xref: /freebsd/sys/dev/ipw/if_ipw.c (revision f6c0136c7fb87ab8277221a306291e386fe944fb)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2004-2006
5  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*-
34  * Intel(R) PRO/Wireless 2100 MiniPCI driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/linker.h>
52 #include <sys/firmware.h>
53 
54 #include <machine/bus.h>
55 #include <machine/resource.h>
56 #include <sys/rman.h>
57 
58 #include <dev/pci/pcireg.h>
59 #include <dev/pci/pcivar.h>
60 
61 #include <net/bpf.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/ethernet.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_radiotap.h>
71 
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76 #include <netinet/if_ether.h>
77 
78 #include <dev/ipw/if_ipwreg.h>
79 #include <dev/ipw/if_ipwvar.h>
80 
81 #ifdef IPW_DEBUG
82 #define DPRINTF(x)	do { if (ipw_debug > 0) printf x; } while (0)
83 #define DPRINTFN(n, x)	do { if (ipw_debug >= (n)) printf x; } while (0)
84 int ipw_debug = 0;
85 SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level");
86 #else
87 #define DPRINTF(x)
88 #define DPRINTFN(n, x)
89 #endif
90 
91 MODULE_DEPEND(ipw, pci,  1, 1, 1);
92 MODULE_DEPEND(ipw, wlan, 1, 1, 1);
93 MODULE_DEPEND(ipw, firmware, 1, 1, 1);
94 
95 struct ipw_ident {
96 	uint16_t	vendor;
97 	uint16_t	device;
98 	const char	*name;
99 };
100 
101 static const struct ipw_ident ipw_ident_table[] = {
102 	{ 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" },
103 
104 	{ 0, 0, NULL }
105 };
106 
107 static int	ipw_dma_alloc(struct ipw_softc *);
108 static void	ipw_release(struct ipw_softc *);
109 static int	ipw_media_change(struct ifnet *);
110 static void	ipw_media_status(struct ifnet *, struct ifmediareq *);
111 static int	ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
112 static uint16_t	ipw_read_prom_word(struct ipw_softc *, uint8_t);
113 static void	ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
114 static void	ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
115 static void	ipw_data_intr(struct ipw_softc *, struct ipw_status *,
116 		    struct ipw_soft_bd *, struct ipw_soft_buf *);
117 static void	ipw_rx_intr(struct ipw_softc *);
118 static void	ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
119 static void	ipw_tx_intr(struct ipw_softc *);
120 static void	ipw_intr(void *);
121 static void	ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int);
122 static int	ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
123 static int	ipw_tx_start(struct ifnet *, struct mbuf *,
124 		    struct ieee80211_node *);
125 static void	ipw_start(struct ifnet *);
126 static void	ipw_watchdog(struct ifnet *);
127 static int	ipw_ioctl(struct ifnet *, u_long, caddr_t);
128 static void	ipw_stop_master(struct ipw_softc *);
129 static int	ipw_reset(struct ipw_softc *);
130 static int	ipw_load_ucode(struct ipw_softc *, const char *, int);
131 static int	ipw_load_firmware(struct ipw_softc *, const char *, int);
132 static int	ipw_config(struct ipw_softc *);
133 static void	ipw_init_task(void *, int);
134 static void	ipw_init(void *);
135 static void	ipw_stop(void *);
136 static int	ipw_sysctl_stats(SYSCTL_HANDLER_ARGS);
137 static int	ipw_sysctl_radio(SYSCTL_HANDLER_ARGS);
138 static uint32_t	ipw_read_table1(struct ipw_softc *, uint32_t);
139 static void	ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
140 static int	ipw_read_table2(struct ipw_softc *, uint32_t, void *,
141 		    uint32_t *);
142 static void	ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
143 		    bus_size_t);
144 static void	ipw_write_mem_1(struct ipw_softc *, bus_size_t,
145 		    const uint8_t *, bus_size_t);
146 
147 static int ipw_probe(device_t);
148 static int ipw_attach(device_t);
149 static int ipw_detach(device_t);
150 static int ipw_shutdown(device_t);
151 static int ipw_suspend(device_t);
152 static int ipw_resume(device_t);
153 
154 static device_method_t ipw_methods[] = {
155 	/* Device interface */
156 	DEVMETHOD(device_probe,		ipw_probe),
157 	DEVMETHOD(device_attach,	ipw_attach),
158 	DEVMETHOD(device_detach,	ipw_detach),
159 	DEVMETHOD(device_shutdown,	ipw_shutdown),
160 	DEVMETHOD(device_suspend,	ipw_suspend),
161 	DEVMETHOD(device_resume,	ipw_resume),
162 
163 	{ 0, 0 }
164 };
165 
166 static driver_t ipw_driver = {
167 	"ipw",
168 	ipw_methods,
169 	sizeof (struct ipw_softc)
170 };
171 
172 static devclass_t ipw_devclass;
173 
174 DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, 0, 0);
175 
176 static int
177 ipw_probe(device_t dev)
178 {
179 	const struct ipw_ident *ident;
180 
181 	for (ident = ipw_ident_table; ident->name != NULL; ident++) {
182 		if (pci_get_vendor(dev) == ident->vendor &&
183 		    pci_get_device(dev) == ident->device) {
184 			device_set_desc(dev, ident->name);
185 			return 0;
186 		}
187 	}
188 	return ENXIO;
189 }
190 
191 /* Base Address Register */
192 #define IPW_PCI_BAR0	0x10
193 
194 static int
195 ipw_attach(device_t dev)
196 {
197 	struct ipw_softc *sc = device_get_softc(dev);
198 	struct ifnet *ifp;
199 	struct ieee80211com *ic = &sc->sc_ic;
200 	uint16_t val;
201 	int error, i;
202 
203 	sc->sc_dev = dev;
204 
205 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
206 	    MTX_DEF | MTX_RECURSE);
207 
208 	TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc);
209 
210 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
211 		device_printf(dev, "chip is in D%d power mode "
212 		    "-- setting to D0\n", pci_get_powerstate(dev));
213 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
214 	}
215 
216 	pci_write_config(dev, 0x41, 0, 1);
217 
218 	/* enable bus-mastering */
219 	pci_enable_busmaster(dev);
220 
221 	sc->mem_rid = IPW_PCI_BAR0;
222 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
223 	    RF_ACTIVE);
224 	if (sc->mem == NULL) {
225 		device_printf(dev, "could not allocate memory resource\n");
226 		goto fail;
227 	}
228 
229 	sc->sc_st = rman_get_bustag(sc->mem);
230 	sc->sc_sh = rman_get_bushandle(sc->mem);
231 
232 	sc->irq_rid = 0;
233 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
234 	    RF_ACTIVE | RF_SHAREABLE);
235 	if (sc->irq == NULL) {
236 		device_printf(dev, "could not allocate interrupt resource\n");
237 		goto fail;
238 	}
239 
240 	if (ipw_reset(sc) != 0) {
241 		device_printf(dev, "could not reset adapter\n");
242 		goto fail;
243 	}
244 
245 	if (ipw_dma_alloc(sc) != 0) {
246 		device_printf(dev, "could not allocate DMA resources\n");
247 		goto fail;
248 	}
249 
250 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
251 	if (ifp == NULL) {
252 		device_printf(dev, "can not if_alloc()\n");
253 		goto fail;
254 	}
255 
256 	ifp->if_softc = sc;
257 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
258 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
259 	ifp->if_init = ipw_init;
260 	ifp->if_ioctl = ipw_ioctl;
261 	ifp->if_start = ipw_start;
262 	ifp->if_watchdog = ipw_watchdog;
263 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
264 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
265 	IFQ_SET_READY(&ifp->if_snd);
266 
267 	ic->ic_ifp = ifp;
268 	ic->ic_phytype = IEEE80211_T_DS;
269 	ic->ic_opmode = IEEE80211_M_STA;
270 	ic->ic_state = IEEE80211_S_INIT;
271 
272 	/* set device capabilities */
273 	ic->ic_caps =
274 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
275 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
276 	    IEEE80211_C_TXPMGT |	/* tx power management */
277 	    IEEE80211_C_SHPREAMBLE;	/* short preamble supported */
278 
279 	/* read MAC address from EEPROM */
280 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
281 	ic->ic_myaddr[0] = val >> 8;
282 	ic->ic_myaddr[1] = val & 0xff;
283 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
284 	ic->ic_myaddr[2] = val >> 8;
285 	ic->ic_myaddr[3] = val & 0xff;
286 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
287 	ic->ic_myaddr[4] = val >> 8;
288 	ic->ic_myaddr[5] = val & 0xff;
289 
290 	/* set supported .11b channels */
291 	for (i = 1; i < 14; i++) {
292 		ic->ic_channels[i].ic_freq =
293 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
294 		ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
295 	}
296 
297 	/* check support for radio transmitter switch in EEPROM */
298 	if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
299 		sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
300 
301 	ieee80211_ifattach(ic);
302 	/* override state transition machine */
303 	sc->sc_newstate = ic->ic_newstate;
304 	ic->ic_newstate = ipw_newstate;
305 	ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
306 
307 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
308 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
309 
310 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
311 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
312 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
313 
314 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
315 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
316 	sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
317 
318 	/*
319 	 * Add a few sysctl knobs.
