xref: /freebsd/sys/dev/ipw/if_ipw.c (revision 78007886c995898a9494648343e5236bca1cbba3)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2004-2006
5  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*-
34  * Intel(R) PRO/Wireless 2100 MiniPCI driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/linker.h>
52 #include <sys/firmware.h>
53 
54 #include <machine/bus.h>
55 #include <machine/resource.h>
56 #include <sys/rman.h>
57 
58 #include <dev/pci/pcireg.h>
59 #include <dev/pci/pcivar.h>
60 
61 #include <net/bpf.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/ethernet.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_radiotap.h>
71 
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76 #include <netinet/if_ether.h>
77 
78 #include <dev/ipw/if_ipwreg.h>
79 #include <dev/ipw/if_ipwvar.h>
80 
81 #ifdef IPW_DEBUG
82 #define DPRINTF(x)	do { if (ipw_debug > 0) printf x; } while (0)
83 #define DPRINTFN(n, x)	do { if (ipw_debug >= (n)) printf x; } while (0)
84 int ipw_debug = 0;
85 SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level");
86 #else
87 #define DPRINTF(x)
88 #define DPRINTFN(n, x)
89 #endif
90 
91 MODULE_DEPEND(ipw, pci,  1, 1, 1);
92 MODULE_DEPEND(ipw, wlan, 1, 1, 1);
93 MODULE_DEPEND(ipw, firmware, 1, 1, 1);
94 
95 struct ipw_ident {
96 	uint16_t	vendor;
97 	uint16_t	device;
98 	const char	*name;
99 };
100 
101 static const struct ipw_ident ipw_ident_table[] = {
102 	{ 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" },
103 
104 	{ 0, 0, NULL }
105 };
106 
107 static int	ipw_dma_alloc(struct ipw_softc *);
108 static void	ipw_release(struct ipw_softc *);
109 static int	ipw_media_change(struct ifnet *);
110 static void	ipw_media_status(struct ifnet *, struct ifmediareq *);
111 static int	ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
112 static uint16_t	ipw_read_prom_word(struct ipw_softc *, uint8_t);
113 static void	ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
114 static void	ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
115 static void	ipw_data_intr(struct ipw_softc *, struct ipw_status *,
116 		    struct ipw_soft_bd *, struct ipw_soft_buf *);
117 static void	ipw_rx_intr(struct ipw_softc *);
118 static void	ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
119 static void	ipw_tx_intr(struct ipw_softc *);
120 static void	ipw_intr(void *);
121 static void	ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int);
122 static int	ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
123 static int	ipw_tx_start(struct ifnet *, struct mbuf *,
124 		    struct ieee80211_node *);
125 static void	ipw_start(struct ifnet *);
126 static void	ipw_watchdog(struct ifnet *);
127 static int	ipw_ioctl(struct ifnet *, u_long, caddr_t);
128 static void	ipw_stop_master(struct ipw_softc *);
129 static int	ipw_reset(struct ipw_softc *);
130 static int	ipw_load_ucode(struct ipw_softc *, const char *, int);
131 static int	ipw_load_firmware(struct ipw_softc *, const char *, int);
132 static int	ipw_config(struct ipw_softc *);
133 static void	ipw_init_task(void *, int);
134 static void	ipw_init(void *);
135 static void	ipw_stop(void *);
136 static int	ipw_sysctl_stats(SYSCTL_HANDLER_ARGS);
137 static int	ipw_sysctl_radio(SYSCTL_HANDLER_ARGS);
138 static uint32_t	ipw_read_table1(struct ipw_softc *, uint32_t);
139 static void	ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
140 static int	ipw_read_table2(struct ipw_softc *, uint32_t, void *,
141 		    uint32_t *);
142 static void	ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
143 		    bus_size_t);
144 static void	ipw_write_mem_1(struct ipw_softc *, bus_size_t,
145 		    const uint8_t *, bus_size_t);
146 
147 static int ipw_probe(device_t);
148 static int ipw_attach(device_t);
149 static int ipw_detach(device_t);
150 static int ipw_shutdown(device_t);
151 static int ipw_suspend(device_t);
152 static int ipw_resume(device_t);
153 
154 static device_method_t ipw_methods[] = {
155 	/* Device interface */
156 	DEVMETHOD(device_probe,		ipw_probe),
157 	DEVMETHOD(device_attach,	ipw_attach),
158 	DEVMETHOD(device_detach,	ipw_detach),
159 	DEVMETHOD(device_shutdown,	ipw_shutdown),
160 	DEVMETHOD(device_suspend,	ipw_suspend),
161 	DEVMETHOD(device_resume,	ipw_resume),
162 
163 	{ 0, 0 }
164 };
165 
166 static driver_t ipw_driver = {
167 	"ipw",
168 	ipw_methods,
169 	sizeof (struct ipw_softc)
170 };
171 
172 static devclass_t ipw_devclass;
173 
174 DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, 0, 0);
175 
176 static int
177 ipw_probe(device_t dev)
178 {
179 	const struct ipw_ident *ident;
180 
181 	for (ident = ipw_ident_table; ident->name != NULL; ident++) {
182 		if (pci_get_vendor(dev) == ident->vendor &&
183 		    pci_get_device(dev) == ident->device) {
184 			device_set_desc(dev, ident->name);
185 			return 0;
186 		}
187 	}
188 	return ENXIO;
189 }
190 
191 /* Base Address Register */
192 #define IPW_PCI_BAR0	0x10
193 
194 static int
195 ipw_attach(device_t dev)
196 {
197 	struct ipw_softc *sc = device_get_softc(dev);
198 	struct ifnet *ifp;
199 	struct ieee80211com *ic = &sc->sc_ic;
200 	uint16_t val;
201 	int error, i;
202 
203 	sc->sc_dev = dev;
204 
205 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
206 	    MTX_DEF | MTX_RECURSE);
207 
208 	TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc);
209 
210 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
211 		device_printf(dev, "chip is in D%d power mode "
212 		    "-- setting to D0\n", pci_get_powerstate(dev));
213 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
214 	}
215 
216 	pci_write_config(dev, 0x41, 0, 1);
217 
218 	/* enable bus-mastering */
219 	pci_enable_busmaster(dev);
220 
221 	sc->mem_rid = IPW_PCI_BAR0;
222 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
223 	    RF_ACTIVE);
224 	if (sc->mem == NULL) {
225 		device_printf(dev, "could not allocate memory resource\n");
226 		goto fail;
227 	}
228 
229 	sc->sc_st = rman_get_bustag(sc->mem);
230 	sc->sc_sh = rman_get_bushandle(sc->mem);
231 
232 	sc->irq_rid = 0;
233 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
234 	    RF_ACTIVE | RF_SHAREABLE);
235 	if (sc->irq == NULL) {
236 		device_printf(dev, "could not allocate interrupt resource\n");
237 		goto fail;
238 	}
239 
240 	if (ipw_reset(sc) != 0) {
241 		device_printf(dev, "could not reset adapter\n");
242 		goto fail;
243 	}
244 
245 	if (ipw_dma_alloc(sc) != 0) {
246 		device_printf(dev, "could not allocate DMA resources\n");
247 		goto fail;
248 	}
249 
250 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
251 	if (ifp == NULL) {
252 		device_printf(dev, "can not if_alloc()\n");
253 		goto fail;
254 	}
255 
256 	ifp->if_softc = sc;
257 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
258 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
259 	ifp->if_init = ipw_init;
260 	ifp->if_ioctl = ipw_ioctl;
261 	ifp->if_start = ipw_start;
262 	ifp->if_watchdog = ipw_watchdog;
263 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
