1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004-2006 5 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 6 * Copyright (c) 2006 Sam Leffler, Errno Consulting 7 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /*- 36 * Intel(R) PRO/Wireless 2100 MiniPCI driver 37 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 38 */ 39 40 #include <sys/param.h> 41 #include <sys/sysctl.h> 42 #include <sys/sockio.h> 43 #include <sys/mbuf.h> 44 #include <sys/kernel.h> 45 #include <sys/socket.h> 46 #include <sys/systm.h> 47 #include <sys/malloc.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 #include <sys/module.h> 51 #include <sys/bus.h> 52 #include <sys/endian.h> 53 #include <sys/linker.h> 54 #include <sys/firmware.h> 55 56 #include <machine/bus.h> 57 #include <machine/resource.h> 58 #include <sys/rman.h> 59 60 #include <dev/pci/pcireg.h> 61 #include <dev/pci/pcivar.h> 62 63 #include <net/bpf.h> 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/if_arp.h> 67 #include <net/ethernet.h> 68 #include <net/if_dl.h> 69 #include <net/if_media.h> 70 #include <net/if_types.h> 71 72 #include <net80211/ieee80211_var.h> 73 #include <net80211/ieee80211_radiotap.h> 74 75 #include <netinet/in.h> 76 #include <netinet/in_systm.h> 77 #include <netinet/in_var.h> 78 #include <netinet/ip.h> 79 #include <netinet/if_ether.h> 80 81 #include <dev/ipw/if_ipwreg.h> 82 #include <dev/ipw/if_ipwvar.h> 83 84 #define IPW_DEBUG 85 #ifdef IPW_DEBUG 86 #define DPRINTF(x) do { if (ipw_debug > 0) printf x; } while (0) 87 #define DPRINTFN(n, x) do { if (ipw_debug >= (n)) printf x; } while (0) 88 int ipw_debug = 0; 89 SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level"); 90 #else 91 #define DPRINTF(x) 92 #define DPRINTFN(n, x) 93 #endif 94 95 MODULE_DEPEND(ipw, pci, 1, 1, 1); 96 MODULE_DEPEND(ipw, wlan, 1, 1, 1); 97 MODULE_DEPEND(ipw, firmware, 1, 1, 1); 98 99 struct ipw_ident { 100 uint16_t vendor; 101 uint16_t device; 102 const char *name; 103 }; 104 105 static const struct ipw_ident ipw_ident_table[] = { 106 { 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" }, 107 108 { 0, 0, NULL } 109 }; 110 111 static struct ieee80211vap *ipw_vap_create(struct ieee80211com *, 112 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 113 const uint8_t [IEEE80211_ADDR_LEN], 114 const uint8_t [IEEE80211_ADDR_LEN]); 115 static void ipw_vap_delete(struct ieee80211vap *); 116 static int ipw_dma_alloc(struct ipw_softc *); 117 static void ipw_release(struct ipw_softc *); 118 static void ipw_media_status(struct ifnet *, struct ifmediareq *); 119 static int ipw_newstate(struct ieee80211vap *, enum ieee80211_state, int); 120 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t); 121 static uint16_t ipw_read_chanmask(struct ipw_softc *); 122 static void ipw_rx_cmd_intr(struct ipw_softc *, struct ipw_soft_buf *); 123 static void ipw_rx_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *); 124 static void ipw_rx_data_intr(struct ipw_softc *, struct ipw_status *, 125 struct ipw_soft_bd *, struct ipw_soft_buf *); 126 static void ipw_rx_intr(struct ipw_softc *); 127 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *); 128 static void ipw_tx_intr(struct ipw_softc *); 129 static void ipw_intr(void *); 130 static void ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int); 131 static const char * ipw_cmdname(int); 132 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t); 133 static int ipw_tx_start(struct ipw_softc *, struct mbuf *, 134 struct ieee80211_node *); 135 static int ipw_raw_xmit(struct ieee80211_node *, struct mbuf *, 136 const struct ieee80211_bpf_params *); 137 static int ipw_transmit(struct ieee80211com *, struct mbuf *); 138 static void ipw_start(struct ipw_softc *); 139 static void ipw_watchdog(void *); 140 static void ipw_parent(struct ieee80211com *); 141 static void ipw_stop_master(struct ipw_softc *); 142 static int ipw_enable(struct ipw_softc *); 143 static int ipw_disable(struct ipw_softc *); 144 static int ipw_reset(struct ipw_softc *); 145 static int ipw_load_ucode(struct ipw_softc *, const char *, int); 146 static int ipw_load_firmware(struct ipw_softc *, const char *, int); 147 static int ipw_config(struct ipw_softc *); 148 static void ipw_assoc(struct ieee80211com *, struct ieee80211vap *); 149 static void ipw_disassoc(struct ieee80211com *, struct ieee80211vap *); 150 static void ipw_init_task(void *, int); 151 static void ipw_init(void *); 152 static void ipw_init_locked(struct ipw_softc *); 153 static void ipw_stop(void *); 154 static void ipw_stop_locked(struct ipw_softc *); 155 static int ipw_sysctl_stats(SYSCTL_HANDLER_ARGS); 156 static int ipw_sysctl_radio(SYSCTL_HANDLER_ARGS); 157 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t); 158 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t); 159 #if 0 160 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, 161 uint32_t *); 162 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, 163 bus_size_t); 164 #endif 165 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, 166 const uint8_t *, bus_size_t); 167 static int ipw_scan(struct ipw_softc *); 168 static void ipw_scan_start(struct ieee80211com *); 169 static void ipw_scan_end(struct ieee80211com *); 170 static void ipw_getradiocaps(struct ieee80211com *, int, int *, 171 struct ieee80211_channel[]); 172 static void ipw_set_channel(struct ieee80211com *); 173 static void ipw_scan_curchan(struct ieee80211_scan_state *, 174 unsigned long maxdwell); 175 static void ipw_scan_mindwell(struct ieee80211_scan_state *); 176 177 static int ipw_probe(device_t); 178 static int ipw_attach(device_t); 179 static int ipw_detach(device_t); 180 static int ipw_shutdown(device_t); 181 static int ipw_suspend(device_t); 182 static int ipw_resume(device_t); 183 184 static device_method_t ipw_methods[] = { 185 /* Device interface */ 186 DEVMETHOD(device_probe, ipw_probe), 187 DEVMETHOD(device_attach, ipw_attach), 188 DEVMETHOD(device_detach, ipw_detach), 189 DEVMETHOD(device_shutdown, ipw_shutdown), 190 DEVMETHOD(device_suspend, ipw_suspend), 191 DEVMETHOD(device_resume, ipw_resume), 192 193 DEVMETHOD_END 194 }; 195 196 static driver_t ipw_driver = { 197 "ipw", 198 ipw_methods, 199 sizeof (struct ipw_softc) 200 }; 201 202 DRIVER_MODULE(ipw, pci, ipw_driver, NULL, NULL); 203 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ipw, ipw_ident_table, 204 nitems(ipw_ident_table) - 1); 205 206 MODULE_VERSION(ipw, 1); 207 208 static int 209 ipw_probe(device_t dev) 210 { 211 const struct ipw_ident *ident; 212 213 for (ident = ipw_ident_table; ident->name != NULL; ident++) { 214 if (pci_get_vendor(dev) == ident->vendor && 215 pci_get_device(dev) == ident->device) { 216 device_set_desc(dev, ident->name); 217 return (BUS_PROBE_DEFAULT); 218 } 219 } 220 return ENXIO; 221 } 222 223 /* Base Address Register */ 224 static int 225 ipw_attach(device_t dev) 226 { 227 struct ipw_softc *sc = device_get_softc(dev); 228 struct ieee80211com *ic = &sc->sc_ic; 229 uint16_t val; 230 int error, i; 231 232 sc->sc_dev = dev; 233 234 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 235 MTX_DEF | MTX_RECURSE); 236 mbufq_init(&sc->sc_snd, ifqmaxlen); 237 TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc); 238 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 239 240 pci_write_config(dev, 0x41, 0, 1); 241 242 /* enable bus-mastering */ 243 pci_enable_busmaster(dev); 244 245 i = PCIR_BAR(0); 246 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 247 if (sc->mem == NULL) { 248 device_printf(dev, "could not allocate memory resource\n"); 249 goto fail; 250 } 251 252 sc->sc_st = rman_get_bustag(sc->mem); 253 sc->sc_sh = rman_get_bushandle(sc->mem); 254 255 i = 0; 256 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 257 RF_ACTIVE | RF_SHAREABLE); 258 if (sc->irq == NULL) { 259 device_printf(dev, "could not allocate interrupt resource\n"); 260 goto fail1; 261 } 262 263 if (ipw_reset(sc) != 0) { 264 device_printf(dev, "could not reset adapter\n"); 265 goto fail2; 266 } 267 268 if (ipw_dma_alloc(sc) != 0) { 269 device_printf(dev, "could not allocate DMA resources\n"); 270 goto fail2; 271 } 272 273 ic->ic_softc = sc; 274 ic->ic_name = device_get_nameunit(dev); 275 ic->ic_opmode = IEEE80211_M_STA; 276 ic->ic_phytype = IEEE80211_T_DS; 277 278 /* set device capabilities */ 279 ic->ic_caps = 280 IEEE80211_C_STA /* station mode supported */ 281 | IEEE80211_C_IBSS /* IBSS mode supported */ 282 | IEEE80211_C_MONITOR /* monitor mode supported */ 283 | IEEE80211_C_PMGT /* power save supported */ 284 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 285 | IEEE80211_C_WPA /* 802.11i supported */ 286 ; 287 288 /* read MAC address from EEPROM */ 289 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0); 290 ic->ic_macaddr[0] = val >> 8; 291 ic->ic_macaddr[1] = val & 0xff; 292 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1); 293 ic->ic_macaddr[2] = val >> 8; 294 ic->ic_macaddr[3] = val & 0xff; 295 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2); 296 ic->ic_macaddr[4] = val >> 8; 297 ic->ic_macaddr[5] = val & 0xff; 298 299 sc->chanmask = ipw_read_chanmask(sc); 300 ipw_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 301 ic->ic_channels); 302 303 /* check support for radio transmitter switch in EEPROM */ 304 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8)) 305 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH; 306 307 ieee80211_ifattach(ic); 308 ic->ic_scan_start = ipw_scan_start; 309 ic->ic_scan_end = ipw_scan_end; 310 ic->ic_getradiocaps = ipw_getradiocaps; 311 ic->ic_set_channel = ipw_set_channel; 312 ic->ic_scan_curchan = ipw_scan_curchan; 313 ic->ic_scan_mindwell = ipw_scan_mindwell; 314 ic->ic_raw_xmit = ipw_raw_xmit; 315 ic->ic_vap_create = ipw_vap_create; 316 ic->ic_vap_delete = ipw_vap_delete; 317 ic->ic_transmit = ipw_transmit; 318 ic->ic_parent = ipw_parent; 319 320 ieee80211_radiotap_attach(ic, 321 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 322 IPW_TX_RADIOTAP_PRESENT, 323 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 324 IPW_RX_RADIOTAP_PRESENT); 325 326 /* 327 * Add a few sysctl knobs. 