320 	 */
321 	sc->dwelltime = 100;
322 
323 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
324 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio",
325 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, ipw_sysctl_radio, "I",
326 	    "radio transmitter switch state (0=off, 1=on)");
327 
328 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
329 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats",
330 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, ipw_sysctl_stats, "S",
331 	    "statistics");
332 
333 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
334 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
335 	    CTLFLAG_RW, &sc->dwelltime, 0,
336 	    "channel dwell time (ms) for AP/station scanning");
337 
338 	/*
339 	 * Hook our interrupt after all initialization is complete.
340 	 */
341 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
342 	    NULL, ipw_intr, sc, &sc->sc_ih);
343 	if (error != 0) {
344 		device_printf(dev, "could not set up interrupt\n");
345 		goto fail;
346 	}
347 
348 	if (bootverbose)
349 		ieee80211_announce(ic);
350 
351 	return 0;
352 
353 fail:	ipw_detach(dev);
354 	return ENXIO;
355 }
356 
357 static int
358 ipw_detach(device_t dev)
359 {
360 	struct ipw_softc *sc = device_get_softc(dev);
361 	struct ieee80211com *ic = &sc->sc_ic;
362 	struct ifnet *ifp = ic->ic_ifp;
363 
364 	ipw_stop(sc);
365 
366 	if (ifp != NULL) {
367 		bpfdetach(ifp);
368 		ieee80211_ifdetach(ic);
369 	}
370 
371 	ipw_release(sc);
372 
373 	if (sc->irq != NULL) {
374 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
375 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
376 	}
377 
378 	if (sc->mem != NULL)
379 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
380 
381 	if (ifp != NULL)
382 		if_free(ifp);
383 
384 	if (sc->sc_firmware != NULL) {
385 		firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
386 		sc->sc_firmware = NULL;
387 	}
388 
389 	mtx_destroy(&sc->sc_mtx);
390 
391 	return 0;
392 }
393 
394 static int
395 ipw_dma_alloc(struct ipw_softc *sc)
396 {
397 	struct ipw_soft_bd *sbd;
398 	struct ipw_soft_hdr *shdr;
399 	struct ipw_soft_buf *sbuf;
400 	bus_addr_t physaddr;
401 	int error, i;
402 
403 	/*
404 	 * Allocate and map tx ring.
405 	 */
406 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
407 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL,
408 	    NULL, &sc->tbd_dmat);
409 	if (error != 0) {
410 		device_printf(sc->sc_dev, "could not create tx ring DMA tag\n");
411 		goto fail;
412 	}
413 
414 	error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list,
415 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map);
416 	if (error != 0) {
417 		device_printf(sc->sc_dev,
418 		    "could not allocate tx ring DMA memory\n");
419 		goto fail;
420 	}
421 
422 	error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list,
423 	    IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0);
424 	if (error != 0) {
425 		device_printf(sc->sc_dev, "could not map tx ring DMA memory\n");
426 		goto fail;
427 	}
428 
429 	/*
430 	 * Allocate and map rx ring.
431 	 */
432 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
433 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL,
434 	    NULL, &sc->rbd_dmat);
435 	if (error != 0) {
436 		device_printf(sc->sc_dev, "could not create rx ring DMA tag\n");
437 		goto fail;
438 	}
439 
440 	error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list,
441 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map);
442 	if (error != 0) {
443 		device_printf(sc->sc_dev,
444 		    "could not allocate rx ring DMA memory\n");
445 		goto fail;
446 	}
447 
448 	error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list,
449 	    IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0);
450 	if (error != 0) {
451 		device_printf(sc->sc_dev, "could not map rx ring DMA memory\n");
452 		goto fail;
453 	}
454 
455 	/*
456 	 * Allocate and map status ring.
457 	 */
458 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
459 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0,
460 	    NULL, NULL, &sc->status_dmat);
461 	if (error != 0) {
462 		device_printf(sc->sc_dev,
463 		    "could not create status ring DMA tag\n");
464 		goto fail;
465 	}
466 
467 	error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list,
468 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map);
469 	if (error != 0) {
470 		device_printf(sc->sc_dev,
471 		    "could not allocate status ring DMA memory\n");
472 		goto fail;
473 	}
474 
475 	error = bus_dmamap_load(sc->status_dmat, sc->status_map,
476 	    sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys,
477 	    0);
478 	if (error != 0) {
479 		device_printf(sc->sc_dev,
480 		    "could not map status ring DMA memory\n");
481 		goto fail;
482 	}
483 
484 	/*
485 	 * Allocate command DMA map.
486 	 */
487 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
488 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1,
489 	    sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat);
490 	if (error != 0) {
491 		device_printf(sc->sc_dev, "could not create command DMA tag\n");
492 		goto fail;
493 	}
494 
495 	error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map);
496 	if (error != 0) {
497 		device_printf(sc->sc_dev,
498 		    "could not create command DMA map\n");
499 		goto fail;
500 	}
501 
502 	/*
503 	 * Allocate headers DMA maps.
504 	 */
505 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
506 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1,
507 	    sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat);
508 	if (error != 0) {
509 		device_printf(sc->sc_dev, "could not create header DMA tag\n");
510 		goto fail;
511 	}
512 
513 	SLIST_INIT(&sc->free_shdr);
514 	for (i = 0; i < IPW_NDATA; i++) {
515 		shdr = &sc->shdr_list[i];
516 		error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map);
517 		if (error != 0) {
518 			device_printf(sc->sc_dev,
519 			    "could not create header DMA map\n");
520 			goto fail;
521 		}
522 		SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
523 	}
524 
525 	/*
526 	 * Allocate tx buffers DMA maps.
527 	 */
528 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
529 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0,
530 	    NULL, NULL, &sc->txbuf_dmat);
531 	if (error != 0) {
532 		device_printf(sc->sc_dev, "could not create tx DMA tag\n");
533 		goto fail;
534 	}
535 
536 	SLIST_INIT(&sc->free_sbuf);
537 	for (i = 0; i < IPW_NDATA; i++) {
538 		sbuf = &sc->tx_sbuf_list[i];
539 		error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map);
540 		if (error != 0) {
541 			device_printf(sc->sc_dev,
542 			    "could not create tx DMA map\n");
543 			goto fail;
544 		}
545 		SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
546 	}
547 
548 	/*
549 	 * Initialize tx ring.
550 	 */
551 	for (i = 0; i < IPW_NTBD; i++) {
552 		sbd = &sc->stbd_list[i];
553 		sbd->bd = &sc->tbd_list[i];
554 		sbd->type = IPW_SBD_TYPE_NOASSOC;
555 	}
556 
557 	/*
558 	 * Pre-allocate rx buffers and DMA maps.
