1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2004-2006 5 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 6 * Copyright (c) 2006 Sam Leffler, Errno Consulting 7 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 /*- 34 * Intel(R) PRO/Wireless 2100 MiniPCI driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/linker.h> 52 #include <sys/firmware.h> 53 54 #include <machine/bus.h> 55 #include <machine/resource.h> 56 #include <sys/rman.h> 57 58 #include <dev/pci/pcireg.h> 59 #include <dev/pci/pcivar.h> 60 61 #include <net/bpf.h> 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_arp.h> 65 #include <net/ethernet.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 70 #include <net80211/ieee80211_var.h> 71 #include <net80211/ieee80211_radiotap.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/if_ether.h> 78 79 #include <dev/ipw/if_ipwreg.h> 80 #include <dev/ipw/if_ipwvar.h> 81 82 #define IPW_DEBUG 83 #ifdef IPW_DEBUG 84 #define DPRINTF(x) do { if (ipw_debug > 0) printf x; } while (0) 85 #define DPRINTFN(n, x) do { if (ipw_debug >= (n)) printf x; } while (0) 86 int ipw_debug = 0; 87 SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level"); 88 #else 89 #define DPRINTF(x) 90 #define DPRINTFN(n, x) 91 #endif 92 93 MODULE_DEPEND(ipw, pci, 1, 1, 1); 94 MODULE_DEPEND(ipw, wlan, 1, 1, 1); 95 MODULE_DEPEND(ipw, firmware, 1, 1, 1); 96 97 struct ipw_ident { 98 uint16_t vendor; 99 uint16_t device; 100 const char *name; 101 }; 102 103 static const struct ipw_ident ipw_ident_table[] = { 104 { 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" }, 105 106 { 0, 0, NULL } 107 }; 108 109 static struct ieee80211vap *ipw_vap_create(struct ieee80211com *, 110 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 111 const uint8_t [IEEE80211_ADDR_LEN], 112 const uint8_t [IEEE80211_ADDR_LEN]); 113 static void ipw_vap_delete(struct ieee80211vap *); 114 static int ipw_dma_alloc(struct ipw_softc *); 115 static void ipw_release(struct ipw_softc *); 116 static void ipw_media_status(if_t, struct ifmediareq *); 117 static int ipw_newstate(struct ieee80211vap *, enum ieee80211_state, int); 118 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t); 119 static uint16_t ipw_read_chanmask(struct ipw_softc *); 120 static void ipw_rx_cmd_intr(struct ipw_softc *, struct ipw_soft_buf *); 121 static void ipw_rx_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *); 122 static void ipw_rx_data_intr(struct ipw_softc *, struct ipw_status *, 123 struct ipw_soft_bd *, struct ipw_soft_buf *); 124 static void ipw_rx_intr(struct ipw_softc *); 125 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *); 126 static void ipw_tx_intr(struct ipw_softc *); 127 static void ipw_intr(void *); 128 static void ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int); 129 static const char * ipw_cmdname(int); 130 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t); 131 static int ipw_tx_start(struct ipw_softc *, struct mbuf *, 132 struct ieee80211_node *); 133 static int ipw_raw_xmit(struct ieee80211_node *, struct mbuf *, 134 const struct ieee80211_bpf_params *); 135 static int ipw_transmit(struct ieee80211com *, struct mbuf *); 136 static void ipw_start(struct ipw_softc *); 137 static void ipw_watchdog(void *); 138 static void ipw_parent(struct ieee80211com *); 139 static void ipw_stop_master(struct ipw_softc *); 140 static int ipw_enable(struct ipw_softc *); 141 static int ipw_disable(struct ipw_softc *); 142 static int ipw_reset(struct ipw_softc *); 143 static int ipw_load_ucode(struct ipw_softc *, const char *, int); 144 static int ipw_load_firmware(struct ipw_softc *, const char *, int); 145 static int ipw_config(struct ipw_softc *); 146 static void ipw_assoc(struct ieee80211com *, struct ieee80211vap *); 147 static void ipw_disassoc(struct ieee80211com *, struct ieee80211vap *); 148 static void ipw_init_task(void *, int); 149 static void ipw_init(void *); 150 static void ipw_init_locked(struct ipw_softc *); 151 static void ipw_stop(void *); 152 static void ipw_stop_locked(struct ipw_softc *); 153 static int ipw_sysctl_stats(SYSCTL_HANDLER_ARGS); 154 static int ipw_sysctl_radio(SYSCTL_HANDLER_ARGS); 155 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t); 156 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t); 157 #if 0 158 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, 159 uint32_t *); 160 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, 161 bus_size_t); 162 #endif 163 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, 164 const uint8_t *, bus_size_t); 165 static int ipw_scan(struct ipw_softc *); 166 static void ipw_scan_start(struct ieee80211com *); 167 static void ipw_scan_end(struct ieee80211com *); 168 static void ipw_getradiocaps(struct ieee80211com *, int, int *, 169 struct ieee80211_channel[]); 170 static void ipw_set_channel(struct ieee80211com *); 171 static void ipw_scan_curchan(struct ieee80211_scan_state *, 172 unsigned long maxdwell); 173 static void ipw_scan_mindwell(struct ieee80211_scan_state *); 174 175 static int ipw_probe(device_t); 176 static int ipw_attach(device_t); 177 static int ipw_detach(device_t); 178 static int ipw_shutdown(device_t); 179 static int ipw_suspend(device_t); 180 static int ipw_resume(device_t); 181 182 static device_method_t ipw_methods[] = { 183 /* Device interface */ 184 DEVMETHOD(device_probe, ipw_probe), 185 DEVMETHOD(device_attach, ipw_attach), 186 DEVMETHOD(device_detach, ipw_detach), 187 DEVMETHOD(device_shutdown, ipw_shutdown), 188 DEVMETHOD(device_suspend, ipw_suspend), 189 DEVMETHOD(device_resume, ipw_resume), 190 191 DEVMETHOD_END 192 }; 193 194 static driver_t ipw_driver = { 195 "ipw", 196 ipw_methods, 197 sizeof (struct ipw_softc) 198 }; 199 200 DRIVER_MODULE(ipw, pci, ipw_driver, NULL, NULL); 201 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ipw, ipw_ident_table, 202 nitems(ipw_ident_table) - 1); 203 204 MODULE_VERSION(ipw, 1); 205 206 static int 207 ipw_probe(device_t dev) 208 { 209 const struct ipw_ident *ident; 210 211 for (ident = ipw_ident_table; ident->name != NULL; ident++) { 212 if (pci_get_vendor(dev) == ident->vendor && 213 pci_get_device(dev) == ident->device) { 214 device_set_desc(dev, ident->name); 215 return (BUS_PROBE_DEFAULT); 216 } 217 } 218 return ENXIO; 219 } 220 221 /* Base Address Register */ 222 static int 223 ipw_attach(device_t dev) 224 { 225 struct ipw_softc *sc = device_get_softc(dev); 226 struct ieee80211com *ic = &sc->sc_ic; 227 uint16_t val; 228 int error, i; 229 230 sc->sc_dev = dev; 231 232 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 233 MTX_DEF | MTX_RECURSE); 234 mbufq_init(&sc->sc_snd, ifqmaxlen); 235 TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc); 236 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 237 238 pci_write_config(dev, 0x41, 0, 1); 239 240 /* enable bus-mastering */ 241 pci_enable_busmaster(dev); 242 243 i = PCIR_BAR(0); 244 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 245 if (sc->mem == NULL) { 246 device_printf(dev, "could not allocate memory resource\n"); 247 goto fail; 248 } 249 250 sc->sc_st = rman_get_bustag(sc->mem); 251 sc->sc_sh = rman_get_bushandle(sc->mem); 252 253 i = 0; 254 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 255 RF_ACTIVE | RF_SHAREABLE); 256 if (sc->irq == NULL) { 257 device_printf(dev, "could not allocate interrupt resource\n"); 258 goto fail1; 259 } 260 261 if (ipw_reset(sc) != 0) { 262 device_printf(dev, "could not reset adapter\n"); 263 goto fail2; 264 } 265 266 if (ipw_dma_alloc(sc) != 0) { 267 device_printf(dev, "could not allocate DMA resources\n"); 268 goto fail2; 269 } 270 271 ic->ic_softc = sc; 272 ic->ic_name = device_get_nameunit(dev); 273 ic->ic_opmode = IEEE80211_M_STA; 274 ic->ic_phytype = IEEE80211_T_DS; 275 276 /* set device capabilities */ 277 ic->ic_caps = 278 IEEE80211_C_STA /* station mode supported */ 279 | IEEE80211_C_IBSS /* IBSS mode supported */ 280 | IEEE80211_C_MONITOR /* monitor mode supported */ 281 | IEEE80211_C_PMGT /* power save supported */ 282 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 283 | IEEE80211_C_WPA /* 802.11i supported */ 284 ; 285 286 /* read MAC address from EEPROM */ 287 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0); 288 ic->ic_macaddr[0] = val >> 8; 289 ic->ic_macaddr[1] = val & 0xff; 290 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1); 291 ic->ic_macaddr[2] = val >> 8; 292 ic->ic_macaddr[3] = val & 0xff; 293 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2); 294 ic->ic_macaddr[4] = val >> 8; 295 ic->ic_macaddr[5] = val & 0xff; 296 297 sc->chanmask = ipw_read_chanmask(sc); 298 ipw_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 299 ic->ic_channels); 300 301 /* check support for radio transmitter switch in EEPROM */ 302 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8)) 303 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH; 304 305 ieee80211_ifattach(ic); 306 ic->ic_scan_start = ipw_scan_start; 307 ic->ic_scan_end = ipw_scan_end; 308 ic->ic_getradiocaps = ipw_getradiocaps; 309 ic->ic_set_channel = ipw_set_channel; 310 ic->ic_scan_curchan = ipw_scan_curchan; 311 ic->ic_scan_mindwell = ipw_scan_mindwell; 312 ic->ic_raw_xmit = ipw_raw_xmit; 313 ic->ic_vap_create = ipw_vap_create; 314 ic->ic_vap_delete = ipw_vap_delete; 315 ic->ic_transmit = ipw_transmit; 316 ic->ic_parent = ipw_parent; 317 318 ieee80211_radiotap_attach(ic, 319 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 320 IPW_TX_RADIOTAP_PRESENT, 321 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 322 IPW_RX_RADIOTAP_PRESENT); 323 324 /* 325 * Add a few sysctl knobs. 