328 */ 329 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 330 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio", 331 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 332 ipw_sysctl_radio, "I", 333 "radio transmitter switch state (0=off, 1=on)"); 334 335 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 336 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", 337 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 338 ipw_sysctl_stats, "S", "statistics"); 339 340 /* 341 * Hook our interrupt after all initialization is complete. 342 */ 343 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 344 NULL, ipw_intr, sc, &sc->sc_ih); 345 if (error != 0) { 346 device_printf(dev, "could not set up interrupt\n"); 347 goto fail3; 348 } 349 350 if (bootverbose) 351 ieee80211_announce(ic); 352 353 return 0; 354 fail3: 355 ipw_release(sc); 356 fail2: 357 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 358 fail1: 359 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 360 sc->mem); 361 fail: 362 mtx_destroy(&sc->sc_mtx); 363 return ENXIO; 364 } 365 366 static int 367 ipw_detach(device_t dev) 368 { 369 struct ipw_softc *sc = device_get_softc(dev); 370 struct ieee80211com *ic = &sc->sc_ic; 371 372 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 373 374 ieee80211_draintask(ic, &sc->sc_init_task); 375 ipw_stop(sc); 376 377 ieee80211_ifdetach(ic); 378 379 callout_drain(&sc->sc_wdtimer); 380 mbufq_drain(&sc->sc_snd); 381 382 ipw_release(sc); 383 384 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 385 386 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 387 sc->mem); 388 389 if (sc->sc_firmware != NULL) { 390 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 391 sc->sc_firmware = NULL; 392 } 393 394 mtx_destroy(&sc->sc_mtx); 395 396 return 0; 397 } 398 399 static struct ieee80211vap * 400 ipw_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 401 enum ieee80211_opmode opmode, int flags, 402 const uint8_t bssid[IEEE80211_ADDR_LEN], 403 const uint8_t mac[IEEE80211_ADDR_LEN]) 404 { 405 struct ipw_softc *sc = ic->ic_softc; 406 struct ipw_vap *ivp; 407 struct ieee80211vap *vap; 408 const struct firmware *fp; 409 const struct ipw_firmware_hdr *hdr; 410 const char *imagename; 411 412 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 413 return NULL; 414 415 switch (opmode) { 416 case IEEE80211_M_STA: 417 imagename = "ipw_bss"; 418 break; 419 case IEEE80211_M_IBSS: 420 imagename = "ipw_ibss"; 421 break; 422 case IEEE80211_M_MONITOR: 423 imagename = "ipw_monitor"; 424 break; 425 default: 426 return NULL; 427 } 428 429 /* 430 * Load firmware image using the firmware(9) subsystem. Doing 431 * this unlocked is ok since we're single-threaded by the 432 * 802.11 layer. 433 */ 434 if (sc->sc_firmware == NULL || 435 strcmp(sc->sc_firmware->name, imagename) != 0) { 436 if (sc->sc_firmware != NULL) 437 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 438 sc->sc_firmware = firmware_get(imagename); 439 } 440 if (sc->sc_firmware == NULL) { 441 device_printf(sc->sc_dev, 442 "could not load firmware image '%s'\n", imagename); 443 return NULL; 444 } 445 fp = sc->sc_firmware; 446 if (fp->datasize < sizeof *hdr) { 447 device_printf(sc->sc_dev, 448 "firmware image too short %zu\n", fp->datasize); 449 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 450 sc->sc_firmware = NULL; 451 return NULL; 452 } 453 hdr = (const struct ipw_firmware_hdr *)fp->data; 454 if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) + 455 le32toh(hdr->ucodesz)) { 456 device_printf(sc->sc_dev, 457 "firmware image too short %zu\n", fp->datasize); 458 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 459 sc->sc_firmware = NULL; 460 return NULL; 461 } 462 463 ivp = malloc(sizeof(struct ipw_vap), M_80211_VAP, M_WAITOK | M_ZERO); 464 vap = &ivp->vap; 465 466 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 467 /* override with driver methods */ 468 ivp->newstate = vap->iv_newstate; 469 vap->iv_newstate = ipw_newstate; 470 471 /* complete setup */ 472 ieee80211_vap_attach(vap, ieee80211_media_change, ipw_media_status, 473 mac); 474 ic->ic_opmode = opmode; 475 return vap; 476 } 477 478 static void 479 ipw_vap_delete(struct ieee80211vap *vap) 480 { 481 struct ipw_vap *ivp = IPW_VAP(vap); 482 483 ieee80211_vap_detach(vap); 484 free(ivp, M_80211_VAP); 485 } 486 487 static int 488 ipw_dma_alloc(struct ipw_softc *sc) 489 { 490 struct ipw_soft_bd *sbd; 491 struct ipw_soft_hdr *shdr; 492 struct ipw_soft_buf *sbuf; 493 bus_addr_t physaddr; 494 int error, i; 495 496 /* 497 * Allocate parent DMA tag for subsequent allocations. 498 */ 499 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 500 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 501 BUS_SPACE_MAXSIZE_32BIT, BUS_SPACE_UNRESTRICTED, 502 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->parent_dmat); 503 if (error != 0) { 504 device_printf(sc->sc_dev, "could not create parent DMA tag\n"); 505 goto fail; 506 } 507 508 /* 509 * Allocate and map tx ring. 510 */ 511 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 512 BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL, 513 NULL, &sc->tbd_dmat); 514 if (error != 0) { 515 device_printf(sc->sc_dev, "could not create tx ring DMA tag\n"); 516 goto fail; 517 } 518 519 error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list, 520 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map); 521 if (error != 0) { 522 device_printf(sc->sc_dev, 523 "could not allocate tx ring DMA memory\n"); 524 goto fail; 525 } 526 527 error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list, 528 IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0); 529 if (error != 0) { 530 device_printf(sc->sc_dev, "could not map tx ring DMA memory\n"); 531 goto fail; 532 } 533 534 /* 535 * Allocate and map rx ring. 536 */ 537 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 538 BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL, 539 NULL, &sc->rbd_dmat); 540 if (error != 0) { 541 device_printf(sc->sc_dev, "could not create rx ring DMA tag\n"); 542 goto fail; 543 } 544 545 error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list, 546 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map); 547 if (error != 0) { 548 device_printf(sc->sc_dev, 549 "could not allocate rx ring DMA memory\n"); 550 goto fail; 551 } 552 553 error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list, 554 IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0); 555 if (error != 0) { 556 device_printf(sc->sc_dev, "could not map rx ring DMA memory\n"); 557 goto fail; 558 } 559 560 /* 561 * Allocate and map status ring. 562 */ 563 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 564 BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0, 565 NULL, NULL, &sc->status_dmat); 566 if (error != 0) { 567 device_printf(sc->sc_dev, 568 "could not create status ring DMA tag\n"); 569 goto fail; 570 } 571 572 error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list, 573 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map); 574 if (error != 0) { 575 device_printf(sc->sc_dev, 576 "could not allocate status ring DMA memory\n"); 577 goto fail; 578 } 579 580 error = bus_dmamap_load(sc->status_dmat, sc->status_map, 581 sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys, 582 0); 583 if (error != 0) { 584 device_printf(sc->sc_dev, 585 "could not map status ring DMA memory\n"); 586 goto fail; 587 } 588 589 /* 590 * Allocate command DMA map. 591 */ 592 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 593 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1, 594 sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat); 595 if (error != 0) { 596 device_printf(sc->sc_dev, "could not create command DMA tag\n"); 597 goto fail; 598 } 599 600 error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map); 601 if (error != 0) { 602 device_printf(sc->sc_dev, 603 "could not create command DMA map\n"); 604 goto fail; 605 } 606 607 /* 608 * Allocate headers DMA maps. 609 */ 610 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 611 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1, 612 sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat); 613 if (error != 0) { 614 device_printf(sc->sc_dev, "could not create header DMA tag\n"); 615 goto fail; 616 } 617 618 SLIST_INIT(&sc->free_shdr); 619 for (i = 0; i < IPW_NDATA; i++) { 620 shdr = &sc->shdr_list[i]; 621 error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map); 622 if (error != 0) { 623 device_printf(sc->sc_dev, 624 "could not create header DMA map\n"); 625 goto fail; 626 } 627 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 628 } 629 630 /* 631 * Allocate tx buffers DMA maps. 632 */ 633 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 634 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0, 635 NULL, NULL, &sc->txbuf_dmat); 636 if (error != 0) { 637 device_printf(sc->sc_dev, "could not create tx DMA tag\n"); 638 goto fail; 639 } 640 641 SLIST_INIT(&sc->free_sbuf); 642 for (i = 0; i < IPW_NDATA; i++) { 643 sbuf = &sc->tx_sbuf_list[i]; 644 