264 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
265 	IFQ_SET_READY(&ifp->if_snd);
266 
267 	ic->ic_ifp = ifp;
268 	ic->ic_phytype = IEEE80211_T_DS;
269 	ic->ic_opmode = IEEE80211_M_STA;
270 	ic->ic_state = IEEE80211_S_INIT;
271 
272 	/* set device capabilities */
273 	ic->ic_caps =
274 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
275 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
276 	    IEEE80211_C_TXPMGT |	/* tx power management */
277 	    IEEE80211_C_SHPREAMBLE;	/* short preamble supported */
278 
279 	/* read MAC address from EEPROM */
280 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
281 	ic->ic_myaddr[0] = val >> 8;
282 	ic->ic_myaddr[1] = val & 0xff;
283 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
284 	ic->ic_myaddr[2] = val >> 8;
285 	ic->ic_myaddr[3] = val & 0xff;
286 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
287 	ic->ic_myaddr[4] = val >> 8;
288 	ic->ic_myaddr[5] = val & 0xff;
289 
290 	/* set supported .11b channels */
291 	for (i = 1; i < 14; i++) {
292 		ic->ic_channels[i].ic_freq =
293 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
294 		ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
295 	}
296 
297 	/* check support for radio transmitter switch in EEPROM */
298 	if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
299 		sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
300 
301 	ieee80211_ifattach(ic);
302 	/* override state transition machine */
303 	sc->sc_newstate = ic->ic_newstate;
304 	ic->ic_newstate = ipw_newstate;
305 	ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
306 
307 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
308 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
309 
310 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
311 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
312 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
313 
314 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
315 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
316 	sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
317 
318 	/*
319 	 * Add a few sysctl knobs.
320 	 */
321 	sc->dwelltime = 100;
322 
323 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
324 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio",
325 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, ipw_sysctl_radio, "I",
326 	    "radio transmitter switch state (0=off, 1=on)");
327 
328 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
329 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats",
330 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, ipw_sysctl_stats, "S",
331 	    "statistics");
332 
333 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
334 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
335 	    CTLFLAG_RW, &sc->dwelltime, 0,
336 	    "channel dwell time (ms) for AP/station scanning");
337 
338 	/*
339 	 * Hook our interrupt after all initialization is complete.
340 	 */
341 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
342 	    NULL, ipw_intr, sc, &sc->sc_ih);
343 	if (error != 0) {
344 		device_printf(dev, "could not set up interrupt\n");
345 		goto fail;
346 	}
347 
348 	if (bootverbose)
349 		ieee80211_announce(ic);
350 
351 	return 0;
352 
353 fail:	ipw_detach(dev);
354 	return ENXIO;
355 }
356 
357 static int
358 ipw_detach(device_t dev)
359 {
360 	struct ipw_softc *sc = device_get_softc(dev);
361 	struct ieee80211com *ic = &sc->sc_ic;
362 	struct ifnet *ifp = ic->ic_ifp;
363 
364 	ipw_stop(sc);
365 
366 	if (ifp != NULL) {
367 		bpfdetach(ifp);
368 		ieee80211_ifdetach(ic);
369 	}
370 
371 	ipw_release(sc);
372 
373 	if (sc->irq != NULL) {
374 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
375 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
376 	}
377 
378 	if (sc->mem != NULL)
379 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
380 
381 	if (ifp != NULL)
382 		if_free(ifp);
383 
384 	if (sc->sc_firmware != NULL) {
385 		firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
386 		sc->sc_firmware = NULL;
387 	}
388 
389 	mtx_destroy(&sc->sc_mtx);
390 
391 	return 0;
392 }
393 
394 static int
395 ipw_dma_alloc(struct ipw_softc *sc)
396 {
397 	struct ipw_soft_bd *sbd;
398 	struct ipw_soft_hdr *shdr;
399 	struct ipw_soft_buf *sbuf;
400 	bus_addr_t physaddr;
401 	int error, i;
402 
403 	/*
404 	 * Allocate and map tx ring.
405 	 */
406 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
407 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL,
408 	    NULL, &sc->tbd_dmat);
409 	if (error != 0) {
410 		device_printf(sc->sc_dev, "could not create tx ring DMA tag\n");
411 		goto fail;
412 	}
413 
414 	error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list,
415 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map);
416 	if (error != 0) {
417 		device_printf(sc->sc_dev,
418 		    "could not allocate tx ring DMA memory\n");
419 		goto fail;
420 	}
421 
422 	error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list,
423 	    IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0);
424 	if (error != 0) {
425 		device_printf(sc->sc_dev, "could not map tx ring DMA memory\n");
426 		goto fail;
427 	}
428 
429 	/*
430 	 * Allocate and map rx ring.
431 	 */
432 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
433 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL,
434 	    NULL, &sc->rbd_dmat);
435 	if (error != 0) {
436 		device_printf(sc->sc_dev, "could not create rx ring DMA tag\n");
437 		goto fail;
438 	}
439 
440 	error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list,
441 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map);
442 	if (error != 0) {
443 		device_printf(sc->sc_dev,
444 		    "could not allocate rx ring DMA memory\n");
445 		goto fail;
446 	}
447 
448 	error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list,
449 	    IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0);
450 	if (error != 0) {
451 		device_printf(sc->sc_dev, "could not map rx ring DMA memory\n");
452 		goto fail;
453 	}
454 
455 	/*
456 	 * Allocate and map status ring.
457 	 */
458 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
459 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0,
460 	    NULL, NULL, &sc->status_dmat);
461 	if (error != 0) {
462 		device_printf(sc->sc_dev,
463 		    "could not create status ring DMA tag\n");
464 		goto fail;
465 	}
466 
467 	error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list,
468 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map);
469 	if (error != 0) {
470 		device_printf(sc->sc_dev,
471 		    "could not allocate status ring DMA memory\n");
472 		goto fail;
473 	}
474 
475 	error = bus_dmamap_load(sc->status_dmat, sc->status_map,
476 	    sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys,
477 	    0);
478 	if (error != 0) {
479 		device_printf(sc->sc_dev,
480 		    "could not map status ring DMA memory\n");
481 		goto fail;
482 	}
483 
484 	/*
485 	 * Allocate command DMA map.