326 */ 327 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 328 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio", 329 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 330 ipw_sysctl_radio, "I", 331 "radio transmitter switch state (0=off, 1=on)"); 332 333 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 334 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", 335 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 336 ipw_sysctl_stats, "S", "statistics"); 337 338 /* 339 * Hook our interrupt after all initialization is complete. 340 */ 341 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 342 NULL, ipw_intr, sc, &sc->sc_ih); 343 if (error != 0) { 344 device_printf(dev, "could not set up interrupt\n"); 345 goto fail3; 346 } 347 348 if (bootverbose) 349 ieee80211_announce(ic); 350 351 return 0; 352 fail3: 353 ipw_release(sc); 354 fail2: 355 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 356 fail1: 357 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 358 sc->mem); 359 fail: 360 mtx_destroy(&sc->sc_mtx); 361 return ENXIO; 362 } 363 364 static int 365 ipw_detach(device_t dev) 366 { 367 struct ipw_softc *sc = device_get_softc(dev); 368 struct ieee80211com *ic = &sc->sc_ic; 369 370 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 371 372 ieee80211_draintask(ic, &sc->sc_init_task); 373 ipw_stop(sc); 374 375 ieee80211_ifdetach(ic); 376 377 callout_drain(&sc->sc_wdtimer); 378 mbufq_drain(&sc->sc_snd); 379 380 ipw_release(sc); 381 382 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 383 384 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 385 sc->mem); 386 387 if (sc->sc_firmware != NULL) { 388 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 389 sc->sc_firmware = NULL; 390 } 391 392 mtx_destroy(&sc->sc_mtx); 393 394 return 0; 395 } 396 397 static struct ieee80211vap * 398 ipw_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 399 enum ieee80211_opmode opmode, int flags, 400 const uint8_t bssid[IEEE80211_ADDR_LEN], 401 const uint8_t mac[IEEE80211_ADDR_LEN]) 402 { 403 struct ipw_softc *sc = ic->ic_softc; 404 struct ipw_vap *ivp; 405 struct ieee80211vap *vap; 406 const struct firmware *fp; 407 const struct ipw_firmware_hdr *hdr; 408 const char *imagename; 409 410 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 411 return NULL; 412 413 switch (opmode) { 414 case IEEE80211_M_STA: 415 imagename = "ipw_bss"; 416 break; 417 case IEEE80211_M_IBSS: 418 imagename = "ipw_ibss"; 419 break; 420 case IEEE80211_M_MONITOR: 421 imagename = "ipw_monitor"; 422 break; 423 default: 424 return NULL; 425 } 426 427 /* 428 * Load firmware image using the firmware(9) subsystem. Doing 429 * this unlocked is ok since we're single-threaded by the 430 * 802.11 layer. 431 */ 432 if (sc->sc_firmware == NULL || 433 strcmp(sc->sc_firmware->name, imagename) != 0) { 434 if (sc->sc_firmware != NULL) 435 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 436 sc->sc_firmware = firmware_get(imagename); 437 } 438 if (sc->sc_firmware == NULL) { 439 device_printf(sc->sc_dev, 440 "could not load firmware image '%s'\n", imagename); 441 return NULL; 442 } 443 fp = sc->sc_firmware; 444 if (fp->datasize < sizeof *hdr) { 445 device_printf(sc->sc_dev, 446 "firmware image too short %zu\n", fp->datasize); 447 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 448 sc->sc_firmware = NULL; 449 return NULL; 450 } 451 hdr = (const struct ipw_firmware_hdr *)fp->data; 452 if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) + 453 le32toh(hdr->ucodesz)) { 454 device_printf(sc->sc_dev, 455 "firmware image too short %zu\n", fp->datasize); 456 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 457 sc->sc_firmware = NULL; 458 return NULL; 459 } 460 461 ivp = malloc(sizeof(struct ipw_vap), M_80211_VAP, M_WAITOK | M_ZERO); 462 vap = &ivp->vap; 463 464 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 465 /* override with driver methods */ 466 ivp->newstate = vap->iv_newstate; 467 vap->iv_newstate = ipw_newstate; 468 469 /* complete setup */ 470 ieee80211_vap_attach(vap, ieee80211_media_change, ipw_media_status, 471 mac); 472 ic->ic_opmode = opmode; 473 return vap; 474 } 475 476 static void 477 ipw_vap_delete(struct ieee80211vap *vap) 478 { 479 struct ipw_vap *ivp = IPW_VAP(vap); 480 481 ieee80211_vap_detach(vap); 482 free(ivp, M_80211_VAP); 483 } 484 485 static int 486 ipw_dma_alloc(struct ipw_softc *sc) 487 { 488 struct ipw_soft_bd *sbd; 489 struct ipw_soft_hdr *shdr; 490 struct ipw_soft_buf *sbuf; 491 bus_addr_t physaddr; 492 int error, i; 493 494 /* 495 * Allocate parent DMA tag for subsequent allocations. 496 */ 497 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 498 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 499 BUS_SPACE_MAXSIZE_32BIT, BUS_SPACE_UNRESTRICTED, 500 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->parent_dmat); 501 if (error != 0) { 502 device_printf(sc->sc_dev, "could not create parent DMA tag\n"); 503 goto fail; 504 } 505 506 /* 507 * Allocate and map tx ring. 508 */ 509 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 510 BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL, 511 NULL, &sc->tbd_dmat); 512 if (error != 0) { 513 device_printf(sc->sc_dev, "could not create tx ring DMA tag\n"); 514 goto fail; 515 } 516 517 error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list, 518 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map); 519 if (error != 0) { 520 device_printf(sc->sc_dev, 521 "could not allocate tx ring DMA memory\n"); 522 goto fail; 523 } 524 525 error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list, 526 IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0); 527 if (error != 0) { 528 device_printf(sc->sc_dev, "could not map tx ring DMA memory\n"); 529 goto fail; 530 } 531 532 /* 533 * Allocate and map rx ring. 534 */ 535 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 536 BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL, 537 NULL, &sc->rbd_dmat); 538 if (error != 0) { 539 device_printf(sc->sc_dev, "could not create rx ring DMA tag\n"); 540 goto fail; 541 } 542 543 error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list, 544 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map); 545 if (error != 0) { 546 device_printf(sc->sc_dev, 547 "could not allocate rx ring DMA memory\n"); 548 goto fail; 549 } 550 551 error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list, 552 IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0); 553 if (error != 0) { 554 device_printf(sc->sc_dev, "could not map rx ring DMA memory\n"); 555 goto fail; 556 } 557 558 /* 559 * Allocate and map status ring. 560 */ 561 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 562 BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0, 563 NULL, NULL, &sc->status_dmat); 564 if (error != 0) { 565 device_printf(sc->sc_dev, 566 "could not create status ring DMA tag\n"); 567 goto fail; 568 } 569 570 error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list, 571 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map); 572 if (error != 0) { 573 device_printf(sc->sc_dev, 574 "could not allocate status ring DMA memory\n"); 575 goto fail; 576 } 577 578 error = bus_dmamap_load(sc->status_dmat, sc->status_map, 579 sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys, 580 0); 581 if (error != 0) { 582 device_printf(sc->sc_dev, 583 "could not map status ring DMA memory\n"); 584 goto fail; 585 } 586 587 /* 588 * Allocate command DMA map. 589 */ 590 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 591 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1, 592 sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat); 593 if (error != 0) { 594 device_printf(sc->sc_dev, "could not create command DMA tag\n"); 595 goto fail; 596 } 597 598 error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map); 599 if (error != 0) { 600 device_printf(sc->sc_dev, 601 "could not create command DMA map\n"); 602 goto fail; 603 } 604 605 /* 606 * Allocate headers DMA maps. 607 */ 608 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 609 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1, 610 sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat); 611 if (error != 0) { 612 device_printf(sc->sc_dev, "could not create header DMA tag\n"); 613 goto fail; 614 } 615 616 SLIST_INIT(&sc->free_shdr); 617 for (i = 0; i < IPW_NDATA; i++) { 618 shdr = &sc->shdr_list[i]; 619 error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map); 620 if (error != 0) { 621 device_printf(sc->sc_dev, 622 "could not create header DMA map\n"); 623 goto fail; 624 } 625 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 626 } 627 628 /* 629 * Allocate tx buffers DMA maps. 630 */ 631 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 632 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0, 633 NULL, NULL, &sc->txbuf_dmat); 634 if (error != 0) { 635 device_printf(sc->sc_dev, "could not create tx DMA tag\n"); 636 goto fail; 637 } 638 639 SLIST_INIT(&sc->free_sbuf); 640 for (i = 0; i < IPW_NDATA; i++) { 641 sbuf = &sc->tx_sbuf_list[i]; 642 error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map); 643 if (error != 0) { 644 device_printf(sc->sc_dev, 645 "could not create tx DMA map\n"); 646 goto fail; 647 } 648 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 649 } 650 651 /* 652 * Initialize tx ring. 653 */ 654 for (i = 0; i < IPW_NTBD; i++) { 655 sbd = &sc->stbd_list[i]; 656 sbd->bd = &sc->tbd_list[i]; 