error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map); 645 if (error != 0) { 646 device_printf(sc->sc_dev, 647 "could not create tx DMA map\n"); 648 goto fail; 649 } 650 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 651 } 652 653 /* 654 * Initialize tx ring. 655 */ 656 for (i = 0; i < IPW_NTBD; i++) { 657 sbd = &sc->stbd_list[i]; 658 sbd->bd = &sc->tbd_list[i]; 659 sbd->type = IPW_SBD_TYPE_NOASSOC; 660 } 661 662 /* 663 * Pre-allocate rx buffers and DMA maps. 664 */ 665 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 666 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, 667 NULL, &sc->rxbuf_dmat); 668 if (error != 0) { 669 device_printf(sc->sc_dev, "could not create rx DMA tag\n"); 670 goto fail; 671 } 672 673 for (i = 0; i < IPW_NRBD; i++) { 674 sbd = &sc->srbd_list[i]; 675 sbuf = &sc->rx_sbuf_list[i]; 676 sbd->bd = &sc->rbd_list[i]; 677 678 sbuf->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 679 if (sbuf->m == NULL) { 680 device_printf(sc->sc_dev, 681 "could not allocate rx mbuf\n"); 682 error = ENOMEM; 683 goto fail; 684 } 685 686 error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map); 687 if (error != 0) { 688 device_printf(sc->sc_dev, 689 "could not create rx DMA map\n"); 690 goto fail; 691 } 692 693 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 694 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 695 &physaddr, 0); 696 if (error != 0) { 697 device_printf(sc->sc_dev, 698 "could not map rx DMA memory\n"); 699 goto fail; 700 } 701 702 sbd->type = IPW_SBD_TYPE_DATA; 703 sbd->priv = sbuf; 704 sbd->bd->physaddr = htole32(physaddr); 705 sbd->bd->len = htole32(MCLBYTES); 706 } 707 708 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 709 710 return 0; 711 712 fail: ipw_release(sc); 713 return error; 714 } 715 716 static void 717 ipw_release(struct ipw_softc *sc) 718 { 719 struct ipw_soft_buf *sbuf; 720 int i; 721 722 if (sc->parent_dmat != NULL) { 723 bus_dma_tag_destroy(sc->parent_dmat); 724 } 725 726 if (sc->tbd_dmat != NULL) { 727 bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map); 728 bus_dmamem_free(sc->tbd_dmat, sc->tbd_list, sc->tbd_map); 729 bus_dma_tag_destroy(sc->tbd_dmat); 730 } 731 732 if (sc->rbd_dmat != NULL) { 733 if (sc->rbd_list != NULL) { 734 bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map); 735 bus_dmamem_free(sc->rbd_dmat, sc->rbd_list, 736 sc->rbd_map); 737 } 738 bus_dma_tag_destroy(sc->rbd_dmat); 739 } 740 741 if (sc->status_dmat != NULL) { 742 if (sc->status_list != NULL) { 743 bus_dmamap_unload(sc->status_dmat, sc->status_map); 744 bus_dmamem_free(sc->status_dmat, sc->status_list, 745 sc->status_map); 746 } 747 bus_dma_tag_destroy(sc->status_dmat); 748 } 749 750 for (i = 0; i < IPW_NTBD; i++) 751 ipw_release_sbd(sc, &sc->stbd_list[i]); 752 753 if (sc->cmd_dmat != NULL) { 754 bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map); 755 bus_dma_tag_destroy(sc->cmd_dmat); 756 } 757 758 if (sc->hdr_dmat != NULL) { 759 for (i = 0; i < IPW_NDATA; i++) 760 bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map); 761 bus_dma_tag_destroy(sc->hdr_dmat); 762 } 763 764 if (sc->txbuf_dmat != NULL) { 765 for (i = 0; i < IPW_NDATA; i++) { 766 bus_dmamap_destroy(sc->txbuf_dmat, 767 sc->tx_sbuf_list[i].map); 768 } 769 bus_dma_tag_destroy(sc->txbuf_dmat); 770 } 771 772 if (sc->rxbuf_dmat != NULL) { 773 for (i = 0; i < IPW_NRBD; i++) { 774 sbuf = &sc->rx_sbuf_list[i]; 775 if (sbuf->m != NULL) { 776 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, 777 BUS_DMASYNC_POSTREAD); 778 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 779 m_freem(sbuf->m); 780 } 781 bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map); 782 } 783 bus_dma_tag_destroy(sc->rxbuf_dmat); 784 } 785 } 786 787 static int 788 ipw_shutdown(device_t dev) 789 { 790 struct ipw_softc *sc = device_get_softc(dev); 791 792 ipw_stop(sc); 793 794 return 0; 795 } 796 797 static int 798 ipw_suspend(device_t dev) 799 { 800 struct ipw_softc *sc = device_get_softc(dev); 801 struct ieee80211com *ic = &sc->sc_ic; 802 803 ieee80211_suspend_all(ic); 804 return 0; 805 } 806 807 static int 808 ipw_resume(device_t dev) 809 { 810 struct ipw_softc *sc = device_get_softc(dev); 811 struct ieee80211com *ic = &sc->sc_ic; 812 813 pci_write_config(dev, 0x41, 0, 1); 814 815 ieee80211_resume_all(ic); 816 return 0; 817 } 818 819 static int 820 ipw_cvtrate(int ipwrate) 821 { 822 switch (ipwrate) { 823 case IPW_RATE_DS1: return 2; 824 case IPW_RATE_DS2: return 4; 825 case IPW_RATE_DS5: return 11; 826 case IPW_RATE_DS11: return 22; 827 } 828 return 0; 829 } 830 831 /* 832 * The firmware automatically adapts the transmit speed. We report its current 833 * value here. 834 */ 835 static void 836 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr) 837 { 838 struct ieee80211vap *vap = ifp->if_softc; 839 struct ieee80211com *ic = vap->iv_ic; 840 struct ipw_softc *sc = ic->ic_softc; 841 842 /* read current transmission rate from adapter */ 843 vap->iv_bss->ni_txrate = ipw_cvtrate( 844 ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf); 845 ieee80211_media_status(ifp, imr); 846 } 847 848 static int 849 ipw_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 850 { 851 struct ipw_vap *ivp = IPW_VAP(vap); 852 struct ieee80211com *ic = vap->iv_ic; 853 struct ipw_softc *sc = ic->ic_softc; 854 enum ieee80211_state ostate; 855 856 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 857 ieee80211_state_name[vap->iv_state], 858 ieee80211_state_name[nstate], sc->flags)); 859 860 ostate = vap->iv_state; 861 IEEE80211_UNLOCK(ic); 862 863 switch (nstate) { 864 case IEEE80211_S_RUN: 865 if (ic->ic_opmode == IEEE80211_M_IBSS) { 866 /* 867 * XXX when joining an ibss network we are called 868 * with a SCAN -> RUN transition on scan complete. 869 * Use that to call ipw_assoc. On completing the 870 * join we are then called again with an AUTH -> RUN 871 * transition and we want to do nothing. This is 872 * all totally bogus and needs to be redone. 873 */ 874 if (ostate == IEEE80211_S_SCAN) 875 ipw_assoc(ic, vap); 876 } 877 break; 878 879 case IEEE80211_S_INIT: 880 if (sc->flags & IPW_FLAG_ASSOCIATED) 881 ipw_disassoc(ic, vap); 882 break; 883 884 case IEEE80211_S_AUTH: 885 /* 886 * Move to ASSOC state after the ipw_assoc() call. Firmware 887 * takes care of authentication, after the call we'll receive 888 * only an assoc response which would otherwise be discared 889 * if we are still in AUTH state. 890 */ 891 nstate = IEEE80211_S_ASSOC; 892 ipw_assoc(ic, vap); 893 break; 894 895 case IEEE80211_S_ASSOC: 896 /* 897 * If we are not transitioning from AUTH then resend the 898 * association request. 899 */ 900 if (ostate != IEEE80211_S_AUTH) 901 ipw_assoc(ic, vap); 902 break; 903 904 default: 905 break; 906 } 907 IEEE80211_LOCK(ic); 908 return ivp->newstate(vap, nstate, arg); 909 } 910 911 /* 912 * Read 16 bits at address 'addr' from the serial EEPROM. 913 */ 914 static uint16_t 915 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr) 916 { 917 uint32_t tmp; 918 uint16_t val; 919 int n; 920 921 /* clock C once before the first command */ 922 IPW_EEPROM_CTL(sc, 0); 923 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 924 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 925 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 926 927 /* write start bit (1) */ 928 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 929 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 930 931 /* write READ opcode (10) */ 932 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 933 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 934 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 935 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 936 937 /* write address A7-A0 */ 938 for (n = 7; n >= 0; n--) { 939 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 940 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D)); 941 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 942 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C); 943 } 944 945 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 946 947 /* read data Q15-Q0 */ 948 val = 0; 949 for (n = 15; n >= 0; n--) { 950 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 951 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 952 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL); 953 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n; 954 } 955 956 IPW_EEPROM_CTL(sc, 0); 957 958 /* clear Chip Select and clock C */ 959 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 960 IPW_EEPROM_CTL(sc, 0); 961 IPW_EEPROM_CTL(sc, IPW_EEPROM_C); 962 963 return le16toh(val); 964 } 965 966 static uint16_t 967 ipw_read_chanmask(struct ipw_softc *sc) 968 { 969 uint16_t val; 970 971 /* set supported .11b channels (read from EEPROM) */ 972 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0) 973 val = 0x7ff; /* default to channels 1-11 */ 974 val <<= 1; 975 976 return (val); 977 } 978 979 static void 980 ipw_rx_cmd_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 981 { 982 struct ipw_cmd *cmd; 983 984 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 985 986 cmd = mtod(sbuf->m, struct ipw_cmd *); 987 988 DPRINTFN(9, ("cmd ack'ed %s(%u, %u, %u, %u, %u)\n", 989 ipw_cmdname(le32toh(cmd->type)), le32toh(cmd->type), 990 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len), 991 le32toh(cmd->status))); 992 993 sc->flags &= ~IPW_FLAG_BUSY; 994 wakeup(sc); 995 } 996 997 static void 998 ipw_rx_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 999 { 1000 #define IEEESTATE(vap) ieee80211_state_name[vap->iv_state] 1001 struct ieee80211com *ic = &sc->sc_ic; 1002 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1003 uint32_t state; 1004 1005 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1006 1007 state = le32toh(*mtod(sbuf->m, uint32_t *)); 1008 1009 switch (state) { 1010 case IPW_STATE_ASSOCIATED: 1011 DPRINTFN(2, ("Association succeeded (%s flags 0x%x)\n", 1012 IEEESTATE(vap), sc->flags)); 1013 /* XXX suppress state change in case the fw auto-associates */ 1014 if ((sc->flags & IPW_FLAG_ASSOCIATING) == 0) { 1015 DPRINTF(("Unexpected association (%s, flags 0x%x)\n", 1016 IEEESTATE(vap), sc->flags)); 1017 break; 1018 } 1019 sc->flags &= ~IPW_FLAG_ASSOCIATING; 1020 sc->flags |= IPW_FLAG_ASSOCIATED; 1021 break; 1022 1023 case IPW_STATE_SCANNING: 1024 DPRINTFN(3, ("Scanning (%s flags 0x%x)\n", 1025 IEEESTATE(vap), sc->flags)); 1026 /* 1027 * NB: Check driver state for association on assoc 1028 * loss as the firmware will immediately start to 1029 * scan and we would treat it as a beacon miss if 1030 * we checked the 802.11 layer state. 