xref: /freebsd/sys/dev/ipw/if_ipw.c (revision ae1f3df43466466a21c7da0df93ecb58a3e53d74)
1 /*-
2  * Copyright (c) 2004-2006
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2006 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*-
34  * Intel(R) PRO/Wireless 2100 MiniPCI driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/linker.h>
52 #include <sys/firmware.h>
53 
54 #include <machine/bus.h>
55 #include <machine/resource.h>
56 #include <sys/rman.h>
57 
58 #include <dev/pci/pcireg.h>
59 #include <dev/pci/pcivar.h>
60 
61 #include <net/bpf.h>
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/if_arp.h>
65 #include <net/ethernet.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_types.h>
69 
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/if_ether.h>
78 
79 #include <dev/ipw/if_ipwreg.h>
80 #include <dev/ipw/if_ipwvar.h>
81 
82 #define IPW_DEBUG
83 #ifdef IPW_DEBUG
84 #define DPRINTF(x)	do { if (ipw_debug > 0) printf x; } while (0)
85 #define DPRINTFN(n, x)	do { if (ipw_debug >= (n)) printf x; } while (0)
86 int ipw_debug = 0;
87 SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level");
88 #else
89 #define DPRINTF(x)
90 #define DPRINTFN(n, x)
91 #endif
92 
93 MODULE_DEPEND(ipw, pci,  1, 1, 1);
94 MODULE_DEPEND(ipw, wlan, 1, 1, 1);
95 MODULE_DEPEND(ipw, firmware, 1, 1, 1);
96 
97 struct ipw_ident {
98 	uint16_t	vendor;
99 	uint16_t	device;
100 	const char	*name;
101 };
102 
103 static const struct ipw_ident ipw_ident_table[] = {
104 	{ 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" },
105 
106 	{ 0, 0, NULL }
107 };
108 
109 static struct ieee80211vap *ipw_vap_create(struct ieee80211com *,
110 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
111 		    const uint8_t [IEEE80211_ADDR_LEN],
112 		    const uint8_t [IEEE80211_ADDR_LEN]);
113 static void	ipw_vap_delete(struct ieee80211vap *);
114 static int	ipw_dma_alloc(struct ipw_softc *);
115 static void	ipw_release(struct ipw_softc *);
116 static void	ipw_media_status(struct ifnet *, struct ifmediareq *);
117 static int	ipw_newstate(struct ieee80211vap *, enum ieee80211_state, int);
118 static uint16_t	ipw_read_prom_word(struct ipw_softc *, uint8_t);
119 static void	ipw_rx_cmd_intr(struct ipw_softc *, struct ipw_soft_buf *);
120 static void	ipw_rx_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
121 static void	ipw_rx_data_intr(struct ipw_softc *, struct ipw_status *,
122 		    struct ipw_soft_bd *, struct ipw_soft_buf *);
123 static void	ipw_rx_intr(struct ipw_softc *);
124 static void	ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
125 static void	ipw_tx_intr(struct ipw_softc *);
126 static void	ipw_intr(void *);
127 static void	ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int);
128 static const char * ipw_cmdname(int);
129 static int	ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
130 static int	ipw_tx_start(struct ipw_softc *, struct mbuf *,
131 		    struct ieee80211_node *);
132 static int	ipw_raw_xmit(struct ieee80211_node *, struct mbuf *,
133 		    const struct ieee80211_bpf_params *);
134 static int	ipw_transmit(struct ieee80211com *, struct mbuf *);
135 static void	ipw_start(struct ipw_softc *);
136 static void	ipw_watchdog(void *);
137 static void	ipw_parent(struct ieee80211com *);
138 static void	ipw_stop_master(struct ipw_softc *);
139 static int	ipw_enable(struct ipw_softc *);
140 static int	ipw_disable(struct ipw_softc *);
141 static int	ipw_reset(struct ipw_softc *);
142 static int	ipw_load_ucode(struct ipw_softc *, const char *, int);
143 static int	ipw_load_firmware(struct ipw_softc *, const char *, int);
144 static int	ipw_config(struct ipw_softc *);
145 static void	ipw_assoc(struct ieee80211com *, struct ieee80211vap *);
146 static void	ipw_disassoc(struct ieee80211com *, struct ieee80211vap *);
147 static void	ipw_init_task(void *, int);
148 static void	ipw_init(void *);
149 static void	ipw_init_locked(struct ipw_softc *);
150 static void	ipw_stop(void *);
151 static void	ipw_stop_locked(struct ipw_softc *);
152 static int	ipw_sysctl_stats(SYSCTL_HANDLER_ARGS);
153 static int	ipw_sysctl_radio(SYSCTL_HANDLER_ARGS);
154 static uint32_t	ipw_read_table1(struct ipw_softc *, uint32_t);
155 static void	ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
156 #if 0
157 static int	ipw_read_table2(struct ipw_softc *, uint32_t, void *,
158 		    uint32_t *);
159 static void	ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
160 		    bus_size_t);
161 #endif
162 static void	ipw_write_mem_1(struct ipw_softc *, bus_size_t,
163 		    const uint8_t *, bus_size_t);
164 static int	ipw_scan(struct ipw_softc *);
165 static void	ipw_scan_start(struct ieee80211com *);
166 static void	ipw_scan_end(struct ieee80211com *);
167 static void	ipw_set_channel(struct ieee80211com *);
168 static void	ipw_scan_curchan(struct ieee80211_scan_state *,
169 		    unsigned long maxdwell);
170 static void	ipw_scan_mindwell(struct ieee80211_scan_state *);
171 
172 static int ipw_probe(device_t);
173 static int ipw_attach(device_t);
174 static int ipw_detach(device_t);
175 static int ipw_shutdown(device_t);
176 static int ipw_suspend(device_t);
177 static int ipw_resume(device_t);
178 
179 static device_method_t ipw_methods[] = {
180 	/* Device interface */
181 	DEVMETHOD(device_probe,		ipw_probe),
182 	DEVMETHOD(device_attach,	ipw_attach),
183 	DEVMETHOD(device_detach,	ipw_detach),
184 	DEVMETHOD(device_shutdown,	ipw_shutdown),
185 	DEVMETHOD(device_suspend,	ipw_suspend),
186 	DEVMETHOD(device_resume,	ipw_resume),
187 
188 	DEVMETHOD_END
189 };
190 
191 static driver_t ipw_driver = {
192 	"ipw",
193 	ipw_methods,
194 	sizeof (struct ipw_softc)
195 };
196 
197 static devclass_t ipw_devclass;
198 
199 DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, NULL, NULL);
200 
201 MODULE_VERSION(ipw, 1);
202 
203 static int
204 ipw_probe(device_t dev)
205 {
206 	const struct ipw_ident *ident;
207 
208 	for (ident = ipw_ident_table; ident->name != NULL; ident++) {
209 		if (pci_get_vendor(dev) == ident->vendor &&
210 		    pci_get_device(dev) == ident->device) {
211 			device_set_desc(dev, ident->name);
212 			return (BUS_PROBE_DEFAULT);
213 		}
214 	}
215 	return ENXIO;
216 }
217 
218 /* Base Address Register */
219 static int
220 ipw_attach(device_t dev)
221 {
222 	struct ipw_softc *sc = device_get_softc(dev);
223 	struct ieee80211com *ic = &sc->sc_ic;
224 	struct ieee80211_channel *c;
225 	uint16_t val;
226 	int error, i;
227 
228 	sc->sc_dev = dev;
229 
230 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
231 	    MTX_DEF | MTX_RECURSE);
232 	mbufq_init(&sc->sc_snd, ifqmaxlen);
233 	TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc);
234 	callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
235 
236 	pci_write_config(dev, 0x41, 0, 1);
237 
238 	/* enable bus-mastering */
239 	pci_enable_busmaster(dev);
240 
241 	i = PCIR_BAR(0);
242 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE);
243 	if (sc->mem == NULL) {
244 		device_printf(dev, "could not allocate memory resource\n");
245 		goto fail;
246 	}
247 
248 	sc->sc_st = rman_get_bustag(sc->mem);
249 	sc->sc_sh = rman_get_bushandle(sc->mem);
250 
251 	i = 0;
252 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
253 	    RF_ACTIVE | RF_SHAREABLE);
254 	if (sc->irq == NULL) {
255 		device_printf(dev, "could not allocate interrupt resource\n");
256 		goto fail1;
257 	}
258 
259 	if (ipw_reset(sc) != 0) {
260 		device_printf(dev, "could not reset adapter\n");
261 		goto fail2;
262 	}
263 
264 	if (ipw_dma_alloc(sc) != 0) {
265 		device_printf(dev, "could not allocate DMA resources\n");
266 		goto fail2;
267 	}
268 
269 	ic->ic_softc = sc;
270 	ic->ic_name = device_get_nameunit(dev);
271 	ic->ic_opmode = IEEE80211_M_STA;
272 	ic->ic_phytype = IEEE80211_T_DS;
273 
274 	/* set device capabilities */
275 	ic->ic_caps =
276 		  IEEE80211_C_STA		/* station mode supported */
277 		| IEEE80211_C_IBSS		/* IBSS mode supported */
278 		| IEEE80211_C_MONITOR		/* monitor mode supported */
279 		| IEEE80211_C_PMGT		/* power save supported */
280 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
281 		| IEEE80211_C_WPA		/* 802.11i supported */
282 		;
283 
284 	/* read MAC address from EEPROM */
285 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
286 	ic->ic_macaddr[0] = val >> 8;
287 	ic->ic_macaddr[1] = val & 0xff;
288 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
289 	ic->ic_macaddr[2] = val >> 8;
290 	ic->ic_macaddr[3] = val & 0xff;
291 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
292 	ic->ic_macaddr[4] = val >> 8;
293 	ic->ic_macaddr[5] = val & 0xff;
294 
295 	/* set supported .11b channels (read from EEPROM) */
296 	if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0)
297 		val = 0x7ff; /* default to channels 1-11 */
298 	val <<= 1;
299 	for (i = 1; i < 16; i++) {
300 		if (val & (1 << i)) {
301 			c = &ic->ic_channels[ic->ic_nchans++];
302 			c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
303 			c->ic_flags = IEEE80211_CHAN_B;
304 			c->ic_ieee = i;
305 		}
306 	}
307 
308 	/* check support for radio transmitter switch in EEPROM */
309 	if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
310 		sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
311 
312 	ieee80211_ifattach(ic);
313 	ic->ic_scan_start = ipw_scan_start;
314 	ic->ic_scan_end = ipw_scan_end;
315 	ic->ic_set_channel = ipw_set_channel;
316 	ic->ic_scan_curchan = ipw_scan_curchan;
317 	ic->ic_scan_mindwell = ipw_scan_mindwell;
318 	ic->ic_raw_xmit = ipw_raw_xmit;
319 	ic->ic_vap_create = ipw_vap_create;
320 	ic->ic_vap_delete = ipw_vap_delete;
321 	ic->ic_transmit = ipw_transmit;
322 	ic->ic_parent = ipw_parent;
323 
324 	ieee80211_radiotap_attach(ic,
325 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
326 		IPW_TX_RADIOTAP_PRESENT,
327 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
328 		IPW_RX_RADIOTAP_PRESENT);
329 
330 	/*
331 	 * Add a few sysctl knobs.