657 sbd->type = IPW_SBD_TYPE_NOASSOC; 658 } 659 660 /* 661 * Pre-allocate rx buffers and DMA maps. 662 */ 663 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 664 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, 665 NULL, &sc->rxbuf_dmat); 666 if (error != 0) { 667 device_printf(sc->sc_dev, "could not create rx DMA tag\n"); 668 goto fail; 669 } 670 671 for (i = 0; i < IPW_NRBD; i++) { 672 sbd = &sc->srbd_list[i]; 673 sbuf = &sc->rx_sbuf_list[i]; 674 sbd->bd = &sc->rbd_list[i]; 675 676 sbuf->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 677 if (sbuf->m == NULL) { 678 device_printf(sc->sc_dev, 679 "could not allocate rx mbuf\n"); 680 error = ENOMEM; 681 goto fail; 682 } 683 684 error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map); 685 if (error != 0) { 686 device_printf(sc->sc_dev, 687 "could not create rx DMA map\n"); 688 goto fail; 689 } 690 691 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 692 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 693 &physaddr, 0); 694 if (error != 0) { 695 device_printf(sc->sc_dev, 696 "could not map rx DMA memory\n"); 697 goto fail; 698 } 699 700 sbd->type = IPW_SBD_TYPE_DATA; 701 sbd->priv = sbuf; 702 sbd->bd->physaddr = htole32(physaddr); 703 sbd->bd->len = htole32(MCLBYTES); 704 } 705 706 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 707 708 return 0; 709 710 fail: ipw_release(sc); 711 return error; 712 } 713 714 static void 715 ipw_release(struct ipw_softc *sc) 716 { 717 struct ipw_soft_buf *sbuf; 718 int i; 719 720 if (sc->parent_dmat != NULL) { 721 bus_dma_tag_destroy(sc->parent_dmat); 722 } 723 724 if (sc->tbd_dmat != NULL) { 725 bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map); 726 bus_dmamem_free(sc->tbd_dmat, sc->tbd_list, sc->tbd_map); 727 bus_dma_tag_destroy(sc->tbd_dmat); 728 } 729 730 if (sc->rbd_dmat != NULL) { 731 if (sc->rbd_list != NULL) { 732 bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map); 733 bus_dmamem_free(sc->rbd_dmat, sc->rbd_list, 734 sc->rbd_map); 735 } 736 bus_dma_tag_destroy(sc->rbd_dmat); 737 } 738 739 if (sc->status_dmat != NULL) { 740 if (sc->status_list != NULL) { 741 bus_dmamap_unload(sc->status_dmat, sc->status_map); 742 bus_dmamem_free(sc->status_dmat, sc->status_list, 743 sc->status_map); 744 } 745 bus_dma_tag_destroy(sc->status_dmat); 746 } 747 748 for (i = 0; i < IPW_NTBD; i++) 749 ipw_release_sbd(sc, &sc->stbd_list[i]); 750 751 if (sc->cmd_dmat != NULL) { 752 bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map); 753 bus_dma_tag_destroy(sc->cmd_dmat); 754 } 755 756 if (sc->hdr_dmat != NULL) { 757 for (i = 0; i < IPW_NDATA; i++) 758 bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map); 759 bus_dma_tag_destroy(sc->hdr_dmat); 760 } 761 762 if (sc->txbuf_dmat != NULL) { 763 for (i = 0; i < IPW_NDATA; i++) { 764 bus_dmamap_destroy(sc->txbuf_dmat, 765 sc->tx_sbuf_list[i].map); 766 } 767 bus_dma_tag_destroy(sc->txbuf_dmat); 768 } 769 770 if (sc->rxbuf_dmat != NULL) { 771 for (i = 0; i < IPW_NRBD; i++) { 772 sbuf = &sc->rx_sbuf_list[i]; 773 if (sbuf->m != NULL) { 774 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, 775 BUS_DMASYNC_POSTREAD); 776 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 777 m_freem(sbuf->m); 778 } 779 bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map); 780 } 781 bus_dma_tag_destroy(sc->rxbuf_dmat); 782 } 783 } 784 785 static int 786 ipw_shutdown(device_t dev) 787 { 788 struct ipw_softc *sc = device_get_softc(dev); 789 790 ipw_stop(sc); 791 792 return 0; 793 } 794 795 static int 796 ipw_suspend(device_t dev) 797 { 798 struct ipw_softc *sc = device_get_softc(dev); 799 struct ieee80211com *ic = &sc->sc_ic; 800 801 ieee80211_suspend_all(ic); 802 return 0; 803 } 804 805 static int 806 ipw_resume(device_t dev) 807 { 808 struct ipw_softc *sc = device_get_softc(dev); 809 struct ieee80211com *ic = &sc->sc_ic; 810 811 pci_write_config(dev, 0x41, 0, 1); 812 813 ieee80211_resume_all(ic); 814 return 0; 815 } 816 817 static int 818 ipw_cvtrate(int ipwrate) 819 { 820 switch (ipwrate) { 821 case IPW_RATE_DS1: return 2; 822 case IPW_RATE_DS2: return 4; 823 case IPW_RATE_DS5: return 11; 824 case IPW_RATE_DS11: return 22; 825 } 826 return 0; 827 } 828 829 /* 830 * The firmware automatically adapts the transmit speed. We report its current 831 * value here. 832 */ 833 static void 834 ipw_media_status(if_t ifp, struct ifmediareq *imr) 835 { 836 struct ieee80211vap *vap = if_getsoftc(ifp); 837 struct ieee80211com *ic = vap->iv_ic; 838 struct ipw_softc *sc = ic->ic_softc; 839 840 /* read current transmission rate from adapter */ 841 vap->iv_bss->ni_txrate = ipw_cvtrate( 842 ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf); 843 ieee80211_media_status(ifp, imr); 844 } 845 846 static int 847 ipw_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 848 { 849 struct ipw_vap *ivp = IPW_VAP(vap); 850 struct ieee80211com *ic = vap->iv_ic; 851 struct ipw_softc *sc = ic->ic_softc; 852 enum ieee80211_state ostate; 853 854 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 855 ieee80211_state_name[vap->iv_state], 856 ieee80211_state_name[nstate], sc->flags)); 857 858 ostate = vap->iv_state; 859 IEEE80211_UNLOCK(ic); 860 861 switch (nstate) { 862 case IEEE80211_S_RUN: 863 if (ic->ic_opmode == IEEE80211_M_IBSS) { 864 /* 865 * XXX when joining an ibss network we are called 866 * with a SCAN -> RUN transition on scan complete. 867 * Use that to call ipw_assoc. On completing the 868 * join we are then called again with an AUTH -> RUN 869 * transition and we want to do nothing. This is 870 * all totally bogus and needs to be redone. 871 */ 872 if (ostate == IEEE80211_S_SCAN) 873 ipw_assoc(ic, vap); 874 } 875 break; 876 877 case IEEE80211_S_INIT: 878 if (sc->flags & IPW_FLAG_ASSOCIATED) 879 ipw_disassoc(ic, vap); 880 break; 881 882 case IEEE80211_S_AUTH: 883 /* 884 * Move to ASSOC state after the ipw_assoc() call. Firmware 885 * takes care of authentication, after the call we'll receive 886 * only an assoc response which would otherwise be discared 887 * if we are still in AUTH state. 888 */ 889 nstate = IEEE80211_S_ASSOC; 890 ipw_assoc(ic, vap); 891 break; 892 893 case IEEE80211_S_ASSOC: 894 /* 895 * If we are not transitioning from AUTH then resend the 896 * association request. 897 */ 898 if (ostate != IEEE80211_S_AUTH) 899 ipw_assoc(ic, vap); 900 break; 901 902 default: 903 break; 904 } 905 IEEE80211_LOCK(ic); 906 return ivp->newstate(vap, nstate, arg); 907 } 908 909 /* 910 * Read 16 bits at address 'addr' from the serial EEPROM. 911 */ 912 static uint16_t 913 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr) 914 { 915 uint32_t tmp; 916 uint16_t val; 917 int n; 918 919 /* clock C once before the first command */ 920 IPW_EEPROM_CTL(sc, 0); 921 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 922 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 923 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 924 925 /* write start bit (1) */ 926 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 927 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 928 929 /* write READ opcode (10) */ 930 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 931 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 932 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 933 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 934 935 /* write address A7-A0 */ 936 for (n = 7; n >= 0; n--) { 937 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 938 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D)); 939 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 940 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C); 941 } 942 943 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 944 945 /* read data Q15-Q0 */ 946 val = 0; 947 for (n = 15; n >= 0; n--) { 948 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 949 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 950 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL); 951 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n; 952 } 953 954 IPW_EEPROM_CTL(sc, 0); 955 956 /* clear Chip Select and clock C */ 957 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 958 IPW_EEPROM_CTL(sc, 0); 959 IPW_EEPROM_CTL(sc, IPW_EEPROM_C); 960 961 return le16toh(val); 962 } 963 964 static uint16_t 965 ipw_read_chanmask(struct ipw_softc *sc) 966 { 967 uint16_t val; 968 969 /* set supported .11b channels (read from EEPROM) */ 970 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0) 971 val = 0x7ff; /* default to channels 1-11 */ 972 val <<= 1; 973 974 return (val); 975 } 976 977 static void 978 ipw_rx_cmd_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 979 { 980 struct ipw_cmd *cmd; 981 982 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 983 984 cmd = mtod(sbuf->m, struct ipw_cmd *); 985 986 DPRINTFN(9, ("cmd ack'ed %s(%u, %u, %u, %u, %u)\n", 987 ipw_cmdname(le32toh(cmd->type)), le32toh(cmd->type), 988 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len), 989 le32toh(cmd->status))); 990 991 sc->flags &= ~IPW_FLAG_BUSY; 992 wakeup(sc); 993 } 994 995 static void 996 ipw_rx_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 997 { 998 #define IEEESTATE(vap) ieee80211_state_name[vap->iv_state] 999 struct ieee80211com *ic = &sc->sc_ic; 1000 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1001 uint32_t state; 1002 1003 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1004 1005 state = le32toh(*mtod(sbuf->m, uint32_t *)); 1006 1007 switch (state) { 1008 case IPW_STATE_ASSOCIATED: 1009 DPRINTFN(2, ("Association succeeded (%s flags 0x%x)\n", 1010 IEEESTATE(vap), sc->flags)); 1011 /* XXX suppress state change in case the fw auto-associates */ 1012 if ((sc->flags & IPW_FLAG_ASSOCIATING) == 0) { 1013 DPRINTF(("Unexpected association (%s, flags 0x%x)\n", 1014 IEEESTATE(vap), sc->flags)); 1015 break; 1016 } 1017 sc->flags &= ~IPW_FLAG_ASSOCIATING; 1018 sc->flags |= IPW_FLAG_ASSOCIATED; 1019 break; 1020 1021 case IPW_STATE_SCANNING: 1022 DPRINTFN(3, ("Scanning (%s flags 0x%x)\n", 1023 IEEESTATE(vap), sc->flags)); 1024 /* 1025 * NB: Check driver state for association on assoc 1026 * loss as the firmware will immediately start to 1027 * scan and we would treat it as a beacon miss if 1028 * we checked the 802.11 layer state. 