipw_soft_hdr *shdr; 1591 struct ipw_soft_buf *sbuf; 1592 struct ieee80211_key *k; 1593 struct mbuf *mnew; 1594 bus_dma_segment_t segs[IPW_MAX_NSEG]; 1595 bus_addr_t physaddr; 1596 int nsegs, error, i; 1597 1598 wh = mtod(m0, struct ieee80211_frame *); 1599 1600 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1601 k = ieee80211_crypto_encap(ni, m0); 1602 if (k == NULL) { 1603 m_freem(m0); 1604 return ENOBUFS; 1605 } 1606 /* packet header may have moved, reset our local pointer */ 1607 wh = mtod(m0, struct ieee80211_frame *); 1608 } 1609 1610 if (ieee80211_radiotap_active_vap(vap)) { 1611 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap; 1612 1613 tap->wt_flags = 0; 1614 1615 ieee80211_radiotap_tx(vap, m0); 1616 } 1617 1618 shdr = SLIST_FIRST(&sc->free_shdr); 1619 sbuf = SLIST_FIRST(&sc->free_sbuf); 1620 KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool")); 1621 1622 shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND); 1623 shdr->hdr.subtype = 0; 1624 shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) ? 1 : 0; 1625 shdr->hdr.encrypt = 0; 1626 shdr->hdr.keyidx = 0; 1627 shdr->hdr.keysz = 0; 1628 shdr->hdr.fragmentsz = 0; 1629 IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2); 1630 if (ic->ic_opmode == IEEE80211_M_STA) 1631 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3); 1632 else 1633 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1); 1634 1635 /* trim IEEE802.11 header */ 1636 m_adj(m0, sizeof (struct ieee80211_frame)); 1637 1638 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs, 1639 &nsegs, 0); 1640 if (error != 0 && error != EFBIG) { 1641 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1642 error); 1643 m_freem(m0); 1644 return error; 1645 } 1646 if (error != 0) { 1647 mnew = m_defrag(m0, M_NOWAIT); 1648 if (mnew == NULL) { 1649 device_printf(sc->sc_dev, 1650 "could not defragment mbuf\n"); 1651 m_freem(m0); 1652 return ENOBUFS; 1653 } 1654 m0 = mnew; 1655 1656 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, 1657 segs, &nsegs, 0); 1658 if (error != 0) { 1659 device_printf(sc->sc_dev, 1660 "could not map mbuf (error %d)\n", error); 1661 m_freem(m0); 1662 return error; 1663 } 1664 } 1665 1666 error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr, 1667 sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0); 1668 if (error != 0) { 1669 device_printf(sc->sc_dev, "could not map header DMA memory\n"); 1670 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1671 m_freem(m0); 1672 return error; 1673 } 1674 1675 SLIST_REMOVE_HEAD(&sc->free_sbuf, next); 1676 SLIST_REMOVE_HEAD(&sc->free_shdr, next); 1677 1678 sbd = &sc->stbd_list[sc->txcur]; 1679 sbd->type = IPW_SBD_TYPE_HEADER; 1680 sbd->priv = shdr; 1681 sbd->bd->physaddr = htole32(physaddr); 1682 sbd->bd->len = htole32(sizeof (struct ipw_hdr)); 1683 sbd->bd->nfrag = 1 + nsegs; 1684 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 | 1685 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1686 1687 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n", 1688 shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted, 1689 shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr, 1690 ":")); 1691 1692 sc->txfree--; 1693 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1694 1695 sbuf->m = m0; 1696 sbuf->ni = ni; 1697 1698 for (i = 0; i < nsegs; i++) { 1699 sbd = &sc->stbd_list[sc->txcur]; 1700 1701 sbd->bd->physaddr = htole32(segs[i].ds_addr); 1702 sbd->bd->len = htole32(segs[i].ds_len); 1703 sbd->bd->nfrag = 0; 1704 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3; 1705 if (i == nsegs - 1) { 1706 sbd->type = IPW_SBD_TYPE_DATA; 1707 sbd->priv = sbuf; 1708 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT; 1709 } else { 1710 sbd->type = IPW_SBD_TYPE_NOASSOC; 1711 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1712 } 1713 1714 DPRINTFN(5, ("sending fragment (%d)\n", i)); 1715 1716 sc->txfree--; 1717 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1718 } 1719 1720 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE); 1721 