332 	 */
333 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
334 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio",
335 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, ipw_sysctl_radio, "I",
336 	    "radio transmitter switch state (0=off, 1=on)");
337 
338 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
339 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats",
340 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, ipw_sysctl_stats, "S",
341 	    "statistics");
342 
343 	/*
344 	 * Hook our interrupt after all initialization is complete.
345 	 */
346 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
347 	    NULL, ipw_intr, sc, &sc->sc_ih);
348 	if (error != 0) {
349 		device_printf(dev, "could not set up interrupt\n");
350 		goto fail3;
351 	}
352 
353 	if (bootverbose)
354 		ieee80211_announce(ic);
355 
356 	return 0;
357 fail3:
358 	ipw_release(sc);
359 fail2:
360 	bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
361 fail1:
362 	bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
363 	    sc->mem);
364 fail:
365 	mtx_destroy(&sc->sc_mtx);
366 	return ENXIO;
367 }
368 
369 static int
370 ipw_detach(device_t dev)
371 {
372 	struct ipw_softc *sc = device_get_softc(dev);
373 	struct ieee80211com *ic = &sc->sc_ic;
374 
375 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
376 
377 	ieee80211_draintask(ic, &sc->sc_init_task);
378 	ipw_stop(sc);
379 
380 	ieee80211_ifdetach(ic);
381 
382 	callout_drain(&sc->sc_wdtimer);
383 	mbufq_drain(&sc->sc_snd);
384 
385 	ipw_release(sc);
386 
387 	bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
388 
389 	bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
390 	    sc->mem);
391 
392 	if (sc->sc_firmware != NULL) {
393 		firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
394 		sc->sc_firmware = NULL;
395 	}
396 
397 	mtx_destroy(&sc->sc_mtx);
398 
399 	return 0;
400 }
401 
402 static struct ieee80211vap *
403 ipw_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
404     enum ieee80211_opmode opmode, int flags,
405     const uint8_t bssid[IEEE80211_ADDR_LEN],
406     const uint8_t mac[IEEE80211_ADDR_LEN])
407 {
408 	struct ipw_softc *sc = ic->ic_softc;
409 	struct ipw_vap *ivp;
410 	struct ieee80211vap *vap;
411 	const struct firmware *fp;
412 	const struct ipw_firmware_hdr *hdr;
413 	const char *imagename;
414 
415 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
416 		return NULL;
417 
418 	switch (opmode) {
419 	case IEEE80211_M_STA:
420 		imagename = "ipw_bss";
421 		break;
422 	case IEEE80211_M_IBSS:
423 		imagename = "ipw_ibss";
424 		break;
425 	case IEEE80211_M_MONITOR:
426 		imagename = "ipw_monitor";
427 		break;
428 	default:
429 		return NULL;
430 	}
431 
432 	/*
433 	 * Load firmware image using the firmware(9) subsystem.  Doing
434 	 * this unlocked is ok since we're single-threaded by the
435 	 * 802.11 layer.
436 	 */
437 	if (sc->sc_firmware == NULL ||
438 	    strcmp(sc->sc_firmware->name, imagename) != 0) {
439 		if (sc->sc_firmware != NULL)
440 			firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
441 		sc->sc_firmware = firmware_get(imagename);
442 	}
443 	if (sc->sc_firmware == NULL) {
444 		device_printf(sc->sc_dev,
445 		    "could not load firmware image '%s'\n", imagename);
446 		return NULL;
447 	}
448 	fp = sc->sc_firmware;
449 	if (fp->datasize < sizeof *hdr) {
450 		device_printf(sc->sc_dev,
451 		    "firmware image too short %zu\n", fp->datasize);
452 		firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
453 		sc->sc_firmware = NULL;
454 		return NULL;
455 	}
456 	hdr = (const struct ipw_firmware_hdr *)fp->data;
457 	if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) +
458 	    le32toh(hdr->ucodesz)) {
459 		device_printf(sc->sc_dev,
460 		    "firmware image too short %zu\n", fp->datasize);
461 		firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
462 		sc->sc_firmware = NULL;
463 		return NULL;
464 	}
465 
466 	ivp = malloc(sizeof(struct ipw_vap), M_80211_VAP, M_WAITOK | M_ZERO);
467 	vap = &ivp->vap;
468 
469 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
470 	/* override with driver methods */
471 	ivp->newstate = vap->iv_newstate;
472 	vap->iv_newstate = ipw_newstate;
473 
474 	/* complete setup */
475 	ieee80211_vap_attach(vap, ieee80211_media_change, ipw_media_status,
476 	    mac);
477 	ic->ic_opmode = opmode;
478 	return vap;
479 }
480 
481 static void
482 ipw_vap_delete(struct ieee80211vap *vap)
483 {
484 	struct ipw_vap *ivp = IPW_VAP(vap);
485 
486 	ieee80211_vap_detach(vap);
487 	free(ivp, M_80211_VAP);
488 }
489 
490 static int
491 ipw_dma_alloc(struct ipw_softc *sc)
492 {
493 	struct ipw_soft_bd *sbd;
494 	struct ipw_soft_hdr *shdr;
495 	struct ipw_soft_buf *sbuf;
496 	bus_addr_t physaddr;
497 	int error, i;
498 
499 	/*
500 	 * Allocate parent DMA tag for subsequent allocations.
501 	 */
502 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
503 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
504 	    BUS_SPACE_MAXSIZE_32BIT, BUS_SPACE_UNRESTRICTED,
505 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->parent_dmat);
506 	if (error != 0) {
507 		device_printf(sc->sc_dev, "could not create parent DMA tag\n");
508 		goto fail;
509 	}
510 
511 	/*
512 	 * Allocate and map tx ring.
513 	 */
514 	error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT,
515 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL,
516 	    NULL, &sc->tbd_dmat);
517 	if (error != 0) {
518 		device_printf(sc->sc_dev, "could not create tx ring DMA tag\n");
519 		goto fail;
520 	}
521 
522 	error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list,
523 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map);
524 	if (error != 0) {
525 		device_printf(sc->sc_dev,
526 		    "could not allocate tx ring DMA memory\n");
527 		goto fail;
528 	}
529 
530 	error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list,
531 	    IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0);
532 	if (error != 0) {
533 		device_printf(sc->sc_dev, "could not map tx ring DMA memory\n");
534 		goto fail;
535 	}
536 
537 	/*
538 	 * Allocate and map rx ring.
539 	 */
540 	error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT,
541 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL,
542 	    NULL, &sc->rbd_dmat);
543 	if (error != 0) {
544 		device_printf(sc->sc_dev, "could not create rx ring DMA tag\n");
545 		goto fail;
546 	}
547 
548 	error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list,
549 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map);
550 	if (error != 0) {
551 		device_printf(sc->sc_dev,
552 		    "could not allocate rx ring DMA memory\n");
553 		goto fail;
554 	}
555 
556 	error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list,
557 	    IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0);
558 	if (error != 0) {
559 		device_printf(sc->sc_dev, "could not map rx ring DMA memory\n");
560 		goto fail;
561 	}
562 
563 	/*
564 	 * Allocate and map status ring.
565 	 */
566 	error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT,
567 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0,
568 	    NULL, NULL, &sc->status_dmat);
569 	if (error != 0) {
570 		device_printf(sc->sc_dev,
571 		    "could not create status ring DMA tag\n");
572 		goto fail;
573 	}
574 
575 	error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list,
576 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map);
577 	if (error != 0) {
578 		device_printf(sc->sc_dev,
579 		    "could not allocate status ring DMA memory\n");
580 		goto fail;
581 	}
582 
583 	error = bus_dmamap_load(sc->status_dmat, sc->status_map,
584 	    sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys,
585 	    0);
586 	if (error != 0) {
587 		device_printf(sc->sc_dev,
588 		    "could not map status ring DMA memory\n");
589 		goto fail;
590 	}
591 
592 	/*
593 	 * Allocate command DMA map.
594 	 */
595 	error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT,
596 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1,
597 	    sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat);
598 	if (error != 0) {
599 		device_printf(sc->sc_dev, "could not create command DMA tag\n");
600 		goto fail;
601 	}
602 
603 	error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map);
604 	if (error != 0) {
605 		device_printf(sc->sc_dev,
606 		    "could not create command DMA map\n");
607 		goto fail;
608 	}
609 
610 	/*
611 	 * Allocate headers DMA maps.
612 	 */
613 	error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT,
614 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1,
615 	    sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat);
616 	if (error != 0) {
617 		device_printf(sc->sc_dev, "could not create header DMA tag\n");
618 		goto fail;
619 	}
620 
621 	SLIST_INIT(&sc->free_shdr);
622 	for (i = 0; i < IPW_NDATA; i++) {
623 		shdr = &sc->shdr_list[i];
624 		error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map);
625 		if (error != 0) {
626 			device_printf(sc->sc_dev,
627 			    "could not create header DMA map\n");
628 			goto fail;
629 		}
630 		SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
631 	}
632 
633 	/*
634 	 * Allocate tx buffers DMA maps.
635 	 */
636 	error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT,
637 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0,
638 	    NULL, NULL, &sc->txbuf_dmat);
639 	if (error != 0) {
640 		device_printf(sc->sc_dev, "could not create tx DMA tag\n");
641 		goto fail;
642 	}
643 
644 	SLIST_INIT(&sc->free_sbuf);
645 	for (i = 0; i < IPW_NDATA; i++) {
646 		sbuf = &sc->tx_sbuf_list[i];
647 		error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map);
648 		if (error != 0) {
649 			device_printf(sc->sc_dev,
650 			    "could not create tx DMA map\n");
651 			goto fail;
652 		}
653 		SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
654 	}
655 
656 	/*
657 	 * Initialize tx ring.
658 	 */
659 	for (i = 0; i < IPW_NTBD; i++) {
660 		sbd = &sc->stbd_list[i];
661 		sbd->bd = &sc->tbd_list[i];
662 		sbd->type = IPW_SBD_TYPE_NOASSOC;
663 	}
664 
665 	/*
666 	 * Pre-allocate rx buffers and DMA maps.