1029 */ 1030 if (sc->flags & IPW_FLAG_ASSOCIATED) { 1031 IPW_UNLOCK(sc); 1032 /* XXX probably need to issue disassoc to fw */ 1033 ieee80211_beacon_miss(ic); 1034 IPW_LOCK(sc); 1035 } 1036 break; 1037 1038 case IPW_STATE_SCAN_COMPLETE: 1039 /* 1040 * XXX For some reason scan requests generate scan 1041 * started + scan done events before any traffic is 1042 * received (e.g. probe response frames). We work 1043 * around this by marking the HACK flag and skipping 1044 * the first scan complete event. 1045 */ 1046 DPRINTFN(3, ("Scan complete (%s flags 0x%x)\n", 1047 IEEESTATE(vap), sc->flags)); 1048 if (sc->flags & IPW_FLAG_HACK) { 1049 sc->flags &= ~IPW_FLAG_HACK; 1050 break; 1051 } 1052 if (sc->flags & IPW_FLAG_SCANNING) { 1053 IPW_UNLOCK(sc); 1054 ieee80211_scan_done(vap); 1055 IPW_LOCK(sc); 1056 sc->flags &= ~IPW_FLAG_SCANNING; 1057 sc->sc_scan_timer = 0; 1058 } 1059 break; 1060 1061 case IPW_STATE_ASSOCIATION_LOST: 1062 DPRINTFN(2, ("Association lost (%s flags 0x%x)\n", 1063 IEEESTATE(vap), sc->flags)); 1064 sc->flags &= ~(IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1065 if (vap->iv_state == IEEE80211_S_RUN) { 1066 IPW_UNLOCK(sc); 1067 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1068 IPW_LOCK(sc); 1069 } 1070 break; 1071 1072 case IPW_STATE_DISABLED: 1073 /* XXX? is this right? */ 1074 sc->flags &= ~(IPW_FLAG_HACK | IPW_FLAG_SCANNING | 1075 IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1076 DPRINTFN(2, ("Firmware disabled (%s flags 0x%x)\n", 1077 IEEESTATE(vap), sc->flags)); 1078 break; 1079 1080 case IPW_STATE_RADIO_DISABLED: 1081 device_printf(sc->sc_dev, "radio turned off\n"); 1082 ieee80211_notify_radio(ic, 0); 1083 ipw_stop_locked(sc); 1084 /* XXX start polling thread to detect radio on */ 1085 break; 1086 1087 default: 1088 DPRINTFN(2, ("%s: unhandled state %u %s flags 0x%x\n", 1089 __func__, state, IEEESTATE(vap), sc->flags)); 1090 break; 1091 } 1092 #undef IEEESTATE 1093 } 1094 1095 /* 1096 * Set driver state for current channel. 1097 */ 1098 static void 1099 ipw_setcurchan(struct ipw_softc *sc, struct ieee80211_channel *chan) 1100 { 1101 struct ieee80211com *ic = &sc->sc_ic; 1102 1103 ic->ic_curchan = chan; 1104 ieee80211_radiotap_chan_change(ic); 1105 } 1106 1107 /* 1108 * XXX: Hack to set the current channel to the value advertised in beacons or 1109 * probe responses. Only used during AP detection. 1110 */ 1111 static void 1112 ipw_fix_channel(struct ipw_softc *sc, struct mbuf *m) 1113 { 1114 struct ieee80211com *ic = &sc->sc_ic; 1115 struct ieee80211_channel *c; 1116 struct ieee80211_frame *wh; 1117 uint8_t subtype; 1118 uint8_t *frm, *efrm; 1119 1120 wh = mtod(m, struct ieee80211_frame *); 1121 1122 if (!IEEE80211_IS_MGMT(wh)) 1123 return; 1124 1125 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1126 1127 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 1128 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1129 return; 1130 1131 /* XXX use ieee80211_parse_beacon */ 1132 frm = (uint8_t *)(wh + 1); 1133 efrm = mtod(m, uint8_t *) + m->m_len; 1134 1135 frm += 12; /* skip tstamp, bintval and capinfo fields */ 1136 while (frm < efrm) { 1137 if (*frm == IEEE80211_ELEMID_DSPARMS) 1138 #if IEEE80211_CHAN_MAX < 255 1139 if (frm[2] <= IEEE80211_CHAN_MAX) 1140 #endif 1141 { 1142 DPRINTF(("Fixing channel to %d\n", frm[2])); 1143 c = ieee80211_find_channel(ic, 1144 ieee80211_ieee2mhz(frm[2], 0), 1145 IEEE80211_CHAN_B); 1146 if (c == NULL) 1147 c = &ic->ic_channels[0]; 1148 ipw_setcurchan(sc, c); 1149 } 1150 1151 frm += frm[1] + 2; 1152 } 1153 } 1154 1155 static void 1156 ipw_rx_data_intr(struct ipw_softc *sc, struct ipw_status *status, 1157 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf) 1158 { 1159 struct ieee80211com *ic = &sc->sc_ic; 1160 struct mbuf *mnew, *m; 1161 struct ieee80211_node *ni; 1162 bus_addr_t physaddr; 1163 int error; 1164 int8_t rssi, nf; 1165 1166 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len), 1167 status->rssi)); 1168 1169 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) || 1170 le32toh(status->len) > MCLBYTES) 1171 return; 1172 1173 /* 1174 * Try to allocate a new mbuf for this ring element and load it before 1175 * processing the current mbuf. If the ring element cannot be loaded, 1176 * drop the received packet and reuse the old mbuf. In the unlikely 1177 * case that the old mbuf can't be reloaded either, explicitly panic. 1178 */ 1179 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1180 if (mnew == NULL) { 1181 counter_u64_add(ic->ic_ierrors, 1); 1182 return; 1183 } 1184 1185 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1186 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 1187 1188 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *), 1189 MCLBYTES, ipw_dma_map_addr, &physaddr, 0); 1190 if (error != 0) { 1191 m_freem(mnew); 1192 1193 /* try to reload the old mbuf */ 1194 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 1195 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 1196 &physaddr, 0); 1197 if (error != 0) { 1198 /* very unlikely that it will fail... */ 1199 panic("%s: could not load old rx mbuf", 1200 device_get_name(sc->sc_dev)); 1201 } 1202 counter_u64_add(ic->ic_ierrors, 1); 1203 return; 1204 } 1205 1206 /* 1207 * New mbuf successfully loaded, update Rx ring and continue 1208 * processing. 1209 */ 1210 m = sbuf->m; 1211 sbuf->m = mnew; 1212 sbd->bd->physaddr = htole32(physaddr); 1213 m->m_pkthdr.len = m->m_len = le32toh(status->len); 1214 1215 rssi = status->rssi + IPW_RSSI_TO_DBM; 1216 nf = -95; 1217 if (ieee80211_radiotap_active(ic)) { 1218 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap; 1219 1220 tap->wr_flags = 0; 1221 tap->wr_antsignal = rssi; 1222 tap->wr_antnoise = nf; 1223 } 1224 1225 if (sc->flags & IPW_FLAG_SCANNING) 1226 ipw_fix_channel(sc, m); 1227 1228 IPW_UNLOCK(sc); 1229 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1230 if (ni != NULL) { 1231 (void) ieee80211_input(ni, m, rssi - nf, nf); 1232 ieee80211_free_node(ni); 1233 } else 1234 (void) ieee80211_input_all(ic, m, rssi - nf, nf); 1235 IPW_LOCK(sc); 1236 1237 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1238 } 1239 1240 static void 1241 ipw_rx_intr(struct ipw_softc *sc) 1242 { 1243 struct ipw_status *status; 1244 struct ipw_soft_bd *sbd; 1245 struct ipw_soft_buf *sbuf; 1246 uint32_t r, i; 1247 1248 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1249 return; 1250 1251 r = CSR_READ_4(sc, IPW_CSR_RX_READ); 1252 1253 bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD); 1254 1255 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) { 1256 status = &sc->status_list[i]; 1257 sbd = &sc->srbd_list[i]; 1258 sbuf = sbd->priv; 1259 1260 switch (le16toh(status->code) & 0xf) { 1261 case IPW_STATUS_CODE_COMMAND: 1262 ipw_rx_cmd_intr(sc, sbuf); 1263 break; 1264 1265 case IPW_STATUS_CODE_NEWSTATE: 1266 ipw_rx_newstate_intr(sc, sbuf); 1267 break; 1268 1269 case IPW_STATUS_CODE_DATA_802_3: 1270 case IPW_STATUS_CODE_DATA_802_11: 1271 ipw_rx_data_intr(sc, status, sbd, sbuf); 1272 break; 1273 1274 case IPW_STATUS_CODE_NOTIFICATION: 1275 DPRINTFN(2, ("notification status, len %u flags 0x%x\n", 1276 le32toh(status->len), status->flags)); 1277 /* XXX maybe drive state machine AUTH->ASSOC? */ 1278 break; 1279 1280 default: 1281 device_printf(sc->sc_dev, "unexpected status code %u\n", 1282 le16toh(status->code)); 1283 } 1284 1285 /* firmware was killed, stop processing received frames */ 1286 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1287 return; 1288 1289 sbd->bd->flags = 0; 1290 } 1291 1292 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1293 1294 /* kick the firmware */ 1295 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1; 1296 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 1297 } 1298 1299 static void 1300 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd) 1301 { 1302 struct ipw_soft_hdr *shdr; 1303 struct ipw_soft_buf *sbuf; 1304 1305 switch (sbd->type) { 1306 case IPW_SBD_TYPE_COMMAND: 1307 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, 1308 BUS_DMASYNC_POSTWRITE); 1309 bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map); 1310 break; 1311 1312 case IPW_SBD_TYPE_HEADER: 1313 shdr = sbd->priv; 1314 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE); 1315 bus_dmamap_unload(sc->hdr_dmat, shdr->map); 1316 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 1317 break; 1318 1319 case IPW_SBD_TYPE_DATA: 1320 sbuf = sbd->priv; 1321 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, 1322 BUS_DMASYNC_POSTWRITE); 1323 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1324 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 1325 1326 ieee80211_tx_complete(sbuf->ni, sbuf->m, 0/*XXX*/); 1327 1328 sc->sc_tx_timer = 0; 1329 break; 1330 } 1331 1332 sbd->type = IPW_SBD_TYPE_NOASSOC; 1333 } 1334 1335 static void 1336 ipw_tx_intr(struct ipw_softc *sc) 1337 { 1338 struct ipw_soft_bd *sbd; 1339 uint32_t r, i; 1340 1341 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1342 return; 1343 1344 r = CSR_READ_4(sc, IPW_CSR_TX_READ); 1345 1346 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) { 1347 sbd = &sc->stbd_list[i]; 1348 ipw_release_sbd(sc, sbd); 1349 sc->txfree++; 1350 } 1351 1352 /* remember what the firmware has processed */ 1353 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1; 1354 1355 ipw_start(sc); 1356 } 1357 1358 static void 1359 ipw_fatal_error_intr(struct ipw_softc *sc) 1360 { 1361 struct ieee80211com *ic = &sc->sc_ic; 1362 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1363 1364 device_printf(sc->sc_dev, "firmware error\n"); 1365 if (vap != NULL) { 1366 IPW_UNLOCK(sc); 1367 ieee80211_cancel_scan(vap); 1368 IPW_LOCK(sc); 1369 } 1370 ieee80211_runtask(ic, &sc->sc_init_task); 1371 } 1372 1373 static void 1374 ipw_intr(void *arg) 1375 { 1376 struct ipw_softc *sc = arg; 1377 uint32_t r; 1378 1379 IPW_LOCK(sc); 1380 1381 r = CSR_READ_4(sc, IPW_CSR_INTR); 1382 if (r == 0 || r == 0xffffffff) 1383 goto done; 1384 1385 /* disable interrupts */ 1386 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1387 1388 /* acknowledge all interrupts */ 1389 CSR_WRITE_4(sc, IPW_CSR_INTR, r); 1390 1391 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) { 1392 ipw_fatal_error_intr(sc); 1393 goto done; 1394 } 1395 1396 if (r & IPW_INTR_FW_INIT_DONE) 1397 wakeup(sc); 1398 1399 if (r & IPW_INTR_RX_TRANSFER) 1400 ipw_rx_intr(sc); 1401 1402 if (r & IPW_INTR_TX_TRANSFER) 1403 ipw_tx_intr(sc); 1404 1405 /* re-enable interrupts */ 1406 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1407 done: 1408 IPW_UNLOCK(sc); 1409 } 1410 1411 static void 1412 ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1413 { 1414 if (error != 0) 1415 return; 1416 1417 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 1418 1419 *(bus_addr_t *)arg = segs[0].ds_addr; 1420 } 1421 1422 static const char * 1423 ipw_cmdname(int cmd) 1424 { 1425 static const struct { 1426 int cmd; 1427 const char *name; 1428 } cmds[] = { 1429 { IPW_CMD_ADD_MULTICAST, "ADD_MULTICAST" }, 1430 { IPW_CMD_BROADCAST_SCAN, "BROADCAST_SCAN" }, 1431 { IPW_CMD_DISABLE, "DISABLE" }, 1432 { IPW_CMD_DISABLE_PHY, "DISABLE_PHY" }, 1433 { IPW_CMD_ENABLE, "ENABLE" }, 1434 { IPW_CMD_PREPARE_POWER_DOWN, "PREPARE_POWER_DOWN" }, 1435 { IPW_CMD_SET_BASIC_TX_RATES, "SET_BASIC_TX_RATES" }, 1436 { IPW_CMD_SET_BEACON_INTERVAL, "SET_BEACON_INTERVAL" }, 1437 { IPW_CMD_SET_CHANNEL, "SET_CHANNEL" }, 1438 { IPW_CMD_SET_CONFIGURATION, "SET_CONFIGURATION" }, 1439 { IPW_CMD_SET_DESIRED_BSSID, "SET_DESIRED_BSSID" }, 1440 { IPW_CMD_SET_ESSID, "SET_ESSID" }, 1441 { IPW_CMD_SET_FRAG_THRESHOLD, "SET_FRAG_THRESHOLD" }, 1442 { IPW_CMD_SET_MAC_ADDRESS, "SET_MAC_ADDRESS" }, 1443 { IPW_CMD_SET_MANDATORY_BSSID, "SET_MANDATORY_BSSID" }, 1444 { IPW_CMD_SET_MODE, "SET_MODE" }, 1445 { IPW_CMD_SET_MSDU_TX_RATES, "SET_MSDU_TX_RATES" }, 1446 { IPW_CMD_SET_POWER_MODE, "SET_POWER_MODE" }, 1447 { IPW_CMD_SET_RTS_THRESHOLD, "SET_RTS_THRESHOLD" }, 1448 { IPW_CMD_SET_SCAN_OPTIONS, "SET_SCAN_OPTIONS" }, 1449 { IPW_CMD_SET_SECURITY_INFO, "SET_SECURITY_INFO" }, 1450 { IPW_CMD_SET_TX_POWER_INDEX, "SET_TX_POWER_INDEX" }, 1451 { IPW_CMD_SET_TX_RATES, "SET_TX_RATES" }, 1452 { IPW_CMD_SET_WEP_FLAGS, "SET_WEP_FLAGS" }, 1453 { IPW_CMD_SET_WEP_KEY, "SET_WEP_KEY" }, 1454 { IPW_CMD_SET_WEP_KEY_INDEX, "SET_WEP_KEY_INDEX" }, 1455 { IPW_CMD_SET_WPA_IE, "SET_WPA_IE" }, 1456 1457 }; 1458 static char buf[12]; 1459 int i; 1460 1461 for (i = 0; i < nitems(cmds); i++) 1462 if (cmds[i].cmd == cmd) 1463 return cmds[i].name; 1464 snprintf(buf, sizeof(buf), "%u", cmd); 1465 return buf; 1466 } 1467 1468 /* 1469 * Send a command to the firmware and wait for the acknowledgement. 1470 */ 1471 static int 1472 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len) 1473 { 1474 struct ipw_soft_bd *sbd; 1475 bus_addr_t physaddr; 1476 int error; 1477 1478 IPW_LOCK_ASSERT(sc); 1479 1480 if (sc->flags & IPW_FLAG_BUSY) { 1481 device_printf(sc->sc_dev, "%s: %s not sent, busy\n", 1482 __func__, ipw_cmdname(type)); 1483 return EAGAIN; 1484 } 1485 sc->flags |= IPW_FLAG_BUSY; 1486 1487 sbd = &sc->stbd_list[sc->txcur]; 1488 1489 error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd, 1490 sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0); 1491 if (error != 0) { 1492 device_printf(sc->sc_dev, "could not map command DMA memory\n"); 1493 sc->flags &= ~IPW_FLAG_BUSY; 1494 return error; 1495 } 1496 1497 sc->cmd.type = htole32(type); 1498 sc->cmd.subtype = 0; 1499 sc->cmd.len = htole32(len); 1500 sc->cmd.seq = 0; 1501 memcpy(sc->cmd.data, data, len); 1502 1503 sbd->type = IPW_SBD_TYPE_COMMAND; 1504 sbd->bd->physaddr = htole32(physaddr); 1505 sbd->bd->len = htole32(sizeof (struct ipw_cmd)); 1506 sbd->bd->nfrag = 1; 1507 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND | 1508 IPW_BD_FLAG_TX_LAST_FRAGMENT; 1509 1510 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE); 1511 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1512 1513 #ifdef IPW_DEBUG 1514 if (ipw_debug >= 4) { 1515 printf("sending %s(%u, %u, %u, %u)", ipw_cmdname(type), type, 1516 0, 0, len); 1517 /* Print the data buffer in the higher debug level */ 1518 if (ipw_debug >= 9 && len > 0) { 1519 printf(" data: 0x"); 1520 for (int i = 1; i <= len; i++) 1521 printf("%1D", (u_char *)data + len - i, ""); 1522 } 1523 printf("\n"); 1524 } 1525 #endif 1526 1527 /* kick firmware */ 1528 sc->txfree--; 1529 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1530 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1531 1532 /* wait at most one second for command to complete */ 1533 error = msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz); 1534 if (error != 0) { 1535 device_printf(sc->sc_dev, "%s: %s failed, timeout (error %u)\n", 1536 __func__, ipw_cmdname(type), error); 1537 sc->flags &= ~IPW_FLAG_BUSY; 1538 return (error); 1539 } 1540 return (0); 1541 } 1542 1543 static int 1544 ipw_tx_start(struct ipw_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1545 { 1546 struct ieee80211com *ic = &sc->sc_ic; 1547 struct ieee80211vap *vap = ni->ni_vap; 1548 struct ieee80211_frame *wh; 1549 struct ipw_soft_bd *sbd; 1550 struct ipw_soft_hdr *shdr; 1551 struct ipw_soft_buf *sbuf; 1552 struct ieee80211_key *k; 1553 struct mbuf *mnew; 1554 bus_dma_segment_t segs[IPW_MAX_NSEG]; 1555 bus_addr_t physaddr; 1556 int nsegs, error, i; 1557 1558 wh = mtod(m0, struct ieee80211_frame *); 1559 1560 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1561 k = ieee80211_crypto_encap(ni, m0); 1562 if (k == NULL) { 1563 m_freem(m0); 1564 return ENOBUFS; 1565 } 1566 /* packet header may have moved, reset our local pointer */ 1567 wh = mtod(m0, struct ieee80211_frame *); 1568 } 1569 1570 if (ieee80211_radiotap_active_vap(vap)) { 1571 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap; 1572 1573 tap->wt_flags = 0; 1574 1575 ieee80211_radiotap_tx(vap, m0); 1576 } 1577 1578 shdr = SLIST_FIRST(&sc->free_shdr); 1579 sbuf = SLIST_FIRST(&sc->free_sbuf); 1580 KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool")); 1581 1582 shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND); 1583 shdr->hdr.subtype = 0; 1584 shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) ? 1 : 0; 1585 shdr->hdr.encrypt = 0; 1586 shdr->hdr.keyidx = 0; 1587 shdr->hdr.keysz = 0; 1588 shdr->hdr.fragmentsz = 0; 1589 IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2); 1590 if (ic->ic_opmode == IEEE80211_M_STA) 1591 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3); 1592 else 1593 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1); 1594 1595 /* trim IEEE802.11 header */ 1596 m_adj(m0, sizeof (struct ieee80211_frame)); 1597 1598 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs, 1599 &nsegs, 0); 1600 if (error != 0 && error != EFBIG) { 1601 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1602 error); 1603 m_freem(m0); 1604 return error; 1605 } 1606 if (error != 0) { 1607 mnew = m_defrag(m0, M_NOWAIT); 1608 if (mnew == NULL) { 1609 device_printf(sc->sc_dev, 1610 "could not defragment mbuf\n"); 1611 m_freem(m0); 1612 return ENOBUFS; 1613 } 1614 m0 = mnew; 1615 1616 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, 1617 segs, &nsegs, 0); 1618 if (error != 0) { 1619 device_printf(sc->sc_dev, 1620 "could not map mbuf (error %d)\n", error); 1621 m_freem(m0); 1622 return error; 1623 } 1624 } 1625 1626 error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr, 1627 sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0); 1628 if (error != 0) { 1629 device_printf(sc->sc_dev, "could not map header DMA memory\n"); 1630 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1631 m_freem(m0); 1632 return error; 1633 } 1634 1635 SLIST_REMOVE_HEAD(&sc->free_sbuf, next); 1636 SLIST_REMOVE_HEAD(&sc->free_shdr, next); 1637 1638 sbd = &sc->stbd_list[sc->txcur]; 1639 sbd->type = IPW_SBD_TYPE_HEADER; 1640 sbd->priv = shdr; 1641 sbd->bd->physaddr = htole32(physaddr); 1642 sbd->bd->len = htole32(sizeof (struct ipw_hdr)); 1643 sbd->bd->nfrag = 1 + nsegs; 1644 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 | 1645 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1646 1647 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n", 1648 shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted, 1649 shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr, 1650 ":")); 1651 1652 