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE); 1722 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1723 1724 /* kick firmware */ 1725 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1726 1727 return 0; 1728 } 1729 1730 static int 1731 ipw_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1732 const struct ieee80211_bpf_params *params) 1733 { 1734 /* no support; just discard */ 1735 m_freem(m); 1736 ieee80211_free_node(ni); 1737 return 0; 1738 } 1739 1740 static void 1741 ipw_start(struct ifnet *ifp) 1742 { 1743 struct ipw_softc *sc = ifp->if_softc; 1744 1745 IPW_LOCK(sc); 1746 ipw_start_locked(ifp); 1747 IPW_UNLOCK(sc); 1748 } 1749 1750 static void 1751 ipw_start_locked(struct ifnet *ifp) 1752 { 1753 struct ipw_softc *sc = ifp->if_softc; 1754 struct ieee80211_node *ni; 1755 struct mbuf *m; 1756 1757 IPW_LOCK_ASSERT(sc); 1758 1759 for (;;) { 1760 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1761 if (m == NULL) 1762 break; 1763 if (sc->txfree < 1 + IPW_MAX_NSEG) { 1764 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1765 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1766 break; 1767 } 1768 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1769 if (ipw_tx_start(ifp, m, ni) != 0) { 1770 ieee80211_free_node(ni); 1771 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1772 break; 1773 } 1774 /* start watchdog timer */ 1775 sc->sc_tx_timer = 5; 1776 } 1777 } 1778 1779 static void 1780 ipw_watchdog(void *arg) 1781 { 1782 struct ipw_softc *sc = arg; 1783 struct ifnet *ifp = sc->sc_ifp; 1784 struct ieee80211com *ic = ifp->if_l2com; 1785 1786 IPW_LOCK_ASSERT(sc); 1787 1788 if (sc->sc_tx_timer > 0) { 1789 if (--sc->sc_tx_timer == 0) { 1790 if_printf(ifp, "device timeout\n"); 1791 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1792 taskqueue_enqueue(taskqueue_swi, &sc->sc_init_task); 1793 } 1794 } 1795 if (sc->sc_scan_timer > 0) { 1796 if (--sc->sc_scan_timer == 0) { 1797 DPRINTFN(3, ("Scan timeout\n")); 1798 /* End the scan */ 1799 if (sc->flags & IPW_FLAG_SCANNING) { 1800 IPW_UNLOCK(sc); 1801 ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); 1802 IPW_LOCK(sc); 1803 sc->flags &= ~IPW_FLAG_SCANNING; 1804 } 1805 } 1806 } 1807 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1808 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 1809 } 1810 1811 static int 1812 ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1813 { 1814 struct ipw_softc *sc = ifp->if_softc; 1815 struct ieee80211com *ic = ifp->if_l2com; 1816 struct ifreq *ifr = (struct ifreq *) data; 1817 int error = 0, startall = 0; 1818 1819 switch (cmd) { 1820 case SIOCSIFFLAGS: 1821 IPW_LOCK(sc); 1822 if (ifp->if_flags & IFF_UP) { 1823 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1824 ipw_init_locked(sc); 1825 startall = 1; 1826 } 1827 } else { 1828 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1829 ipw_stop_locked(sc); 1830 } 1831 IPW_UNLOCK(sc); 1832 if (startall) 1833 ieee80211_start_all(ic); 1834 break; 1835 case SIOCGIFMEDIA: 1836 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1837 break; 1838 case SIOCGIFADDR: 1839 error = ether_ioctl(ifp, cmd, data); 1840 break; 1841 default: 1842 error = EINVAL; 1843 break; 1844 } 1845 return error; 1846 } 1847 1848 static void 1849 ipw_stop_master(struct ipw_softc *sc) 1850 { 1851 uint32_t tmp; 1852 int ntries; 1853 1854 /* disable interrupts */ 1855 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1856 1857 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER); 1858 for (ntries = 0; ntries < 50; ntries++) { 1859 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED) 1860 break; 1861 DELAY(10); 1862 } 1863 if (ntries == 50) 1864 device_printf(sc->sc_dev, "timeout waiting for master\n"); 1865 1866 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1867 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET); 1868 1869 /* Clear all flags except the following */ 1870 sc->flags &= IPW_FLAG_HAS_RADIO_SWITCH; 1871 } 1872 1873 static int 1874 ipw_reset(struct ipw_softc *sc) 1875 { 1876 uint32_t