667 	 */
668 	error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT,
669 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
670 	    NULL, &sc->rxbuf_dmat);
671 	if (error != 0) {
672 		device_printf(sc->sc_dev, "could not create rx DMA tag\n");
673 		goto fail;
674 	}
675 
676 	for (i = 0; i < IPW_NRBD; i++) {
677 		sbd = &sc->srbd_list[i];
678 		sbuf = &sc->rx_sbuf_list[i];
679 		sbd->bd = &sc->rbd_list[i];
680 
681 		sbuf->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
682 		if (sbuf->m == NULL) {
683 			device_printf(sc->sc_dev,
684 			    "could not allocate rx mbuf\n");
685 			error = ENOMEM;
686 			goto fail;
687 		}
688 
689 		error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map);
690 		if (error != 0) {
691 			device_printf(sc->sc_dev,
692 			    "could not create rx DMA map\n");
693 			goto fail;
694 		}
695 
696 		error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
697 		    mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
698 		    &physaddr, 0);
699 		if (error != 0) {
700 			device_printf(sc->sc_dev,
701 			    "could not map rx DMA memory\n");
702 			goto fail;
703 		}
704 
705 		sbd->type = IPW_SBD_TYPE_DATA;
706 		sbd->priv = sbuf;
707 		sbd->bd->physaddr = htole32(physaddr);
708 		sbd->bd->len = htole32(MCLBYTES);
709 	}
710 
711 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
712 
713 	return 0;
714 
715 fail:	ipw_release(sc);
716 	return error;
717 }
718 
719 static void
720 ipw_release(struct ipw_softc *sc)
721 {
722 	struct ipw_soft_buf *sbuf;
723 	int i;
724 
725 	if (sc->parent_dmat != NULL) {
726 		bus_dma_tag_destroy(sc->parent_dmat);
727 	}
728 
729 	if (sc->tbd_dmat != NULL) {
730 		bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map);
731 		bus_dmamem_free(sc->tbd_dmat, sc->tbd_list, sc->tbd_map);
732 		bus_dma_tag_destroy(sc->tbd_dmat);
733 	}
734 
735 	if (sc->rbd_dmat != NULL) {
736 		if (sc->rbd_list != NULL) {
737 			bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map);
738 			bus_dmamem_free(sc->rbd_dmat, sc->rbd_list,
739 			    sc->rbd_map);
740 		}
741 		bus_dma_tag_destroy(sc->rbd_dmat);
742 	}
743 
744 	if (sc->status_dmat != NULL) {
745 		if (sc->status_list != NULL) {
746 			bus_dmamap_unload(sc->status_dmat, sc->status_map);
747 			bus_dmamem_free(sc->status_dmat, sc->status_list,
748 			    sc->status_map);
749 		}
750 		bus_dma_tag_destroy(sc->status_dmat);
751 	}
752 
753 	for (i = 0; i < IPW_NTBD; i++)
754 		ipw_release_sbd(sc, &sc->stbd_list[i]);
755 
756 	if (sc->cmd_dmat != NULL) {
757 		bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map);
758 		bus_dma_tag_destroy(sc->cmd_dmat);
759 	}
760 
761 	if (sc->hdr_dmat != NULL) {
762 		for (i = 0; i < IPW_NDATA; i++)
763 			bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map);
764 		bus_dma_tag_destroy(sc->hdr_dmat);
765 	}
766 
767 	if (sc->txbuf_dmat != NULL) {
768 		for (i = 0; i < IPW_NDATA; i++) {
769 			bus_dmamap_destroy(sc->txbuf_dmat,
770 			    sc->tx_sbuf_list[i].map);
771 		}
772 		bus_dma_tag_destroy(sc->txbuf_dmat);
773 	}
774 
775 	if (sc->rxbuf_dmat != NULL) {
776 		for (i = 0; i < IPW_NRBD; i++) {
777 			sbuf = &sc->rx_sbuf_list[i];
778 			if (sbuf->m != NULL) {
779 				bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map,
780 				    BUS_DMASYNC_POSTREAD);
781 				bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
782 				m_freem(sbuf->m);
783 			}
784 			bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map);
785 		}
786 		bus_dma_tag_destroy(sc->rxbuf_dmat);
787 	}
788 }
789 
790 static int
791 ipw_shutdown(device_t dev)
792 {
793 	struct ipw_softc *sc = device_get_softc(dev);
794 
795 	ipw_stop(sc);
796 
797 	return 0;
798 }
799 
800 static int
801 ipw_suspend(device_t dev)
802 {
803 	struct ipw_softc *sc = device_get_softc(dev);
804 	struct ieee80211com *ic = &sc->sc_ic;
805 
806 	ieee80211_suspend_all(ic);
807 	return 0;
808 }
809 
810 static int
811 ipw_resume(device_t dev)
812 {
813 	struct ipw_softc *sc = device_get_softc(dev);
814 	struct ieee80211com *ic = &sc->sc_ic;
815 
816 	pci_write_config(dev, 0x41, 0, 1);
817 
818 	ieee80211_resume_all(ic);
819 	return 0;
820 }
821 
822 static int
823 ipw_cvtrate(int ipwrate)
824 {
825 	switch (ipwrate) {
826 	case IPW_RATE_DS1:	return 2;
827 	case IPW_RATE_DS2:	return 4;
828 	case IPW_RATE_DS5:	return 11;
829 	case IPW_RATE_DS11:	return 22;
830 	}
831 	return 0;
832 }
833 
834 /*
835  * The firmware automatically adapts the transmit speed. We report its current
836  * value here.
837  */
838 static void
839 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
840 {
841 	struct ieee80211vap *vap = ifp->if_softc;
842 	struct ieee80211com *ic = vap->iv_ic;
843 	struct ipw_softc *sc = ic->ic_softc;
844 
845 	/* read current transmission rate from adapter */
846 	vap->iv_bss->ni_txrate = ipw_cvtrate(
847 	    ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf);
848 	ieee80211_media_status(ifp, imr);
849 }
850 
851 static int
852 ipw_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
853 {
854 	struct ipw_vap *ivp = IPW_VAP(vap);
855 	struct ieee80211com *ic = vap->iv_ic;
856 	struct ipw_softc *sc = ic->ic_softc;
857 	enum ieee80211_state ostate;
858 
859 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
860 		ieee80211_state_name[vap->iv_state],
861 		ieee80211_state_name[nstate], sc->flags));
862 
863 	ostate = vap->iv_state;
864 	IEEE80211_UNLOCK(ic);
865 
866 	switch (nstate) {
867 	case IEEE80211_S_RUN:
868 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
869 			/*
870 			 * XXX when joining an ibss network we are called
871 			 * with a SCAN -> RUN transition on scan complete.
872 			 * Use that to call ipw_assoc.  On completing the
873 			 * join we are then called again with an AUTH -> RUN
874 			 * transition and we want to do nothing.  This is
875 			 * all totally bogus and needs to be redone.
876 			 */
877 			if (ostate == IEEE80211_S_SCAN)
878 				ipw_assoc(ic, vap);
879 		}
880 		break;
881 
882 	case IEEE80211_S_INIT:
883 		if (sc->flags & IPW_FLAG_ASSOCIATED)
884 			ipw_disassoc(ic, vap);
885 		break;
886 
887 	case IEEE80211_S_AUTH:
888 		/*
889 		 * Move to ASSOC state after the ipw_assoc() call.  Firmware
890 		 * takes care of authentication, after the call we'll receive
891 		 * only an assoc response which would otherwise be discared
892 		 * if we are still in AUTH state.
893 		 */
894 		nstate = IEEE80211_S_ASSOC;
895 		ipw_assoc(ic, vap);
896 		break;
897 
898 	case IEEE80211_S_ASSOC:
899 		/*
900 		 * If we are not transitioning from AUTH then resend the
901 		 * association request.
902 		 */
903 		if (ostate != IEEE80211_S_AUTH)
904 			ipw_assoc(ic, vap);
905 		break;
906 
907 	default:
908 		break;
909 	}
910 	IEEE80211_LOCK(ic);
911 	return ivp->newstate(vap, nstate, arg);
912 }
913 
914 /*
915  * Read 16 bits at address 'addr' from the serial EEPROM.
916  */
917 static uint16_t
918 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
919 {
920 	uint32_t tmp;
921 	uint16_t val;
922 	int n;
923 
924 	/* clock C once before the first command */
925 	IPW_EEPROM_CTL(sc, 0);
926 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
927 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
928 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
929 
930 	/* write start bit (1) */
931 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
932 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
933 
934 	/* write READ opcode (10) */
935 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
936 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
937 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
938 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
939 
940 	/* write address A7-A0 */
941 	for (n = 7; n >= 0; n--) {
942 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
943 		    (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
944 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
945 		    (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
946 	}
947 
948 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
949 
950 	/* read data Q15-Q0 */
951 	val = 0;
952 	for (n = 15; n >= 0; n--) {
953 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
954 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
955 		tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
956 		val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
957 	}
958 
959 	IPW_EEPROM_CTL(sc, 0);
960 
961 	/* clear Chip Select and clock C */
962 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
963 	IPW_EEPROM_CTL(sc, 0);
964 	IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
965 
966 	return le16toh(val);
967 }
968 
969 static void
970 ipw_rx_cmd_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
971 {
972 	struct ipw_cmd *cmd;
973 
974 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
975 
976 	cmd = mtod(sbuf->m, struct ipw_cmd *);
977 
978 	DPRINTFN(9, ("cmd ack'ed %s(%u, %u, %u, %u, %u)\n",
979 	    ipw_cmdname(le32toh(cmd->type)), le32toh(cmd->type),
980 	    le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
981 	    le32toh(cmd->status)));
982 
983 	sc->flags &= ~IPW_FLAG_BUSY;
984 	wakeup(sc);
985 }
986 
987 static void
988 ipw_rx_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
989 {
990 #define	IEEESTATE(vap)	ieee80211_state_name[vap->iv_state]
991 	struct ieee80211com *ic = &sc->sc_ic;
992 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
993 	uint32_t state;
994 
995 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
996 
997 	state = le32toh(*mtod(sbuf->m, uint32_t *));
998 
999 	switch (state) {
1000 	case IPW_STATE_ASSOCIATED:
1001 		DPRINTFN(2, ("Association succeeded (%s flags 0x%x)\n",
1002 			IEEESTATE(vap), sc->flags));
1003 		/* XXX suppress state change in case the fw auto-associates */
1004 		if ((sc->flags & IPW_FLAG_ASSOCIATING) == 0) {
1005 			DPRINTF(("Unexpected association (%s, flags 0x%x)\n",
1006 				IEEESTATE(vap), sc->flags));
1007 			break;
1008 		}
1009 		sc->flags &= ~IPW_FLAG_ASSOCIATING;
1010 		sc->flags |= IPW_FLAG_ASSOCIATED;
1011 		break;
1012 
1013 	case IPW_STATE_SCANNING:
1014 		DPRINTFN(3, ("Scanning (%s flags 0x%x)\n",
1015 			IEEESTATE(vap), sc->flags));
1016 		/*
1017 		 * NB: Check driver state for association on assoc
1018 		 * loss as the firmware will immediately start to
1019 		 * scan and we would treat it as a beacon miss if
1020 		 * we checked the 802.11 layer state.
1021 		 */
1022 		if (sc->flags & IPW_FLAG_ASSOCIATED) {
1023 			IPW_UNLOCK(sc);
1024 			/* XXX probably need to issue disassoc to fw */
1025 			ieee80211_beacon_miss(ic);
1026 			IPW_LOCK(sc);
1027 		}
1028 		break;
1029 
1030 	case IPW_STATE_SCAN_COMPLETE:
1031 		/*
1032 		 * XXX For some reason scan requests generate scan
1033 		 * started + scan done events before any traffic is
1034 		 * received (e.g. probe response frames).  We work
1035 		 * around this by marking the HACK flag and skipping
1036 		 * the first scan complete event.