sc->txfree--; 1653 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1654 1655 sbuf->m = m0; 1656 sbuf->ni = ni; 1657 1658 for (i = 0; i < nsegs; i++) { 1659 sbd = &sc->stbd_list[sc->txcur]; 1660 1661 sbd->bd->physaddr = htole32(segs[i].ds_addr); 1662 sbd->bd->len = htole32(segs[i].ds_len); 1663 sbd->bd->nfrag = 0; 1664 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3; 1665 if (i == nsegs - 1) { 1666 sbd->type = IPW_SBD_TYPE_DATA; 1667 sbd->priv = sbuf; 1668 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT; 1669 } else { 1670 sbd->type = IPW_SBD_TYPE_NOASSOC; 1671 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1672 } 1673 1674 DPRINTFN(5, ("sending fragment (%d)\n", i)); 1675 1676 sc->txfree--; 1677 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1678 } 1679 1680 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE); 1681 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE); 1682 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1683 1684 /* kick firmware */ 1685 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1686 1687 return 0; 1688 } 1689 1690 static int 1691 ipw_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1692 const struct ieee80211_bpf_params *params) 1693 { 1694 /* no support; just discard */ 1695 m_freem(m); 1696 ieee80211_free_node(ni); 1697 return 0; 1698 } 1699 1700 static int 1701 ipw_transmit(struct ieee80211com *ic, struct mbuf *m) 1702 { 1703 struct ipw_softc *sc = ic->ic_softc; 1704 int error; 1705 1706 IPW_LOCK(sc); 1707 if ((sc->flags & IPW_FLAG_RUNNING) == 0) { 1708 IPW_UNLOCK(sc); 1709 return (ENXIO); 1710 } 1711 error = mbufq_enqueue(&sc->sc_snd, m); 1712 if (error) { 1713 IPW_UNLOCK(sc); 1714 return (error); 1715 } 1716 ipw_start(sc); 1717 IPW_UNLOCK(sc); 1718 return (0); 1719 } 1720 1721 static void 1722 ipw_start(struct ipw_softc *sc) 1723 { 1724 struct ieee80211_node *ni; 1725 struct mbuf *m; 1726 1727 IPW_LOCK_ASSERT(sc); 1728 1729 while (sc->txfree >= 1 + IPW_MAX_NSEG && 1730 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1731 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1732 if (ipw_tx_start(sc, m, ni) != 0) { 1733 if_inc_counter(ni->ni_vap->iv_ifp, 1734 IFCOUNTER_OERRORS, 1); 1735 ieee80211_free_node(ni); 1736 break; 1737 } 1738 /* start watchdog timer */ 1739 sc->sc_tx_timer = 5; 1740 } 1741 } 1742 1743 static void 1744 ipw_watchdog(void *arg) 1745 { 1746 struct ipw_softc *sc = arg; 1747 struct ieee80211com *ic = &sc->sc_ic; 1748 1749 IPW_LOCK_ASSERT(sc); 1750 1751 if (sc->sc_tx_timer > 0) { 1752 if (--sc->sc_tx_timer == 0) { 1753 device_printf(sc->sc_dev, "device timeout\n"); 1754 counter_u64_add(ic->ic_oerrors, 1); 1755 taskqueue_enqueue(taskqueue_swi, &sc->sc_init_task); 1756 } 1757 } 1758 if (sc->sc_scan_timer > 0) { 1759 if (--sc->sc_scan_timer == 0) { 1760 DPRINTFN(3, ("Scan timeout\n")); 1761 /* End the scan */ 1762 if (sc->flags & IPW_FLAG_SCANNING) { 1763 IPW_UNLOCK(sc); 1764 ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); 1765 IPW_LOCK(sc); 1766 sc->flags &= ~IPW_FLAG_SCANNING; 1767 } 1768 } 1769 } 1770 if (sc->flags & IPW_FLAG_RUNNING) 1771 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 1772 } 1773 1774 static void 1775 ipw_parent(struct ieee80211com *ic) 1776 { 1777 struct ipw_softc *sc = ic->ic_softc; 1778 int startall = 0; 1779 1780 IPW_LOCK(sc); 1781 if (ic->ic_nrunning > 0) { 1782 if (!(sc->flags & IPW_FLAG_RUNNING)) { 1783 ipw_init_locked(sc); 1784 startall = 1; 1785 } 1786 } else if (sc->flags & IPW_FLAG_RUNNING) 1787 ipw_stop_locked(sc); 1788 IPW_UNLOCK(sc); 1789 if (startall) 1790 ieee80211_start_all(ic); 1791 } 1792 1793 static void 1794 ipw_stop_master(struct ipw_softc *sc) 1795 { 1796 uint32_t tmp; 1797 int ntries; 1798 1799 /* disable interrupts */ 1800 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1801 1802 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER); 1803 for (ntries = 0; ntries < 50; ntries++) { 1804 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED) 1805 break; 1806 DELAY(10); 1807 } 1808 if (ntries == 50) 1809 device_printf(sc->sc_dev, "timeout waiting for master\n"); 1810 1811 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1812 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET); 1813 1814 /* Clear all flags except the following */ 1815 sc->flags &= IPW_FLAG_HAS_RADIO_SWITCH; 1816 } 1817 1818 static int 1819 ipw_reset(struct ipw_softc *sc) 1820 { 1821 uint32_t tmp; 1822 int ntries; 1823 1824 ipw_stop_master(sc); 1825 1826 /* move adapter to D0 state */ 1827 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1828 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1829 1830 /* wait for clock stabilization */ 1831 for (ntries = 0; ntries < 1000; ntries++) { 1832 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY) 1833 break; 1834 DELAY(200); 1835 } 1836 if (ntries == 1000) 1837 return EIO; 1838 1839 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1840 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET); 1841 1842 DELAY(10); 1843 1844 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1845 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1846 1847 return 0; 1848 } 1849 1850 static int 1851 ipw_waitfordisable(struct ipw_softc *sc, int waitfor) 1852 { 1853 int ms = hz < 1000 ? 1 : hz/10; 1854 int i, error; 1855 1856 for (i = 0; i < 100; i++) { 1857 if (ipw_read_table1(sc, IPW_INFO_CARD_DISABLED) == waitfor) 1858 return 0; 1859 error = msleep(sc, &sc->sc_mtx, PCATCH, __func__, ms); 1860 if (error == 0 || error != EWOULDBLOCK) 1861 return 0; 1862 } 1863 DPRINTF(("%s: timeout waiting for %s\n", 1864 __func__, waitfor ? "disable" : "enable")); 1865 return ETIMEDOUT; 1866 } 1867 1868 static int 1869 ipw_enable(struct ipw_softc *sc) 1870 { 1871 int error; 1872 1873 if ((sc->flags & IPW_FLAG_ENABLED) == 0) { 1874 DPRINTF(("Enable adapter\n")); 1875 error = ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); 1876 if (error != 0) 1877 return error; 1878 error = ipw_waitfordisable(sc, 0); 1879 if (error != 0) 1880 return error; 1881 sc->flags |= IPW_FLAG_ENABLED; 1882 } 1883 return 0; 1884 } 1885 1886 static int 1887 ipw_disable(struct ipw_softc *sc) 1888 { 1889 int error; 1890 1891 if (sc->flags & IPW_FLAG_ENABLED) { 1892 DPRINTF(("Disable adapter\n")); 1893 error = ipw_cmd(sc, IPW_CMD_DISABLE, NULL, 0); 1894 if (error != 0) 1895 return error; 1896 error = ipw_waitfordisable(sc, 1); 1897 if (error != 0) 1898 return error; 1899 sc->flags &= ~IPW_FLAG_ENABLED; 1900 } 1901 return 0; 1902 } 1903 1904 /* 1905 * Upload the microcode to the device. 1906 */ 1907 static int 1908 ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size) 1909 { 1910 int ntries; 1911 1912 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 1913 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1914 1915 MEM_WRITE_2(sc, 0x220000, 0x0703); 1916 MEM_WRITE_2(sc, 0x220000, 0x0707); 1917 1918 MEM_WRITE_1(sc, 0x210014, 0x72); 1919 MEM_WRITE_1(sc, 0x210014, 0x72); 1920 1921 MEM_WRITE_1(sc, 0x210000, 0x40); 1922 MEM_WRITE_1(sc, 0x210000, 0x00); 1923 MEM_WRITE_1(sc, 0x210000, 0x40); 1924 1925 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size); 1926 1927 MEM_WRITE_1(sc, 0x210000, 0x00); 1928 MEM_WRITE_1(sc, 0x210000, 0x00); 1929 MEM_WRITE_1(sc, 0x210000, 0x80); 1930 1931 MEM_WRITE_2(sc, 0x220000, 0x0703); 1932 MEM_WRITE_2(sc, 0x220000, 0x0707); 1933 1934 MEM_WRITE_1(sc, 0x210014, 0x72); 1935 MEM_WRITE_1(sc, 0x210014, 0x72); 1936 1937 MEM_WRITE_1(sc, 0x210000, 0x00); 1938 MEM_WRITE_1(sc, 0x210000, 0x80); 1939 1940 for (ntries = 0; ntries < 10; ntries++) { 1941 if (MEM_READ_1(sc, 0x210000) & 1) 1942 break; 1943 DELAY(10); 1944 } 1945 if (ntries == 10) { 1946 device_printf(sc->sc_dev, 1947 "timeout waiting for ucode to initialize\n"); 1948 return EIO; 1949 } 1950 1951 MEM_WRITE_4(sc, 0x3000e0, 0); 1952 1953 return 0; 1954 } 1955 1956 /* set of macros to handle unaligned little endian data in firmware image */ 1957 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 1958 #define GETLE16(p) ((p)[0] | (p)[1] << 8) 1959 static int 1960 ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size) 1961 { 1962 const uint8_t *p, *end; 1963 uint32_t tmp, dst; 1964 uint16_t len; 1965 int error; 1966 1967 p = fw; 1968 end = fw + size; 1969 while (p < end) { 1970 dst = GETLE32(p); p += 4; 1971 len = GETLE16(p); p += 2; 1972 1973 ipw_write_mem_1(sc, dst, p, len); 1974 p += len; 1975 } 1976 1977 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK | 1978 IPW_IO_LED_OFF); 1979 1980 /* enable interrupts */ 1981 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1982 1983 /* kick the firmware */ 1984 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1985 1986 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1987 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY); 1988 1989 /* wait at most one second for firmware initialization to complete */ 1990 if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) { 1991 device_printf(sc->sc_dev, "timeout waiting for firmware " 1992 "initialization to complete\n"); 1993 return error; 1994 } 1995 1996 tmp = CSR_READ_4(sc, IPW_CSR_IO); 1997 CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK | 1998 IPW_IO_GPIO3_MASK); 1999 2000 return 0; 2001 } 2002 2003 static int 2004 ipw_setwepkeys(struct ipw_softc *sc) 2005 { 2006 struct ieee80211com *ic = &sc->sc_ic; 2007 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2008 struct ipw_wep_key wepkey; 2009 struct ieee80211_key *wk; 2010 int error, i; 2011 2012 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2013 