1031 */ 1032 if (sc->flags & IPW_FLAG_ASSOCIATED) { 1033 IPW_UNLOCK(sc); 1034 /* XXX probably need to issue disassoc to fw */ 1035 ieee80211_beacon_miss(ic); 1036 IPW_LOCK(sc); 1037 } 1038 break; 1039 1040 case IPW_STATE_SCAN_COMPLETE: 1041 /* 1042 * XXX For some reason scan requests generate scan 1043 * started + scan done events before any traffic is 1044 * received (e.g. probe response frames). We work 1045 * around this by marking the HACK flag and skipping 1046 * the first scan complete event. 1047 */ 1048 DPRINTFN(3, ("Scan complete (%s flags 0x%x)\n", 1049 IEEESTATE(vap), sc->flags)); 1050 if (sc->flags & IPW_FLAG_HACK) { 1051 sc->flags &= ~IPW_FLAG_HACK; 1052 break; 1053 } 1054 if (sc->flags & IPW_FLAG_SCANNING) { 1055 IPW_UNLOCK(sc); 1056 ieee80211_scan_done(vap); 1057 IPW_LOCK(sc); 1058 sc->flags &= ~IPW_FLAG_SCANNING; 1059 sc->sc_scan_timer = 0; 1060 } 1061 break; 1062 1063 case IPW_STATE_ASSOCIATION_LOST: 1064 DPRINTFN(2, ("Association lost (%s flags 0x%x)\n", 1065 IEEESTATE(vap), sc->flags)); 1066 sc->flags &= ~(IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1067 if (vap->iv_state == IEEE80211_S_RUN) { 1068 IPW_UNLOCK(sc); 1069 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1070 IPW_LOCK(sc); 1071 } 1072 break; 1073 1074 case IPW_STATE_DISABLED: 1075 /* XXX? is this right? */ 1076 sc->flags &= ~(IPW_FLAG_HACK | IPW_FLAG_SCANNING | 1077 IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1078 DPRINTFN(2, ("Firmware disabled (%s flags 0x%x)\n", 1079 IEEESTATE(vap), sc->flags)); 1080 break; 1081 1082 case IPW_STATE_RADIO_DISABLED: 1083 device_printf(sc->sc_dev, "radio turned off\n"); 1084 ieee80211_notify_radio(ic, 0); 1085 ipw_stop_locked(sc); 1086 /* XXX start polling thread to detect radio on */ 1087 break; 1088 1089 default: 1090 DPRINTFN(2, ("%s: unhandled state %u %s flags 0x%x\n", 1091 __func__, state, IEEESTATE(vap), sc->flags)); 1092 break; 1093 } 1094 #undef IEEESTATE 1095 } 1096 1097 /* 1098 * Set driver state for current channel. 1099 */ 1100 static void 1101 ipw_setcurchan(struct ipw_softc *sc, struct ieee80211_channel *chan) 1102 { 1103 struct ieee80211com *ic = &sc->sc_ic; 1104 1105 ic->ic_curchan = chan; 1106 ieee80211_radiotap_chan_change(ic); 1107 } 1108 1109 /* 1110 * XXX: Hack to set the current channel to the value advertised in beacons or 1111 * probe responses. Only used during AP detection. 1112 */ 1113 static void 1114 ipw_fix_channel(struct ipw_softc *sc, struct mbuf *m) 1115 { 1116 struct ieee80211com *ic = &sc->sc_ic; 1117 struct ieee80211_channel *c; 1118 struct ieee80211_frame *wh; 1119 uint8_t subtype; 1120 uint8_t *frm, *efrm; 1121 1122 wh = mtod(m, struct ieee80211_frame *); 1123 1124 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 1125 return; 1126 1127 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1128 1129 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 1130 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1131 return; 1132 1133 /* XXX use ieee80211_parse_beacon */ 1134 frm = (uint8_t *)(wh + 1); 1135 efrm = mtod(m, uint8_t *) + m->m_len; 1136 1137 frm += 12; /* skip tstamp, bintval and capinfo fields */ 1138 while (frm < efrm) { 1139 if (*frm == IEEE80211_ELEMID_DSPARMS) 1140 #if IEEE80211_CHAN_MAX < 255 1141 if (frm[2] <= IEEE80211_CHAN_MAX) 1142 #endif 1143 { 1144 DPRINTF(("Fixing channel to %d\n", frm[2])); 1145 c = ieee80211_find_channel(ic, 1146 ieee80211_ieee2mhz(frm[2], 0), 1147 IEEE80211_CHAN_B); 1148 if (c == NULL) 1149 c = &ic->ic_channels[0]; 1150 ipw_setcurchan(sc, c); 1151 } 1152 1153 frm += frm[1] + 2; 1154 } 1155 } 1156 1157 static void 1158 ipw_rx_data_intr(struct ipw_softc *sc, struct ipw_status *status, 1159 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf) 1160 { 1161 struct epoch_tracker et; 1162 struct ieee80211com *ic = &sc->sc_ic; 1163 struct mbuf *mnew, *m; 1164 struct ieee80211_node *ni; 1165 bus_addr_t physaddr; 1166 int error; 1167 int8_t rssi, nf; 1168 1169 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len), 1170 status->rssi)); 1171 1172 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) || 1173 le32toh(status->len) > MCLBYTES) 1174 return; 1175 1176 /* 1177 * Try to allocate a new mbuf for this ring element and load it before 1178 * processing the current mbuf. If the ring element cannot be loaded, 1179 * drop the received packet and reuse the old mbuf. In the unlikely 1180 * case that the old mbuf can't be reloaded either, explicitly panic. 1181 */ 1182 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1183 if (mnew == NULL) { 1184 counter_u64_add(ic->ic_ierrors, 1); 1185 return; 1186 } 1187 1188 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1189 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 1190 1191 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *), 1192 MCLBYTES, ipw_dma_map_addr, &physaddr, 0); 1193 if (error != 0) { 1194 m_freem(mnew); 1195 1196 /* try to reload the old mbuf */ 1197 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 1198 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 1199 &physaddr, 0); 1200 if (error != 0) { 1201 /* very unlikely that it will fail... */ 1202 panic("%s: could not load old rx mbuf", 1203 device_get_name(sc->sc_dev)); 1204 } 1205 counter_u64_add(ic->ic_ierrors, 1); 1206 return; 1207 } 1208 1209 /* 1210 * New mbuf successfully loaded, update Rx ring and continue 1211 * processing. 1212 */ 1213 m = sbuf->m; 1214 sbuf->m = mnew; 1215 sbd->bd->physaddr = htole32(physaddr); 1216 m->m_pkthdr.len = m->m_len = le32toh(status->len); 1217 1218 rssi = status->rssi + IPW_RSSI_TO_DBM; 1219 nf = -95; 1220 if (ieee80211_radiotap_active(ic)) { 1221 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap; 1222 1223 tap->wr_flags = 0; 1224 tap->wr_antsignal = rssi; 1225 tap->wr_antnoise = nf; 1226 } 1227 1228 if (sc->flags & IPW_FLAG_SCANNING) 1229 ipw_fix_channel(sc, m); 1230 1231 IPW_UNLOCK(sc); 1232 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1233 NET_EPOCH_ENTER(et); 1234 if (ni != NULL) { 1235 (void) ieee80211_input(ni, m, rssi - nf, nf); 1236 ieee80211_free_node(ni); 1237 } else 1238 (void) ieee80211_input_all(ic, m, rssi - nf, nf); 1239 NET_EPOCH_EXIT(et); 1240 IPW_LOCK(sc); 1241 1242 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1243 } 1244 1245 static void 1246 ipw_rx_intr(struct ipw_softc *sc) 1247 { 1248 struct ipw_status *status; 1249 struct ipw_soft_bd *sbd; 1250 struct ipw_soft_buf *sbuf; 1251 uint32_t r, i; 1252 1253 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1254 return; 1255 1256 r = CSR_READ_4(sc, IPW_CSR_RX_READ); 1257 1258 bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD); 1259 1260 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) { 1261 status = &sc->status_list[i]; 1262 sbd = &sc->srbd_list[i]; 1263 sbuf = sbd->priv; 1264 1265 switch (le16toh(status->code) & 0xf) { 1266 case IPW_STATUS_CODE_COMMAND: 1267 ipw_rx_cmd_intr(sc, sbuf); 1268 break; 1269 1270 case IPW_STATUS_CODE_NEWSTATE: 1271 ipw_rx_newstate_intr(sc, sbuf); 1272 break; 1273 1274 case IPW_STATUS_CODE_DATA_802_3: 1275 case IPW_STATUS_CODE_DATA_802_11: 1276 ipw_rx_data_intr(sc, status, sbd, sbuf); 1277 break; 1278 1279 case IPW_STATUS_CODE_NOTIFICATION: 1280 DPRINTFN(2, ("notification status, len %u flags 0x%x\n", 1281 le32toh(status->len), status->flags)); 1282 /* XXX maybe drive state machine AUTH->ASSOC? */ 1283 break; 1284 1285 default: 1286 device_printf(sc->sc_dev, "unexpected status code %u\n", 1287 le16toh(status->code)); 1288 } 1289 1290 /* firmware was killed, stop processing received frames */ 1291 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1292 return; 1293 1294 sbd->bd->flags = 0; 1295 } 1296 1297 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1298 1299 /* kick the firmware */ 1300 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1; 1301 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 1302 } 1303 1304 static void 1305 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd) 1306 { 1307 struct ipw_soft_hdr *shdr; 1308 struct ipw_soft_buf *sbuf; 1309 1310 switch (sbd->type) { 1311 case IPW_SBD_TYPE_COMMAND: 1312 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, 1313 BUS_DMASYNC_POSTWRITE); 1314 bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map); 1315 break; 1316 1317 case IPW_SBD_TYPE_HEADER: 1318 shdr = sbd->priv; 1319 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE); 1320 bus_dmamap_unload(sc->hdr_dmat, shdr->map); 1321 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 1322 break; 1323 1324 case IPW_SBD_TYPE_DATA: 1325 sbuf = sbd->priv; 1326 