559 	 */
560 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
561 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
562 	    NULL, &sc->rxbuf_dmat);
563 	if (error != 0) {
564 		device_printf(sc->sc_dev, "could not create rx DMA tag\n");
565 		goto fail;
566 	}
567 
568 	for (i = 0; i < IPW_NRBD; i++) {
569 		sbd = &sc->srbd_list[i];
570 		sbuf = &sc->rx_sbuf_list[i];
571 		sbd->bd = &sc->rbd_list[i];
572 
573 		sbuf->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
574 		if (sbuf->m == NULL) {
575 			device_printf(sc->sc_dev,
576 			    "could not allocate rx mbuf\n");
577 			error = ENOMEM;
578 			goto fail;
579 		}
580 
581 		error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map);
582 		if (error != 0) {
583 			device_printf(sc->sc_dev,
584 			    "could not create rx DMA map\n");
585 			goto fail;
586 		}
587 
588 		error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
589 		    mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
590 		    &physaddr, 0);
591 		if (error != 0) {
592 			device_printf(sc->sc_dev,
593 			    "could not map rx DMA memory\n");
594 			goto fail;
595 		}
596 
597 		sbd->type = IPW_SBD_TYPE_DATA;
598 		sbd->priv = sbuf;
599 		sbd->bd->physaddr = htole32(physaddr);
600 		sbd->bd->len = htole32(MCLBYTES);
601 	}
602 
603 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
604 
605 	return 0;
606 
607 fail:	ipw_release(sc);
608 	return error;
609 }
610 
611 static void
612 ipw_release(struct ipw_softc *sc)
613 {
614 	struct ipw_soft_buf *sbuf;
615 	int i;
616 
617 	if (sc->tbd_dmat != NULL) {
618 		if (sc->stbd_list != NULL) {
619 			bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map);
620 			bus_dmamem_free(sc->tbd_dmat, sc->tbd_list,
621 			    sc->tbd_map);
622 		}
623 		bus_dma_tag_destroy(sc->tbd_dmat);
624 	}
625 
626 	if (sc->rbd_dmat != NULL) {
627 		if (sc->rbd_list != NULL) {
628 			bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map);
629 			bus_dmamem_free(sc->rbd_dmat, sc->rbd_list,
630 			    sc->rbd_map);
631 		}
632 		bus_dma_tag_destroy(sc->rbd_dmat);
633 	}
634 
635 	if (sc->status_dmat != NULL) {
636 		if (sc->status_list != NULL) {
637 			bus_dmamap_unload(sc->status_dmat, sc->status_map);
638 			bus_dmamem_free(sc->status_dmat, sc->status_list,
639 			    sc->status_map);
640 		}
641 		bus_dma_tag_destroy(sc->status_dmat);
642 	}
643 
644 	for (i = 0; i < IPW_NTBD; i++)
645 		ipw_release_sbd(sc, &sc->stbd_list[i]);
646 
647 	if (sc->cmd_dmat != NULL) {
648 		bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map);
649 		bus_dma_tag_destroy(sc->cmd_dmat);
650 	}
651 
652 	if (sc->hdr_dmat != NULL) {
653 		for (i = 0; i < IPW_NDATA; i++)
654 			bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map);
655 		bus_dma_tag_destroy(sc->hdr_dmat);
656 	}
657 
658 	if (sc->txbuf_dmat != NULL) {
659 		for (i = 0; i < IPW_NDATA; i++) {
660 			bus_dmamap_destroy(sc->txbuf_dmat,
661 			    sc->tx_sbuf_list[i].map);
662 		}
663 		bus_dma_tag_destroy(sc->txbuf_dmat);
664 	}
665 
666 	if (sc->rxbuf_dmat != NULL) {
667 		for (i = 0; i < IPW_NRBD; i++) {
668 			sbuf = &sc->rx_sbuf_list[i];
669 			if (sbuf->m != NULL) {
670 				bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map,
671 				    BUS_DMASYNC_POSTREAD);
672 				bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
673 				m_freem(sbuf->m);
674 			}
675 			bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map);
676 		}
677 		bus_dma_tag_destroy(sc->rxbuf_dmat);
678 	}
679 }
680 
681 static int
682 ipw_shutdown(device_t dev)
683 {
684 	struct ipw_softc *sc = device_get_softc(dev);
685 
686 	ipw_stop(sc);
687 
688 	return 0;
689 }
690 
691 static int
692 ipw_suspend(device_t dev)
693 {
694 	struct ipw_softc *sc = device_get_softc(dev);
695 
696 	ipw_stop(sc);
697 
698 	return 0;
699 }
700 
701 static int
702 ipw_resume(device_t dev)
703 {
704 	struct ipw_softc *sc = device_get_softc(dev);
705 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
706 
707 	mtx_lock(&sc->sc_mtx);
708 
709 	pci_write_config(dev, 0x41, 0, 1);
710 
711 	if (ifp->if_flags & IFF_UP) {
712 		ifp->if_init(ifp->if_softc);
713 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
714 			ifp->if_start(ifp);
715 	}
716 
717 	mtx_unlock(&sc->sc_mtx);
718 
719 	return 0;
720 }
721 
722 static int
723 ipw_media_change(struct ifnet *ifp)
724 {
725 	struct ipw_softc *sc = ifp->if_softc;
726 	int error;
727 
728 	mtx_lock(&sc->sc_mtx);
729 
730 	error = ieee80211_media_change(ifp);
731 	if (error != ENETRESET) {
732 		mtx_unlock(&sc->sc_mtx);
733 		return error;
734 	}
735 
736 	if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
737 		ipw_init(sc);
738 
739 	mtx_unlock(&sc->sc_mtx);
740 
741 	return 0;
742 }
743 
744 /*
745  * The firmware automatically adapts the transmit speed. We report its current
746  * value here.
747  */
748 static void
749 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
750 {
751 #define N(a)	(sizeof (a) / sizeof (a[0]))
752 	struct ipw_softc *sc = ifp->if_softc;
753 	struct ieee80211com *ic = &sc->sc_ic;
754 	static const struct {
755 		uint32_t	val;
756 		int		rate;
757 	} rates[] = {
758 		{ IPW_RATE_DS1,   2 },
759 		{ IPW_RATE_DS2,   4 },
760 		{ IPW_RATE_DS5,  11 },
761 		{ IPW_RATE_DS11, 22 },
762 	};
763 	uint32_t val;
764 	int rate, i;
765 
766 	imr->ifm_status = IFM_AVALID;
767 	imr->ifm_active = IFM_IEEE80211;
768 	if (ic->ic_state == IEEE80211_S_RUN)
769 		imr->ifm_status |= IFM_ACTIVE;
770 
771 	/* read current transmission rate from adapter */
772 	val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
773 
774 	/* convert ipw rate to 802.11 rate */
775 	for (i = 0; i < N(rates) && rates[i].val != val; i++);
776 	rate = (i < N(rates)) ? rates[i].rate : 0;
777 
778 	imr->ifm_active |= IFM_IEEE80211_11B;
779 	imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
780 	switch (ic->ic_opmode) {
781 	case IEEE80211_M_STA:
782 		break;
783 
784 	case IEEE80211_M_IBSS:
785 		imr->ifm_active |= IFM_IEEE80211_IBSS;
786 		break;
787 
788 	case IEEE80211_M_MONITOR:
789 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
790 		break;
791 
792 	case IEEE80211_M_AHDEMO:
793 	case IEEE80211_M_HOSTAP:
794 		/* should not get there */
795 		break;
796 	}
797 #undef N
798 }
799 
800 static int
801 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
802 {
803 	struct ifnet *ifp = ic->ic_ifp;
804 	struct ipw_softc *sc = ifp->if_softc;
805 	struct ieee80211_node *ni;
806 	uint8_t macaddr[IEEE80211_ADDR_LEN];
807 	uint32_t len;
808 
809 	switch (nstate) {
810 	case IEEE80211_S_RUN:
811 		DELAY(200); /* firmware needs a short delay here */
812 
813 		len = IEEE80211_ADDR_LEN;
814 		ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
815 
816 		ni = ieee80211_find_node(&ic->ic_scan, macaddr);
817 		if (ni == NULL)
818 			break;
819 
820 		ieee80211_ref_node(ni);
821 		ieee80211_sta_join(ic, ni);
822 		ieee80211_node_authorize(ni);
823 
824 		if (ic->ic_opmode == IEEE80211_M_STA)
825 			ieee80211_notify_node_join(ic, ni, 1);
826 		break;
827 
828 	case IEEE80211_S_INIT:
829 	case IEEE80211_S_SCAN:
830 	case IEEE80211_S_AUTH:
831 	case IEEE80211_S_ASSOC:
832 		break;
833 	}
834 
835 	ic->ic_state = nstate;
836 
837 	return 0;
838 }
839 
840 /*
841  * Read 16 bits at address 'addr' from the serial EEPROM.