1037 		*/
1038 		DPRINTFN(3, ("Scan complete (%s flags 0x%x)\n",
1039 			    IEEESTATE(vap), sc->flags));
1040 		if (sc->flags & IPW_FLAG_HACK) {
1041 			sc->flags &= ~IPW_FLAG_HACK;
1042 			break;
1043 		}
1044 		if (sc->flags & IPW_FLAG_SCANNING) {
1045 			IPW_UNLOCK(sc);
1046 			ieee80211_scan_done(vap);
1047 			IPW_LOCK(sc);
1048 			sc->flags &= ~IPW_FLAG_SCANNING;
1049 			sc->sc_scan_timer = 0;
1050 		}
1051 		break;
1052 
1053 	case IPW_STATE_ASSOCIATION_LOST:
1054 		DPRINTFN(2, ("Association lost (%s flags 0x%x)\n",
1055 			IEEESTATE(vap), sc->flags));
1056 		sc->flags &= ~(IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED);
1057 		if (vap->iv_state == IEEE80211_S_RUN) {
1058 			IPW_UNLOCK(sc);
1059 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1060 			IPW_LOCK(sc);
1061 		}
1062 		break;
1063 
1064 	case IPW_STATE_DISABLED:
1065 		/* XXX? is this right? */
1066 		sc->flags &= ~(IPW_FLAG_HACK | IPW_FLAG_SCANNING |
1067 		    IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED);
1068 		DPRINTFN(2, ("Firmware disabled (%s flags 0x%x)\n",
1069 			IEEESTATE(vap), sc->flags));
1070 		break;
1071 
1072 	case IPW_STATE_RADIO_DISABLED:
1073 		device_printf(sc->sc_dev, "radio turned off\n");
1074 		ieee80211_notify_radio(ic, 0);
1075 		ipw_stop_locked(sc);
1076 		/* XXX start polling thread to detect radio on */
1077 		break;
1078 
1079 	default:
1080 		DPRINTFN(2, ("%s: unhandled state %u %s flags 0x%x\n",
1081 			__func__, state, IEEESTATE(vap), sc->flags));
1082 		break;
1083 	}
1084 #undef IEEESTATE
1085 }
1086 
1087 /*
1088  * Set driver state for current channel.
1089  */
1090 static void
1091 ipw_setcurchan(struct ipw_softc *sc, struct ieee80211_channel *chan)
1092 {
1093 	struct ieee80211com *ic = &sc->sc_ic;
1094 
1095 	ic->ic_curchan = chan;
1096 	ieee80211_radiotap_chan_change(ic);
1097 }
1098 
1099 /*
1100  * XXX: Hack to set the current channel to the value advertised in beacons or
1101  * probe responses. Only used during AP detection.
1102  */
1103 static void
1104 ipw_fix_channel(struct ipw_softc *sc, struct mbuf *m)
1105 {
1106 	struct ieee80211com *ic = &sc->sc_ic;
1107 	struct ieee80211_channel *c;
1108 	struct ieee80211_frame *wh;
1109 	uint8_t subtype;
1110 	uint8_t *frm, *efrm;
1111 
1112 	wh = mtod(m, struct ieee80211_frame *);
1113 
1114 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
1115 		return;
1116 
1117 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1118 
1119 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
1120 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1121 		return;
1122 
1123 	/* XXX use ieee80211_parse_beacon */
1124 	frm = (uint8_t *)(wh + 1);
1125 	efrm = mtod(m, uint8_t *) + m->m_len;
1126 
1127 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
1128 	while (frm < efrm) {
1129 		if (*frm == IEEE80211_ELEMID_DSPARMS)
1130 #if IEEE80211_CHAN_MAX < 255
1131 		if (frm[2] <= IEEE80211_CHAN_MAX)
1132 #endif
1133 		{
1134 			DPRINTF(("Fixing channel to %d\n", frm[2]));
1135 			c = ieee80211_find_channel(ic,
1136 				ieee80211_ieee2mhz(frm[2], 0),
1137 				IEEE80211_CHAN_B);
1138 			if (c == NULL)
1139 				c = &ic->ic_channels[0];
1140 			ipw_setcurchan(sc, c);
1141 		}
1142 
1143 		frm += frm[1] + 2;
1144 	}
1145 }
1146 
1147 static void
1148 ipw_rx_data_intr(struct ipw_softc *sc, struct ipw_status *status,
1149     struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
1150 {
1151 	struct ieee80211com *ic = &sc->sc_ic;
1152 	struct mbuf *mnew, *m;
1153 	struct ieee80211_node *ni;
1154 	bus_addr_t physaddr;
1155 	int error;
1156 	int8_t rssi, nf;
1157 
1158 	DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
1159 	    status->rssi));
1160 
1161 	if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
1162 	    le32toh(status->len) > MCLBYTES)
1163 		return;
1164 
1165 	/*
1166 	 * Try to allocate a new mbuf for this ring element and load it before
1167 	 * processing the current mbuf. If the ring element cannot be loaded,
1168 	 * drop the received packet and reuse the old mbuf. In the unlikely
1169 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1170 	 */
1171 	mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1172 	if (mnew == NULL) {
1173 		counter_u64_add(ic->ic_ierrors, 1);
1174 		return;
1175 	}
1176 
1177 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
1178 	bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
1179 
1180 	error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *),
1181 	    MCLBYTES, ipw_dma_map_addr, &physaddr, 0);
1182 	if (error != 0) {
1183 		m_freem(mnew);
1184 
1185 		/* try to reload the old mbuf */
1186 		error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
1187 		    mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
1188 		    &physaddr, 0);
1189 		if (error != 0) {
1190 			/* very unlikely that it will fail... */
1191 			panic("%s: could not load old rx mbuf",
1192 			    device_get_name(sc->sc_dev));
1193 		}
1194 		counter_u64_add(ic->ic_ierrors, 1);
1195 		return;
1196 	}
1197 
1198 	/*
1199 	 * New mbuf successfully loaded, update Rx ring and continue
1200 	 * processing.
1201 	 */
1202 	m = sbuf->m;
1203 	sbuf->m = mnew;
1204 	sbd->bd->physaddr = htole32(physaddr);
1205 	m->m_pkthdr.len = m->m_len = le32toh(status->len);
1206 
1207 	rssi = status->rssi + IPW_RSSI_TO_DBM;
1208 	nf = -95;
1209 	if (ieee80211_radiotap_active(ic)) {
1210 		struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1211 
1212 		tap->wr_flags = 0;
1213 		tap->wr_antsignal = rssi;
1214 		tap->wr_antnoise = nf;
1215 	}
1216 
1217 	if (sc->flags & IPW_FLAG_SCANNING)
1218 		ipw_fix_channel(sc, m);
1219 
1220 	IPW_UNLOCK(sc);
1221 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1222 	if (ni != NULL) {
1223 		(void) ieee80211_input(ni, m, rssi - nf, nf);
1224 		ieee80211_free_node(ni);
1225 	} else
1226 		(void) ieee80211_input_all(ic, m, rssi - nf, nf);
1227 	IPW_LOCK(sc);
1228 
1229 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
1230 }
1231 
1232 static void
1233 ipw_rx_intr(struct ipw_softc *sc)
1234 {
1235 	struct ipw_status *status;
1236 	struct ipw_soft_bd *sbd;
1237 	struct ipw_soft_buf *sbuf;
1238 	uint32_t r, i;
1239 
1240 	if (!(sc->flags & IPW_FLAG_FW_INITED))
1241 		return;
1242 
1243 	r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1244 
1245 	bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD);
1246 
1247 	for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1248 		status = &sc->status_list[i];
1249 		sbd = &sc->srbd_list[i];
1250 		sbuf = sbd->priv;
1251 
1252 		switch (le16toh(status->code) & 0xf) {
1253 		case IPW_STATUS_CODE_COMMAND:
1254 			ipw_rx_cmd_intr(sc, sbuf);
1255 			break;
1256 
1257 		case IPW_STATUS_CODE_NEWSTATE:
1258 			ipw_rx_newstate_intr(sc, sbuf);
1259 			break;
1260 
1261 		case IPW_STATUS_CODE_DATA_802_3:
1262 		case IPW_STATUS_CODE_DATA_802_11:
1263 			ipw_rx_data_intr(sc, status, sbd, sbuf);
1264 			break;
1265 
1266 		case IPW_STATUS_CODE_NOTIFICATION:
1267 			DPRINTFN(2, ("notification status, len %u flags 0x%x\n",
1268 			    le32toh(status->len), status->flags));
1269 			/* XXX maybe drive state machine AUTH->ASSOC? */
1270 			break;
1271 
1272 		default:
1273 			device_printf(sc->sc_dev, "unexpected status code %u\n",
1274 			    le16toh(status->code));
1275 		}
1276 
1277 		/* firmware was killed, stop processing received frames */
1278 		if (!(sc->flags & IPW_FLAG_FW_INITED))
1279 			return;
1280 
1281 		sbd->bd->flags = 0;
1282 	}
1283 
1284 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
1285 
1286 	/* kick the firmware */
1287 	sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1288 	CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1289 }
1290 
1291 static void
1292 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1293 {
1294 	struct ipw_soft_hdr *shdr;
1295 	struct ipw_soft_buf *sbuf;
1296 
1297 	switch (sbd->type) {
1298 	case IPW_SBD_TYPE_COMMAND:
1299 		bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map,
1300 		    BUS_DMASYNC_POSTWRITE);
1301 		bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map);
1302 		break;
1303 
1304 	case IPW_SBD_TYPE_HEADER:
1305 		shdr = sbd->priv;
1306 		bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE);
1307 		bus_dmamap_unload(sc->hdr_dmat, shdr->map);
1308 		SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
1309 		break;
1310 
1311 	case IPW_SBD_TYPE_DATA:
1312 		sbuf = sbd->priv;
1313 		bus_dmamap_sync(sc->txbuf_dmat, sbuf->map,
1314 		    BUS_DMASYNC_POSTWRITE);
1315 		bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
1316 		SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
1317 
1318 		if (sbuf->m->m_flags & M_TXCB)
1319 			ieee80211_process_callback(sbuf->ni, sbuf->m, 0/*XXX*/);
1320 		m_freem(sbuf->m);
1321 		ieee80211_free_node(sbuf->ni);
1322 
1323 		sc->sc_tx_timer = 0;
1324 		break;
1325 	}
1326 
1327 	sbd->type = IPW_SBD_TYPE_NOASSOC;
1328 }
1329 
1330 static void
1331 ipw_tx_intr(struct ipw_softc *sc)
1332 {
1333 	struct ipw_soft_bd *sbd;
1334 	uint32_t r, i;
1335 
1336 	if (!(sc->flags & IPW_FLAG_FW_INITED))
1337 		return;
1338 
1339 	r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1340 
1341 	for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1342 		sbd = &sc->stbd_list[i];
1343 		ipw_release_sbd(sc, sbd);
1344 		sc->txfree++;
1345 	}
1346 
1347 	/* remember what the firmware has processed */
1348 	sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1349 
1350 	ipw_start(sc);
1351 }
1352 
1353 static void
1354 ipw_fatal_error_intr(struct ipw_softc *sc)
1355 {
1356 	struct ieee80211com *ic = &sc->sc_ic;
1357 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1358 
1359 	device_printf(sc->sc_dev, "firmware error\n");
1360 	if (vap != NULL) {
1361 		IPW_UNLOCK(sc);
1362 		ieee80211_cancel_scan(vap);
1363 		IPW_LOCK(sc);
1364 	}
1365 	ieee80211_runtask(ic, &sc->sc_init_task);
1366 }
1367 
1368 static void
1369 ipw_intr(void *arg)
1370 {
1371 	struct ipw_softc *sc = arg;
1372 	uint32_t r;
1373 
1374 	IPW_LOCK(sc);
1375 
1376 	r = CSR_READ_4(sc, IPW_CSR_INTR);
1377 	if (r == 0 || r == 0xffffffff)
1378 		goto done;
1379 
1380 	/* disable interrupts */
1381 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1382 
1383 	/* acknowledge all interrupts */