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, 1327 BUS_DMASYNC_POSTWRITE); 1328 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1329 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 1330 1331 ieee80211_tx_complete(sbuf->ni, sbuf->m, 0/*XXX*/); 1332 1333 sc->sc_tx_timer = 0; 1334 break; 1335 } 1336 1337 sbd->type = IPW_SBD_TYPE_NOASSOC; 1338 } 1339 1340 static void 1341 ipw_tx_intr(struct ipw_softc *sc) 1342 { 1343 struct ipw_soft_bd *sbd; 1344 uint32_t r, i; 1345 1346 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1347 return; 1348 1349 r = CSR_READ_4(sc, IPW_CSR_TX_READ); 1350 1351 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) { 1352 sbd = &sc->stbd_list[i]; 1353 ipw_release_sbd(sc, sbd); 1354 sc->txfree++; 1355 } 1356 1357 /* remember what the firmware has processed */ 1358 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1; 1359 1360 ipw_start(sc); 1361 } 1362 1363 static void 1364 ipw_fatal_error_intr(struct ipw_softc *sc) 1365 { 1366 struct ieee80211com *ic = &sc->sc_ic; 1367 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1368 1369 device_printf(sc->sc_dev, "firmware error\n"); 1370 if (vap != NULL) { 1371 IPW_UNLOCK(sc); 1372 ieee80211_cancel_scan(vap); 1373 IPW_LOCK(sc); 1374 } 1375 ieee80211_runtask(ic, &sc->sc_init_task); 1376 } 1377 1378 static void 1379 ipw_intr(void *arg) 1380 { 1381 struct ipw_softc *sc = arg; 1382 uint32_t r; 1383 1384 IPW_LOCK(sc); 1385 1386 r = CSR_READ_4(sc, IPW_CSR_INTR); 1387 if (r == 0 || r == 0xffffffff) 1388 goto done; 1389 1390 /* disable interrupts */ 1391 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1392 1393 /* acknowledge all interrupts */ 1394 CSR_WRITE_4(sc, IPW_CSR_INTR, r); 1395 1396 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) { 1397 ipw_fatal_error_intr(sc); 1398 goto done; 1399 } 1400 1401 if (r & IPW_INTR_FW_INIT_DONE) 1402 wakeup(sc); 1403 1404 if (r & IPW_INTR_RX_TRANSFER) 1405 ipw_rx_intr(sc); 1406 1407 if (r & IPW_INTR_TX_TRANSFER) 1408 ipw_tx_intr(sc); 1409 1410 /* re-enable interrupts */ 1411 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1412 done: 1413 IPW_UNLOCK(sc); 1414 } 1415 1416 static void 1417 ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1418 { 1419 if (error != 0) 1420 return; 1421 1422 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 1423 1424 *(bus_addr_t *)arg = segs[0].ds_addr; 1425 } 1426 1427 static const char * 1428 ipw_cmdname(int cmd) 1429 { 1430 static const struct { 1431 int cmd; 1432 const char *name; 1433 } cmds[] = { 1434 { IPW_CMD_ADD_MULTICAST, "ADD_MULTICAST" }, 1435 { IPW_CMD_BROADCAST_SCAN, "BROADCAST_SCAN" }, 1436 { IPW_CMD_DISABLE, "DISABLE" }, 1437 { IPW_CMD_DISABLE_PHY, "DISABLE_PHY" }, 1438 { IPW_CMD_ENABLE, "ENABLE" }, 1439 { IPW_CMD_PREPARE_POWER_DOWN, "PREPARE_POWER_DOWN" }, 1440 { IPW_CMD_SET_BASIC_TX_RATES, "SET_BASIC_TX_RATES" }, 1441 { IPW_CMD_SET_BEACON_INTERVAL, "SET_BEACON_INTERVAL" }, 1442 { IPW_CMD_SET_CHANNEL, "SET_CHANNEL" }, 1443 { IPW_CMD_SET_CONFIGURATION, "SET_CONFIGURATION" }, 1444 { IPW_CMD_SET_DESIRED_BSSID, "SET_DESIRED_BSSID" }, 1445 { IPW_CMD_SET_ESSID, "SET_ESSID" }, 1446 { IPW_CMD_SET_FRAG_THRESHOLD, "SET_FRAG_THRESHOLD" }, 1447 { IPW_CMD_SET_MAC_ADDRESS, "SET_MAC_ADDRESS" }, 1448 { IPW_CMD_SET_MANDATORY_BSSID, "SET_MANDATORY_BSSID" }, 1449 { IPW_CMD_SET_MODE, "SET_MODE" }, 1450 { IPW_CMD_SET_MSDU_TX_RATES, "SET_MSDU_TX_RATES" }, 1451 { IPW_CMD_SET_POWER_MODE, "SET_POWER_MODE" }, 1452 { IPW_CMD_SET_RTS_THRESHOLD, "SET_RTS_THRESHOLD" }, 1453 { IPW_CMD_SET_SCAN_OPTIONS, "SET_SCAN_OPTIONS" }, 1454 { IPW_CMD_SET_SECURITY_INFO, "SET_SECURITY_INFO" }, 1455 { IPW_CMD_SET_TX_POWER_INDEX, "SET_TX_POWER_INDEX" }, 1456 { IPW_CMD_SET_TX_RATES, "SET_TX_RATES" }, 1457 { IPW_CMD_SET_WEP_FLAGS, "SET_WEP_FLAGS" }, 1458 { IPW_CMD_SET_WEP_KEY, "SET_WEP_KEY" }, 1459 { IPW_CMD_SET_WEP_KEY_INDEX, "SET_WEP_KEY_INDEX" }, 1460 { IPW_CMD_SET_WPA_IE, "SET_WPA_IE" }, 1461 1462 }; 1463 static char buf[12]; 1464 int i; 1465 1466 for (i = 0; i < nitems(cmds); i++) 1467 if (cmds[i].cmd == cmd) 1468 return cmds[i].name; 1469 snprintf(buf, sizeof(buf), "%u", cmd); 1470 return buf; 1471 } 1472 1473 /* 1474 * Send a command to the firmware and wait for the acknowledgement. 1475 */ 1476 static int 1477 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len) 1478 { 1479 struct ipw_soft_bd *sbd; 1480 bus_addr_t physaddr; 1481 int error; 1482 1483 IPW_LOCK_ASSERT(sc); 1484 1485 if (sc->flags & IPW_FLAG_BUSY) { 1486 device_printf(sc->sc_dev, "%s: %s not sent, busy\n", 1487 __func__, ipw_cmdname(type)); 1488 return EAGAIN; 1489 } 1490 sc->flags |= IPW_FLAG_BUSY; 1491 1492 sbd = &sc->stbd_list[sc->txcur]; 1493 1494 error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd, 1495 sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0); 1496 if (error != 0) { 1497 device_printf(sc->sc_dev, "could not map command DMA memory\n"); 1498 sc->flags &= ~IPW_FLAG_BUSY; 1499 return error; 1500 } 1501 1502 sc->cmd.type = htole32(type); 1503 sc->cmd.subtype = 0; 1504 sc->cmd.len = htole32(len); 1505 sc->cmd.seq = 0; 1506 memcpy(sc->cmd.data, data, len); 1507 1508 sbd->type = IPW_SBD_TYPE_COMMAND; 1509 sbd->bd->physaddr = htole32(physaddr); 1510 sbd->bd->len = htole32(sizeof (struct ipw_cmd)); 1511 sbd->bd->nfrag = 1; 1512 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND | 1513 IPW_BD_FLAG_TX_LAST_FRAGMENT; 1514 1515 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE); 1516 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1517 1518 #ifdef IPW_DEBUG 1519 if (ipw_debug >= 4) { 1520 printf("sending %s(%u, %u, %u, %u)", ipw_cmdname(type), type, 1521 0, 0, len); 1522 /* Print the data buffer in the higher debug level */ 1523 if (ipw_debug >= 9 && len > 0) { 1524 printf(" data: 0x"); 1525 for (int i = 1; i <= len; i++) 1526 printf("%1D", (u_char *)data + len - i, ""); 1527 } 1528 printf("\n"); 1529 } 1530 #endif 1531 1532 /* kick firmware */ 1533 sc->txfree--; 1534 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1535 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1536 1537 /* wait at most one second for command to complete */ 1538 error = msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz); 1539 if (error != 0) { 1540 device_printf(sc->sc_dev, "%s: %s failed, timeout (error %u)\n", 1541 __func__, ipw_cmdname(type), error); 1542 sc->flags &= ~IPW_FLAG_BUSY; 1543 return (error); 1544 } 1545 return (0); 1546 } 1547 1548 static int 1549 ipw_tx_start(struct ipw_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1550 { 1551 struct ieee80211com *ic = &sc->sc_ic; 1552 struct ieee80211vap *vap = ni->ni_vap; 1553 struct ieee80211_frame *wh; 1554 struct ipw_soft_bd *sbd; 1555 struct ipw_soft_hdr *shdr; 1556 struct ipw_soft_buf *sbuf; 1557 struct ieee80211_key *k; 1558 struct mbuf *mnew; 1559 bus_dma_segment_t segs[IPW_MAX_NSEG]; 1560 bus_addr_t physaddr; 1561 int nsegs, error, i; 1562 1563 wh = mtod(m0, struct ieee80211_frame *); 1564 1565 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1566 k = ieee80211_crypto_encap(ni, m0); 1567 if (k == NULL) { 1568 m_freem(m0); 1569 return ENOBUFS; 1570 } 1571 /* packet header may have moved, reset our local pointer */ 1572 wh = mtod(m0, struct ieee80211_frame *); 1573 } 1574 1575 if (ieee80211_radiotap_active_vap(vap)) { 1576 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap; 1577 1578 tap->wt_flags = 0; 1579 1580 ieee80211_radiotap_tx(vap, m0); 1581 } 1582 1583 shdr = SLIST_FIRST(&sc->free_shdr); 1584 sbuf = SLIST_FIRST(&sc->free_sbuf); 1585 KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool")); 1586 1587 shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND); 1588 shdr->hdr.subtype = 0; 1589 shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) ? 1 : 0; 1590 shdr->hdr.encrypt = 0; 1591 shdr->hdr.keyidx = 0; 1592 shdr->hdr.keysz = 0; 1593 shdr->hdr.fragmentsz = 0; 1594 IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2); 1595 if (ic->ic_opmode == IEEE80211_M_STA) 1596 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3); 1597 else 1598 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1); 1599 1600 /* trim IEEE802.11 header */ 1601 m_adj(m0, sizeof (struct ieee80211_frame)); 1602 1603 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs, 1604 &nsegs, 0); 1605 if (error != 0 && error != EFBIG) { 1606 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1607 error); 1608 m_freem(m0); 1609 return error; 1610 } 1611 if (error != 0) { 1612 mnew = m_defrag(m0, M_NOWAIT); 1613 if (mnew == NULL) { 1614 device_printf(sc->sc_dev, 1615 "could not defragment mbuf\n"); 1616 m_freem(m0); 1617 return ENOBUFS; 1618 } 1619 m0 = mnew; 1620 1621 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, 1622 segs, &nsegs, 0); 1623 if (error != 0) { 1624 device_printf(sc->sc_dev, 1625 "could not map mbuf (error %d)\n", error); 1626 m_freem(m0); 1627 return error; 1628 } 1629 } 1630 1631 error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr, 1632 sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0); 1633 if (error != 0) { 1634 device_printf(sc->sc_dev, "could not map header DMA memory\n"); 1635 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1636 m_freem(m0); 1637 return error; 1638 } 1639 1640 SLIST_REMOVE_HEAD(&sc->free_sbuf, next); 1641 SLIST_REMOVE_HEAD(&sc->free_shdr, next); 1642 1643 sbd = &sc->stbd_list[sc->txcur]; 1644 sbd->type = IPW_SBD_TYPE_HEADER; 1645 sbd->priv = shdr; 1646 sbd->bd->physaddr = htole32(physaddr); 1647 sbd->bd->len = htole32(sizeof (struct ipw_hdr)); 1648 sbd->bd->nfrag = 1 + nsegs; 1649 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 | 1650 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1651 