842  */
843 static uint16_t
844 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
845 {
846 	uint32_t tmp;
847 	uint16_t val;
848 	int n;
849 
850 	/* clock C once before the first command */
851 	IPW_EEPROM_CTL(sc, 0);
852 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
853 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
854 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
855 
856 	/* write start bit (1) */
857 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
858 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
859 
860 	/* write READ opcode (10) */
861 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
862 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
863 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
864 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
865 
866 	/* write address A7-A0 */
867 	for (n = 7; n >= 0; n--) {
868 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
869 		    (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
870 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
871 		    (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
872 	}
873 
874 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
875 
876 	/* read data Q15-Q0 */
877 	val = 0;
878 	for (n = 15; n >= 0; n--) {
879 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
880 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
881 		tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
882 		val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
883 	}
884 
885 	IPW_EEPROM_CTL(sc, 0);
886 
887 	/* clear Chip Select and clock C */
888 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
889 	IPW_EEPROM_CTL(sc, 0);
890 	IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
891 
892 	return le16toh(val);
893 }
894 
895 static void
896 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
897 {
898 	struct ipw_cmd *cmd;
899 
900 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
901 
902 	cmd = mtod(sbuf->m, struct ipw_cmd *);
903 
904 	DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
905 	    le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
906 	    le32toh(cmd->status)));
907 
908 	wakeup(sc);
909 }
910 
911 static void
912 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
913 {
914 	struct ieee80211com *ic = &sc->sc_ic;
915 	uint32_t state;
916 
917 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
918 
919 	state = le32toh(*mtod(sbuf->m, uint32_t *));
920 
921 	DPRINTFN(2, ("entering state %u\n", state));
922 
923 	switch (state) {
924 	case IPW_STATE_ASSOCIATED:
925 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
926 		break;
927 
928 	case IPW_STATE_SCANNING:
929 		/* don't leave run state on background scan */
930 		if (ic->ic_state != IEEE80211_S_RUN)
931 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
932 
933 		ic->ic_flags |= IEEE80211_F_SCAN;
934 		break;
935 
936 	case IPW_STATE_SCAN_COMPLETE:
937 		ieee80211_notify_scan_done(ic);
938 		ic->ic_flags &= ~IEEE80211_F_SCAN;
939 		break;
940 
941 	case IPW_STATE_ASSOCIATION_LOST:
942 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
943 		break;
944 
945 	case IPW_STATE_RADIO_DISABLED:
946 		ic->ic_ifp->if_flags &= ~IFF_UP;
947 		ipw_stop(sc);
948 		break;
949 	}
950 }
951 
952 /*
953  * XXX: Hack to set the current channel to the value advertised in beacons or
954  * probe responses. Only used during AP detection.
955  */
956 static void
957 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
958 {
959 	struct ieee80211_frame *wh;
960 	uint8_t subtype;
961 	uint8_t *frm, *efrm;
962 
963 	wh = mtod(m, struct ieee80211_frame *);
964 
965 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
966 		return;
967 
968 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
969 
970 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
971 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
972 		return;
973 
974 	frm = (uint8_t *)(wh + 1);
975 	efrm = mtod(m, uint8_t *) + m->m_len;
976 
977 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
978 	while (frm < efrm) {
979 		if (*frm == IEEE80211_ELEMID_DSPARMS)
980 #if IEEE80211_CHAN_MAX < 255
981 		if (frm[2] <= IEEE80211_CHAN_MAX)
982 #endif
983 			ic->ic_curchan = &ic->ic_channels[frm[2]];
984 
985 		frm += frm[1] + 2;
986 	}
987 }
988 
989 static void
990 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
991     struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
992 {
993 	struct ieee80211com *ic = &sc->sc_ic;
994 	struct ifnet *ifp = ic->ic_ifp;
995 	struct mbuf *mnew, *m;
996 	struct ieee80211_frame *wh;
997 	struct ieee80211_node *ni;
998 	bus_addr_t physaddr;
999 	int error;
1000 
1001 	DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
1002 	    status->rssi));
1003 
1004 	if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
1005 	    le32toh(status->len) > MCLBYTES)
1006 		return;
1007 
1008 	/*
1009 	 * Try to allocate a new mbuf for this ring element and load it before
1010 	 * processing the current mbuf. If the ring element cannot be loaded,
1011 	 * drop the received packet and reuse the old mbuf. In the unlikely
1012 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1013 	 */
1014 	mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1015 	if (mnew == NULL) {
1016 		ifp->if_ierrors++;
1017 		return;
1018 	}
1019 
1020 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
1021 	bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
1022 
1023 	error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *),
1024 	    MCLBYTES, ipw_dma_map_addr, &physaddr, 0);
1025 	if (error != 0) {
1026 		m_freem(mnew);
1027 
1028 		/* try to reload the old mbuf */
1029 		error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
1030 		    mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
1031 		    &physaddr, 0);
1032 		if (error != 0) {
1033 			/* very unlikely that it will fail... */
1034 			panic("%s: could not load old rx mbuf",
1035 			    device_get_name(sc->sc_dev));
1036 		}
1037 		ifp->if_ierrors++;
1038 		return;
1039 	}
1040 
1041 	/*
1042 	 * New mbuf successfully loaded, update Rx ring and continue
1043 	 * processing.
1044 	 */
1045 	m = sbuf->m;
1046 	sbuf->m = mnew;
1047 	sbd->bd->physaddr = htole32(physaddr);
1048 
1049 	/* finalize mbuf */
1050 	m->m_pkthdr.rcvif = ifp;
1051 	m->m_pkthdr.len = m->m_len = le32toh(status->len);
1052 
1053 	if (bpf_peers_present(sc->sc_drvbpf)) {
1054 		struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1055 
1056 		tap->wr_flags = 0;
1057 		tap->wr_antsignal = status->rssi;
1058 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1059 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1060 
1061 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1062 	}
1063 
1064 	if (ic->ic_state == IEEE80211_S_SCAN)
1065 		ipw_fix_channel(ic, m);
1066 
1067 	wh = mtod(m, struct ieee80211_frame *);
1068 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1069 
1070 	/* send the frame to the 802.11 layer */
1071 	ieee80211_input(ic, m, ni, status->rssi, 0);
1072 
1073 	/* node is no longer needed */
1074 	ieee80211_free_node(ni);
1075 
1076 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
1077 }
1078 
1079 static void
1080 ipw_rx_intr(struct ipw_softc *sc)
1081 {
1082 	struct ipw_status *status;
1083 	struct ipw_soft_bd *sbd;
1084 	struct ipw_soft_buf *sbuf;
1085 	uint32_t r, i;
1086 
1087 	if (!(sc->flags & IPW_FLAG_FW_INITED))
1088 		return;
1089 
1090 	r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1091 
1092 	bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD);
1093 
1094 	for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1095 		status = &sc->status_list[i];