tmp; 1877 int ntries; 1878 1879 ipw_stop_master(sc); 1880 1881 /* move adapter to D0 state */ 1882 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1883 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1884 1885 /* wait for clock stabilization */ 1886 for (ntries = 0; ntries < 1000; ntries++) { 1887 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY) 1888 break; 1889 DELAY(200); 1890 } 1891 if (ntries == 1000) 1892 return EIO; 1893 1894 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1895 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET); 1896 1897 DELAY(10); 1898 1899 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1900 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1901 1902 return 0; 1903 } 1904 1905 static int 1906 ipw_waitfordisable(struct ipw_softc *sc, int waitfor) 1907 { 1908 int ms = hz < 1000 ? 1 : hz/10; 1909 int i, error; 1910 1911 for (i = 0; i < 100; i++) { 1912 if (ipw_read_table1(sc, IPW_INFO_CARD_DISABLED) == waitfor) 1913 return 0; 1914 error = msleep(sc, &sc->sc_mtx, PCATCH, __func__, ms); 1915 if (error == 0 || error != EWOULDBLOCK) 1916 return 0; 1917 } 1918 DPRINTF(("%s: timeout waiting for %s\n", 1919 __func__, waitfor ? "disable" : "enable")); 1920 return ETIMEDOUT; 1921 } 1922 1923 static int 1924 ipw_enable(struct ipw_softc *sc) 1925 { 1926 int error; 1927 1928 if ((sc->flags & IPW_FLAG_ENABLED) == 0) { 1929 DPRINTF(("Enable adapter\n")); 1930 error = ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); 1931 if (error != 0) 1932 return error; 1933 error = ipw_waitfordisable(sc, 0); 1934 if (error != 0) 1935 return error; 1936 sc->flags |= IPW_FLAG_ENABLED; 1937 } 1938 return 0; 1939 } 1940 1941 static int 1942 ipw_disable(struct ipw_softc *sc) 1943 { 1944 int error; 1945 1946 if (sc->flags & IPW_FLAG_ENABLED) { 1947 DPRINTF(("Disable adapter\n")); 1948 error = ipw_cmd(sc, IPW_CMD_DISABLE, NULL, 0); 1949 if (error != 0) 1950 return error; 1951 error = ipw_waitfordisable(sc, 1); 1952 if (error != 0) 1953 return error; 1954 sc->flags &= ~IPW_FLAG_ENABLED; 1955 } 1956 return 0; 1957 } 1958 1959 /* 1960 * Upload the microcode to the device. 1961 */ 1962 static int 1963 ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size) 1964 { 1965 int ntries; 1966 1967 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 1968 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1969 1970 MEM_WRITE_2(sc, 0x220000, 0x0703); 1971 MEM_WRITE_2(sc, 0x220000, 0x0707); 1972 1973 MEM_WRITE_1(sc, 0x210014, 0x72); 1974 MEM_WRITE_1(sc, 0x210014, 0x72); 1975 1976 MEM_WRITE_1(sc, 0x210000, 0x40); 1977 MEM_WRITE_1(sc, 0x210000, 0x00); 1978 MEM_WRITE_1(sc, 0x210000, 0x40); 1979 1980 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size); 1981 1982 MEM_WRITE_1(sc, 0x210000, 0x00); 1983 MEM_WRITE_1(sc, 0x210000, 0x00); 1984 MEM_WRITE_1(sc, 0x210000, 0x80); 1985 1986 MEM_WRITE_2(sc, 0x220000, 0x0703); 1987 MEM_WRITE_2(sc, 0x220000, 0x0707); 1988 1989 MEM_WRITE_1(sc, 0x210014, 0x72); 1990 MEM_WRITE_1(sc, 0x210014, 0x72); 1991 1992 MEM_WRITE_1(sc, 0x210000, 0x00); 1993 MEM_WRITE_1(sc, 0x210000, 0x80); 1994 1995 for (ntries = 0; ntries < 10; ntries++) { 1996 if (MEM_READ_1(sc, 0x210000) & 1) 1997 break; 1998 DELAY(10); 1999 } 2000 if (ntries == 10) { 2001 device_printf(sc->sc_dev, 2002 "timeout waiting for ucode to initialize\n"); 2003 return EIO; 2004 } 2005 2006 MEM_WRITE_4(sc, 0x3000e0, 0); 2007 2008 return 0; 2009 } 2010 2011 /* set of macros to handle unaligned little endian data in firmware image */ 2012 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2013 #define GETLE16(p) ((p)[0] | (p)[1] << 8) 2014 static int 2015 ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size) 2016 { 2017 const uint8_t *p, *end; 2018 uint32_t tmp, dst; 2019 uint16_t len; 2020 int error; 2021 2022 p = fw; 2023 end = fw + size; 2024 while (p < end) { 2025 dst = GETLE32(p); p += 4; 2026 len = GETLE16(p); p += 2; 2027 2028 ipw_write_mem_1(sc, dst, p, len); 2029 p += len; 2030 } 2031 2032 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK | 2033 