1652 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n", 1653 shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted, 1654 shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr, 1655 ":")); 1656 1657 sc->txfree--; 1658 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1659 1660 sbuf->m = m0; 1661 sbuf->ni = ni; 1662 1663 for (i = 0; i < nsegs; i++) { 1664 sbd = &sc->stbd_list[sc->txcur]; 1665 1666 sbd->bd->physaddr = htole32(segs[i].ds_addr); 1667 sbd->bd->len = htole32(segs[i].ds_len); 1668 sbd->bd->nfrag = 0; 1669 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3; 1670 if (i == nsegs - 1) { 1671 sbd->type = IPW_SBD_TYPE_DATA; 1672 sbd->priv = sbuf; 1673 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT; 1674 } else { 1675 sbd->type = IPW_SBD_TYPE_NOASSOC; 1676 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1677 } 1678 1679 DPRINTFN(5, ("sending fragment (%d)\n", i)); 1680 1681 sc->txfree--; 1682 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1683 } 1684 1685 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE); 1686 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE); 1687 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1688 1689 /* kick firmware */ 1690 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1691 1692 return 0; 1693 } 1694 1695 static int 1696 ipw_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1697 const struct ieee80211_bpf_params *params) 1698 { 1699 /* no support; just discard */ 1700 m_freem(m); 1701 ieee80211_free_node(ni); 1702 return 0; 1703 } 1704 1705 static int 1706 ipw_transmit(struct ieee80211com *ic, struct mbuf *m) 1707 { 1708 struct ipw_softc *sc = ic->ic_softc; 1709 int error; 1710 1711 IPW_LOCK(sc); 1712 if ((sc->flags & IPW_FLAG_RUNNING) == 0) { 1713 IPW_UNLOCK(sc); 1714 return (ENXIO); 1715 } 1716 error = mbufq_enqueue(&sc->sc_snd, m); 1717 if (error) { 1718 IPW_UNLOCK(sc); 1719 return (error); 1720 } 1721 ipw_start(sc); 1722 IPW_UNLOCK(sc); 1723 return (0); 1724 } 1725 1726 static void 1727 ipw_start(struct ipw_softc *sc) 1728 { 1729 struct ieee80211_node *ni; 1730 struct mbuf *m; 1731 1732 IPW_LOCK_ASSERT(sc); 1733 1734 while (sc->txfree >= 1 + IPW_MAX_NSEG && 1735 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1736 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1737 if (ipw_tx_start(sc, m, ni) != 0) { 1738 if_inc_counter(ni->ni_vap->iv_ifp, 1739 IFCOUNTER_OERRORS, 1); 1740 ieee80211_free_node(ni); 1741 break; 1742 } 1743 /* start watchdog timer */ 1744 sc->sc_tx_timer = 5; 1745 } 1746 } 1747 1748 static void 1749 ipw_watchdog(void *arg) 1750 { 1751 struct ipw_softc *sc = arg; 1752 struct ieee80211com *ic = &sc->sc_ic; 1753 1754 IPW_LOCK_ASSERT(sc); 1755 1756 if (sc->sc_tx_timer > 0) { 1757 if (--sc->sc_tx_timer == 0) { 1758 device_printf(sc->sc_dev, "device timeout\n"); 1759 counter_u64_add(ic->ic_oerrors, 1); 1760 taskqueue_enqueue(taskqueue_swi, &sc->sc_init_task); 1761 } 1762 } 1763 if (sc->sc_scan_timer > 0) { 1764 if (--sc->sc_scan_timer == 0) { 1765 DPRINTFN(3, ("Scan timeout\n")); 1766 /* End the scan */ 1767 if (sc->flags & IPW_FLAG_SCANNING) { 1768 IPW_UNLOCK(sc); 1769 ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); 1770 IPW_LOCK(sc); 1771 sc->flags &= ~IPW_FLAG_SCANNING; 1772 } 1773 } 1774 } 1775 if (sc->flags & IPW_FLAG_RUNNING) 1776 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 1777 } 1778 1779 static void 1780 ipw_parent(struct ieee80211com *ic) 1781 { 1782 struct ipw_softc *sc = ic->ic_softc; 1783 int startall = 0; 1784 1785 IPW_LOCK(sc); 1786 if (ic->ic_nrunning > 0) { 1787 if (!(sc->flags & IPW_FLAG_RUNNING)) { 1788 ipw_init_locked(sc); 1789 startall = 1; 1790 } 1791 } else if (sc->flags & IPW_FLAG_RUNNING) 1792 ipw_stop_locked(sc); 1793 IPW_UNLOCK(sc); 1794 if (startall) 1795 ieee80211_start_all(ic); 1796 } 1797 1798 static void 1799 ipw_stop_master(struct ipw_softc *sc) 1800 { 1801 uint32_t tmp; 1802 int ntries; 1803 1804 /* disable interrupts */ 1805 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1806 1807 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER); 1808 for (ntries = 0; ntries < 50; ntries++) { 1809 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED) 1810 break; 1811 DELAY(10); 1812 } 1813 if (ntries == 50) 1814 device_printf(sc->sc_dev, "timeout waiting for master\n"); 1815 1816 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1817 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET); 1818 1819 /* Clear all flags except the following */ 1820 sc->flags &= IPW_FLAG_HAS_RADIO_SWITCH; 1821 } 1822 1823 static int 1824 ipw_reset(struct ipw_softc *sc) 1825 { 1826 uint32_t tmp; 1827 int ntries; 1828 1829 ipw_stop_master(sc); 1830 1831 /* move adapter to D0 state */ 1832 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1833 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1834 1835 /* wait for clock stabilization */ 1836 for (ntries = 0; ntries < 1000; ntries++) { 1837 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY) 1838 break; 1839 DELAY(200); 1840 } 1841 if (ntries == 1000) 1842 return EIO; 1843 1844 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1845 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET); 1846 1847 DELAY(10); 1848 1849 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1850 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1851 1852 return 0; 1853 } 1854 1855 static int 1856 ipw_waitfordisable(struct ipw_softc *sc, int waitfor) 1857 { 1858 int ms = hz < 1000 ? 1 : hz/10; 1859 int i, error; 1860 1861 for (i = 0; i < 100; i++) { 1862 if (ipw_read_table1(sc, IPW_INFO_CARD_DISABLED) == waitfor) 1863 return 0; 1864 error = msleep(sc, &sc->sc_mtx, PCATCH, __func__, ms); 1865 if (error == 0 || error != EWOULDBLOCK) 1866 return 0; 1867 } 1868 DPRINTF(("%s: timeout waiting for %s\n", 1869 __func__, waitfor ? "disable" : "enable")); 1870 return ETIMEDOUT; 1871 } 1872 1873 static int 1874 ipw_enable(struct ipw_softc *sc) 1875 { 1876 int error; 1877 1878 if ((sc->flags & IPW_FLAG_ENABLED) == 0) { 1879 DPRINTF(("Enable adapter\n")); 1880 error = ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); 1881 if (error != 0) 1882 return error; 1883 error = ipw_waitfordisable(sc, 0); 1884 if (error != 0) 1885 return error; 1886 sc->flags |= IPW_FLAG_ENABLED; 1887 } 1888 return 0; 1889 } 1890 1891 static int 1892 ipw_disable(struct ipw_softc *sc) 1893 { 1894 int error; 1895 1896 if (sc->flags & IPW_FLAG_ENABLED) { 1897 DPRINTF(("Disable adapter\n")); 1898 error = ipw_cmd(sc, IPW_CMD_DISABLE, NULL, 0); 1899 if (error != 0) 1900 return error; 1901 error = ipw_waitfordisable(sc, 1); 1902 if (error != 0) 1903 return error; 1904 sc->flags &= ~IPW_FLAG_ENABLED; 1905 } 1906 return 0; 1907 } 1908 1909 /* 1910 * Upload the microcode to the device. 1911 */ 1912 static int 1913 ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size) 1914 { 1915 int ntries; 1916 1917 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 1918 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1919 1920 MEM_WRITE_2(sc, 0x220000, 0x0703); 1921 MEM_WRITE_2(sc, 0x220000, 0x0707); 1922 1923 MEM_WRITE_1(sc, 0x210014, 0x72); 1924 MEM_WRITE_1(sc, 0x210014, 0x72); 1925 1926 MEM_WRITE_1(sc, 0x210000, 0x40); 1927 MEM_WRITE_1(sc, 0x210000, 0x00); 1928 MEM_WRITE_1(sc, 0x210000, 0x40); 1929 1930 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size); 1931 1932 MEM_WRITE_1(sc, 0x210000, 0x00); 1933 MEM_WRITE_1(sc, 0x210000, 0x00); 1934 MEM_WRITE_1(sc, 0x210000, 0x80); 1935 1936 MEM_WRITE_2(sc, 0x220000, 0x0703); 1937 MEM_WRITE_2(sc, 0x220000, 0x0707); 1938 1939 MEM_WRITE_1(sc, 0x210014, 0x72); 1940 MEM_WRITE_1(sc, 0x210014, 0x72); 1941 1942 MEM_WRITE_1(sc, 0x210000, 0x00); 1943 MEM_WRITE_1(sc, 0x210000, 0x80); 1944 1945 for (ntries = 0; ntries < 10; ntries++) { 1946 if (MEM_READ_1(sc, 0x210000) & 1) 1947 break; 1948 DELAY(10); 1949 } 1950 if (ntries == 10) { 1951 device_printf(sc->sc_dev, 1952 "timeout waiting for ucode to initialize\n"); 1953 return EIO; 1954 } 1955 1956 MEM_WRITE_4(sc, 0x3000e0, 0); 1957 1958 return 0; 1959 } 1960 1961 /* set of macros to handle unaligned little endian data in firmware image */ 1962 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 1963 #define GETLE16(p) ((p)[0] | (p)[1] << 8) 1964 static int 1965 ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size) 1966 { 1967 const uint8_t *p, *end; 1968 uint32_t tmp, dst; 1969 uint16_t len; 1970 int error; 1971 1972 p = fw; 1973 end = fw + size; 1974 while (p < end) { 1975 dst = GETLE32(p); p += 4; 1976 len = GETLE16(p); p += 2; 1977 1978 ipw_write_mem_1(sc, dst, p, len); 1979 p += len; 1980 } 1981 1982 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK | 1983 IPW_IO_LED_OFF); 1984 1985 /* enable interrupts */ 1986 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1987 1988 /* kick the firmware */ 1989 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1990 1991 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1992 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY); 1993 1994 /* wait at most one second for firmware initialization to complete */ 1995 if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) { 1996 device_printf(sc->sc_dev, "timeout waiting for firmware " 1997 "initialization to complete\n"); 1998 return error; 1999 } 2000 2001 tmp = CSR_READ_4(sc, IPW_CSR_IO); 2002 CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK | 2003 IPW_IO_GPIO3_MASK); 2004 2005 return 0; 2006 } 2007 2008 static int 2009 ipw_setwepkeys(struct ipw_softc *sc) 2010 { 2011 struct ieee80211com *ic = &sc->sc_ic; 2012 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2013 