1384 	CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1385 
1386 	if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1387 		ipw_fatal_error_intr(sc);
1388 		goto done;
1389 	}
1390 
1391 	if (r & IPW_INTR_FW_INIT_DONE)
1392 		wakeup(sc);
1393 
1394 	if (r & IPW_INTR_RX_TRANSFER)
1395 		ipw_rx_intr(sc);
1396 
1397 	if (r & IPW_INTR_TX_TRANSFER)
1398 		ipw_tx_intr(sc);
1399 
1400 	/* re-enable interrupts */
1401 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1402 done:
1403 	IPW_UNLOCK(sc);
1404 }
1405 
1406 static void
1407 ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1408 {
1409 	if (error != 0)
1410 		return;
1411 
1412 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1413 
1414 	*(bus_addr_t *)arg = segs[0].ds_addr;
1415 }
1416 
1417 static const char *
1418 ipw_cmdname(int cmd)
1419 {
1420 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1421 	static const struct {
1422 		int	cmd;
1423 		const char *name;
1424 	} cmds[] = {
1425 		{ IPW_CMD_ADD_MULTICAST,	"ADD_MULTICAST" },
1426 		{ IPW_CMD_BROADCAST_SCAN,	"BROADCAST_SCAN" },
1427 		{ IPW_CMD_DISABLE,		"DISABLE" },
1428 		{ IPW_CMD_DISABLE_PHY,		"DISABLE_PHY" },
1429 		{ IPW_CMD_ENABLE,		"ENABLE" },
1430 		{ IPW_CMD_PREPARE_POWER_DOWN,	"PREPARE_POWER_DOWN" },
1431 		{ IPW_CMD_SET_BASIC_TX_RATES,	"SET_BASIC_TX_RATES" },
1432 		{ IPW_CMD_SET_BEACON_INTERVAL,	"SET_BEACON_INTERVAL" },
1433 		{ IPW_CMD_SET_CHANNEL,		"SET_CHANNEL" },
1434 		{ IPW_CMD_SET_CONFIGURATION,	"SET_CONFIGURATION" },
1435 		{ IPW_CMD_SET_DESIRED_BSSID,	"SET_DESIRED_BSSID" },
1436 		{ IPW_CMD_SET_ESSID,		"SET_ESSID" },
1437 		{ IPW_CMD_SET_FRAG_THRESHOLD,	"SET_FRAG_THRESHOLD" },
1438 		{ IPW_CMD_SET_MAC_ADDRESS,	"SET_MAC_ADDRESS" },
1439 		{ IPW_CMD_SET_MANDATORY_BSSID,	"SET_MANDATORY_BSSID" },
1440 		{ IPW_CMD_SET_MODE,		"SET_MODE" },
1441 		{ IPW_CMD_SET_MSDU_TX_RATES,	"SET_MSDU_TX_RATES" },
1442 		{ IPW_CMD_SET_POWER_MODE,	"SET_POWER_MODE" },
1443 		{ IPW_CMD_SET_RTS_THRESHOLD,	"SET_RTS_THRESHOLD" },
1444 		{ IPW_CMD_SET_SCAN_OPTIONS,	"SET_SCAN_OPTIONS" },
1445 		{ IPW_CMD_SET_SECURITY_INFO,	"SET_SECURITY_INFO" },
1446 		{ IPW_CMD_SET_TX_POWER_INDEX,	"SET_TX_POWER_INDEX" },
1447 		{ IPW_CMD_SET_TX_RATES,		"SET_TX_RATES" },
1448 		{ IPW_CMD_SET_WEP_FLAGS,	"SET_WEP_FLAGS" },
1449 		{ IPW_CMD_SET_WEP_KEY,		"SET_WEP_KEY" },
1450 		{ IPW_CMD_SET_WEP_KEY_INDEX,	"SET_WEP_KEY_INDEX" },
1451 		{ IPW_CMD_SET_WPA_IE,		"SET_WPA_IE" },
1452 
1453 	};
1454 	static char buf[12];
1455 	int i;
1456 
1457 	for (i = 0; i < N(cmds); i++)
1458 		if (cmds[i].cmd == cmd)
1459 			return cmds[i].name;
1460 	snprintf(buf, sizeof(buf), "%u", cmd);
1461 	return buf;
1462 #undef N
1463 }
1464 
1465 /*
1466  * Send a command to the firmware and wait for the acknowledgement.
1467  */
1468 static int
1469 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1470 {
1471 	struct ipw_soft_bd *sbd;
1472 	bus_addr_t physaddr;
1473 	int error;
1474 
1475 	IPW_LOCK_ASSERT(sc);
1476 
1477 	if (sc->flags & IPW_FLAG_BUSY) {
1478 		device_printf(sc->sc_dev, "%s: %s not sent, busy\n",
1479 			__func__, ipw_cmdname(type));
1480 		return EAGAIN;
1481 	}
1482 	sc->flags |= IPW_FLAG_BUSY;
1483 
1484 	sbd = &sc->stbd_list[sc->txcur];
1485 
1486 	error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd,
1487 	    sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0);
1488 	if (error != 0) {
1489 		device_printf(sc->sc_dev, "could not map command DMA memory\n");
1490 		sc->flags &= ~IPW_FLAG_BUSY;
1491 		return error;
1492 	}
1493 
1494 	sc->cmd.type = htole32(type);
1495 	sc->cmd.subtype = 0;
1496 	sc->cmd.len = htole32(len);
1497 	sc->cmd.seq = 0;
1498 	memcpy(sc->cmd.data, data, len);
1499 
1500 	sbd->type = IPW_SBD_TYPE_COMMAND;
1501 	sbd->bd->physaddr = htole32(physaddr);
1502 	sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1503 	sbd->bd->nfrag = 1;
1504 	sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1505 	    IPW_BD_FLAG_TX_LAST_FRAGMENT;
1506 
1507 	bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE);
1508 	bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
1509 
1510 #ifdef IPW_DEBUG
1511 	if (ipw_debug >= 4) {
1512 		printf("sending %s(%u, %u, %u, %u)", ipw_cmdname(type), type,
1513 		    0, 0, len);
1514 		/* Print the data buffer in the higher debug level */
1515 		if (ipw_debug >= 9 && len > 0) {
1516 			printf(" data: 0x");
1517 			for (int i = 1; i <= len; i++)
1518 				printf("%1D", (u_char *)data + len - i, "");
1519 		}
1520 		printf("\n");
1521 	}
1522 #endif
1523 
1524 	/* kick firmware */
1525 	sc->txfree--;
1526 	sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1527 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1528 
1529 	/* wait at most one second for command to complete */
1530 	error = msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz);
1531 	if (error != 0) {
1532 		device_printf(sc->sc_dev, "%s: %s failed, timeout (error %u)\n",
1533 		    __func__, ipw_cmdname(type), error);
1534 		sc->flags &= ~IPW_FLAG_BUSY;
1535 		return (error);
1536 	}
1537 	return (0);
1538 }
1539 
1540 static int
1541 ipw_tx_start(struct ipw_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1542 {
1543 	struct ieee80211com *ic = &sc->sc_ic;
1544 	struct ieee80211vap *vap = ni->ni_vap;
1545 	struct ieee80211_frame *wh;
1546 	struct ipw_soft_bd *sbd;
1547 	struct ipw_soft_hdr *shdr;
1548 	struct ipw_soft_buf *sbuf;
1549 	struct ieee80211_key *k;
1550 	struct mbuf *mnew;
1551 	bus_dma_segment_t segs[IPW_MAX_NSEG];
1552 	bus_addr_t physaddr;
1553 	int nsegs, error, i;
1554 
1555 	wh = mtod(m0, struct ieee80211_frame *);
1556 
1557 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1558 		k = ieee80211_crypto_encap(ni, m0);
1559 		if (k == NULL) {
1560 			m_freem(m0);
1561 			return ENOBUFS;
1562 		}
1563 		/* packet header may have moved, reset our local pointer */
1564 		wh = mtod(m0, struct ieee80211_frame *);
1565 	}
1566 
1567 	if (ieee80211_radiotap_active_vap(vap)) {
1568 		struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1569 
1570 		tap->wt_flags = 0;
1571 
1572 		ieee80211_radiotap_tx(vap, m0);
1573 	}
1574 
1575 	shdr = SLIST_FIRST(&sc->free_shdr);
1576 	sbuf = SLIST_FIRST(&sc->free_sbuf);
1577 	KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool"));
1578 
1579 	shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND);
1580 	shdr->hdr.subtype = 0;
1581 	shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) ? 1 : 0;
1582 	shdr->hdr.encrypt = 0;
1583 	shdr->hdr.keyidx = 0;
1584 	shdr->hdr.keysz = 0;
1585 	shdr->hdr.fragmentsz = 0;
1586 	IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2);
1587 	if (ic->ic_opmode == IEEE80211_M_STA)
1588 		IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3);
1589 	else
1590 		IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1);
1591 
1592 	/* trim IEEE802.11 header */
1593 	m_adj(m0, sizeof (struct ieee80211_frame));
1594 
1595 	error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs,
1596 	    &nsegs, 0);
1597 	if (error != 0 && error != EFBIG) {
1598 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1599 		    error);
1600 		m_freem(m0);
1601 		return error;
1602 	}
1603 	if (error != 0) {
1604 		mnew = m_defrag(m0, M_NOWAIT);
1605 		if (mnew == NULL) {
1606 			device_printf(sc->sc_dev,
1607 			    "could not defragment mbuf\n");
1608 			m_freem(m0);
1609 			return ENOBUFS;
1610 		}
1611 		m0 = mnew;
1612 
1613 		error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0,
1614 		    segs, &nsegs, 0);
1615 		if (error != 0) {
1616 			device_printf(sc->sc_dev,
1617 			    "could not map mbuf (error %d)\n", error);
1618 			m_freem(m0);
1619 			return error;
1620 		}
1621 	}
1622 
1623 	error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr,
1624 	    sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0);
1625 	if (error != 0) {
1626 		device_printf(sc->sc_dev, "could not map header DMA memory\n");
1627 		bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
1628 		m_freem(m0);
1629 		return error;
1630 	}
1631 
1632 	SLIST_REMOVE_HEAD(&sc->free_sbuf, next);
1633 	SLIST_REMOVE_HEAD(&sc->free_shdr, next);
1634 
1635 	sbd = &sc->stbd_list[sc->txcur];
1636 	sbd->type = IPW_SBD_TYPE_HEADER;
1637 	sbd->priv = shdr;
1638 	sbd->bd->physaddr = htole32(physaddr);
1639 	sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1640 	sbd->bd->nfrag = 1 + nsegs;
1641 	sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1642 	    IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1643 
1644 	DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n",
1645 	    shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted,
1646 	    shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr,
1647 	    ":"));
1648 
1649 	sc->txfree--;
1650 	sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1651 
1652 	sbuf->m = m0;
1653 	sbuf->ni = ni;
1654 
1655 	for (i = 0; i < nsegs; i++) {
1656 		sbd = &sc->stbd_list[sc->txcur];
1657 
1658 		sbd->bd->physaddr = htole32(segs[i].ds_addr);
1659 		sbd->bd->len = htole32(segs[i].ds_len);
1660 		sbd->bd->nfrag = 0;
1661 		sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1662 		if (i == nsegs - 1) {
1663 			sbd->type = IPW_SBD_TYPE_DATA;
1664 			sbd->priv = sbuf;
1665 			sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1666 		} else {
1667 			sbd->type = IPW_SBD_TYPE_NOASSOC;
1668 			sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1669 		}
1670 
1671 		DPRINTFN(5, ("sending fragment (%d)\n", i));
1672 
1673 		sc->txfree--;
1674 		sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1675 	}
1676 
1677 	bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE);
1678 	bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE);
1679 	bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
1680 
1681 	/* kick firmware */
1682 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1683 
1684 	return 0;
1685 }
1686 
1687 static int
1688 ipw_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1689 	const struct ieee80211_bpf_params *params)
1690 {
1691 	/* no support; just discard */
1692 	m_freem(m);
1693 	ieee80211_free_node(ni);
1694 	return 0;
1695 }
1696 
1697 static int
1698 ipw_transmit(struct ieee80211com *ic, struct mbuf *m)
1699 {
1700 	struct ipw_softc *sc = ic->ic_softc;
1701 	int error;
1702 
1703 	IPW_LOCK(sc);