486 	 */
487 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
488 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1,
489 	    sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat);
490 	if (error != 0) {
491 		device_printf(sc->sc_dev, "could not create command DMA tag\n");
492 		goto fail;
493 	}
494 
495 	error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map);
496 	if (error != 0) {
497 		device_printf(sc->sc_dev,
498 		    "could not create command DMA map\n");
499 		goto fail;
500 	}
501 
502 	/*
503 	 * Allocate headers DMA maps.
504 	 */
505 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
506 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1,
507 	    sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat);
508 	if (error != 0) {
509 		device_printf(sc->sc_dev, "could not create header DMA tag\n");
510 		goto fail;
511 	}
512 
513 	SLIST_INIT(&sc->free_shdr);
514 	for (i = 0; i < IPW_NDATA; i++) {
515 		shdr = &sc->shdr_list[i];
516 		error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map);
517 		if (error != 0) {
518 			device_printf(sc->sc_dev,
519 			    "could not create header DMA map\n");
520 			goto fail;
521 		}
522 		SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
523 	}
524 
525 	/*
526 	 * Allocate tx buffers DMA maps.
527 	 */
528 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
529 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0,
530 	    NULL, NULL, &sc->txbuf_dmat);
531 	if (error != 0) {
532 		device_printf(sc->sc_dev, "could not create tx DMA tag\n");
533 		goto fail;
534 	}
535 
536 	SLIST_INIT(&sc->free_sbuf);
537 	for (i = 0; i < IPW_NDATA; i++) {
538 		sbuf = &sc->tx_sbuf_list[i];
539 		error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map);
540 		if (error != 0) {
541 			device_printf(sc->sc_dev,
542 			    "could not create tx DMA map\n");
543 			goto fail;
544 		}
545 		SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
546 	}
547 
548 	/*
549 	 * Initialize tx ring.
550 	 */
551 	for (i = 0; i < IPW_NTBD; i++) {
552 		sbd = &sc->stbd_list[i];
553 		sbd->bd = &sc->tbd_list[i];
554 		sbd->type = IPW_SBD_TYPE_NOASSOC;
555 	}
556 
557 	/*
558 	 * Pre-allocate rx buffers and DMA maps.
559 	 */
560 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
561 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
562 	    NULL, &sc->rxbuf_dmat);
563 	if (error != 0) {
564 		device_printf(sc->sc_dev, "could not create rx DMA tag\n");
565 		goto fail;
566 	}
567 
568 	for (i = 0; i < IPW_NRBD; i++) {
569 		sbd = &sc->srbd_list[i];
570 		sbuf = &sc->rx_sbuf_list[i];
571 		sbd->bd = &sc->rbd_list[i];
572 
573 		sbuf->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
574 		if (sbuf->m == NULL) {
575 			device_printf(sc->sc_dev,
576 			    "could not allocate rx mbuf\n");
577 			error = ENOMEM;
578 			goto fail;
579 		}
580 
581 		error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map);
582 		if (error != 0) {
583 			device_printf(sc->sc_dev,
584 			    "could not create rx DMA map\n");
585 			goto fail;
586 		}
587 
588 		error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
589 		    mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
590 		    &physaddr, 0);
591 		if (error != 0) {
592 			device_printf(sc->sc_dev,
593 			    "could not map rx DMA memory\n");
594 			goto fail;
595 		}
596 
597 		sbd->type = IPW_SBD_TYPE_DATA;
598 		sbd->priv = sbuf;
599 		sbd->bd->physaddr = htole32(physaddr);
600 		sbd->bd->len = htole32(MCLBYTES);
601 	}
602 
603 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
604 
605 	return 0;
606 
607 fail:	ipw_release(sc);
608 	return error;
609 }
610 
611 static void
612 ipw_release(struct ipw_softc *sc)
613 {
614 	struct ipw_soft_buf *sbuf;
615 	int i;
616 
617 	if (sc->tbd_dmat != NULL) {
618 		if (sc->stbd_list != NULL) {
619 			bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map);
620 			bus_dmamem_free(sc->tbd_dmat, sc->tbd_list,
621 			    sc->tbd_map);
622 		}
623 		bus_dma_tag_destroy(sc->tbd_dmat);
624 	}
625 
626 	if (sc->rbd_dmat != NULL) {
627 		if (sc->rbd_list != NULL) {
628 			bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map);
629 			bus_dmamem_free(sc->rbd_dmat, sc->rbd_list,
630 			    sc->rbd_map);
631 		}
632 		bus_dma_tag_destroy(sc->rbd_dmat);
633 	}
634 
635 	if (sc->status_dmat != NULL) {
636 		if (sc->status_list != NULL) {
637 			bus_dmamap_unload(sc->status_dmat, sc->status_map);
638 			bus_dmamem_free(sc->status_dmat, sc->status_list,
639 			    sc->status_map);
640 		}
641 		bus_dma_tag_destroy(sc->status_dmat);
642 	}
643 
644 	for (i = 0; i < IPW_NTBD; i++)
645 		ipw_release_sbd(sc, &sc->stbd_list[i]);
646 
647 	if (sc->cmd_dmat != NULL) {
648 		bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map);
649 		bus_dma_tag_destroy(sc->cmd_dmat);
650 	}
651 
652 	if (sc->hdr_dmat != NULL) {
653 		for (i = 0; i < IPW_NDATA; i++)
654 			bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map);
655 		bus_dma_tag_destroy(sc->hdr_dmat);
656 	}
657 
658 	if (sc->txbuf_dmat != NULL) {
659 		for (i = 0; i < IPW_NDATA; i++) {
660 			bus_dmamap_destroy(sc->txbuf_dmat,
661 			    sc->tx_sbuf_list[i].map);
662 		}
663 		bus_dma_tag_destroy(sc->txbuf_dmat);
664 	}
665 
666 	if (sc->rxbuf_dmat != NULL) {
667 		for (i = 0; i < IPW_NRBD; i++) {
668 			sbuf = &sc->rx_sbuf_list[i];
669 			if (sbuf->m != NULL) {
670 				bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map,
671 				    BUS_DMASYNC_POSTREAD);
672 				bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
673 				m_freem(sbuf->m);
674 			}
675 			bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map);
676 		}
677 		bus_dma_tag_destroy(sc->rxbuf_dmat);
678 	}
679 }
680 
681 static int
682 ipw_shutdown(device_t dev)
683 {
684 	struct ipw_softc *sc = device_get_softc(dev);
685 
686 	ipw_stop(sc);
687 
688 	return 0;
689 }
690 
691 static int
692 ipw_suspend(device_t dev)
693 {
694 	struct ipw_softc *sc = device_get_softc(dev);
695 
696 	ipw_stop(sc);
697 
698 	return 0;
699 }
700 
701 static int
702 ipw_resume(device_t dev)
703 {
704 	struct ipw_softc *sc = device_get_softc(dev);
705 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
706 
707 	mtx_lock(&sc->sc_mtx);
708 
709 	pci_write_config(dev, 0x41, 0, 1);
710 
711 	if (ifp->if_flags & IFF_UP) {
712 		ifp->if_init(ifp->if_softc);
713 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
714 			ifp->if_start(ifp);
715 	}
716 
717 	mtx_unlock(&sc->sc_mtx);
718 
719 	return 0;
720 }
721 
722 static int
723 ipw_media_change(struct ifnet *ifp)
724 {
725 	struct ipw_softc *sc = ifp->if_softc;
726 	int error;
727 
728 	mtx_lock(&sc->sc_mtx);
729 
730 	error = ieee80211_media_change(ifp);
731 	if (error != ENETRESET) {
732 		mtx_unlock(&sc->sc_mtx);
733 		return error;
734 	}
735 
736 	if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
737 		ipw_init(sc);
738 
739 	mtx_unlock(&sc->sc_mtx);
740 
741 	return 0;
742 }
743 
744 /*
745  * The firmware automatically adapts the transmit speed. We report its current
746  * value here.