IPW_IO_LED_OFF); 2034 2035 /* enable interrupts */ 2036 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 2037 2038 /* kick the firmware */ 2039 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 2040 2041 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 2042 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY); 2043 2044 /* wait at most one second for firmware initialization to complete */ 2045 if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) { 2046 device_printf(sc->sc_dev, "timeout waiting for firmware " 2047 "initialization to complete\n"); 2048 return error; 2049 } 2050 2051 tmp = CSR_READ_4(sc, IPW_CSR_IO); 2052 CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK | 2053 IPW_IO_GPIO3_MASK); 2054 2055 return 0; 2056 } 2057 2058 static int 2059 ipw_setwepkeys(struct ipw_softc *sc) 2060 { 2061 struct ifnet *ifp = sc->sc_ifp; 2062 struct ieee80211com *ic = ifp->if_l2com; 2063 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2064 struct ipw_wep_key wepkey; 2065 struct ieee80211_key *wk; 2066 int error, i; 2067 2068 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2069 wk = &vap->iv_nw_keys[i]; 2070 2071 if (wk->wk_cipher == NULL || 2072 wk->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP) 2073 continue; 2074 2075 wepkey.idx = i; 2076 wepkey.len = wk->wk_keylen; 2077 memset(wepkey.key, 0, sizeof wepkey.key); 2078 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2079 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2080 wepkey.len)); 2081 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey, 2082 sizeof wepkey); 2083 if (error != 0) 2084 return error; 2085 } 2086 return 0; 2087 } 2088 2089 static int 2090 ipw_setwpaie(struct ipw_softc *sc, const void *ie, int ielen) 2091 { 2092 struct ipw_wpa_ie wpaie; 2093 2094 memset(&wpaie, 0, sizeof(wpaie)); 2095 wpaie.len = htole32(ielen); 2096 /* XXX verify length */ 2097 memcpy(&wpaie.ie, ie, ielen); 2098 DPRINTF(("Setting WPA IE\n")); 2099 return ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &wpaie, sizeof(wpaie)); 2100 } 2101 2102 static int 2103 ipw_setbssid(struct ipw_softc *sc, uint8_t *bssid) 2104 { 2105 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 2106 2107 if (bssid == NULL || bcmp(bssid, zerobssid, IEEE80211_ADDR_LEN) == 0) { 2108 DPRINTF(("Setting mandatory BSSID to null\n")); 2109 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0); 2110 } else { 2111 DPRINTF(("Setting mandatory BSSID to %6D\n", bssid, ":")); 2112 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, 2113 bssid, IEEE80211_ADDR_LEN); 2114 } 2115 } 2116 2117 static int 2118 ipw_setssid(struct ipw_softc *sc, void *ssid, size_t ssidlen) 2119 { 2120 if (ssidlen == 0) { 2121 /* 2122 * A bug in the firmware breaks the ``don't associate'' 2123 * bit in the scan options command. To compensate for 2124 * this install a bogus ssid when no ssid is specified 2125 * so the firmware won't try to associate. 2126 */ 2127 DPRINTF(("Setting bogus ESSID to WAR firmware bug\n")); 2128 return ipw_cmd(sc, IPW_CMD_SET_ESSID, 2129 "\x18\x19\x20\x21\x22\x23\x24\x25\x26\x27" 2130 "\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31" 2131 "\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b" 2132 "\x3c\x3d", IEEE80211_NWID_LEN); 2133 } else { 2134 #ifdef IPW_DEBUG 2135 if (ipw_debug > 0) { 2136 printf("Setting ESSID to "); 2137 ieee80211_print_essid(ssid, ssidlen); 2138 printf("\n"); 2139 } 2140 #endif 2141 return ipw_cmd(sc, IPW_CMD_SET_ESSID, ssid, ssidlen); 2142 } 2143 } 2144 2145 static int 2146 ipw_setscanopts(struct ipw_softc *sc, uint32_t chanmask, uint32_t flags) 2147 { 2148 struct ipw_scan_options opts; 2149 2150 DPRINTF(("Scan options: mask 0x%x flags 0x%x\n", chanmask, flags)); 2151 opts.channels = htole32(chanmask); 2152 opts.flags = htole32(flags); 2153 return ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &opts, sizeof(opts)); 2154 } 2155 2156 static int 2157 ipw_scan(struct ipw_softc *sc) 2158 { 2159 uint32_t params; 2160 int error; 2161 2162 DPRINTF(("%s: flags 0x%x\n", __func__, sc->flags)); 2163 2164 if (sc->flags & IPW_FLAG_SCANNING) 2165 return (EBUSY); 2166 sc->flags |= IPW_FLAG_SCANNING | IPW_FLAG_HACK; 2167 2168 /* NB: IPW_SCAN_DO_NOT_ASSOCIATE does not work (we set it anyway) */ 2169 error = ipw_setscanopts(sc, 0x3fff, IPW_SCAN_DO_NOT_ASSOCIATE); 2170 if (error != 0) 2171 goto done; 2172 2173 /* 2174 * Setup null/bogus ssid so firmware doesn't use any previous 2175 * ssid to try and associate. This is because the ``don't 2176 * associate'' option bit is broken (sigh). 