1704 	if ((sc->flags & IPW_FLAG_RUNNING) == 0) {
1705 		IPW_UNLOCK(sc);
1706 		return (ENXIO);
1707 	}
1708 	error = mbufq_enqueue(&sc->sc_snd, m);
1709 	if (error) {
1710 		IPW_UNLOCK(sc);
1711 		return (error);
1712 	}
1713 	ipw_start(sc);
1714 	IPW_UNLOCK(sc);
1715 	return (0);
1716 }
1717 
1718 static void
1719 ipw_start(struct ipw_softc *sc)
1720 {
1721 	struct ieee80211_node *ni;
1722 	struct mbuf *m;
1723 
1724 	IPW_LOCK_ASSERT(sc);
1725 
1726 	while (sc->txfree < 1 + IPW_MAX_NSEG &&
1727 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1728 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1729 		if (ipw_tx_start(sc, m, ni) != 0) {
1730 			if_inc_counter(ni->ni_vap->iv_ifp,
1731 			    IFCOUNTER_OERRORS, 1);
1732 			ieee80211_free_node(ni);
1733 			break;
1734 		}
1735 		/* start watchdog timer */
1736 		sc->sc_tx_timer = 5;
1737 	}
1738 }
1739 
1740 static void
1741 ipw_watchdog(void *arg)
1742 {
1743 	struct ipw_softc *sc = arg;
1744 	struct ieee80211com *ic = &sc->sc_ic;
1745 
1746 	IPW_LOCK_ASSERT(sc);
1747 
1748 	if (sc->sc_tx_timer > 0) {
1749 		if (--sc->sc_tx_timer == 0) {
1750 			device_printf(sc->sc_dev, "device timeout\n");
1751 			counter_u64_add(ic->ic_oerrors, 1);
1752 			taskqueue_enqueue(taskqueue_swi, &sc->sc_init_task);
1753 		}
1754 	}
1755 	if (sc->sc_scan_timer > 0) {
1756 		if (--sc->sc_scan_timer == 0) {
1757 			DPRINTFN(3, ("Scan timeout\n"));
1758 			/* End the scan */
1759 			if (sc->flags & IPW_FLAG_SCANNING) {
1760 				IPW_UNLOCK(sc);
1761 				ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
1762 				IPW_LOCK(sc);
1763 				sc->flags &= ~IPW_FLAG_SCANNING;
1764 			}
1765 		}
1766 	}
1767 	if (sc->flags & IPW_FLAG_RUNNING)
1768 		callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc);
1769 }
1770 
1771 static void
1772 ipw_parent(struct ieee80211com *ic)
1773 {
1774 	struct ipw_softc *sc = ic->ic_softc;
1775 	int startall = 0;
1776 
1777 	IPW_LOCK(sc);
1778 	if (ic->ic_nrunning > 0) {
1779 		if (!(sc->flags & IPW_FLAG_RUNNING)) {
1780 			ipw_init_locked(sc);
1781 			startall = 1;
1782 		}
1783 	} else if (sc->flags & IPW_FLAG_RUNNING)
1784 		ipw_stop_locked(sc);
1785 	IPW_UNLOCK(sc);
1786 	if (startall)
1787 		ieee80211_start_all(ic);
1788 }
1789 
1790 static void
1791 ipw_stop_master(struct ipw_softc *sc)
1792 {
1793 	uint32_t tmp;
1794 	int ntries;
1795 
1796 	/* disable interrupts */
1797 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1798 
1799 	CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1800 	for (ntries = 0; ntries < 50; ntries++) {
1801 		if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1802 			break;
1803 		DELAY(10);
1804 	}
1805 	if (ntries == 50)
1806 		device_printf(sc->sc_dev, "timeout waiting for master\n");
1807 
1808 	tmp = CSR_READ_4(sc, IPW_CSR_RST);
1809 	CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET);
1810 
1811 	/* Clear all flags except the following */
1812 	sc->flags &= IPW_FLAG_HAS_RADIO_SWITCH;
1813 }
1814 
1815 static int
1816 ipw_reset(struct ipw_softc *sc)
1817 {
1818 	uint32_t tmp;
1819 	int ntries;
1820 
1821 	ipw_stop_master(sc);
1822 
1823 	/* move adapter to D0 state */
1824 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1825 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
1826 
1827 	/* wait for clock stabilization */
1828 	for (ntries = 0; ntries < 1000; ntries++) {
1829 		if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1830 			break;
1831 		DELAY(200);
1832 	}
1833 	if (ntries == 1000)
1834 		return EIO;
1835 
1836 	tmp =  CSR_READ_4(sc, IPW_CSR_RST);
1837 	CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET);
1838 
1839 	DELAY(10);
1840 
1841 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1842 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
1843 
1844 	return 0;
1845 }
1846 
1847 static int
1848 ipw_waitfordisable(struct ipw_softc *sc, int waitfor)
1849 {
1850 	int ms = hz < 1000 ? 1 : hz/10;
1851 	int i, error;
1852 
1853 	for (i = 0; i < 100; i++) {
1854 		if (ipw_read_table1(sc, IPW_INFO_CARD_DISABLED) == waitfor)
1855 			return 0;
1856 		error = msleep(sc, &sc->sc_mtx, PCATCH, __func__, ms);
1857 		if (error == 0 || error != EWOULDBLOCK)
1858 			return 0;
1859 	}
1860 	DPRINTF(("%s: timeout waiting for %s\n",
1861 		__func__, waitfor ? "disable" : "enable"));
1862 	return ETIMEDOUT;
1863 }
1864 
1865 static int
1866 ipw_enable(struct ipw_softc *sc)
1867 {
1868 	int error;
1869 
1870 	if ((sc->flags & IPW_FLAG_ENABLED) == 0) {
1871 		DPRINTF(("Enable adapter\n"));
1872 		error = ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1873 		if (error != 0)
1874 			return error;
1875 		error = ipw_waitfordisable(sc, 0);
1876 		if (error != 0)
1877 			return error;
1878 		sc->flags |= IPW_FLAG_ENABLED;
1879 	}
1880 	return 0;
1881 }
1882 
1883 static int
1884 ipw_disable(struct ipw_softc *sc)
1885 {
1886 	int error;
1887 
1888 	if (sc->flags & IPW_FLAG_ENABLED) {
1889 		DPRINTF(("Disable adapter\n"));
1890 		error = ipw_cmd(sc, IPW_CMD_DISABLE, NULL, 0);
1891 		if (error != 0)
1892 			return error;
1893 		error = ipw_waitfordisable(sc, 1);
1894 		if (error != 0)
1895 			return error;
1896 		sc->flags &= ~IPW_FLAG_ENABLED;
1897 	}
1898 	return 0;
1899 }
1900 
1901 /*
1902  * Upload the microcode to the device.
1903  */
1904 static int
1905 ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size)
1906 {
1907 	int ntries;
1908 
1909 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1910 	CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1911 
1912 	MEM_WRITE_2(sc, 0x220000, 0x0703);
1913 	MEM_WRITE_2(sc, 0x220000, 0x0707);
1914 
1915 	MEM_WRITE_1(sc, 0x210014, 0x72);
1916 	MEM_WRITE_1(sc, 0x210014, 0x72);
1917 
1918 	MEM_WRITE_1(sc, 0x210000, 0x40);
1919 	MEM_WRITE_1(sc, 0x210000, 0x00);
1920 	MEM_WRITE_1(sc, 0x210000, 0x40);
1921 
1922 	MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1923 
1924 	MEM_WRITE_1(sc, 0x210000, 0x00);
1925 	MEM_WRITE_1(sc, 0x210000, 0x00);
1926 	MEM_WRITE_1(sc, 0x210000, 0x80);
1927 
1928 	MEM_WRITE_2(sc, 0x220000, 0x0703);
1929 	MEM_WRITE_2(sc, 0x220000, 0x0707);
1930 
1931 	MEM_WRITE_1(sc, 0x210014, 0x72);
1932 	MEM_WRITE_1(sc, 0x210014, 0x72);
1933 
1934 	MEM_WRITE_1(sc, 0x210000, 0x00);
1935 	MEM_WRITE_1(sc, 0x210000, 0x80);
1936 
1937 	for (ntries = 0; ntries < 10; ntries++) {
1938 		if (MEM_READ_1(sc, 0x210000) & 1)
1939 			break;
1940 		DELAY(10);
1941 	}
1942 	if (ntries == 10) {
1943 		device_printf(sc->sc_dev,
1944 		    "timeout waiting for ucode to initialize\n");
1945 		return EIO;
1946 	}
1947 
1948 	MEM_WRITE_4(sc, 0x3000e0, 0);
1949 
1950 	return 0;
1951 }
1952 
1953 /* set of macros to handle unaligned little endian data in firmware image */
1954 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1955 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1956 static int
1957 ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size)
1958 {
1959 	const uint8_t *p, *end;
1960 	uint32_t tmp, dst;
1961 	uint16_t len;
1962 	int error;
1963 
1964 	p = fw;
1965 	end = fw + size;
1966 	while (p < end) {
1967 		dst = GETLE32(p); p += 4;
1968 		len = GETLE16(p); p += 2;
1969 
1970 		ipw_write_mem_1(sc, dst, p, len);
1971 		p += len;
1972 	}
1973 
1974 	CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1975 	    IPW_IO_LED_OFF);
1976 
1977 	/* enable interrupts */
1978 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1979 
1980 	/* kick the firmware */
1981 	CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1982 
1983 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1984 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY);
1985 
1986 	/* wait at most one second for firmware initialization to complete */
1987 	if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) {
1988 		device_printf(sc->sc_dev, "timeout waiting for firmware "
1989 		    "initialization to complete\n");
1990 		return error;
1991 	}
1992 
1993 	tmp = CSR_READ_4(sc, IPW_CSR_IO);
1994 	CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK |
1995 	    IPW_IO_GPIO3_MASK);
1996 
1997 	return 0;
1998 }
1999 
2000 static int
2001 ipw_setwepkeys(struct ipw_softc *sc)
2002 {
2003 	struct ieee80211com *ic = &sc->sc_ic;
2004 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2005 	struct ipw_wep_key wepkey;
2006 	struct ieee80211_key *wk;
2007 	int error, i;
2008 
2009 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2010 		wk = &vap->iv_nw_keys[i];
2011 
2012 		if (wk->wk_cipher == NULL ||
2013 		    wk->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
2014 			continue;
2015 
2016 		wepkey.idx = i;
2017 		wepkey.len = wk->wk_keylen;
2018 		memset(wepkey.key, 0, sizeof wepkey.key);
2019 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2020 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2021 		    wepkey.len));
2022 		error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
2023 		    sizeof wepkey);
2024 		if (error != 0)
2025 			return error;
2026 	}
2027 	return 0;
2028 }
2029 
2030 static int
2031 ipw_setwpaie(struct ipw_softc *sc, const void *ie, int ielen)
2032 {
2033 	struct ipw_wpa_ie wpaie;
2034 
2035 	memset(&wpaie, 0, sizeof(wpaie));
2036 	wpaie.len = htole32(ielen);
2037 	/* XXX verify length */
2038 	memcpy(&wpaie.ie, ie, ielen);
2039 	DPRINTF(("Setting WPA IE\n"));
2040 	return ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &wpaie, sizeof(wpaie));
2041 }
2042 
2043 static int
2044 ipw_setbssid(struct ipw_softc *sc, uint8_t *bssid)
2045 {
2046 	static const uint8_t zerobssid[IEEE80211_ADDR_LEN];
2047 
2048 	if (bssid == NULL || bcmp(bssid, zerobssid, IEEE80211_ADDR_LEN) == 0) {
2049 		DPRINTF(("Setting mandatory BSSID to null\n"));
2050 		return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
2051 	} else {
2052 		DPRINTF(("Setting mandatory BSSID to %6D\n", bssid, ":"));
2053 		return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID,
2054 			bssid, IEEE80211_ADDR_LEN);
2055 	}
2056 }
2057 
2058 static int
2059 ipw_setssid(struct ipw_softc *sc, void *ssid, size_t ssidlen)
2060 {
2061 	if (ssidlen == 0) {
2062 		/*
2063 		 * A bug in the firmware breaks the ``don't associate''
2064 		 * bit in the scan options command.  To compensate for
2065 		 * this install a bogus ssid when no ssid is specified
2066 		 * so the firmware won't try to associate.