747  */
748 static void
749 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
750 {
751 #define N(a)	(sizeof (a) / sizeof (a[0]))
752 	struct ipw_softc *sc = ifp->if_softc;
753 	struct ieee80211com *ic = &sc->sc_ic;
754 	static const struct {
755 		uint32_t	val;
756 		int		rate;
757 	} rates[] = {
758 		{ IPW_RATE_DS1,   2 },
759 		{ IPW_RATE_DS2,   4 },
760 		{ IPW_RATE_DS5,  11 },
761 		{ IPW_RATE_DS11, 22 },
762 	};
763 	uint32_t val;
764 	int rate, i;
765 
766 	imr->ifm_status = IFM_AVALID;
767 	imr->ifm_active = IFM_IEEE80211;
768 	if (ic->ic_state == IEEE80211_S_RUN)
769 		imr->ifm_status |= IFM_ACTIVE;
770 
771 	/* read current transmission rate from adapter */
772 	val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
773 
774 	/* convert ipw rate to 802.11 rate */
775 	for (i = 0; i < N(rates) && rates[i].val != val; i++);
776 	rate = (i < N(rates)) ? rates[i].rate : 0;
777 
778 	imr->ifm_active |= IFM_IEEE80211_11B;
779 	imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
780 	switch (ic->ic_opmode) {
781 	case IEEE80211_M_STA:
782 		break;
783 
784 	case IEEE80211_M_IBSS:
785 		imr->ifm_active |= IFM_IEEE80211_IBSS;
786 		break;
787 
788 	case IEEE80211_M_MONITOR:
789 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
790 		break;
791 
792 	case IEEE80211_M_AHDEMO:
793 	case IEEE80211_M_HOSTAP:
794 		/* should not get there */
795 		break;
796 	}
797 #undef N
798 }
799 
800 static int
801 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
802 {
803 	struct ifnet *ifp = ic->ic_ifp;
804 	struct ipw_softc *sc = ifp->if_softc;
805 	struct ieee80211_node *ni;
806 	uint8_t macaddr[IEEE80211_ADDR_LEN];
807 	uint32_t len;
808 
809 	switch (nstate) {
810 	case IEEE80211_S_RUN:
811 		DELAY(200); /* firmware needs a short delay here */
812 
813 		len = IEEE80211_ADDR_LEN;
814 		ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
815 
816 		ni = ieee80211_find_node(&ic->ic_scan, macaddr);
817 		if (ni == NULL)
818 			break;
819 
820 		ieee80211_ref_node(ni);
821 		ieee80211_sta_join(ic, ni);
822 		ieee80211_node_authorize(ni);
823 
824 		if (ic->ic_opmode == IEEE80211_M_STA)
825 			ieee80211_notify_node_join(ic, ni, 1);
826 		break;
827 
828 	case IEEE80211_S_INIT:
829 	case IEEE80211_S_SCAN:
830 	case IEEE80211_S_AUTH:
831 	case IEEE80211_S_ASSOC:
832 		break;
833 	}
834 
835 	ic->ic_state = nstate;
836 
837 	return 0;
838 }
839 
840 /*
841  * Read 16 bits at address 'addr' from the serial EEPROM.
842  */
843 static uint16_t
844 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
845 {
846 	uint32_t tmp;
847 	uint16_t val;
848 	int n;
849 
850 	/* clock C once before the first command */
851 	IPW_EEPROM_CTL(sc, 0);
852 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
853 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
854 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
855 
856 	/* write start bit (1) */
857 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
858 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
859 
860 	/* write READ opcode (10) */
861 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
862 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
863 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
864 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
865 
866 	/* write address A7-A0 */
867 	for (n = 7; n >= 0; n--) {
868 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
869 		    (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
870 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
871 		    (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
872 	}
873 
874 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
875 
876 	/* read data Q15-Q0 */
877 	val = 0;
878 	for (n = 15; n >= 0; n--) {
879 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
880 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
881 		tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
882 		val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
883 	}
884 
885 	IPW_EEPROM_CTL(sc, 0);
886 
887 	/* clear Chip Select and clock C */
888 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
889 	IPW_EEPROM_CTL(sc, 0);
890 	IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
891 
892 	return le16toh(val);
893 }
894 
895 static void
896 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
897 {
898 	struct ipw_cmd *cmd;
899 
900 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
901 
902 	cmd = mtod(sbuf->m, struct ipw_cmd *);
903 
904 	DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
905 	    le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
906 	    le32toh(cmd->status)));
907 
908 	wakeup(sc);
909 }
910 
911 static void
912 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
913 {
914 	struct ieee80211com *ic = &sc->sc_ic;
915 	uint32_t state;
916 
917 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
918 
919 	state = le32toh(*mtod(sbuf->m, uint32_t *));
920 
921 	DPRINTFN(2, ("entering state %u\n", state));
922 
923 	switch (state) {
924 	case IPW_STATE_ASSOCIATED:
925 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
926 		break;
927 
928 	case IPW_STATE_SCANNING:
929 		/* don't leave run state on background scan */
930 		if (ic->ic_state != IEEE80211_S_RUN)
931 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
932 
933 		ic->ic_flags |= IEEE80211_F_SCAN;
934 		break;
935 
936 	case IPW_STATE_SCAN_COMPLETE:
937 		ieee80211_notify_scan_done(ic);
938 		ic->ic_flags &= ~IEEE80211_F_SCAN;
939 		break;
940 
941 	case IPW_STATE_ASSOCIATION_LOST:
942 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
943 		break;
944 
945 	case IPW_STATE_RADIO_DISABLED:
946 		ic->ic_ifp->if_flags &= ~IFF_UP;
947 		ipw_stop(sc);
948 		break;
949 	}
950 }
951 
952 /*
953  * XXX: Hack to set the current channel to the value advertised in beacons or
954  * probe responses. Only used during AP detection.