struct ipw_wep_key wepkey; 2014 struct ieee80211_key *wk; 2015 int error, i; 2016 2017 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2018 wk = &vap->iv_nw_keys[i]; 2019 2020 if (wk->wk_cipher == NULL || 2021 wk->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP) 2022 continue; 2023 2024 wepkey.idx = i; 2025 wepkey.len = wk->wk_keylen; 2026 memset(wepkey.key, 0, sizeof wepkey.key); 2027 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2028 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2029 wepkey.len)); 2030 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey, 2031 sizeof wepkey); 2032 if (error != 0) 2033 return error; 2034 } 2035 return 0; 2036 } 2037 2038 static int 2039 ipw_setwpaie(struct ipw_softc *sc, const void *ie, int ielen) 2040 { 2041 struct ipw_wpa_ie wpaie; 2042 2043 memset(&wpaie, 0, sizeof(wpaie)); 2044 wpaie.len = htole32(ielen); 2045 /* XXX verify length */ 2046 memcpy(&wpaie.ie, ie, ielen); 2047 DPRINTF(("Setting WPA IE\n")); 2048 return ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &wpaie, sizeof(wpaie)); 2049 } 2050 2051 static int 2052 ipw_setbssid(struct ipw_softc *sc, uint8_t *bssid) 2053 { 2054 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 2055 2056 if (bssid == NULL || bcmp(bssid, zerobssid, IEEE80211_ADDR_LEN) == 0) { 2057 DPRINTF(("Setting mandatory BSSID to null\n")); 2058 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0); 2059 } else { 2060 DPRINTF(("Setting mandatory BSSID to %6D\n", bssid, ":")); 2061 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, 2062 bssid, IEEE80211_ADDR_LEN); 2063 } 2064 } 2065 2066 static int 2067 ipw_setssid(struct ipw_softc *sc, void *ssid, size_t ssidlen) 2068 { 2069 if (ssidlen == 0) { 2070 /* 2071 * A bug in the firmware breaks the ``don't associate'' 2072 * bit in the scan options command. To compensate for 2073 * this install a bogus ssid when no ssid is specified 2074 * so the firmware won't try to associate. 2075 */ 2076 DPRINTF(("Setting bogus ESSID to WAR firmware bug\n")); 2077 return ipw_cmd(sc, IPW_CMD_SET_ESSID, 2078 "\x18\x19\x20\x21\x22\x23\x24\x25\x26\x27" 2079 "\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31" 2080 "\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b" 2081 "\x3c\x3d", IEEE80211_NWID_LEN); 2082 } else { 2083 #ifdef IPW_DEBUG 2084 if (ipw_debug > 0) { 2085 printf("Setting ESSID to "); 2086 ieee80211_print_essid(ssid, ssidlen); 2087 printf("\n"); 2088 } 2089 #endif 2090 return ipw_cmd(sc, IPW_CMD_SET_ESSID, ssid, ssidlen); 2091 } 2092 } 2093 2094 static int 2095 ipw_setscanopts(struct ipw_softc *sc, uint32_t chanmask, uint32_t flags) 2096 { 2097 struct ipw_scan_options opts; 2098 2099 DPRINTF(("Scan options: mask 0x%x flags 0x%x\n", chanmask, flags)); 2100 opts.channels = htole32(chanmask); 2101 opts.flags = htole32(flags); 2102 return ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &opts, sizeof(opts)); 2103 } 2104 2105 static int 2106 ipw_scan(struct ipw_softc *sc) 2107 { 2108 uint32_t params; 2109 int error; 2110 2111 DPRINTF(("%s: flags 0x%x\n", __func__, sc->flags)); 2112 2113 if (sc->flags & IPW_FLAG_SCANNING) 2114 return (EBUSY); 2115 sc->flags |= IPW_FLAG_SCANNING | IPW_FLAG_HACK; 2116 2117 /* NB: IPW_SCAN_DO_NOT_ASSOCIATE does not work (we set it anyway) */ 2118 error = ipw_setscanopts(sc, 0x3fff, IPW_SCAN_DO_NOT_ASSOCIATE); 2119 if (error != 0) 2120 goto done; 2121 2122 /* 2123 * Setup null/bogus ssid so firmware doesn't use any previous 2124 * ssid to try and associate. This is because the ``don't 2125 * associate'' option bit is broken (sigh). 2126 */ 2127 error = ipw_setssid(sc, NULL, 0); 2128 if (error != 0) 2129 goto done; 2130 2131 /* 2132 * NB: the adapter may be disabled on association lost; 2133 * if so just re-enable it to kick off scanning. 2134 */ 2135 DPRINTF(("Starting scan\n")); 2136 sc->sc_scan_timer = 3; 2137 if (sc->flags & IPW_FLAG_ENABLED) { 2138 params = 0; /* XXX? */ 2139 error = ipw_cmd(sc, IPW_CMD_BROADCAST_SCAN, 2140 ¶ms, sizeof(params)); 2141 } else 2142 error = ipw_enable(sc); 2143 done: 2144 if (error != 0) { 2145 DPRINTF(("Scan failed\n")); 2146 sc->flags &= ~(IPW_FLAG_SCANNING | IPW_FLAG_HACK); 2147 } 2148 return (error); 2149 } 2150 2151 static int 2152 ipw_setchannel(struct ipw_softc *sc, struct ieee80211_channel *chan) 2153 { 2154 struct ieee80211com *ic = &sc->sc_ic; 2155 uint32_t data; 2156 int error; 2157 2158 data = htole32(ieee80211_chan2ieee(ic, chan)); 2159 DPRINTF(("Setting channel to %u\n", le32toh(data))); 2160 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data); 2161 if (error == 0) 2162 ipw_setcurchan(sc, chan); 2163 return error; 2164 } 2165 2166 static void 2167 ipw_assoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2168 { 2169 struct ipw_softc *sc = ic->ic_softc; 2170 struct ieee80211_node *ni = vap->iv_bss; 2171 struct ipw_security security; 2172 uint32_t data; 2173 int error; 2174 2175 IPW_LOCK(sc); 2176 error = ipw_disable(sc); 2177 if (error != 0) 2178 goto done; 2179 2180 memset(&security, 0, sizeof security); 2181 security.authmode = (ni->ni_authmode == IEEE80211_AUTH_SHARED) ? 2182 IPW_AUTH_SHARED : IPW_AUTH_OPEN; 2183 security.ciphers = htole32(IPW_CIPHER_NONE); 2184 DPRINTF(("Setting authmode to %u\n", security.authmode)); 2185 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFO, &security, 2186 sizeof security); 2187 if (error != 0) 2188 goto done; 2189 2190 data = htole32(vap->iv_rtsthreshold); 2191 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2192 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2193 if (error != 0) 2194 goto done; 2195 2196 data = htole32(vap->iv_fragthreshold); 2197 DPRINTF(("Setting frag threshold to %u\n", le32toh(data))); 2198 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2199 if (error != 0) 2200 goto done; 2201 2202 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 2203 error = ipw_setwepkeys(sc); 2204 if (error != 0) 2205 goto done; 2206 2207 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { 2208 data = htole32(vap->iv_def_txkey); 2209 DPRINTF(("Setting wep tx key index to %u\n", 2210 le32toh(data))); 2211 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data, 2212 sizeof data); 2213 if (error != 0) 2214 goto done; 2215 } 2216 } 2217 2218 data = htole32((vap->iv_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0); 2219 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data))); 2220 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data); 2221 if (error != 0) 2222 goto done; 2223 2224 error = ipw_setssid(sc, ni->ni_essid, ni->ni_esslen); 2225 if (error != 0) 2226 goto done; 2227 2228 error = ipw_setbssid(sc, ni->ni_bssid); 2229 if (error != 0) 2230 goto done; 2231 2232 if (vap->iv_appie_wpa != NULL) { 2233 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2234 error = ipw_setwpaie(sc, ie->ie_data, ie->ie_len); 2235 if (error != 0) 2236 goto done; 2237 } 2238 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2239 error = ipw_setchannel(sc, ni->ni_chan); 2240 if (error != 0) 2241 goto done; 2242 } 2243 2244 /* lock scan to ap's channel and enable associate */ 2245 error = ipw_setscanopts(sc, 2246 1<<(ieee80211_chan2ieee(ic, ni->ni_chan)-1), 0); 2247 if (error != 0) 2248 goto done; 2249 2250 error = ipw_enable(sc); /* finally, enable adapter */ 2251 if (error == 0) 2252 sc->flags |= IPW_FLAG_ASSOCIATING; 2253 done: 2254 IPW_UNLOCK(sc); 2255 } 2256 2257 static void 2258 ipw_disassoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2259 { 2260 struct ieee80211_node *ni = vap->iv_bss; 2261 struct ipw_softc *sc = ic->ic_softc; 2262 2263 IPW_LOCK(sc); 2264 DPRINTF(("Disassociate from %6D\n", ni->ni_bssid, ":")); 2265 /* 2266 * NB: don't try to do this if ipw_stop_master has 2267 * shutdown the firmware and disabled interrupts. 2268 */ 2269 if (sc->flags & IPW_FLAG_FW_INITED) { 2270 sc->flags &= ~IPW_FLAG_ASSOCIATED; 2271 /* 2272 * NB: firmware currently ignores bssid parameter, but 2273 * supply it in case this changes (follow linux driver). 2274 */ 2275 (void) ipw_cmd(sc, IPW_CMD_DISASSOCIATE, 2276 ni->ni_bssid, IEEE80211_ADDR_LEN); 2277 } 2278 IPW_UNLOCK(sc); 2279 } 2280 2281 /* 2282 * Handler for sc_init_task. This is a simple wrapper around ipw_init(). 2283 * It is called on firmware panics or on watchdog timeouts. 2284 */ 2285 static void 2286 ipw_init_task(void *context, int pending) 2287 { 2288 ipw_init(context); 2289 } 2290 2291 static void 2292 ipw_init(void *priv) 2293 { 2294 struct ipw_softc *sc = priv; 2295 struct ieee80211com *ic = &sc->sc_ic; 2296 2297 IPW_LOCK(sc); 2298 ipw_init_locked(sc); 2299 IPW_UNLOCK(sc); 2300 2301 if (sc->flags & IPW_FLAG_RUNNING) 2302 ieee80211_start_all(ic); /* start all vap's */ 2303 } 2304 2305 static void 2306 ipw_init_locked(struct ipw_softc *sc) 2307 { 2308 struct ieee80211com *ic = &sc->sc_ic; 2309 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2310 const struct firmware *fp; 2311 const struct ipw_firmware_hdr *hdr; 2312 const char *fw; 2313 2314 IPW_LOCK_ASSERT(sc); 2315 2316 DPRINTF(("%s: state %s flags 0x%x\n", __func__, 2317 ieee80211_state_name[vap->iv_state], sc->flags)); 2318 2319 /* 2320 * Avoid re-entrant calls. We need to release the mutex in ipw_init() 2321 * when loading the firmware and we don't want to be called during this 2322 * operation. 