2177 */ 2178 error = ipw_setssid(sc, NULL, 0); 2179 if (error != 0) 2180 goto done; 2181 2182 /* 2183 * NB: the adapter may be disabled on association lost; 2184 * if so just re-enable it to kick off scanning. 2185 */ 2186 DPRINTF(("Starting scan\n")); 2187 sc->sc_scan_timer = 3; 2188 if (sc->flags & IPW_FLAG_ENABLED) { 2189 params = 0; /* XXX? */ 2190 error = ipw_cmd(sc, IPW_CMD_BROADCAST_SCAN, 2191 ¶ms, sizeof(params)); 2192 } else 2193 error = ipw_enable(sc); 2194 done: 2195 if (error != 0) { 2196 DPRINTF(("Scan failed\n")); 2197 sc->flags &= ~(IPW_FLAG_SCANNING | IPW_FLAG_HACK); 2198 } 2199 return (error); 2200 } 2201 2202 static int 2203 ipw_setchannel(struct ipw_softc *sc, struct ieee80211_channel *chan) 2204 { 2205 struct ifnet *ifp = sc->sc_ifp; 2206 struct ieee80211com *ic = ifp->if_l2com; 2207 uint32_t data; 2208 int error; 2209 2210 data = htole32(ieee80211_chan2ieee(ic, chan)); 2211 DPRINTF(("Setting channel to %u\n", le32toh(data))); 2212 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data); 2213 if (error == 0) 2214 ipw_setcurchan(sc, chan); 2215 return error; 2216 } 2217 2218 static void 2219 ipw_assoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2220 { 2221 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2222 struct ipw_softc *sc = ifp->if_softc; 2223 struct ieee80211_node *ni = vap->iv_bss; 2224 struct ipw_security security; 2225 uint32_t data; 2226 int error; 2227 2228 IPW_LOCK(sc); 2229 error = ipw_disable(sc); 2230 if (error != 0) 2231 goto done; 2232 2233 memset(&security, 0, sizeof security); 2234 security.authmode = (ni->ni_authmode == IEEE80211_AUTH_SHARED) ? 2235 IPW_AUTH_SHARED : IPW_AUTH_OPEN; 2236 security.ciphers = htole32(IPW_CIPHER_NONE); 2237 DPRINTF(("Setting authmode to %u\n", security.authmode)); 2238 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFO, &security, 2239 sizeof security); 2240 if (error != 0) 2241 goto done; 2242 2243 data = htole32(vap->iv_rtsthreshold); 2244 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2245 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2246 if (error != 0) 2247 goto done; 2248 2249 data = htole32(vap->iv_fragthreshold); 2250 DPRINTF(("Setting frag threshold to %u\n", le32toh(data))); 2251 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2252 if (error != 0) 2253 goto done; 2254 2255 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 2256 error = ipw_setwepkeys(sc); 2257 if (error != 0) 2258 goto done; 2259 2260 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { 2261 data = htole32(vap->iv_def_txkey); 2262 DPRINTF(("Setting wep tx key index to %u\n", 2263 le32toh(data))); 2264 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data, 2265 sizeof data); 2266 if (error != 0) 2267 goto done; 2268 } 2269 } 2270 2271 data = htole32((vap->iv_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0); 2272 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data))); 2273 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data); 2274 if (error != 0) 2275 goto done; 2276 2277 error = ipw_setssid(sc, ni->ni_essid, ni->ni_esslen); 2278 if (error != 0) 2279 goto done; 2280 2281 error = ipw_setbssid(sc, ni->ni_bssid); 2282 if (error != 0) 2283 goto done; 2284 2285 if (vap->iv_appie_wpa != NULL) { 2286 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2287 error = ipw_setwpaie(sc, ie->ie_data, ie->ie_len); 2288 if (error != 0) 2289 goto done; 2290 } 2291 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2292 error = ipw_setchannel(sc, ni->ni_chan); 2293 if (error != 0) 