wk = &vap->iv_nw_keys[i]; 2014 2015 if (wk->wk_cipher == NULL || 2016 wk->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP) 2017 continue; 2018 2019 wepkey.idx = i; 2020 wepkey.len = wk->wk_keylen; 2021 memset(wepkey.key, 0, sizeof wepkey.key); 2022 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2023 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2024 wepkey.len)); 2025 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey, 2026 sizeof wepkey); 2027 if (error != 0) 2028 return error; 2029 } 2030 return 0; 2031 } 2032 2033 static int 2034 ipw_setwpaie(struct ipw_softc *sc, const void *ie, int ielen) 2035 { 2036 struct ipw_wpa_ie wpaie; 2037 2038 memset(&wpaie, 0, sizeof(wpaie)); 2039 wpaie.len = htole32(ielen); 2040 /* XXX verify length */ 2041 memcpy(&wpaie.ie, ie, ielen); 2042 DPRINTF(("Setting WPA IE\n")); 2043 return ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &wpaie, sizeof(wpaie)); 2044 } 2045 2046 static int 2047 ipw_setbssid(struct ipw_softc *sc, uint8_t *bssid) 2048 { 2049 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 2050 2051 if (bssid == NULL || bcmp(bssid, zerobssid, IEEE80211_ADDR_LEN) == 0) { 2052 DPRINTF(("Setting mandatory BSSID to null\n")); 2053 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0); 2054 } else { 2055 DPRINTF(("Setting mandatory BSSID to %6D\n", bssid, ":")); 2056 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, 2057 bssid, IEEE80211_ADDR_LEN); 2058 } 2059 } 2060 2061 static int 2062 ipw_setssid(struct ipw_softc *sc, void *ssid, size_t ssidlen) 2063 { 2064 if (ssidlen == 0) { 2065 /* 2066 * A bug in the firmware breaks the ``don't associate'' 2067 * bit in the scan options command. To compensate for 2068 * this install a bogus ssid when no ssid is specified 2069 * so the firmware won't try to associate. 2070 */ 2071 DPRINTF(("Setting bogus ESSID to WAR firmware bug\n")); 2072 return ipw_cmd(sc, IPW_CMD_SET_ESSID, 2073 "\x18\x19\x20\x21\x22\x23\x24\x25\x26\x27" 2074 "\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31" 2075 "\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b" 2076 "\x3c\x3d", IEEE80211_NWID_LEN); 2077 } else { 2078 #ifdef IPW_DEBUG 2079 if (ipw_debug > 0) { 2080 printf("Setting ESSID to "); 2081 ieee80211_print_essid(ssid, ssidlen); 2082 printf("\n"); 2083 } 2084 #endif 2085 return ipw_cmd(sc, IPW_CMD_SET_ESSID, ssid, ssidlen); 2086 } 2087 } 2088 2089 static int 2090 ipw_setscanopts(struct ipw_softc *sc, uint32_t chanmask, uint32_t flags) 2091 { 2092 struct ipw_scan_options opts; 2093 2094 DPRINTF(("Scan options: mask 0x%x flags 0x%x\n", chanmask, flags)); 2095 opts.channels = htole32(chanmask); 2096 opts.flags = htole32(flags); 2097 return ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &opts, sizeof(opts)); 2098 } 2099 2100 static int 2101 ipw_scan(struct ipw_softc *sc) 2102 { 2103 uint32_t params; 2104 int error; 2105 2106 DPRINTF(("%s: flags 0x%x\n", __func__, sc->flags)); 2107 2108 if (sc->flags & IPW_FLAG_SCANNING) 2109 return (EBUSY); 2110 sc->flags |= IPW_FLAG_SCANNING | IPW_FLAG_HACK; 2111 2112 /* NB: IPW_SCAN_DO_NOT_ASSOCIATE does not work (we set it anyway) */ 2113 error = ipw_setscanopts(sc, 0x3fff, IPW_SCAN_DO_NOT_ASSOCIATE); 2114 if (error != 0) 2115 goto done; 2116 2117 /* 2118 * Setup null/bogus ssid so firmware doesn't use any previous 2119 * ssid to try and associate. This is because the ``don't 2120 * associate'' option bit is broken (sigh). 2121 */ 2122 error = ipw_setssid(sc, NULL, 0); 2123 if (error != 0) 2124 goto done; 2125 2126 /* 2127 * NB: the adapter may be disabled on association lost; 2128 * if so just re-enable it to kick off scanning. 2129 */ 2130 DPRINTF(("Starting scan\n")); 2131 sc->sc_scan_timer = 3; 2132 if (sc->flags & IPW_FLAG_ENABLED) { 2133 params = 0; /* XXX? */ 2134 error = ipw_cmd(sc, IPW_CMD_BROADCAST_SCAN, 2135 ¶ms, sizeof(params)); 2136 } else 2137 error = ipw_enable(sc); 2138 done: 2139 if (error != 0) { 2140 DPRINTF(("Scan failed\n")); 2141 sc->flags &= ~(IPW_FLAG_SCANNING | IPW_FLAG_HACK); 2142 } 2143 return (error); 2144 } 2145 2146 static int 2147 ipw_setchannel(struct ipw_softc *sc, struct ieee80211_channel *chan) 2148 { 2149 struct ieee80211com *ic = &sc->sc_ic; 2150 uint32_t data; 2151 int error; 2152 2153 data = htole32(ieee80211_chan2ieee(ic, chan)); 2154 DPRINTF(("Setting channel to %u\n", le32toh(data))); 2155 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data); 2156 if (error == 0) 2157 ipw_setcurchan(sc, chan); 2158 return error; 2159 } 2160 2161 static void 2162 ipw_assoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2163 { 2164 struct ipw_softc *sc = ic->ic_softc; 2165 struct ieee80211_node *ni = vap->iv_bss; 2166 struct ipw_security security; 2167 uint32_t data; 2168 int error; 2169 2170 IPW_LOCK(sc); 2171 error = ipw_disable(sc); 2172 if (error != 0) 2173 goto done; 2174 2175 memset(&security, 0, sizeof security); 2176 security.authmode = (ni->ni_authmode == IEEE80211_AUTH_SHARED) ? 2177 IPW_AUTH_SHARED : IPW_AUTH_OPEN; 2178 security.ciphers = htole32(IPW_CIPHER_NONE); 2179 DPRINTF(("Setting authmode to %u\n", security.authmode)); 2180 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFO, &security, 2181 sizeof security); 2182 if (error != 0) 2183 goto done; 2184 2185 data = htole32(vap->iv_rtsthreshold); 2186 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2187 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2188 if (error != 0) 2189 goto done; 2190 2191 data = htole32(vap->iv_fragthreshold); 2192 DPRINTF(("Setting frag threshold to %u\n", le32toh(data))); 2193 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2194 if (error != 0) 2195 goto done; 2196 2197 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 2198 error = ipw_setwepkeys(sc); 2199 if (error != 0) 2200 goto done; 2201 2202 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { 2203 data = htole32(vap->iv_def_txkey); 2204 DPRINTF(("Setting wep tx key index to %u\n", 2205 le32toh(data))); 2206 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data, 2207 sizeof data); 2208 if (error != 0) 2209 goto done; 2210 } 2211 } 2212 2213 data = htole32((vap->iv_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0); 2214 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data))); 2215 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data); 2216 if (error != 0) 2217 goto done; 2218 2219 error = ipw_setssid(sc, ni->ni_essid, ni->ni_esslen); 2220 if (error != 0) 2221 goto done; 2222 2223 error = ipw_setbssid(sc, ni->ni_bssid); 2224 if (error != 0) 2225 goto done; 2226 2227 if (vap->iv_appie_wpa != NULL) { 2228 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2229 error = ipw_setwpaie(sc, ie->ie_data, ie->ie_len); 2230 if (error != 0) 2231 goto done; 2232 } 2233 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2234 error = ipw_setchannel(sc, ni->ni_chan); 2235 if (error != 0) 2236 goto done; 2237 } 2238 2239 /* lock scan to ap's channel and enable associate */ 2240 error = ipw_setscanopts(sc, 2241 1<<(ieee80211_chan2ieee(ic, ni->ni_chan)-1), 0); 2242 if (error != 0) 2243 goto done; 2244 2245 error = ipw_enable(sc); /* finally, enable adapter */ 2246 if (error == 0) 2247 sc->flags |= IPW_FLAG_ASSOCIATING; 2248 done: 2249 IPW_UNLOCK(sc); 2250 } 2251 2252 static void 2253 ipw_disassoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2254 { 2255 struct ieee80211_node *ni = vap->iv_bss; 2256 struct ipw_softc *sc = ic->ic_softc; 2257 2258 IPW_LOCK(sc); 2259 DPRINTF(("Disassociate from %6D\n", ni->ni_bssid, ":")); 2260 /* 2261 * NB: don't try to do this if ipw_stop_master has 2262 * shutdown the firmware and disabled interrupts. 2263 */ 2264 if (sc->flags & IPW_FLAG_FW_INITED) { 2265 sc->flags &= ~IPW_FLAG_ASSOCIATED; 2266 /* 2267 * NB: firmware currently ignores bssid parameter, but 2268 * supply it in case this changes (follow linux driver). 2269 */ 2270 (void) ipw_cmd(sc, IPW_CMD_DISASSOCIATE, 2271 ni->ni_bssid, IEEE80211_ADDR_LEN); 2272 } 2273 IPW_UNLOCK(sc); 2274 } 2275 2276 /* 2277 * Handler for sc_init_task. This is a simple wrapper around ipw_init(). 2278 * It is called on firmware panics or on watchdog timeouts. 2279 */ 2280 static void 2281 ipw_init_task(void *context, int pending) 2282 { 2283 ipw_init(context); 2284 } 2285 2286 static void 2287 ipw_init(void *priv) 2288 { 2289 struct ipw_softc *sc = priv; 2290 struct ieee80211com *ic = &sc->sc_ic; 2291 2292 IPW_LOCK(sc); 2293 ipw_init_locked(sc); 2294 IPW_UNLOCK(sc); 2295 2296 if (sc->flags & IPW_FLAG_RUNNING) 2297 ieee80211_start_all(ic); /* start all vap's */ 2298 } 2299 2300 static void 2301 ipw_init_locked(struct ipw_softc *sc) 2302 { 2303 struct ieee80211com *ic = &sc->sc_ic; 2304 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2305 const struct firmware *fp; 2306 const struct ipw_firmware_hdr *hdr; 2307 const char *fw; 2308 2309 IPW_LOCK_ASSERT(sc); 2310 2311 DPRINTF(("%s: state %s flags 0x%x\n", __func__, 2312 ieee80211_state_name[vap->iv_state], sc->flags)); 2313 2314 /* 2315 * Avoid re-entrant calls. We need to release the mutex in ipw_init() 2316 * when loading the firmware and we don't want to be called during this 2317 * operation. 