955  */
956 static void
957 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
958 {
959 	struct ieee80211_frame *wh;
960 	uint8_t subtype;
961 	uint8_t *frm, *efrm;
962 
963 	wh = mtod(m, struct ieee80211_frame *);
964 
965 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
966 		return;
967 
968 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
969 
970 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
971 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
972 		return;
973 
974 	frm = (uint8_t *)(wh + 1);
975 	efrm = mtod(m, uint8_t *) + m->m_len;
976 
977 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
978 	while (frm < efrm) {
979 		if (*frm == IEEE80211_ELEMID_DSPARMS)
980 #if IEEE80211_CHAN_MAX < 255
981 		if (frm[2] <= IEEE80211_CHAN_MAX)
982 #endif
983 			ic->ic_curchan = &ic->ic_channels[frm[2]];
984 
985 		frm += frm[1] + 2;
986 	}
987 }
988 
989 static void
990 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
991     struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
992 {
993 	struct ieee80211com *ic = &sc->sc_ic;
994 	struct ifnet *ifp = ic->ic_ifp;
995 	struct mbuf *mnew, *m;
996 	struct ieee80211_frame *wh;
997 	struct ieee80211_node *ni;
998 	bus_addr_t physaddr;
999 	int error;
1000 
1001 	DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
1002 	    status->rssi));
1003 
1004 	if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
1005 	    le32toh(status->len) > MCLBYTES)
1006 		return;
1007 
1008 	/*
1009 	 * Try to allocate a new mbuf for this ring element and load it before
1010 	 * processing the current mbuf. If the ring element cannot be loaded,
1011 	 * drop the received packet and reuse the old mbuf. In the unlikely
1012 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1013 	 */
1014 	mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1015 	if (mnew == NULL) {
1016 		ifp->if_ierrors++;
1017 		return;
1018 	}
1019 
1020 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
1021 	bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
1022 
1023 	error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *),
1024 	    MCLBYTES, ipw_dma_map_addr, &physaddr, 0);
1025 	if (error != 0) {
1026 		m_freem(mnew);
1027 
1028 		/* try to reload the old mbuf */
1029 		error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
1030 		    mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
1031 		    &physaddr, 0);
1032 		if (error != 0) {
1033 			/* very unlikely that it will fail... */
1034 			panic("%s: could not load old rx mbuf",
1035 			    device_get_name(sc->sc_dev));
1036 		}
1037 		ifp->if_ierrors++;
1038 		return;
1039 	}
1040 
1041 	/*
1042 	 * New mbuf successfully loaded, update Rx ring and continue
1043 	 * processing.
1044 	 */
1045 	m = sbuf->m;
1046 	sbuf->m = mnew;
1047 	sbd->bd->physaddr = htole32(physaddr);
1048 
1049 	/* finalize mbuf */
1050 	m->m_pkthdr.rcvif = ifp;
1051 	m->m_pkthdr.len = m->m_len = le32toh(status->len);
1052 
1053 	if (bpf_peers_present(sc->sc_drvbpf)) {
1054 		struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1055 
1056 		tap->wr_flags = 0;
1057 		tap->wr_antsignal = status->rssi;
1058 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1059 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1060 
1061 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1062 	}
1063 
1064 	if (ic->ic_state == IEEE80211_S_SCAN)
1065 		ipw_fix_channel(ic, m);
1066 
1067 	wh = mtod(m, struct ieee80211_frame *);
1068 	mtx_unlock(&sc->sc_mtx);
1069 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1070 
1071 	/* send the frame to the 802.11 layer */
1072 	ieee80211_input(ic, m, ni, status->rssi, 0);
1073 
1074 	/* node is no longer needed */
1075 	ieee80211_free_node(ni);
1076 	mtx_lock(&sc->sc_mtx);
1077 
1078 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
1079 }
1080 
1081 static void
1082 ipw_rx_intr(struct ipw_softc *sc)
1083 {
1084 	struct ipw_status *status;
1085 	struct ipw_soft_bd *sbd;
1086 	struct ipw_soft_buf *sbuf;
1087 	uint32_t r, i;
1088 
1089 	if (!(sc->flags & IPW_FLAG_FW_INITED))
1090 		return;
1091 
1092 	r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1093 
1094 	bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD);
1095 
1096 	for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1097 		status = &sc->status_list[i];
1098 		sbd = &sc->srbd_list[i];
1099 		sbuf = sbd->priv;
1100 
1101 		switch (le16toh(status->code) & 0xf) {
1102 		case IPW_STATUS_CODE_COMMAND:
1103 			ipw_command_intr(sc, sbuf);
1104 			break;
1105 
1106 		case IPW_STATUS_CODE_NEWSTATE:
1107 			ipw_newstate_intr(sc, sbuf);
1108 			break;
1109 
1110 		case IPW_STATUS_CODE_DATA_802_3:
1111 		case IPW_STATUS_CODE_DATA_802_11:
1112 			ipw_data_intr(sc, status, sbd, sbuf);
1113 			break;
1114 
1115 		case IPW_STATUS_CODE_NOTIFICATION:
1116 			DPRINTFN(2, ("received notification\n"));
1117 			break;
1118 
1119 		default:
1120 			device_printf(sc->sc_dev, "unknown status code %u\n",
1121 			    le16toh(status->code));
1122 		}
1123 
1124 		/* firmware was killed, stop processing received frames */
1125 		if (!(sc->flags & IPW_FLAG_FW_INITED))
1126 			return;
1127 
1128 		sbd->bd->flags = 0;
1129 	}
1130 
1131 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
1132 
1133 	/* kick the firmware */
1134 	sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1135 	CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1136 }
1137 
1138 static void
1139 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1140 {
1141 	struct ipw_soft_hdr *shdr;
1142 	struct ipw_soft_buf *sbuf;
1143 
1144 	switch (sbd->type) {
1145 	case IPW_SBD_TYPE_COMMAND:
1146 		bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map,
1147 		    BUS_DMASYNC_POSTWRITE);
1148 		bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map);
1149 		break;
1150 
1151 	case IPW_SBD_TYPE_HEADER:
1152 		shdr = sbd->priv;
1153 		bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE);
1154 		bus_dmamap_unload(sc->hdr_dmat, shdr->map);
1155 		SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
1156 		break;
1157 
1158 	case IPW_SBD_TYPE_DATA:
1159 		sbuf = sbd->priv;
1160 		bus_dmamap_sync(sc->txbuf_dmat, sbuf->map,
1161 		    BUS_DMASYNC_POSTWRITE);
1162 		bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
1163 		SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
1164 
1165 		m_freem(sbuf->m);
1166 		ieee80211_free_node(sbuf->ni);
1167 
1168 		sc->sc_tx_timer = 0;
1169 		break;
1170 	}
1171 
1172 	sbd->type = IPW_SBD_TYPE_NOASSOC;
1173 }
1174 
1175 static void