1096 		sbd = &sc->srbd_list[i];
1097 		sbuf = sbd->priv;
1098 
1099 		switch (le16toh(status->code) & 0xf) {
1100 		case IPW_STATUS_CODE_COMMAND:
1101 			ipw_command_intr(sc, sbuf);
1102 			break;
1103 
1104 		case IPW_STATUS_CODE_NEWSTATE:
1105 			ipw_newstate_intr(sc, sbuf);
1106 			break;
1107 
1108 		case IPW_STATUS_CODE_DATA_802_3:
1109 		case IPW_STATUS_CODE_DATA_802_11:
1110 			ipw_data_intr(sc, status, sbd, sbuf);
1111 			break;
1112 
1113 		case IPW_STATUS_CODE_NOTIFICATION:
1114 			DPRINTFN(2, ("received notification\n"));
1115 			break;
1116 
1117 		default:
1118 			device_printf(sc->sc_dev, "unknown status code %u\n",
1119 			    le16toh(status->code));
1120 		}
1121 
1122 		/* firmware was killed, stop processing received frames */
1123 		if (!(sc->flags & IPW_FLAG_FW_INITED))
1124 			return;
1125 
1126 		sbd->bd->flags = 0;
1127 	}
1128 
1129 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
1130 
1131 	/* kick the firmware */
1132 	sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1133 	CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1134 }
1135 
1136 static void
1137 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1138 {
1139 	struct ipw_soft_hdr *shdr;
1140 	struct ipw_soft_buf *sbuf;
1141 
1142 	switch (sbd->type) {
1143 	case IPW_SBD_TYPE_COMMAND:
1144 		bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map,
1145 		    BUS_DMASYNC_POSTWRITE);
1146 		bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map);
1147 		break;
1148 
1149 	case IPW_SBD_TYPE_HEADER:
1150 		shdr = sbd->priv;
1151 		bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE);
1152 		bus_dmamap_unload(sc->hdr_dmat, shdr->map);
1153 		SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
1154 		break;
1155 
1156 	case IPW_SBD_TYPE_DATA:
1157 		sbuf = sbd->priv;
1158 		bus_dmamap_sync(sc->txbuf_dmat, sbuf->map,
1159 		    BUS_DMASYNC_POSTWRITE);
1160 		bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
1161 		SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
1162 
1163 		m_freem(sbuf->m);
1164 		ieee80211_free_node(sbuf->ni);
1165 
1166 		sc->sc_tx_timer = 0;
1167 		break;
1168 	}
1169 
1170 	sbd->type = IPW_SBD_TYPE_NOASSOC;
1171 }
1172 
1173 static void
1174 ipw_tx_intr(struct ipw_softc *sc)
1175 {
1176 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1177 	struct ipw_soft_bd *sbd;
1178 	uint32_t r, i;
1179 
1180 	if (!(sc->flags & IPW_FLAG_FW_INITED))
1181 		return;
1182 
1183 	r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1184 
1185 	for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1186 		sbd = &sc->stbd_list[i];
1187 
1188 		if (sbd->type == IPW_SBD_TYPE_DATA)
1189 			ifp->if_opackets++;
1190 
1191 		ipw_release_sbd(sc, sbd);
1192 		sc->txfree++;
1193 	}
1194 
1195 	/* remember what the firmware has processed */
1196 	sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1197 
1198 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1199 	ipw_start(ifp);
1200 }
1201 
1202 static void
1203 ipw_intr(void *arg)
1204 {
1205 	struct ipw_softc *sc = arg;
1206 	uint32_t r;
1207 
1208 	mtx_lock(&sc->sc_mtx);
1209 
1210 	if ((r = CSR_READ_4(sc, IPW_CSR_INTR)) == 0 || r == 0xffffffff) {
1211 		mtx_unlock(&sc->sc_mtx);
1212 		return;
1213 	}
1214 
1215 	/* disable interrupts */
1216 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1217 
1218 	/* acknowledge all interrupts */
1219 	CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1220 
1221 	if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1222 		device_printf(sc->sc_dev, "firmware error\n");
1223 		taskqueue_enqueue_fast(taskqueue_fast, &sc->sc_init_task);
1224 		r = 0;	/* don't process more interrupts */
1225 	}
1226 
1227 	if (r & IPW_INTR_FW_INIT_DONE)
1228 		wakeup(sc);
1229 
1230 	if (r & IPW_INTR_RX_TRANSFER)
1231 		ipw_rx_intr(sc);
1232 
1233 	if (r & IPW_INTR_TX_TRANSFER)
1234 		ipw_tx_intr(sc);
1235 
1236 	/* re-enable interrupts */
1237 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1238 
1239 	mtx_unlock(&sc->sc_mtx);
1240 }
1241 
1242 static void
1243 ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1244 {
1245 	if (error != 0)
1246 		return;
1247 
1248 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1249 
1250 	*(bus_addr_t *)arg = segs[0].ds_addr;
1251 }
1252 
1253 /*
1254  * Send a command to the firmware and wait for the acknowledgement.
1255  */
1256 static int
1257 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1258 {
1259 	struct ipw_soft_bd *sbd;
1260 	bus_addr_t physaddr;
1261 	int error;
1262 
1263 	sbd = &sc->stbd_list[sc->txcur];
1264 
1265 	error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd,
1266 	    sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0);
1267 	if (error != 0) {
1268 		device_printf(sc->sc_dev, "could not map command DMA memory\n");
1269 		return error;
1270 	}
1271 
1272 	sc->cmd.type = htole32(type);
1273 	sc->cmd.subtype = 0;
1274 	sc->cmd.len = htole32(len);
1275 	sc->cmd.seq = 0;
1276 	memcpy(sc->cmd.data, data, len);
1277 
1278 	sbd->type = IPW_SBD_TYPE_COMMAND;
1279 	sbd->bd->physaddr = htole32(physaddr);
1280 	sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1281 	sbd->bd->nfrag = 1;
1282 	sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1283 	    IPW_BD_FLAG_TX_LAST_FRAGMENT;
1284 
1285 	bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE);
1286 	bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
1287 
1288 	DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
1289 
1290 	/* kick firmware */
1291 	sc->txfree--;
1292 	sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1293 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1294 
1295 	/* wait at most one second for command to complete */
1296 	return msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz);
1297 }
1298 
1299 static int
1300 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
1301 {
1302 	struct ipw_softc *sc = ifp->if_softc;
1303 	struct ieee80211com *ic = &sc->sc_ic;
1304 	struct ieee80211_frame *wh;
1305 	struct ipw_soft_bd *sbd;
1306 	struct ipw_soft_hdr *shdr;
1307 	struct ipw_soft_buf *sbuf;
1308 	struct ieee80211_key *k;
1309 	struct mbuf *mnew;
1310 	bus_dma_segment_t segs[IPW_MAX_NSEG];
1311 	bus_addr_t physaddr;
1312 	int nsegs, error, i;
1313 
1314 	wh = mtod(m0, struct ieee80211_frame *);
1315 
1316 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1317 		k = ieee80211_crypto_encap(ic, ni, m0);
1318 		if (k == NULL) {
1319 			m_freem(m0);
1320 			return ENOBUFS;
1321 		}
1322 
1323 		/* packet header may have moved, reset our local pointer */
1324 		wh = mtod(m0, struct ieee80211_frame *);
1325 	}
1326 
1327 	if (bpf_peers_present(sc->sc_drvbpf)) {
1328 		struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1329 
1330 		tap->wt_flags = 0;
1331 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1332 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1333 
1334 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1335 	}
1336 
1337 	shdr = SLIST_FIRST(&sc->free_shdr);
1338 	sbuf = SLIST_FIRST(&sc->free_sbuf);
1339 	KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool"));
1340 
1341 	shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND);
1342 	shdr->hdr.subtype = 0;
1343 	shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
1344 	shdr->hdr.encrypt = 0;
1345 	shdr->hdr.keyidx = 0;
1346 	shdr->hdr.keysz = 0;
1347 	shdr->hdr.fragmentsz = 0;
1348 	IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2);
1349 	if (ic->ic_opmode == IEEE80211_M_STA)
1350 		IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3);
1351 	else
1352 		IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1);