2294 goto done; 2295 } 2296 2297 /* lock scan to ap's channel and enable associate */ 2298 error = ipw_setscanopts(sc, 2299 1<<(ieee80211_chan2ieee(ic, ni->ni_chan)-1), 0); 2300 if (error != 0) 2301 goto done; 2302 2303 error = ipw_enable(sc); /* finally, enable adapter */ 2304 if (error == 0) 2305 sc->flags |= IPW_FLAG_ASSOCIATING; 2306 done: 2307 IPW_UNLOCK(sc); 2308 } 2309 2310 static void 2311 ipw_disassoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2312 { 2313 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2314 struct ieee80211_node *ni = vap->iv_bss; 2315 struct ipw_softc *sc = ifp->if_softc; 2316 2317 IPW_LOCK(sc); 2318 DPRINTF(("Disassociate from %6D\n", ni->ni_bssid, ":")); 2319 /* 2320 * NB: don't try to do this if ipw_stop_master has 2321 * shutdown the firmware and disabled interrupts. 2322 */ 2323 if (sc->flags & IPW_FLAG_FW_INITED) { 2324 sc->flags &= ~IPW_FLAG_ASSOCIATED; 2325 /* 2326 * NB: firmware currently ignores bssid parameter, but 2327 * supply it in case this changes (follow linux driver). 2328 */ 2329 (void) ipw_cmd(sc, IPW_CMD_DISASSOCIATE, 2330 ni->ni_bssid, IEEE80211_ADDR_LEN); 2331 } 2332 IPW_UNLOCK(sc); 2333 } 2334 2335 /* 2336 * Handler for sc_init_task. This is a simple wrapper around ipw_init(). 2337 * It is called on firmware panics or on watchdog timeouts. 2338 */ 2339 static void 2340 ipw_init_task(void *context, int pending) 2341 { 2342 ipw_init(context); 2343 } 2344 2345 static void 2346 ipw_init(void *priv) 2347 { 2348 struct ipw_softc *sc = priv; 2349 struct ifnet *ifp = sc->sc_ifp; 2350 struct ieee80211com *ic = ifp->if_l2com; 2351 2352 IPW_LOCK(sc); 2353 ipw_init_locked(sc); 2354 IPW_UNLOCK(sc); 2355 2356 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2357 ieee80211_start_all(ic); /* start all vap's */ 2358 } 2359 2360 static void 2361 ipw_init_locked(struct ipw_softc *sc) 2362 { 2363 struct ifnet *ifp = sc->sc_ifp; 2364 struct ieee80211com *ic = ifp->if_l2com; 2365 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2366 const struct firmware *fp; 2367 const struct ipw_firmware_hdr *hdr; 2368 const char *fw; 2369 2370 IPW_LOCK_ASSERT(sc); 2371 2372 DPRINTF(("%s: state %s flags 0x%x\n", __func__, 2373 ieee80211_state_name[vap->iv_state], sc->flags)); 2374 2375 /* 2376 * Avoid re-entrant calls. We need to release the mutex in ipw_init() 2377 * when loading the firmware and we don't want to be called during this 2378 * operation. 2379 */ 2380 if (sc->flags & IPW_FLAG_INIT_LOCKED) 2381 return; 2382 sc->flags |= IPW_FLAG_INIT_LOCKED; 2383 2384 ipw_stop_locked(sc); 2385 2386 if (ipw_reset(sc) != 0) { 2387 device_printf(sc->sc_dev, "could not reset adapter\n"); 2388 goto fail; 2389 } 2390 2391 if (sc->sc_firmware == NULL) { 2392 device_printf(sc->sc_dev, "no firmware\n"); 2393 goto fail; 2394 } 2395 /* NB: consistency already checked on load */ 2396 fp = sc->sc_firmware; 2397 hdr = (const struct ipw_firmware_hdr *)fp->data; 2398 2399 DPRINTF(("Loading firmware image '%s'\n", fp->name)); 2400 fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz); 2401 if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) { 2402 device_printf(sc->sc_dev, "could not load microcode\n"); 2403 goto fail; 2404 } 2405 2406 ipw_stop_master(sc); 2407 2408 /* 2409 * Setup tx, rx and status rings. 2410 */ 2411 sc->txold = IPW_NTBD - 1; 2412 sc->txcur = 0; 2413 sc->txfree = IPW_NTBD - 2; 2414 sc->rxcur = IPW_NRBD - 1; 2415 2416 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_phys); 2417 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD); 2418 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0); 2419 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 2420 2421 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_phys); 2422 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD); 2423 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0); 2424 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 2425 2426 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys); 2427 2428 fw = (const char *)fp->data + sizeof *hdr; 2429 