1176 ipw_tx_intr(struct ipw_softc *sc)
1177 {
1178 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1179 	struct ipw_soft_bd *sbd;
1180 	uint32_t r, i;
1181 
1182 	if (!(sc->flags & IPW_FLAG_FW_INITED))
1183 		return;
1184 
1185 	r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1186 
1187 	for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1188 		sbd = &sc->stbd_list[i];
1189 
1190 		if (sbd->type == IPW_SBD_TYPE_DATA)
1191 			ifp->if_opackets++;
1192 
1193 		ipw_release_sbd(sc, sbd);
1194 		sc->txfree++;
1195 	}
1196 
1197 	/* remember what the firmware has processed */
1198 	sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1199 
1200 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1201 	ipw_start(ifp);
1202 }
1203 
1204 static void
1205 ipw_intr(void *arg)
1206 {
1207 	struct ipw_softc *sc = arg;
1208 	uint32_t r;
1209 
1210 	mtx_lock(&sc->sc_mtx);
1211 
1212 	if ((r = CSR_READ_4(sc, IPW_CSR_INTR)) == 0 || r == 0xffffffff) {
1213 		mtx_unlock(&sc->sc_mtx);
1214 		return;
1215 	}
1216 
1217 	/* disable interrupts */
1218 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1219 
1220 	/* acknowledge all interrupts */
1221 	CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1222 
1223 	if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1224 		device_printf(sc->sc_dev, "firmware error\n");
1225 		taskqueue_enqueue_fast(taskqueue_fast, &sc->sc_init_task);
1226 		r = 0;	/* don't process more interrupts */
1227 	}
1228 
1229 	if (r & IPW_INTR_FW_INIT_DONE)
1230 		wakeup(sc);
1231 
1232 	if (r & IPW_INTR_RX_TRANSFER)
1233 		ipw_rx_intr(sc);
1234 
1235 	if (r & IPW_INTR_TX_TRANSFER)
1236 		ipw_tx_intr(sc);
1237 
1238 	/* re-enable interrupts */
1239 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1240 
1241 	mtx_unlock(&sc->sc_mtx);
1242 }
1243 
1244 static void
1245 ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1246 {
1247 	if (error != 0)
1248 		return;
1249 
1250 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1251 
1252 	*(bus_addr_t *)arg = segs[0].ds_addr;
1253 }
1254 
1255 /*
1256  * Send a command to the firmware and wait for the acknowledgement.
1257  */
1258 static int
1259 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1260 {
1261 	struct ipw_soft_bd *sbd;
1262 	bus_addr_t physaddr;
1263 	int error;
1264 
1265 	sbd = &sc->stbd_list[sc->txcur];
1266 
1267 	error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd,
1268 	    sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0);
1269 	if (error != 0) {
1270 		device_printf(sc->sc_dev, "could not map command DMA memory\n");
1271 		return error;
1272 	}
1273 
1274 	sc->cmd.type = htole32(type);
1275 	sc->cmd.subtype = 0;
1276 	sc->cmd.len = htole32(len);
1277 	sc->cmd.seq = 0;
1278 	memcpy(sc->cmd.data, data, len);
1279 
1280 	sbd->type = IPW_SBD_TYPE_COMMAND;
1281 	sbd->bd->physaddr = htole32(physaddr);
1282 	sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1283 	sbd->bd->nfrag = 1;
1284 	sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1285 	    IPW_BD_FLAG_TX_LAST_FRAGMENT;
1286 
1287 	bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE);
1288 	bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
1289 
1290 	DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
1291 
1292 	/* kick firmware */
1293 	sc->txfree--;
1294 	sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1295 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1296 
1297 	/* wait at most one second for command to complete */
1298 	return msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz);
1299 }
1300 
1301 static int
1302 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
1303 {
1304 	struct ipw_softc *sc = ifp->if_softc;
1305 	struct ieee80211com *ic = &sc->sc_ic;
1306 	struct ieee80211_frame *wh;
1307 	struct ipw_soft_bd *sbd;
1308 	struct ipw_soft_hdr *shdr;
1309 	struct ipw_soft_buf *sbuf;
1310 	struct ieee80211_key *k;
1311 	struct mbuf *mnew;
1312 	bus_dma_segment_t segs[IPW_MAX_NSEG];
1313 	bus_addr_t physaddr;
1314 	int nsegs, error, i;
1315 
1316 	wh = mtod(m0, struct ieee80211_frame *);
1317 
1318 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1319 		k = ieee80211_crypto_encap(ic, ni, m0);
1320 		if (k == NULL) {
1321 			m_freem(m0);
1322 			return ENOBUFS;
1323 		}
1324 
1325 		/* packet header may have moved, reset our local pointer */
1326 		wh = mtod(m0, struct ieee80211_frame *);
1327 	}
1328 
1329 	if (bpf_peers_present(sc->sc_drvbpf)) {
1330 		struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1331 
1332 		tap->wt_flags = 0;
1333 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1334 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1335 
1336 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1337 	}
1338 
1339 	shdr = SLIST_FIRST(&sc->free_shdr);
1340 	sbuf = SLIST_FIRST(&sc->free_sbuf);
1341 	KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool"));
1342 
1343 	shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND);
1344 	shdr->hdr.subtype = 0;
1345 	shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
1346 	shdr->hdr.encrypt = 0;
1347 	shdr->hdr.keyidx = 0;
1348 	shdr->hdr.keysz = 0;
1349 	shdr->hdr.fragmentsz = 0;
1350 	IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2);
1351 	if (ic->ic_opmode == IEEE80211_M_STA)
1352 		IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3);
1353 	else
1354 		IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1);
1355 
1356 	/* trim IEEE802.11 header */
1357 	m_adj(m0, sizeof (struct ieee80211_frame));
1358 
1359 	error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs,
1360 	    &nsegs, 0);
1361 	if (error != 0 && error != EFBIG) {
1362 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1363 		    error);
1364 		m_freem(m0);
1365 		return error;
1366 	}
1367 	if (error != 0) {
1368 		mnew = m_defrag(m0, M_DONTWAIT);
1369 		if (mnew == NULL) {
1370 			device_printf(sc->sc_dev,
1371 			    "could not defragment mbuf\n");
1372 			m_freem(m0);
1373 			return ENOBUFS;
1374 		}
1375 		m0 = mnew;
1376 
1377 		error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0,
1378 		    segs, &nsegs, 0);
1379 		if (error != 0) {
1380 			device_printf(sc->sc_dev,
1381 			    "could not map mbuf (error %d)\n", error);
1382 			m_freem(m0);
1383 			return error;
1384 		}
1385 	}
1386 
1387 	error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr,
1388 	    sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0);
1389 	if (error != 0) {
1390 		device_printf(sc->sc_dev, "could not map header DMA memory\n");