1353 
1354 	/* trim IEEE802.11 header */
1355 	m_adj(m0, sizeof (struct ieee80211_frame));
1356 
1357 	error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs,
1358 	    &nsegs, 0);
1359 	if (error != 0 && error != EFBIG) {
1360 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1361 		    error);
1362 		m_freem(m0);
1363 		return error;
1364 	}
1365 	if (error != 0) {
1366 		mnew = m_defrag(m0, M_DONTWAIT);
1367 		if (mnew == NULL) {
1368 			device_printf(sc->sc_dev,
1369 			    "could not defragment mbuf\n");
1370 			m_freem(m0);
1371 			return ENOBUFS;
1372 		}
1373 		m0 = mnew;
1374 
1375 		error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0,
1376 		    segs, &nsegs, 0);
1377 		if (error != 0) {
1378 			device_printf(sc->sc_dev,
1379 			    "could not map mbuf (error %d)\n", error);
1380 			m_freem(m0);
1381 			return error;
1382 		}
1383 	}
1384 
1385 	error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr,
1386 	    sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0);
1387 	if (error != 0) {
1388 		device_printf(sc->sc_dev, "could not map header DMA memory\n");
1389 		bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
1390 		m_freem(m0);
1391 		return error;
1392 	}
1393 
1394 	SLIST_REMOVE_HEAD(&sc->free_sbuf, next);
1395 	SLIST_REMOVE_HEAD(&sc->free_shdr, next);
1396 
1397 	sbd = &sc->stbd_list[sc->txcur];
1398 	sbd->type = IPW_SBD_TYPE_HEADER;
1399 	sbd->priv = shdr;
1400 	sbd->bd->physaddr = htole32(physaddr);
1401 	sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1402 	sbd->bd->nfrag = 1 + nsegs;
1403 	sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1404 	    IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1405 
1406 	DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n",
1407 	    shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted,
1408 	    shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr,
1409 	    ":"));
1410 
1411 	sc->txfree--;
1412 	sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1413 
1414 	sbuf->m = m0;
1415 	sbuf->ni = ni;
1416 
1417 	for (i = 0; i < nsegs; i++) {
1418 		sbd = &sc->stbd_list[sc->txcur];
1419 
1420 		sbd->bd->physaddr = htole32(segs[i].ds_addr);
1421 		sbd->bd->len = htole32(segs[i].ds_len);
1422 		sbd->bd->nfrag = 0;
1423 		sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1424 		if (i == nsegs - 1) {
1425 			sbd->type = IPW_SBD_TYPE_DATA;
1426 			sbd->priv = sbuf;
1427 			sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1428 		} else {
1429 			sbd->type = IPW_SBD_TYPE_NOASSOC;
1430 			sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1431 		}
1432 
1433 		DPRINTFN(5, ("sending fragment (%d, %d)\n", i, segs[i].ds_len));
1434 
1435 		sc->txfree--;
1436 		sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1437 	}
1438 
1439 	bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE);
1440 	bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE);
1441 	bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
1442 
1443 	/* kick firmware */
1444 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1445 
1446 	return 0;
1447 }
1448 
1449 static void
1450 ipw_start(struct ifnet *ifp)
1451 {
1452 	struct ipw_softc *sc = ifp->if_softc;
1453 	struct ieee80211com *ic = &sc->sc_ic;
1454 	struct mbuf *m0;
1455 	struct ether_header *eh;
1456 	struct ieee80211_node *ni;
1457 
1458 	mtx_lock(&sc->sc_mtx);
1459 
1460 	if (ic->ic_state != IEEE80211_S_RUN) {
1461 		mtx_unlock(&sc->sc_mtx);
1462 		return;
1463 	}
1464 
1465 	for (;;) {
1466 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1467 		if (m0 == NULL)
1468 			break;
1469 
1470 		if (sc->txfree < 1 + IPW_MAX_NSEG) {
1471 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1472 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1473 			break;
1474 		}
1475 
1476 		if (m0->m_len < sizeof (struct ether_header) &&
1477 		    (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
1478 			continue;
1479 
1480 		eh = mtod(m0, struct ether_header *);
1481 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1482 		if (ni == NULL) {
1483 			m_freem(m0);
1484 			continue;
1485 		}
1486 		BPF_MTAP(ifp, m0);
1487 
1488 		m0 = ieee80211_encap(ic, m0, ni);
1489 		if (m0 == NULL) {
1490 			ieee80211_free_node(ni);
1491 			continue;
1492 		}
1493 
1494 		if (bpf_peers_present(ic->ic_rawbpf))
1495 			bpf_mtap(ic->ic_rawbpf, m0);
1496 
1497 		if (ipw_tx_start(ifp, m0, ni) != 0) {
1498 			ieee80211_free_node(ni);
1499 			ifp->if_oerrors++;
1500 			break;
1501 		}
1502 
1503 		/* start watchdog timer */
1504 		sc->sc_tx_timer = 5;
1505 		ifp->if_timer = 1;
1506 	}
1507 
1508 	mtx_unlock(&sc->sc_mtx);
1509 }
1510 
1511 static void
1512 ipw_watchdog(struct ifnet *ifp)
1513 {
1514 	struct ipw_softc *sc = ifp->if_softc;
1515 	struct ieee80211com *ic = &sc->sc_ic;
1516 
1517 	mtx_lock(&sc->sc_mtx);
1518 
1519 	ifp->if_timer = 0;
1520 
1521 	if (sc->sc_tx_timer > 0) {
1522 		if (--sc->sc_tx_timer == 0) {
1523 			if_printf(ifp, "device timeout\n");
1524 			ifp->if_oerrors++;
1525 			taskqueue_enqueue_fast(taskqueue_fast,
1526 			    &sc->sc_init_task);
1527 			mtx_unlock(&sc->sc_mtx);
1528 			return;
1529 		}
1530 		ifp->if_timer = 1;
1531 	}
1532 
1533 	ieee80211_watchdog(ic);
1534 
1535 	mtx_unlock(&sc->sc_mtx);
1536 }
1537 
1538 static int
1539 ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1540 {
1541 	struct ipw_softc *sc = ifp->if_softc;
1542 	struct ieee80211com *ic = &sc->sc_ic;
1543 	int error = 0;
1544 
1545 	mtx_lock(&sc->sc_mtx);
1546 
1547 	switch (cmd) {
1548 	case SIOCSIFFLAGS:
1549 		if (ifp->if_flags & IFF_UP) {
1550 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1551 				ipw_init(sc);
1552 		} else {
1553 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1554 				ipw_stop(sc);
1555 		}
1556 		break;
1557 
1558 	default:
1559 		error = ieee80211_ioctl(ic, cmd, data);
1560 	}
1561 
1562 	if (error == ENETRESET) {
1563 		if ((ifp->if_flags & IFF_UP) &&
1564 		    (ifp->if_drv_flags & IFF_DRV_RUNNING))
1565 			ipw_init(sc);
1566 		error = 0;
1567 	}
1568 
1569 	mtx_unlock(&sc->sc_mtx);
1570 
1571 	return error;
1572 }
1573 
1574 static void
1575 ipw_stop_master(struct ipw_softc *sc)
1576 {
1577 	uint32_t tmp;
1578 	int ntries;
1579 
1580 	/* disable interrupts */
1581 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1582 
1583 	CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1584 	for (ntries = 0; ntries < 50; ntries++) {
1585 		if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1586 			break;
1587 		DELAY(10);
1588 	}
1589 	if (ntries == 50)
1590 		device_printf(sc->sc_dev, "timeout waiting for master\n");
1591 
1592 	tmp = CSR_READ_4(sc, IPW_CSR_RST);
1593 	CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET);
1594 
1595 	sc->flags &= ~IPW_FLAG_FW_INITED;
1596 }
1597 
1598 static int
1599 ipw_reset(struct ipw_softc *sc)
1600 {
1601 	uint32_t tmp;
1602 	int ntries;
1603 
1604 	ipw_stop_master(sc);
1605 
1606 	/* move adapter to D0 state */
1607 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1608 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
1609 
1610 	/* wait for clock stabilization */
1611 	for (ntries = 0; ntries < 1000; ntries++) {
1612 		if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1613 			break;
1614 		DELAY(200);
1615 	}
1616 	if (ntries == 1000)
1617 		return EIO;
1618 
1619 	tmp =  CSR_READ_4(sc, IPW_CSR_RST);
1620 	CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET);
1621 
1622 	DELAY(10);
1623 
1624 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1625 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
1626 
1627 	return 0;
1628 }
1629 
1630 /*
1631  * Upload the microcode to the device.