2067 		 */
2068 		DPRINTF(("Setting bogus ESSID to WAR firmware bug\n"));
2069 		return ipw_cmd(sc, IPW_CMD_SET_ESSID,
2070 			"\x18\x19\x20\x21\x22\x23\x24\x25\x26\x27"
2071 			"\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31"
2072 			"\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b"
2073 			"\x3c\x3d", IEEE80211_NWID_LEN);
2074 	} else {
2075 #ifdef IPW_DEBUG
2076 		if (ipw_debug > 0) {
2077 			printf("Setting ESSID to ");
2078 			ieee80211_print_essid(ssid, ssidlen);
2079 			printf("\n");
2080 		}
2081 #endif
2082 		return ipw_cmd(sc, IPW_CMD_SET_ESSID, ssid, ssidlen);
2083 	}
2084 }
2085 
2086 static int
2087 ipw_setscanopts(struct ipw_softc *sc, uint32_t chanmask, uint32_t flags)
2088 {
2089 	struct ipw_scan_options opts;
2090 
2091 	DPRINTF(("Scan options: mask 0x%x flags 0x%x\n", chanmask, flags));
2092 	opts.channels = htole32(chanmask);
2093 	opts.flags = htole32(flags);
2094 	return ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &opts, sizeof(opts));
2095 }
2096 
2097 static int
2098 ipw_scan(struct ipw_softc *sc)
2099 {
2100 	uint32_t params;
2101 	int error;
2102 
2103 	DPRINTF(("%s: flags 0x%x\n", __func__, sc->flags));
2104 
2105 	if (sc->flags & IPW_FLAG_SCANNING)
2106 		return (EBUSY);
2107 	sc->flags |= IPW_FLAG_SCANNING | IPW_FLAG_HACK;
2108 
2109 	/* NB: IPW_SCAN_DO_NOT_ASSOCIATE does not work (we set it anyway) */
2110 	error = ipw_setscanopts(sc, 0x3fff, IPW_SCAN_DO_NOT_ASSOCIATE);
2111 	if (error != 0)
2112 		goto done;
2113 
2114 	/*
2115 	 * Setup null/bogus ssid so firmware doesn't use any previous
2116 	 * ssid to try and associate.  This is because the ``don't
2117 	 * associate'' option bit is broken (sigh).
2118 	 */
2119 	error = ipw_setssid(sc, NULL, 0);
2120 	if (error != 0)
2121 		goto done;
2122 
2123 	/*
2124 	 * NB: the adapter may be disabled on association lost;
2125 	 *     if so just re-enable it to kick off scanning.
2126 	 */
2127 	DPRINTF(("Starting scan\n"));
2128 	sc->sc_scan_timer = 3;
2129 	if (sc->flags & IPW_FLAG_ENABLED) {
2130 		params = 0;				/* XXX? */
2131 		error = ipw_cmd(sc, IPW_CMD_BROADCAST_SCAN,
2132 				&params, sizeof(params));
2133 	} else
2134 		error = ipw_enable(sc);
2135 done:
2136 	if (error != 0) {
2137 		DPRINTF(("Scan failed\n"));
2138 		sc->flags &= ~(IPW_FLAG_SCANNING | IPW_FLAG_HACK);
2139 	}
2140 	return (error);
2141 }
2142 
2143 static int
2144 ipw_setchannel(struct ipw_softc *sc, struct ieee80211_channel *chan)
2145 {
2146 	struct ieee80211com *ic = &sc->sc_ic;
2147 	uint32_t data;
2148 	int error;
2149 
2150 	data = htole32(ieee80211_chan2ieee(ic, chan));
2151 	DPRINTF(("Setting channel to %u\n", le32toh(data)));
2152 	error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
2153 	if (error == 0)
2154 		ipw_setcurchan(sc, chan);
2155 	return error;
2156 }
2157 
2158 static void
2159 ipw_assoc(struct ieee80211com *ic, struct ieee80211vap *vap)
2160 {
2161 	struct ipw_softc *sc = ic->ic_softc;
2162 	struct ieee80211_node *ni = vap->iv_bss;
2163 	struct ipw_security security;
2164 	uint32_t data;
2165 	int error;
2166 
2167 	IPW_LOCK(sc);
2168 	error = ipw_disable(sc);
2169 	if (error != 0)
2170 		goto done;
2171 
2172 	memset(&security, 0, sizeof security);
2173 	security.authmode = (ni->ni_authmode == IEEE80211_AUTH_SHARED) ?
2174 	    IPW_AUTH_SHARED : IPW_AUTH_OPEN;
2175 	security.ciphers = htole32(IPW_CIPHER_NONE);
2176 	DPRINTF(("Setting authmode to %u\n", security.authmode));
2177 	error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFO, &security,
2178 	    sizeof security);
2179 	if (error != 0)
2180 		goto done;
2181 
2182 	data = htole32(vap->iv_rtsthreshold);
2183 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2184 	error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2185 	if (error != 0)
2186 		goto done;
2187 
2188 	data = htole32(vap->iv_fragthreshold);
2189 	DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
2190 	error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2191 	if (error != 0)
2192 		goto done;
2193 
2194 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
2195 		error = ipw_setwepkeys(sc);
2196 		if (error != 0)
2197 			goto done;
2198 
2199 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) {
2200 			data = htole32(vap->iv_def_txkey);
2201 			DPRINTF(("Setting wep tx key index to %u\n",
2202 				le32toh(data)));
2203 			error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
2204 			    sizeof data);
2205 			if (error != 0)
2206 				goto done;
2207 		}
2208 	}
2209 
2210 	data = htole32((vap->iv_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
2211 	DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
2212 	error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
2213 	if (error != 0)
2214 		goto done;
2215 
2216 	error = ipw_setssid(sc, ni->ni_essid, ni->ni_esslen);
2217 	if (error != 0)
2218 		goto done;
2219 
2220 	error = ipw_setbssid(sc, ni->ni_bssid);
2221 	if (error != 0)
2222 		goto done;
2223 
2224 	if (vap->iv_appie_wpa != NULL) {
2225 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2226 		error = ipw_setwpaie(sc, ie->ie_data, ie->ie_len);
2227 		if (error != 0)
2228 			goto done;
2229 	}
2230 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2231 		error = ipw_setchannel(sc, ni->ni_chan);
2232 		if (error != 0)
2233 			goto done;
2234 	}
2235 
2236 	/* lock scan to ap's channel and enable associate */
2237 	error = ipw_setscanopts(sc,
2238 	    1<<(ieee80211_chan2ieee(ic, ni->ni_chan)-1), 0);
2239 	if (error != 0)
2240 		goto done;
2241 
2242 	error = ipw_enable(sc);		/* finally, enable adapter */
2243 	if (error == 0)
2244 		sc->flags |= IPW_FLAG_ASSOCIATING;
2245 done:
2246 	IPW_UNLOCK(sc);
2247 }
2248 
2249 static void
2250 ipw_disassoc(struct ieee80211com *ic, struct ieee80211vap *vap)
2251 {
2252 	struct ieee80211_node *ni = vap->iv_bss;
2253 	struct ipw_softc *sc = ic->ic_softc;
2254 
2255 	IPW_LOCK(sc);
2256 	DPRINTF(("Disassociate from %6D\n", ni->ni_bssid, ":"));
2257 	/*
2258 	 * NB: don't try to do this if ipw_stop_master has
2259 	 *     shutdown the firmware and disabled interrupts.
2260 	 */
2261 	if (sc->flags & IPW_FLAG_FW_INITED) {
2262 		sc->flags &= ~IPW_FLAG_ASSOCIATED;
2263 		/*
2264 		 * NB: firmware currently ignores bssid parameter, but
2265 		 *     supply it in case this changes (follow linux driver).
2266 		 */
2267 		(void) ipw_cmd(sc, IPW_CMD_DISASSOCIATE,
2268 			ni->ni_bssid, IEEE80211_ADDR_LEN);
2269 	}
2270 	IPW_UNLOCK(sc);
2271 }
2272 
2273 /*
2274  * Handler for sc_init_task.  This is a simple wrapper around ipw_init().
2275  * It is called on firmware panics or on watchdog timeouts.
2276  */
2277 static void
2278 ipw_init_task(void *context, int pending)
2279 {
2280 	ipw_init(context);
2281 }
2282 
2283 static void
2284 ipw_init(void *priv)
2285 {
2286 	struct ipw_softc *sc = priv;
2287 	struct ieee80211com *ic = &sc->sc_ic;
2288 
2289 	IPW_LOCK(sc);
2290 	ipw_init_locked(sc);
2291 	IPW_UNLOCK(sc);
2292 
2293 	if (sc->flags & IPW_FLAG_RUNNING)
2294 		ieee80211_start_all(ic);		/* start all vap's */
2295 }
2296 
2297 static void
2298 ipw_init_locked(struct ipw_softc *sc)
2299 {
2300 	struct ieee80211com *ic = &sc->sc_ic;
2301 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2302 	const struct firmware *fp;
2303 	const struct ipw_firmware_hdr *hdr;
2304 	const char *fw;
2305 
2306 	IPW_LOCK_ASSERT(sc);
2307 
2308 	DPRINTF(("%s: state %s flags 0x%x\n", __func__,
2309 		ieee80211_state_name[vap->iv_state], sc->flags));
2310 
2311 	/*
2312 	 * Avoid re-entrant calls.  We need to release the mutex in ipw_init()
2313 	 * when loading the firmware and we don't want to be called during this
2314 	 * operation.