1391 		bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
1392 		m_freem(m0);
1393 		return error;
1394 	}
1395 
1396 	SLIST_REMOVE_HEAD(&sc->free_sbuf, next);
1397 	SLIST_REMOVE_HEAD(&sc->free_shdr, next);
1398 
1399 	sbd = &sc->stbd_list[sc->txcur];
1400 	sbd->type = IPW_SBD_TYPE_HEADER;
1401 	sbd->priv = shdr;
1402 	sbd->bd->physaddr = htole32(physaddr);
1403 	sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1404 	sbd->bd->nfrag = 1 + nsegs;
1405 	sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1406 	    IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1407 
1408 	DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n",
1409 	    shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted,
1410 	    shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr,
1411 	    ":"));
1412 
1413 	sc->txfree--;
1414 	sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1415 
1416 	sbuf->m = m0;
1417 	sbuf->ni = ni;
1418 
1419 	for (i = 0; i < nsegs; i++) {
1420 		sbd = &sc->stbd_list[sc->txcur];
1421 
1422 		sbd->bd->physaddr = htole32(segs[i].ds_addr);
1423 		sbd->bd->len = htole32(segs[i].ds_len);
1424 		sbd->bd->nfrag = 0;
1425 		sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1426 		if (i == nsegs - 1) {
1427 			sbd->type = IPW_SBD_TYPE_DATA;
1428 			sbd->priv = sbuf;
1429 			sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1430 		} else {
1431 			sbd->type = IPW_SBD_TYPE_NOASSOC;
1432 			sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1433 		}
1434 
1435 		DPRINTFN(5, ("sending fragment (%d, %d)\n", i, segs[i].ds_len));
1436 
1437 		sc->txfree--;
1438 		sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1439 	}
1440 
1441 	bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE);
1442 	bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE);
1443 	bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
1444 
1445 	/* kick firmware */
1446 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1447 
1448 	return 0;
1449 }
1450 
1451 static void
1452 ipw_start(struct ifnet *ifp)
1453 {
1454 	struct ipw_softc *sc = ifp->if_softc;
1455 	struct ieee80211com *ic = &sc->sc_ic;
1456 	struct mbuf *m0;
1457 	struct ether_header *eh;
1458 	struct ieee80211_node *ni;
1459 
1460 	mtx_lock(&sc->sc_mtx);
1461 
1462 	if (ic->ic_state != IEEE80211_S_RUN) {
1463 		mtx_unlock(&sc->sc_mtx);
1464 		return;
1465 	}
1466 
1467 	for (;;) {
1468 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1469 		if (m0 == NULL)
1470 			break;
1471 
1472 		if (sc->txfree < 1 + IPW_MAX_NSEG) {
1473 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1474 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1475 			break;
1476 		}
1477 
1478 		if (m0->m_len < sizeof (struct ether_header) &&
1479 		    (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
1480 			continue;
1481 
1482 		eh = mtod(m0, struct ether_header *);
1483 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1484 		if (ni == NULL) {
1485 			m_freem(m0);
1486 			continue;
1487 		}
1488 		BPF_MTAP(ifp, m0);
1489 
1490 		m0 = ieee80211_encap(ic, m0, ni);
1491 		if (m0 == NULL) {
1492 			ieee80211_free_node(ni);
1493 			continue;
1494 		}
1495 
1496 		if (bpf_peers_present(ic->ic_rawbpf))
1497 			bpf_mtap(ic->ic_rawbpf, m0);
1498 
1499 		if (ipw_tx_start(ifp, m0, ni) != 0) {
1500 			ieee80211_free_node(ni);
1501 			ifp->if_oerrors++;
1502 			break;
1503 		}
1504 
1505 		/* start watchdog timer */
1506 		sc->sc_tx_timer = 5;
1507 		ifp->if_timer = 1;
1508 	}
1509 
1510 	mtx_unlock(&sc->sc_mtx);
1511 }
1512 
1513 static void
1514 ipw_watchdog(struct ifnet *ifp)
1515 {
1516 	struct ipw_softc *sc = ifp->if_softc;
1517 	struct ieee80211com *ic = &sc->sc_ic;
1518 
1519 	mtx_lock(&sc->sc_mtx);
1520 
1521 	ifp->if_timer = 0;
1522 
1523 	if (sc->sc_tx_timer > 0) {
1524 		if (--sc->sc_tx_timer == 0) {
1525 			if_printf(ifp, "device timeout\n");
1526 			ifp->if_oerrors++;
1527 			taskqueue_enqueue_fast(taskqueue_fast,
1528 			    &sc->sc_init_task);
1529 			mtx_unlock(&sc->sc_mtx);
1530 			return;
1531 		}
1532 		ifp->if_timer = 1;
1533 	}
1534 
1535 	ieee80211_watchdog(ic);
1536 
1537 	mtx_unlock(&sc->sc_mtx);
1538 }
1539 
1540 static int
1541 ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1542 {
1543 	struct ipw_softc *sc = ifp->if_softc;
1544 	struct ieee80211com *ic = &sc->sc_ic;
1545 	int error = 0;
1546 
1547 	mtx_lock(&sc->sc_mtx);
1548 
1549 	switch (cmd) {
1550 	case SIOCSIFFLAGS:
1551 		if (ifp->if_flags & IFF_UP) {
1552 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1553 				ipw_init(sc);
1554 		} else {
1555 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1556 				ipw_stop(sc);
1557 		}
1558 		break;
1559 
1560 	default:
1561 		error = ieee80211_ioctl(ic, cmd, data);
1562 	}
1563 
1564 	if (error == ENETRESET) {
1565 		if ((ifp->if_flags & IFF_UP) &&
1566 		    (ifp->if_drv_flags & IFF_DRV_RUNNING))
1567 			ipw_init(sc);
1568 		error = 0;
1569 	}
1570 
1571 	mtx_unlock(&sc->sc_mtx);
1572 
1573 	return error;
1574 }
1575 
1576 static void
1577 ipw_stop_master(struct ipw_softc *sc)
1578 {
1579 	uint32_t tmp;
1580 	int ntries;
1581 
1582 	/* disable interrupts */
1583 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1584 
1585 	CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1586 	for (ntries = 0; ntries < 50; ntries++) {
1587 		if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1588 			break;
1589 		DELAY(10);
1590 	}
1591 	if (ntries == 50)
1592 		device_printf(sc->sc_dev, "timeout waiting for master\n");
1593 
1594 	tmp = CSR_READ_4(sc, IPW_CSR_RST);
1595 	CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET);
1596 
1597 	sc->flags &= ~IPW_FLAG_FW_INITED;
1598 }
1599 
1600 static int
1601 ipw_reset(struct ipw_softc *sc)
1602 {
1603 	uint32_t tmp;
1604 	int ntries;
1605 
1606 	ipw_stop_master(sc);
1607 
1608 	/* move adapter to D0 state */
1609 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1610 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
1611 
1612 	/* wait for clock stabilization */
1613 	for (ntries = 0; ntries < 1000; ntries++) {
1614 		if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1615 			break;
1616 		DELAY(200);
1617 	}
1618 	if (ntries == 1000)
1619 		return EIO;
1620 
1621 	tmp =  CSR_READ_4(sc, IPW_CSR_RST);
1622 	CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET);
1623 
1624 	DELAY(10);
1625 
1626 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1627 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
1628 
1629 	return 0;
1630 }
1631 
1632 /*
1633  * Upload the microcode to the device.