2318 */ 2319 if (sc->flags & IPW_FLAG_INIT_LOCKED) 2320 return; 2321 sc->flags |= IPW_FLAG_INIT_LOCKED; 2322 2323 ipw_stop_locked(sc); 2324 2325 if (ipw_reset(sc) != 0) { 2326 device_printf(sc->sc_dev, "could not reset adapter\n"); 2327 goto fail; 2328 } 2329 2330 if (sc->sc_firmware == NULL) { 2331 device_printf(sc->sc_dev, "no firmware\n"); 2332 goto fail; 2333 } 2334 /* NB: consistency already checked on load */ 2335 fp = sc->sc_firmware; 2336 hdr = (const struct ipw_firmware_hdr *)fp->data; 2337 2338 DPRINTF(("Loading firmware image '%s'\n", fp->name)); 2339 fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz); 2340 if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) { 2341 device_printf(sc->sc_dev, "could not load microcode\n"); 2342 goto fail; 2343 } 2344 2345 ipw_stop_master(sc); 2346 2347 /* 2348 * Setup tx, rx and status rings. 2349 */ 2350 sc->txold = IPW_NTBD - 1; 2351 sc->txcur = 0; 2352 sc->txfree = IPW_NTBD - 2; 2353 sc->rxcur = IPW_NRBD - 1; 2354 2355 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_phys); 2356 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD); 2357 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0); 2358 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 2359 2360 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_phys); 2361 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD); 2362 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0); 2363 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 2364 2365 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys); 2366 2367 fw = (const char *)fp->data + sizeof *hdr; 2368 if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) { 2369 device_printf(sc->sc_dev, "could not load firmware\n"); 2370 goto fail; 2371 } 2372 2373 sc->flags |= IPW_FLAG_FW_INITED; 2374 2375 /* retrieve information tables base addresses */ 2376 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE); 2377 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE); 2378 2379 ipw_write_table1(sc, IPW_INFO_LOCK, 0); 2380 2381 if (ipw_config(sc) != 0) { 2382 device_printf(sc->sc_dev, "device configuration failed\n"); 2383 goto fail; 2384 } 2385 2386 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 2387 sc->flags |= IPW_FLAG_RUNNING; 2388 sc->flags &= ~IPW_FLAG_INIT_LOCKED; 2389 return; 2390 2391 fail: 2392 ipw_stop_locked(sc); 2393 sc->flags &= ~IPW_FLAG_INIT_LOCKED; 2394 } 2395 2396 static int 2397 ipw_config(struct ipw_softc *sc) 2398 { 2399 struct ieee80211com *ic = &sc->sc_ic; 2400 struct ipw_configuration config; 2401 uint32_t data; 2402 int error; 2403 2404 error = ipw_disable(sc); 2405 if (error != 0) 2406 return error; 2407 2408 switch (ic->ic_opmode) { 2409 case IEEE80211_M_STA: 2410 case IEEE80211_M_HOSTAP: 2411 case IEEE80211_M_WDS: /* XXX */ 2412 data = htole32(IPW_MODE_BSS); 2413 break; 2414 case IEEE80211_M_IBSS: 2415 case IEEE80211_M_AHDEMO: 2416 data = htole32(IPW_MODE_IBSS); 2417 break; 2418 case IEEE80211_M_MONITOR: 2419 data = htole32(IPW_MODE_MONITOR); 2420 break; 2421 default: 2422 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2423 return EINVAL; 2424 } 2425 DPRINTF(("Setting mode to %u\n", le32toh(data))); 2426 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data); 2427 if (error != 0) 2428 return error; 2429 2430 if (ic->ic_opmode == IEEE80211_M_IBSS || 2431 ic->ic_opmode == IEEE80211_M_MONITOR) { 2432 error = ipw_setchannel(sc, ic->ic_curchan); 2433 if (error != 0) 2434 return error; 2435 } 2436 2437 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2438 return ipw_enable(sc); 2439 2440 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK | 2441 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE); 2442 if (ic->ic_opmode == IEEE80211_M_IBSS) 2443 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START); 2444 if (ic->ic_promisc > 0) 2445 config.flags |= htole32(IPW_CFG_PROMISCUOUS); 2446 config.bss_chan = htole32(0x3fff); /* channels 1-14 */ 2447 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */ 2448 DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags))); 2449 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config); 2450 if (error != 0) 2451 return error; 2452 2453 data = htole32(0xf); /* 1, 2, 5.5, 11 */ 2454 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data))); 2455 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data); 2456 if (error != 0) 2457 return error; 2458 2459 /* Use the same rate set */ 2460 DPRINTF(("Setting msdu tx rates to 0x%x\n", le32toh(data))); 2461 error = ipw_cmd(sc, IPW_CMD_SET_MSDU_TX_RATES, &data, sizeof data); 2462 if (error != 0) 2463 return error; 2464 2465 /* Use the same rate set */ 2466 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data))); 2467 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data); 2468 if (error != 0) 2469 return error; 2470 2471 data = htole32(IPW_POWER_MODE_CAM); 2472 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2473 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data); 2474 if (error != 0) 2475 return error; 2476 2477 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2478 data = htole32(32); /* default value */ 2479 DPRINTF(("Setting tx power index to %u\n", le32toh(data))); 2480 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data, 2481 sizeof data); 2482 if (error != 0) 2483 return error; 2484 } 2485 2486 return 0; 2487 } 2488 2489 static void 2490 ipw_stop(void *priv) 2491 { 2492 struct ipw_softc *sc = priv; 2493 2494 IPW_LOCK(sc); 2495 ipw_stop_locked(sc); 2496 IPW_UNLOCK(sc); 2497 } 2498 2499 static void 2500 ipw_stop_locked(struct ipw_softc *sc) 2501 { 2502 int i; 2503 2504 IPW_LOCK_ASSERT(sc); 2505 2506 callout_stop(&sc->sc_wdtimer); 2507 ipw_stop_master(sc); 2508 2509 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET); 2510 2511 /* 2512 * Release tx buffers. 2513 */ 2514 for (i = 0; i < IPW_NTBD; i++) 2515 ipw_release_sbd(sc, &sc->stbd_list[i]); 2516 2517 sc->sc_tx_timer = 0; 2518 sc->flags &= ~IPW_FLAG_RUNNING; 2519 } 2520 2521 static int 2522 ipw_sysctl_stats(SYSCTL_HANDLER_ARGS) 2523 { 2524 struct ipw_softc *sc = arg1; 2525 uint32_t i, size, buf[256]; 2526 2527 memset(buf, 0, sizeof buf); 2528 2529 if (!(sc->flags & IPW_FLAG_FW_INITED)) 2530 return SYSCTL_OUT(req, buf, sizeof buf); 2531 2532 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base); 2533 2534 size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256); 2535 for (i = 1; i < size; i++) 2536 buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA)); 2537 2538 return SYSCTL_OUT(req, buf, size); 2539 } 2540 2541 static int 2542 ipw_sysctl_radio(SYSCTL_HANDLER_ARGS) 2543 { 2544 struct ipw_softc *sc = arg1; 2545 int val; 2546 2547 val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) && 2548 (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)); 2549 2550 return SYSCTL_OUT(req, &val, sizeof val); 2551 } 2552 2553 static uint32_t 2554 ipw_read_table1(struct ipw_softc *sc, uint32_t off) 2555 { 2556 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off)); 2557 } 2558 2559 static void 2560 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info) 2561 { 2562 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info); 2563 } 2564 2565 #if 0 2566 static int 2567 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len) 2568 { 2569 uint32_t addr, info; 2570 uint16_t count, size; 2571 uint32_t total; 2572 2573 /* addr[4] + count[2] + size[2] */ 2574 addr = MEM_READ_4(sc, sc->table2_base + off); 2575 info = MEM_READ_4(sc, sc->table2_base + off + 4); 2576 2577 count = info >> 16; 2578 size = info & 0xffff; 2579 total = count * size; 2580 2581 if (total > *len) { 2582 *len = total; 2583 return EINVAL; 2584 } 2585 2586 *len = total; 2587 ipw_read_mem_1(sc, addr, buf, total); 2588 2589 return 0; 2590 } 2591 2592 static void 2593 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, 2594 bus_size_t count) 2595 { 2596 for (; count > 0; offset++, datap++, count--) { 2597 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2598 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3)); 2599 } 2600 } 2601 #endif 2602 2603 static void 2604 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap, 2605 bus_size_t count) 2606 { 2607 for (; count > 0; offset++, datap++, count--) { 2608 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2609 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap); 2610 } 2611 } 2612 2613 static void 2614 ipw_scan_start(struct ieee80211com *ic) 2615 { 2616 struct ipw_softc *sc = ic->ic_softc; 2617 2618 IPW_LOCK(sc); 2619 ipw_scan(sc); 2620 IPW_UNLOCK(sc); 2621 } 2622 2623 static void 2624 ipw_getradiocaps(struct ieee80211com *ic, 2625 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2626 { 2627 struct ipw_softc *sc = ic->ic_softc; 2628 uint8_t bands[IEEE80211_MODE_BYTES]; 2629 int i; 2630 2631 memset(bands, 0, sizeof(bands)); 2632 setbit(bands, IEEE80211_MODE_11B); 2633 2634 for (i = 1; i < 16; i++) { 2635 if (sc->chanmask & (1 << i)) { 2636 ieee80211_add_channel(chans, maxchans, nchans, 2637 i, 0, 0, 0, bands); 2638 } 2639 } 2640 2641 } 2642 2643 static void 2644 ipw_set_channel(struct ieee80211com *ic) 2645 { 2646 struct ipw_softc *sc = ic->ic_softc; 2647 2648 IPW_LOCK(sc); 2649 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2650 ipw_disable(sc); 2651 ipw_setchannel(sc, ic->ic_curchan); 2652 ipw_enable(sc); 2653 } 2654 IPW_UNLOCK(sc); 2655 } 2656 2657 static void 2658 ipw_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 2659 { 2660 /* NB: all channels are scanned at once */ 2661 } 2662 2663 static void 2664 ipw_scan_mindwell(struct ieee80211_scan_state *ss) 2665 { 2666 /* NB: don't try to abort scan; wait for firmware to finish */ 2667 } 2668 2669 static void 2670 ipw_scan_end(struct ieee80211com *ic) 2671 { 2672 struct ipw_softc *sc = ic->ic_softc; 2673 2674 IPW_LOCK(sc); 2675 sc->flags &= ~IPW_FLAG_SCANNING; 2676 IPW_UNLOCK(sc); 2677 } 2678