if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) { 2430 device_printf(sc->sc_dev, "could not load firmware\n"); 2431 goto fail; 2432 } 2433 2434 sc->flags |= IPW_FLAG_FW_INITED; 2435 2436 /* retrieve information tables base addresses */ 2437 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE); 2438 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE); 2439 2440 ipw_write_table1(sc, IPW_INFO_LOCK, 0); 2441 2442 if (ipw_config(sc) != 0) { 2443 device_printf(sc->sc_dev, "device configuration failed\n"); 2444 goto fail; 2445 } 2446 2447 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 2448 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2449 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2450 2451 sc->flags &=~ IPW_FLAG_INIT_LOCKED; 2452 return; 2453 2454 fail: 2455 ipw_stop_locked(sc); 2456 sc->flags &=~ IPW_FLAG_INIT_LOCKED; 2457 } 2458 2459 static int 2460 ipw_config(struct ipw_softc *sc) 2461 { 2462 struct ifnet *ifp = sc->sc_ifp; 2463 struct ieee80211com *ic = ifp->if_l2com; 2464 struct ipw_configuration config; 2465 uint32_t data; 2466 int error; 2467 2468 error = ipw_disable(sc); 2469 if (error != 0) 2470 return error; 2471 2472 switch (ic->ic_opmode) { 2473 case IEEE80211_M_STA: 2474 case IEEE80211_M_HOSTAP: 2475 case IEEE80211_M_WDS: /* XXX */ 2476 data = htole32(IPW_MODE_BSS); 2477 break; 2478 case IEEE80211_M_IBSS: 2479 case IEEE80211_M_AHDEMO: 2480 data = htole32(IPW_MODE_IBSS); 2481 break; 2482 case IEEE80211_M_MONITOR: 2483 data = htole32(IPW_MODE_MONITOR); 2484 break; 2485 default: 2486 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2487 return EINVAL; 2488 } 2489 DPRINTF(("Setting mode to %u\n", le32toh(data))); 2490 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data); 2491 if (error != 0) 2492 return error; 2493 2494 if (ic->ic_opmode == IEEE80211_M_IBSS || 2495 ic->ic_opmode == IEEE80211_M_MONITOR) { 2496 error = ipw_setchannel(sc, ic->ic_curchan); 2497 if (error != 0) 2498 return error; 2499 } 2500 2501 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2502 return ipw_enable(sc); 2503 2504 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK | 2505 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE); 2506 if (ic->ic_opmode == IEEE80211_M_IBSS) 2507 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START); 2508 if (ifp->if_flags & IFF_PROMISC) 2509 config.flags |= htole32(IPW_CFG_PROMISCUOUS); 2510 config.bss_chan = htole32(0x3fff); /* channels 1-14 */ 2511 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */ 2512 DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags))); 2513 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config); 2514 if (error != 0) 2515 return error; 2516 2517 data = htole32(0xf); /* 1, 2, 5.5, 11 */ 2518 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data))); 2519 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data); 2520 if (error != 0) 2521 return error; 2522 2523 /* Use the same rate set */ 2524 DPRINTF(("Setting msdu tx rates to 0x%x\n", le32toh(data))); 2525 error = ipw_cmd(sc, IPW_CMD_SET_MSDU_TX_RATES, &data, sizeof data); 2526 if (error != 0) 2527 return error; 2528 2529 /* Use the same rate set */ 2530 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data))); 2531 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data); 2532 if (error != 0) 2533 return error; 2534 2535 data = htole32(IPW_POWER_MODE_CAM); 2536 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2537 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data); 2538 if (error != 0) 2539 return error; 2540 2541 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2542 data = htole32(32); /* default value */ 2543 DPRINTF(("Setting tx power index to %u\n", le32toh(data))); 2544 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data, 2545 sizeof data); 2546 if (error != 0) 2547 return error; 2548 } 2549 2550 return 0; 2551 } 2552 2553 static void 2554 ipw_stop(void *priv) 2555 { 2556 struct ipw_softc *sc = priv; 2557 2558 IPW_LOCK(sc); 2559 ipw_stop_locked(sc); 2560 IPW_UNLOCK(sc); 2561 } 2562 2563 static void 2564 ipw_stop_locked(struct ipw_softc *sc) 2565 { 2566 struct ifnet *ifp = sc->sc_ifp; 2567 int i; 2568 2569 IPW_LOCK_ASSERT(sc); 2570 2571 callout_stop(&sc->sc_wdtimer); 2572 ipw_stop_master(sc); 2573 2574 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET); 2575 2576 /* 2577 * Release tx buffers. 