1632  */
1633 static int
1634 ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size)
1635 {
1636 	int ntries;
1637 
1638 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1639 	CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1640 
1641 	MEM_WRITE_2(sc, 0x220000, 0x0703);
1642 	MEM_WRITE_2(sc, 0x220000, 0x0707);
1643 
1644 	MEM_WRITE_1(sc, 0x210014, 0x72);
1645 	MEM_WRITE_1(sc, 0x210014, 0x72);
1646 
1647 	MEM_WRITE_1(sc, 0x210000, 0x40);
1648 	MEM_WRITE_1(sc, 0x210000, 0x00);
1649 	MEM_WRITE_1(sc, 0x210000, 0x40);
1650 
1651 	MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1652 
1653 	MEM_WRITE_1(sc, 0x210000, 0x00);
1654 	MEM_WRITE_1(sc, 0x210000, 0x00);
1655 	MEM_WRITE_1(sc, 0x210000, 0x80);
1656 
1657 	MEM_WRITE_2(sc, 0x220000, 0x0703);
1658 	MEM_WRITE_2(sc, 0x220000, 0x0707);
1659 
1660 	MEM_WRITE_1(sc, 0x210014, 0x72);
1661 	MEM_WRITE_1(sc, 0x210014, 0x72);
1662 
1663 	MEM_WRITE_1(sc, 0x210000, 0x00);
1664 	MEM_WRITE_1(sc, 0x210000, 0x80);
1665 
1666 	for (ntries = 0; ntries < 10; ntries++) {
1667 		if (MEM_READ_1(sc, 0x210000) & 1)
1668 			break;
1669 		DELAY(10);
1670 	}
1671 	if (ntries == 10) {
1672 		device_printf(sc->sc_dev,
1673 		    "timeout waiting for ucode to initialize\n");
1674 		return EIO;
1675 	}
1676 
1677 	MEM_WRITE_4(sc, 0x3000e0, 0);
1678 
1679 	return 0;
1680 }
1681 
1682 /* set of macros to handle unaligned little endian data in firmware image */
1683 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1684 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1685 static int
1686 ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size)
1687 {
1688 	const uint8_t *p, *end;
1689 	uint32_t tmp, dst;
1690 	uint16_t len;
1691 	int error;
1692 
1693 	p = fw;
1694 	end = fw + size;
1695 	while (p < end) {
1696 		dst = GETLE32(p); p += 4;
1697 		len = GETLE16(p); p += 2;
1698 
1699 		ipw_write_mem_1(sc, dst, p, len);
1700 		p += len;
1701 	}
1702 
1703 	CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1704 	    IPW_IO_LED_OFF);
1705 
1706 	/* enable interrupts */
1707 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1708 
1709 	/* kick the firmware */
1710 	CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1711 
1712 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1713 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY);
1714 
1715 	/* wait at most one second for firmware initialization to complete */
1716 	if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) {
1717 		device_printf(sc->sc_dev, "timeout waiting for firmware "
1718 		    "initialization to complete\n");
1719 		return error;
1720 	}
1721 
1722 	tmp = CSR_READ_4(sc, IPW_CSR_IO);
1723 	CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK |
1724 	    IPW_IO_GPIO3_MASK);
1725 
1726 	return 0;
1727 }
1728 
1729 static int
1730 ipw_config(struct ipw_softc *sc)
1731 {
1732 	struct ieee80211com *ic = &sc->sc_ic;
1733 	struct ifnet *ifp = ic->ic_ifp;
1734 	struct ipw_security security;
1735 	struct ieee80211_key *k;
1736 	struct ipw_wep_key wepkey;
1737 	struct ipw_scan_options options;
1738 	struct ipw_configuration config;
1739 	uint32_t data;
1740 	int error, i;
1741 
1742 	switch (ic->ic_opmode) {
1743 	case IEEE80211_M_STA:
1744 	case IEEE80211_M_HOSTAP:
1745 		data = htole32(IPW_MODE_BSS);
1746 		break;
1747 	case IEEE80211_M_IBSS:
1748 	case IEEE80211_M_AHDEMO:
1749 		data = htole32(IPW_MODE_IBSS);
1750 		break;
1751 	case IEEE80211_M_MONITOR:
1752 		data = htole32(IPW_MODE_MONITOR);
1753 		break;
1754 	}
1755 	DPRINTF(("Setting mode to %u\n", le32toh(data)));
1756 	error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
1757 	if (error != 0)
1758 		return error;
1759 
1760 	if (ic->ic_opmode == IEEE80211_M_IBSS ||
1761 	    ic->ic_opmode == IEEE80211_M_MONITOR) {
1762 		data = htole32(ieee80211_chan2ieee(ic, ic->ic_curchan));
1763 		DPRINTF(("Setting channel to %u\n", le32toh(data)));
1764 		error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
1765 		if (error != 0)
1766 			return error;
1767 	}
1768 
1769 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1770 		DPRINTF(("Enabling adapter\n"));
1771 		return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1772 	}
1773 
1774 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1775 	DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":"));
1776 	error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
1777 	    IEEE80211_ADDR_LEN);
1778 	if (error != 0)
1779 		return error;
1780 
1781 	config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
1782 	    IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
1783 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1784 		config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
1785 	if (ifp->if_flags & IFF_PROMISC)
1786 		config.flags |= htole32(IPW_CFG_PROMISCUOUS);
1787 	config.bss_chan = htole32(0x3fff); /* channels 1-14 */
1788 	config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
1789 	DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags)));
1790 	error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
1791 	if (error != 0)
1792 		return error;
1793 
1794 	data = htole32(0x3); /* 1, 2 */
1795 	DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
1796 	error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
1797 	if (error != 0)
1798 		return error;
1799 
1800 	data = htole32(0xf); /* 1, 2, 5.5, 11 */
1801 	DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
1802 	error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
1803 	if (error != 0)
1804 		return error;
1805 
1806 	data = htole32(IPW_POWER_MODE_CAM);
1807 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
1808 	error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
1809 	if (error != 0)
1810 		return error;
1811 
1812 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1813 		data = htole32(32); /* default value */
1814 		DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
1815 		error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
1816 		    sizeof data);
1817 		if (error != 0)
1818 			return error;
1819 	}
1820 
1821 	data = htole32(ic->ic_rtsthreshold);
1822 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
1823 	error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
1824 	if (error != 0)
1825 		return error;
1826 
1827 	data = htole32(ic->ic_fragthreshold);
1828 	DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
1829 	error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
1830 	if (error != 0)
1831 		return error;
1832 
1833 #ifdef IPW_DEBUG
1834 	if (ipw_debug > 0) {
1835 		printf("Setting ESSID to ");
1836 		ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
1837 		printf("\n");
1838 	}
1839 #endif
1840 	error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
1841 	    ic->ic_des_esslen);
1842 	if (error != 0)
1843 		return error;
1844 
1845 	/* no mandatory BSSID */
1846 	DPRINTF(("Setting mandatory BSSID to null\n"));
1847 	error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
1848 	if (error != 0)
1849 		return error;
1850 
1851 	if (ic->ic_flags & IEEE80211_F_DESBSSID) {
1852 		DPRINTF(("Setting desired BSSID to %6D\n", ic->ic_des_bssid,
1853 		    ":"));
1854 		error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
1855 		    ic->ic_des_bssid, IEEE80211_ADDR_LEN);
1856 		if (error != 0)
1857 			return error;
1858 	}
1859 
1860 	memset(&security, 0, sizeof security);
1861 	security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
1862 	    IPW_AUTH_SHARED : IPW_AUTH_OPEN;
1863 	security.ciphers = htole32(IPW_CIPHER_NONE);
1864 	DPRINTF(("Setting authmode to %u\n", security.authmode));
1865 	error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
1866 	    sizeof security);
1867 	if (error != 0)
1868 		return error;
1869 
1870 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
1871 		k = ic->ic_crypto.cs_nw_keys;
1872 		for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
1873 			if (k->wk_keylen == 0)
1874 				continue;
1875 
1876 			wepkey.idx = i;
1877 			wepkey.len = k->wk_keylen;
1878 			memset(wepkey.key, 0, sizeof wepkey.key);
1879 			memcpy(wepkey.key, k->wk_key, k->wk_keylen);
1880 			DPRINTF(("Setting wep key index %u len %u\n",
1881 			    wepkey.idx, wepkey.len));
1882 			error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
1883 			    sizeof wepkey);
1884 			if (error != 0)
1885 				return error;
1886 		}
1887 
1888 		data = htole32(ic->ic_crypto.cs_def_txkey);
1889 		DPRINTF(("Setting wep tx key index to %u\n", le32toh(data)));
1890 		error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
1891 		    sizeof data);
1892 		if (error != 0)
1893 			return error;
1894 	}
1895 
1896 	data = htole32((ic->ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
1897 	DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
1898 	error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
1899 	if (error != 0)
1900 		return error;
1901 
1902 #if 0
1903 	struct ipw_wpa_ie ie;
1904 
1905 	memset(&ie, 0, sizeof ie);
1906 	ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
1907 	DPRINTF(("Setting wpa ie\n"));
1908 	error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
1909 	if (error != 0)
1910 		return error;
1911 #endif
1912 
1913 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1914 		data = htole32(ic->ic_bintval);
1915 		DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
1916 		error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
1917 		    sizeof data);
1918 		if (error != 0)
1919 			return error;
1920 	}
1921 
1922 	options.flags = 0;
1923 	options.channels = htole32(0x3fff); /* scan channels 1-14 */
1924 	DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
1925 	error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
1926 	if (error != 0)
1927 		return error;
1928 
1929 	/* finally, enable adapter (start scanning for an access point) */
1930 	DPRINTF(("Enabling adapter\n"));
1931 	return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1932 }
1933 
1934 /*
1935  * Handler for sc_init_task.  This is a simple wrapper around ipw_init().
1936  * It is called on firmware panics or on watchdog timeouts.
1937  */
1938 static void
1939 ipw_init_task(void *context, int pending)
1940 {
1941 	ipw_init(context);
1942 }
1943 
1944 static void
1945 ipw_init(void *priv)
1946 {
1947 	struct ipw_softc *sc = priv;
1948 	struct ieee80211com *ic = &sc->sc_ic;
1949 	struct ifnet *ifp = ic->ic_ifp;
1950 	const struct firmware *fp;
1951 	const struct ipw_firmware_hdr *hdr;
1952 	const char *imagename, *fw;
1953 	int owned;
1954 
1955 	/*
1956 	 * ipw_init() is exposed through ifp->if_init so it might be called
1957 	 * without the driver's lock held.  Since msleep() doesn't like being
1958 	 * called on a recursed mutex, we acquire the driver's lock only if
1959 	 * we're not already holding it.