2315 	 */
2316 	if (sc->flags & IPW_FLAG_INIT_LOCKED)
2317 		return;
2318 	sc->flags |= IPW_FLAG_INIT_LOCKED;
2319 
2320 	ipw_stop_locked(sc);
2321 
2322 	if (ipw_reset(sc) != 0) {
2323 		device_printf(sc->sc_dev, "could not reset adapter\n");
2324 		goto fail;
2325 	}
2326 
2327 	if (sc->sc_firmware == NULL) {
2328 		device_printf(sc->sc_dev, "no firmware\n");
2329 		goto fail;
2330 	}
2331 	/* NB: consistency already checked on load */
2332 	fp = sc->sc_firmware;
2333 	hdr = (const struct ipw_firmware_hdr *)fp->data;
2334 
2335 	DPRINTF(("Loading firmware image '%s'\n", fp->name));
2336 	fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz);
2337 	if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) {
2338 		device_printf(sc->sc_dev, "could not load microcode\n");
2339 		goto fail;
2340 	}
2341 
2342 	ipw_stop_master(sc);
2343 
2344 	/*
2345 	 * Setup tx, rx and status rings.
2346 	 */
2347 	sc->txold = IPW_NTBD - 1;
2348 	sc->txcur = 0;
2349 	sc->txfree = IPW_NTBD - 2;
2350 	sc->rxcur = IPW_NRBD - 1;
2351 
2352 	CSR_WRITE_4(sc, IPW_CSR_TX_BASE,  sc->tbd_phys);
2353 	CSR_WRITE_4(sc, IPW_CSR_TX_SIZE,  IPW_NTBD);
2354 	CSR_WRITE_4(sc, IPW_CSR_TX_READ,  0);
2355 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2356 
2357 	CSR_WRITE_4(sc, IPW_CSR_RX_BASE,  sc->rbd_phys);
2358 	CSR_WRITE_4(sc, IPW_CSR_RX_SIZE,  IPW_NRBD);
2359 	CSR_WRITE_4(sc, IPW_CSR_RX_READ,  0);
2360 	CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2361 
2362 	CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys);
2363 
2364 	fw = (const char *)fp->data + sizeof *hdr;
2365 	if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) {
2366 		device_printf(sc->sc_dev, "could not load firmware\n");
2367 		goto fail;
2368 	}
2369 
2370 	sc->flags |= IPW_FLAG_FW_INITED;
2371 
2372 	/* retrieve information tables base addresses */
2373 	sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2374 	sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2375 
2376 	ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2377 
2378 	if (ipw_config(sc) != 0) {
2379 		device_printf(sc->sc_dev, "device configuration failed\n");
2380 		goto fail;
2381 	}
2382 
2383 	callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc);
2384 	sc->flags |= IPW_FLAG_RUNNING;
2385 	sc->flags &= ~IPW_FLAG_INIT_LOCKED;
2386 	return;
2387 
2388 fail:
2389 	ipw_stop_locked(sc);
2390 	sc->flags &= ~IPW_FLAG_INIT_LOCKED;
2391 }
2392 
2393 static int
2394 ipw_config(struct ipw_softc *sc)
2395 {
2396 	struct ieee80211com *ic = &sc->sc_ic;
2397 	struct ipw_configuration config;
2398 	uint32_t data;
2399 	int error;
2400 
2401 	error = ipw_disable(sc);
2402 	if (error != 0)
2403 		return error;
2404 
2405 	switch (ic->ic_opmode) {
2406 	case IEEE80211_M_STA:
2407 	case IEEE80211_M_HOSTAP:
2408 	case IEEE80211_M_WDS:		/* XXX */
2409 		data = htole32(IPW_MODE_BSS);
2410 		break;
2411 	case IEEE80211_M_IBSS:
2412 	case IEEE80211_M_AHDEMO:
2413 		data = htole32(IPW_MODE_IBSS);
2414 		break;
2415 	case IEEE80211_M_MONITOR:
2416 		data = htole32(IPW_MODE_MONITOR);
2417 		break;
2418 	default:
2419 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2420 		return EINVAL;
2421 	}
2422 	DPRINTF(("Setting mode to %u\n", le32toh(data)));
2423 	error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
2424 	if (error != 0)
2425 		return error;
2426 
2427 	if (ic->ic_opmode == IEEE80211_M_IBSS ||
2428 	    ic->ic_opmode == IEEE80211_M_MONITOR) {
2429 		error = ipw_setchannel(sc, ic->ic_curchan);
2430 		if (error != 0)
2431 			return error;
2432 	}
2433 
2434 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2435 		return ipw_enable(sc);
2436 
2437 	config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
2438 	    IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
2439 	if (ic->ic_opmode == IEEE80211_M_IBSS)
2440 		config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
2441 	if (ic->ic_promisc > 0)
2442 		config.flags |= htole32(IPW_CFG_PROMISCUOUS);
2443 	config.bss_chan = htole32(0x3fff); /* channels 1-14 */
2444 	config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
2445 	DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags)));
2446 	error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
2447 	if (error != 0)
2448 		return error;
2449 
2450 	data = htole32(0xf); /* 1, 2, 5.5, 11 */
2451 	DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
2452 	error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
2453 	if (error != 0)
2454 		return error;
2455 
2456 	/* Use the same rate set */
2457 	DPRINTF(("Setting msdu tx rates to 0x%x\n", le32toh(data)));
2458 	error = ipw_cmd(sc, IPW_CMD_SET_MSDU_TX_RATES, &data, sizeof data);
2459 	if (error != 0)
2460 		return error;
2461 
2462 	/* Use the same rate set */
2463 	DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
2464 	error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
2465 	if (error != 0)
2466 		return error;
2467 
2468 	data = htole32(IPW_POWER_MODE_CAM);
2469 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2470 	error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
2471 	if (error != 0)
2472 		return error;
2473 
2474 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2475 		data = htole32(32); /* default value */
2476 		DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
2477 		error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
2478 		    sizeof data);
2479 		if (error != 0)
2480 			return error;
2481 	}
2482 
2483 	return 0;
2484 }
2485 
2486 static void
2487 ipw_stop(void *priv)
2488 {
2489 	struct ipw_softc *sc = priv;
2490 
2491 	IPW_LOCK(sc);
2492 	ipw_stop_locked(sc);
2493 	IPW_UNLOCK(sc);
2494 }
2495 
2496 static void
2497 ipw_stop_locked(struct ipw_softc *sc)
2498 {
2499 	int i;
2500 
2501 	IPW_LOCK_ASSERT(sc);
2502 
2503 	callout_stop(&sc->sc_wdtimer);
2504 	ipw_stop_master(sc);
2505 
2506 	CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2507 
2508 	/*
2509 	 * Release tx buffers.
2510 	 */
2511 	for (i = 0; i < IPW_NTBD; i++)
2512 		ipw_release_sbd(sc, &sc->stbd_list[i]);
2513 
2514 	sc->sc_tx_timer = 0;
2515 	sc->flags &= ~IPW_FLAG_RUNNING;
2516 }
2517 
2518 static int
2519 ipw_sysctl_stats(SYSCTL_HANDLER_ARGS)
2520 {
2521 	struct ipw_softc *sc = arg1;
2522 	uint32_t i, size, buf[256];
2523 
2524 	memset(buf, 0, sizeof buf);
2525 
2526 	if (!(sc->flags & IPW_FLAG_FW_INITED))
2527 		return SYSCTL_OUT(req, buf, sizeof buf);
2528 
2529 	CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
2530 
2531 	size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256);
2532 	for (i = 1; i < size; i++)
2533 		buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA));
2534 
2535 	return SYSCTL_OUT(req, buf, size);
2536 }
2537 
2538 static int
2539 ipw_sysctl_radio(SYSCTL_HANDLER_ARGS)
2540 {
2541 	struct ipw_softc *sc = arg1;
2542 	int val;
2543 
2544 	val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) &&
2545 	        (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED));
2546 
2547 	return SYSCTL_OUT(req, &val, sizeof val);
2548 }
2549 
2550 static uint32_t
2551 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
2552 {
2553 	return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
2554 }
2555 
2556 static void
2557 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
2558 {
2559 	MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
2560 }
2561 
2562 #if 0
2563 static int
2564 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
2565 {
2566 	uint32_t addr, info;
2567 	uint16_t count, size;
2568 	uint32_t total;
2569 
2570 	/* addr[4] + count[2] + size[2] */
2571 	addr = MEM_READ_4(sc, sc->table2_base + off);
2572 	info = MEM_READ_4(sc, sc->table2_base + off + 4);
2573 
2574 	count = info >> 16;
2575 	size = info & 0xffff;
2576 	total = count * size;
2577 
2578 	if (total > *len) {
2579 		*len = total;
2580 		return EINVAL;
2581 	}
2582 
2583 	*len = total;
2584 	ipw_read_mem_1(sc, addr, buf, total);
2585 
2586 	return 0;
2587 }
2588 
2589 static void
2590 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2591     bus_size_t count)
2592 {
2593 	for (; count > 0; offset++, datap++, count--) {
2594 		CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2595 		*datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2596 	}
2597 }
2598 #endif
2599 
2600 static void
2601 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap,
2602     bus_size_t count)
2603 {
2604 	for (; count > 0; offset++, datap++, count--) {
2605 		CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2606 		CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2607 	}
2608 }
2609 
2610 static void
2611 ipw_scan_start(struct ieee80211com *ic)
2612 {
2613 	struct ipw_softc *sc = ic->ic_softc;
2614 
2615 	IPW_LOCK(sc);
2616 	ipw_scan(sc);
2617 	IPW_UNLOCK(sc);
2618 }
2619 
2620 static void
2621 ipw_set_channel(struct ieee80211com *ic)
2622 {
2623 	struct ipw_softc *sc = ic->ic_softc;
2624 
2625 	IPW_LOCK(sc);
2626 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2627 		ipw_disable(sc);
2628 		ipw_setchannel(sc, ic->ic_curchan);
2629 		ipw_enable(sc);
2630 	}
2631 	IPW_UNLOCK(sc);
2632 }
2633 
2634 static void
2635 ipw_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
2636 {
2637 	/* NB: all channels are scanned at once */
2638 }
2639 
2640 static void
2641 ipw_scan_mindwell(struct ieee80211_scan_state *ss)
2642 {
2643 	/* NB: don't try to abort scan; wait for firmware to finish */
2644 }
2645 
2646 static void
2647 ipw_scan_end(struct ieee80211com *ic)
2648 {
2649 	struct ipw_softc *sc = ic->ic_softc;
2650 
2651 	IPW_LOCK(sc);
2652 	sc->flags &= ~IPW_FLAG_SCANNING;
2653 	IPW_UNLOCK(sc);
2654 }
2655