2578 */ 2579 for (i = 0; i < IPW_NTBD; i++) 2580 ipw_release_sbd(sc, &sc->stbd_list[i]); 2581 2582 sc->sc_tx_timer = 0; 2583 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2584 } 2585 2586 static int 2587 ipw_sysctl_stats(SYSCTL_HANDLER_ARGS) 2588 { 2589 struct ipw_softc *sc = arg1; 2590 uint32_t i, size, buf[256]; 2591 2592 memset(buf, 0, sizeof buf); 2593 2594 if (!(sc->flags & IPW_FLAG_FW_INITED)) 2595 return SYSCTL_OUT(req, buf, sizeof buf); 2596 2597 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base); 2598 2599 size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256); 2600 for (i = 1; i < size; i++) 2601 buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA)); 2602 2603 return SYSCTL_OUT(req, buf, size); 2604 } 2605 2606 static int 2607 ipw_sysctl_radio(SYSCTL_HANDLER_ARGS) 2608 { 2609 struct ipw_softc *sc = arg1; 2610 int val; 2611 2612 val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) && 2613 (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)); 2614 2615 return SYSCTL_OUT(req, &val, sizeof val); 2616 } 2617 2618 static uint32_t 2619 ipw_read_table1(struct ipw_softc *sc, uint32_t off) 2620 { 2621 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off)); 2622 } 2623 2624 static void 2625 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info) 2626 { 2627 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info); 2628 } 2629 2630 #if 0 2631 static int 2632 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len) 2633 { 2634 uint32_t addr, info; 2635 uint16_t count, size; 2636 uint32_t total; 2637 2638 /* addr[4] + count[2] + size[2] */ 2639 addr = MEM_READ_4(sc, sc->table2_base + off); 2640 info = MEM_READ_4(sc, sc->table2_base + off + 4); 2641 2642 count = info >> 16; 2643 size = info & 0xffff; 2644 total = count * size; 2645 2646 if (total > *len) { 2647 *len = total; 2648 return EINVAL; 2649 } 2650 2651 *len = total; 2652 ipw_read_mem_1(sc, addr, buf, total); 2653 2654 return 0; 2655 } 2656 2657 static void 2658 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, 2659 bus_size_t count) 2660 { 2661 for (; count > 0; offset++, datap++, count--) { 2662 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2663 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3)); 2664 } 2665 } 2666 #endif 2667 2668 static void 2669 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap, 2670 bus_size_t count) 2671 { 2672 for (; count > 0; offset++, datap++, count--) { 2673 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2674 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap); 2675 } 2676 } 2677 2678 static void 2679 ipw_scan_start(struct ieee80211com *ic) 2680 { 2681 struct ifnet *ifp = ic->ic_ifp; 2682 struct ipw_softc *sc = ifp->if_softc; 2683 2684 IPW_LOCK(sc); 2685 ipw_scan(sc); 2686 IPW_UNLOCK(sc); 2687 } 2688 2689 static void 2690 ipw_set_channel(struct ieee80211com *ic) 2691 { 2692 struct ifnet *ifp = ic->ic_ifp; 2693 struct ipw_softc *sc = ifp->if_softc; 2694 2695 IPW_LOCK(sc); 2696 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2697 ipw_disable(sc); 2698 ipw_setchannel(sc, ic->ic_curchan); 2699 ipw_enable(sc); 2700 } 2701 IPW_UNLOCK(sc); 2702 } 2703 2704 static void 2705 ipw_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 2706 { 2707 /* NB: all channels are scanned at once */ 2708 } 2709 2710 static void 2711 ipw_scan_mindwell(struct ieee80211_scan_state *ss) 2712 { 2713 /* NB: don't try to abort scan; wait for firmware to finish */ 2714 } 2715 2716 static void 2717 ipw_scan_end(struct ieee80211com *ic) 2718 { 2719 struct ifnet *ifp = ic->ic_ifp; 2720 struct ipw_softc *sc = ifp->if_softc; 2721 2722 IPW_LOCK(sc); 2723 sc->flags &= ~IPW_FLAG_SCANNING; 2724 IPW_UNLOCK(sc); 2725 } 2726