1960 	 */
1961 	if (!(owned = mtx_owned(&sc->sc_mtx)))
1962 		mtx_lock(&sc->sc_mtx);
1963 
1964 	/*
1965 	 * Avoid re-entrant calls.  We need to release the mutex in ipw_init()
1966 	 * when loading the firmware and we don't want to be called during this
1967 	 * operation.
1968 	 */
1969 	if (sc->flags & IPW_FLAG_INIT_LOCKED) {
1970 		if (!owned)
1971 			mtx_unlock(&sc->sc_mtx);
1972 		return;
1973 	}
1974 	sc->flags |= IPW_FLAG_INIT_LOCKED;
1975 
1976 	ipw_stop(sc);
1977 
1978 	if (ipw_reset(sc) != 0) {
1979 		device_printf(sc->sc_dev, "could not reset adapter\n");
1980 		goto fail1;
1981 	}
1982 
1983 	switch (ic->ic_opmode) {
1984 	case IEEE80211_M_STA:
1985 		imagename = "ipw_bss";
1986 		break;
1987 	case IEEE80211_M_IBSS:
1988 		imagename = "ipw_ibss";
1989 		break;
1990 	case IEEE80211_M_MONITOR:
1991 		imagename = "ipw_monitor";
1992 		break;
1993 	default:
1994 		imagename = NULL;	/* should not get there */
1995 	}
1996 
1997 	/*
1998 	 * Load firmware image using the firmware(9) subsystem.  We need to
1999 	 * release the driver's lock first.
2000 	 */
2001 	if (sc->sc_firmware == NULL || strcmp(sc->sc_firmware->name,
2002 	    imagename) != 0) {
2003 		mtx_unlock(&sc->sc_mtx);
2004 		if (sc->sc_firmware != NULL)
2005 			firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
2006 		sc->sc_firmware = firmware_get(imagename);
2007 		mtx_lock(&sc->sc_mtx);
2008 	}
2009 
2010 	if (sc->sc_firmware == NULL) {
2011 		device_printf(sc->sc_dev,
2012 		    "could not load firmware image '%s'\n", imagename);
2013 		goto fail1;
2014 	}
2015 
2016 	fp = sc->sc_firmware;
2017 	if (fp->datasize < sizeof *hdr) {
2018 		device_printf(sc->sc_dev,
2019 		    "firmware image too short %zu\n", fp->datasize);
2020 		goto fail2;
2021 	}
2022 
2023 	hdr = (const struct ipw_firmware_hdr *)fp->data;
2024 
2025 	if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) +
2026 	    le32toh(hdr->ucodesz)) {
2027 		device_printf(sc->sc_dev,
2028 		    "firmware image too short %zu\n", fp->datasize);
2029 		goto fail2;
2030 	}
2031 
2032 	fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz);
2033 	if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) {
2034 		device_printf(sc->sc_dev, "could not load microcode\n");
2035 		goto fail2;
2036 	}
2037 
2038 	ipw_stop_master(sc);
2039 
2040 	/*
2041 	 * Setup tx, rx and status rings.
2042 	 */
2043 	sc->txold = IPW_NTBD - 1;
2044 	sc->txcur = 0;
2045 	sc->txfree = IPW_NTBD - 2;
2046 	sc->rxcur = IPW_NRBD - 1;
2047 
2048 	CSR_WRITE_4(sc, IPW_CSR_TX_BASE,  sc->tbd_phys);
2049 	CSR_WRITE_4(sc, IPW_CSR_TX_SIZE,  IPW_NTBD);
2050 	CSR_WRITE_4(sc, IPW_CSR_TX_READ,  0);
2051 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2052 
2053 	CSR_WRITE_4(sc, IPW_CSR_RX_BASE,  sc->rbd_phys);
2054 	CSR_WRITE_4(sc, IPW_CSR_RX_SIZE,  IPW_NRBD);
2055 	CSR_WRITE_4(sc, IPW_CSR_RX_READ,  0);
2056 	CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2057 
2058 	CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys);
2059 
2060 	fw = (const char *)fp->data + sizeof *hdr;
2061 	if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) {
2062 		device_printf(sc->sc_dev, "could not load firmware\n");
2063 		goto fail2;
2064 	}
2065 
2066 	sc->flags |= IPW_FLAG_FW_INITED;
2067 
2068 	/* retrieve information tables base addresses */
2069 	sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2070 	sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2071 
2072 	ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2073 
2074 	if (ipw_config(sc) != 0) {
2075 		device_printf(sc->sc_dev, "device configuration failed\n");
2076 		goto fail1;
2077 	}
2078 
2079 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2080 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2081 
2082 	sc->flags &=~ IPW_FLAG_INIT_LOCKED;
2083 
2084 	if (!owned)
2085 		mtx_unlock(&sc->sc_mtx);
2086 
2087 	return;
2088 
2089 fail2:	firmware_put(fp, FIRMWARE_UNLOAD);
2090 	sc->sc_firmware = NULL;
2091 fail1:	ifp->if_flags &= ~IFF_UP;
2092 	ipw_stop(sc);
2093 	sc->flags &=~ IPW_FLAG_INIT_LOCKED;
2094 	if (!owned)
2095 		mtx_unlock(&sc->sc_mtx);
2096 }
2097 
2098 static void
2099 ipw_stop(void *priv)
2100 {
2101 	struct ipw_softc *sc = priv;
2102 	struct ieee80211com *ic = &sc->sc_ic;
2103 	struct ifnet *ifp = ic->ic_ifp;
2104 	int i;
2105 
2106 	mtx_lock(&sc->sc_mtx);
2107 
2108 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2109 
2110 	ipw_stop_master(sc);
2111 
2112 	CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2113 
2114 	/*
2115 	 * Release tx buffers.
2116 	 */
2117 	for (i = 0; i < IPW_NTBD; i++)
2118 		ipw_release_sbd(sc, &sc->stbd_list[i]);
2119 
2120 	sc->sc_tx_timer = 0;
2121 	ifp->if_timer = 0;
2122 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2123 
2124 	mtx_unlock(&sc->sc_mtx);
2125 }
2126 
2127 static int
2128 ipw_sysctl_stats(SYSCTL_HANDLER_ARGS)
2129 {
2130 	struct ipw_softc *sc = arg1;
2131 	uint32_t i, size, buf[256];
2132 
2133 	if (!(sc->flags & IPW_FLAG_FW_INITED)) {
2134 		memset(buf, 0, sizeof buf);
2135 		return SYSCTL_OUT(req, buf, sizeof buf);
2136 	}
2137 
2138 	CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
2139 
2140 	size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256);
2141 	for (i = 1; i < size; i++)
2142 		buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA));
2143 
2144 	return SYSCTL_OUT(req, buf, sizeof buf);
2145 }
2146 
2147 static int
2148 ipw_sysctl_radio(SYSCTL_HANDLER_ARGS)
2149 {
2150 	struct ipw_softc *sc = arg1;
2151 	int val;
2152 
2153 	val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) &&
2154 	        (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED));
2155 
2156 	return SYSCTL_OUT(req, &val, sizeof val);
2157 }
2158 
2159 static uint32_t
2160 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
2161 {
2162 	return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
2163 }
2164 
2165 static void
2166 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
2167 {
2168 	MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
2169 }
2170 
2171 static int
2172 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
2173 {
2174 	uint32_t addr, info;
2175 	uint16_t count, size;
2176 	uint32_t total;
2177 
2178 	/* addr[4] + count[2] + size[2] */
2179 	addr = MEM_READ_4(sc, sc->table2_base + off);
2180 	info = MEM_READ_4(sc, sc->table2_base + off + 4);
2181 
2182 	count = info >> 16;
2183 	size = info & 0xffff;
2184 	total = count * size;
2185 
2186 	if (total > *len) {
2187 		*len = total;
2188 		return EINVAL;
2189 	}
2190 
2191 	*len = total;
2192 	ipw_read_mem_1(sc, addr, buf, total);
2193 
2194 	return 0;
2195 }
2196 
2197 static void
2198 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2199     bus_size_t count)
2200 {
2201 	for (; count > 0; offset++, datap++, count--) {
2202 		CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2203 		*datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2204 	}
2205 }
2206 
2207 static void
2208 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap,
2209     bus_size_t count)
2210 {
2211 	for (; count > 0; offset++, datap++, count--) {
2212 		CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2213 		CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2214 	}
2215 }
2216