2323 */ 2324 if (sc->flags & IPW_FLAG_INIT_LOCKED) 2325 return; 2326 sc->flags |= IPW_FLAG_INIT_LOCKED; 2327 2328 ipw_stop_locked(sc); 2329 2330 if (ipw_reset(sc) != 0) { 2331 device_printf(sc->sc_dev, "could not reset adapter\n"); 2332 goto fail; 2333 } 2334 2335 if (sc->sc_firmware == NULL) { 2336 device_printf(sc->sc_dev, "no firmware\n"); 2337 goto fail; 2338 } 2339 /* NB: consistency already checked on load */ 2340 fp = sc->sc_firmware; 2341 hdr = (const struct ipw_firmware_hdr *)fp->data; 2342 2343 DPRINTF(("Loading firmware image '%s'\n", fp->name)); 2344 fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz); 2345 if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) { 2346 device_printf(sc->sc_dev, "could not load microcode\n"); 2347 goto fail; 2348 } 2349 2350 ipw_stop_master(sc); 2351 2352 /* 2353 * Setup tx, rx and status rings. 2354 */ 2355 sc->txold = IPW_NTBD - 1; 2356 sc->txcur = 0; 2357 sc->txfree = IPW_NTBD - 2; 2358 sc->rxcur = IPW_NRBD - 1; 2359 2360 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_phys); 2361 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD); 2362 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0); 2363 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 2364 2365 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_phys); 2366 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD); 2367 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0); 2368 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 2369 2370 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys); 2371 2372 fw = (const char *)fp->data + sizeof *hdr; 2373 if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) { 2374 device_printf(sc->sc_dev, "could not load firmware\n"); 2375 goto fail; 2376 } 2377 2378 sc->flags |= IPW_FLAG_FW_INITED; 2379 2380 /* retrieve information tables base addresses */ 2381 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE); 2382 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE); 2383 2384 ipw_write_table1(sc, IPW_INFO_LOCK, 0); 2385 2386 if (ipw_config(sc) != 0) { 2387 device_printf(sc->sc_dev, "device configuration failed\n"); 2388 goto fail; 2389 } 2390 2391 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 2392 sc->flags |= IPW_FLAG_RUNNING; 2393 sc->flags &= ~IPW_FLAG_INIT_LOCKED; 2394 return; 2395 2396 fail: 2397 ipw_stop_locked(sc); 2398 sc->flags &= ~IPW_FLAG_INIT_LOCKED; 2399 } 2400 2401 static int 2402 ipw_config(struct ipw_softc *sc) 2403 { 2404 struct ieee80211com *ic = &sc->sc_ic; 2405 struct ipw_configuration config; 2406 uint32_t data; 2407 int error; 2408 2409 error = ipw_disable(sc); 2410 if (error != 0) 2411 return error; 2412 2413 switch (ic->ic_opmode) { 2414 case IEEE80211_M_STA: 2415 case IEEE80211_M_HOSTAP: 2416 case IEEE80211_M_WDS: /* XXX */ 2417 data = htole32(IPW_MODE_BSS); 2418 break; 2419 case IEEE80211_M_IBSS: 2420 case IEEE80211_M_AHDEMO: 2421 data = htole32(IPW_MODE_IBSS); 2422 break; 2423 case IEEE80211_M_MONITOR: 2424 data = htole32(IPW_MODE_MONITOR); 2425 break; 2426 default: 2427 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2428 return EINVAL; 2429 } 2430 DPRINTF(("Setting mode to %u\n", le32toh(data))); 2431 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data); 2432 if (error != 0) 2433 return error; 2434 2435 if (ic->ic_opmode == IEEE80211_M_IBSS || 2436 ic->ic_opmode == IEEE80211_M_MONITOR) { 2437 error = ipw_setchannel(sc, ic->ic_curchan); 2438 if (error != 0) 2439 return error; 2440 } 2441 2442 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2443 return ipw_enable(sc); 2444 2445 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK | 2446 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE); 2447 if (ic->ic_opmode == IEEE80211_M_IBSS) 2448 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START); 2449 if (ic->ic_promisc > 0) 2450 config.flags |= htole32(IPW_CFG_PROMISCUOUS); 2451 config.bss_chan = htole32(0x3fff); /* channels 1-14 */ 2452 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */ 2453 DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags))); 2454 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config); 2455 if (error != 0) 2456 return error; 2457 2458 data = htole32(0xf); /* 1, 2, 5.5, 11 */ 2459 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data))); 2460 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data); 2461 if (error != 0) 2462 return error; 2463 2464 /* Use the same rate set */ 2465 DPRINTF(("Setting msdu tx rates to 0x%x\n", le32toh(data))); 2466 error = ipw_cmd(sc, IPW_CMD_SET_MSDU_TX_RATES, &data, sizeof data); 2467 if (error != 0) 2468 return error; 2469 2470 /* Use the same rate set */ 2471 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data))); 2472 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data); 2473 if (error != 0) 2474 return error; 2475 2476 data = htole32(IPW_POWER_MODE_CAM); 2477 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2478 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data); 2479 if (error != 0) 2480 return error; 2481 2482 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2483 data = htole32(32); /* default value */ 2484 DPRINTF(("Setting tx power index to %u\n", le32toh(data))); 2485 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data, 2486 sizeof data); 2487 if (error != 0) 2488 return error; 2489 } 2490 2491 return 0; 2492 } 2493 2494 static void 2495 ipw_stop(void *priv) 2496 { 2497 struct ipw_softc *sc = priv; 2498 2499 IPW_LOCK(sc); 2500 ipw_stop_locked(sc); 2501 IPW_UNLOCK(sc); 2502 } 2503 2504 static void 2505 ipw_stop_locked(struct ipw_softc *sc) 2506 { 2507 int i; 2508 2509 IPW_LOCK_ASSERT(sc); 2510 2511 callout_stop(&sc->sc_wdtimer); 2512 ipw_stop_master(sc); 2513 2514 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET); 2515 2516 /* 2517 * Release tx buffers. 2518 */ 2519 for (i = 0; i < IPW_NTBD; i++) 2520 ipw_release_sbd(sc, &sc->stbd_list[i]); 2521 2522 sc->sc_tx_timer = 0; 2523 sc->flags &= ~IPW_FLAG_RUNNING; 2524 } 2525 2526 static int 2527 ipw_sysctl_stats(SYSCTL_HANDLER_ARGS) 2528 { 2529 struct ipw_softc *sc = arg1; 2530 uint32_t i, size, buf[256]; 2531 2532 memset(buf, 0, sizeof buf); 2533 2534 if (!(sc->flags & IPW_FLAG_FW_INITED)) 2535 return SYSCTL_OUT(req, buf, sizeof buf); 2536 2537 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base); 2538 2539 size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256); 2540 for (i = 1; i < size; i++) 2541 buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA)); 2542 2543 return SYSCTL_OUT(req, buf, size); 2544 } 2545 2546 static int 2547 ipw_sysctl_radio(SYSCTL_HANDLER_ARGS) 2548 { 2549 struct ipw_softc *sc = arg1; 2550 int val; 2551 2552 val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) && 2553 (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)); 2554 2555 return SYSCTL_OUT(req, &val, sizeof val); 2556 } 2557 2558 static uint32_t 2559 ipw_read_table1(struct ipw_softc *sc, uint32_t off) 2560 { 2561 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off)); 2562 } 2563 2564 static void 2565 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info) 2566 { 2567 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info); 2568 } 2569 2570 #if 0 2571 static int 2572 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len) 2573 { 2574 uint32_t addr, info; 2575 uint16_t count, size; 2576 uint32_t total; 2577 2578 /* addr[4] + count[2] + size[2] */ 2579 addr = MEM_READ_4(sc, sc->table2_base + off); 2580 info = MEM_READ_4(sc, sc->table2_base + off + 4); 2581 2582 count = info >> 16; 2583 size = info & 0xffff; 2584 total = count * size; 2585 2586 if (total > *len) { 2587 *len = total; 2588 return EINVAL; 2589 } 2590 2591 *len = total; 2592 ipw_read_mem_1(sc, addr, buf, total); 2593 2594 return 0; 2595 } 2596 2597 static void 2598 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, 2599 bus_size_t count) 2600 { 2601 for (; count > 0; offset++, datap++, count--) { 2602 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2603 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3)); 2604 } 2605 } 2606 #endif 2607 2608 static void 2609 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap, 2610 bus_size_t count) 2611 { 2612 for (; count > 0; offset++, datap++, count--) { 2613 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2614 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap); 2615 } 2616 } 2617 2618 static void 2619 ipw_scan_start(struct ieee80211com *ic) 2620 { 2621 struct ipw_softc *sc = ic->ic_softc; 2622 2623 IPW_LOCK(sc); 2624 ipw_scan(sc); 2625 IPW_UNLOCK(sc); 2626 } 2627 2628 static void 2629 ipw_getradiocaps(struct ieee80211com *ic, 2630 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2631 { 2632 struct ipw_softc *sc = ic->ic_softc; 2633 uint8_t bands[IEEE80211_MODE_BYTES]; 2634 int i; 2635 2636 memset(bands, 0, sizeof(bands)); 2637 setbit(bands, IEEE80211_MODE_11B); 2638 2639 for (i = 1; i < 16; i++) { 2640 if (sc->chanmask & (1 << i)) { 2641 ieee80211_add_channel(chans, maxchans, nchans, 2642 i, 0, 0, 0, bands); 2643 } 2644 } 2645 2646 } 2647 2648 static void 2649 ipw_set_channel(struct ieee80211com *ic) 2650 { 2651 struct ipw_softc *sc = ic->ic_softc; 2652 2653 IPW_LOCK(sc); 2654 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2655 ipw_disable(sc); 2656 ipw_setchannel(sc, ic->ic_curchan); 2657 ipw_enable(sc); 2658 } 2659 IPW_UNLOCK(sc); 2660 } 2661 2662 static void 2663 ipw_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 2664 { 2665 /* NB: all channels are scanned at once */ 2666 } 2667 2668 static void 2669 ipw_scan_mindwell(struct ieee80211_scan_state *ss) 2670 { 2671 /* NB: don't try to abort scan; wait for firmware to finish */ 2672 } 2673 2674 static void 2675 ipw_scan_end(struct ieee80211com *ic) 2676 { 2677 struct ipw_softc *sc = ic->ic_softc; 2678 2679 IPW_LOCK(sc); 2680 sc->flags &= ~IPW_FLAG_SCANNING; 2681 IPW_UNLOCK(sc); 2682 } 2683