1634  */
1635 static int
1636 ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size)
1637 {
1638 	int ntries;
1639 
1640 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1641 	CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1642 
1643 	MEM_WRITE_2(sc, 0x220000, 0x0703);
1644 	MEM_WRITE_2(sc, 0x220000, 0x0707);
1645 
1646 	MEM_WRITE_1(sc, 0x210014, 0x72);
1647 	MEM_WRITE_1(sc, 0x210014, 0x72);
1648 
1649 	MEM_WRITE_1(sc, 0x210000, 0x40);
1650 	MEM_WRITE_1(sc, 0x210000, 0x00);
1651 	MEM_WRITE_1(sc, 0x210000, 0x40);
1652 
1653 	MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1654 
1655 	MEM_WRITE_1(sc, 0x210000, 0x00);
1656 	MEM_WRITE_1(sc, 0x210000, 0x00);
1657 	MEM_WRITE_1(sc, 0x210000, 0x80);
1658 
1659 	MEM_WRITE_2(sc, 0x220000, 0x0703);
1660 	MEM_WRITE_2(sc, 0x220000, 0x0707);
1661 
1662 	MEM_WRITE_1(sc, 0x210014, 0x72);
1663 	MEM_WRITE_1(sc, 0x210014, 0x72);
1664 
1665 	MEM_WRITE_1(sc, 0x210000, 0x00);
1666 	MEM_WRITE_1(sc, 0x210000, 0x80);
1667 
1668 	for (ntries = 0; ntries < 10; ntries++) {
1669 		if (MEM_READ_1(sc, 0x210000) & 1)
1670 			break;
1671 		DELAY(10);
1672 	}
1673 	if (ntries == 10) {
1674 		device_printf(sc->sc_dev,
1675 		    "timeout waiting for ucode to initialize\n");
1676 		return EIO;
1677 	}
1678 
1679 	MEM_WRITE_4(sc, 0x3000e0, 0);
1680 
1681 	return 0;
1682 }
1683 
1684 /* set of macros to handle unaligned little endian data in firmware image */
1685 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1686 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1687 static int
1688 ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size)
1689 {
1690 	const uint8_t *p, *end;
1691 	uint32_t tmp, dst;
1692 	uint16_t len;
1693 	int error;
1694 
1695 	p = fw;
1696 	end = fw + size;
1697 	while (p < end) {
1698 		dst = GETLE32(p); p += 4;
1699 		len = GETLE16(p); p += 2;
1700 
1701 		ipw_write_mem_1(sc, dst, p, len);
1702 		p += len;
1703 	}
1704 
1705 	CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1706 	    IPW_IO_LED_OFF);
1707 
1708 	/* enable interrupts */
1709 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1710 
1711 	/* kick the firmware */
1712 	CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1713 
1714 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1715 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY);
1716 
1717 	/* wait at most one second for firmware initialization to complete */
1718 	if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) {
1719 		device_printf(sc->sc_dev, "timeout waiting for firmware "
1720 		    "initialization to complete\n");
1721 		return error;
1722 	}
1723 
1724 	tmp = CSR_READ_4(sc, IPW_CSR_IO);
1725 	CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK |
1726 	    IPW_IO_GPIO3_MASK);
1727 
1728 	return 0;
1729 }
1730 
1731 static int
1732 ipw_config(struct ipw_softc *sc)
1733 {
1734 	struct ieee80211com *ic = &sc->sc_ic;
1735 	struct ifnet *ifp = ic->ic_ifp;
1736 	struct ipw_security security;
1737 	struct ieee80211_key *k;
1738 	struct ipw_wep_key wepkey;
1739 	struct ipw_scan_options options;
1740 	struct ipw_configuration config;
1741 	uint32_t data;
1742 	int error, i;
1743 
1744 	switch (ic->ic_opmode) {
1745 	case IEEE80211_M_STA:
1746 	case IEEE80211_M_HOSTAP:
1747 		data = htole32(IPW_MODE_BSS);
1748 		break;
1749 	case IEEE80211_M_IBSS:
1750 	case IEEE80211_M_AHDEMO:
1751 		data = htole32(IPW_MODE_IBSS);
1752 		break;
1753 	case IEEE80211_M_MONITOR:
1754 		data = htole32(IPW_MODE_MONITOR);
1755 		break;
1756 	}
1757 	DPRINTF(("Setting mode to %u\n", le32toh(data)));
1758 	error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
1759 	if (error != 0)
1760 		return error;
1761 
1762 	if (ic->ic_opmode == IEEE80211_M_IBSS ||
1763 	    ic->ic_opmode == IEEE80211_M_MONITOR) {
1764 		data = htole32(ieee80211_chan2ieee(ic, ic->ic_curchan));
1765 		DPRINTF(("Setting channel to %u\n", le32toh(data)));
1766 		error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
1767 		if (error != 0)
1768 			return error;
1769 	}
1770 
1771 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1772 		DPRINTF(("Enabling adapter\n"));
1773 		return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1774 	}
1775 
1776 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1777 	DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":"));
1778 	error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
1779 	    IEEE80211_ADDR_LEN);
1780 	if (error != 0)
1781 		return error;
1782 
1783 	config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
1784 	    IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
1785 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1786 		config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
1787 	if (ifp->if_flags & IFF_PROMISC)
1788 		config.flags |= htole32(IPW_CFG_PROMISCUOUS);
1789 	config.bss_chan = htole32(0x3fff); /* channels 1-14 */
1790 	config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
1791 	DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags)));
1792 	error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
1793 	if (error != 0)
1794 		return error;
1795 
1796 	data = htole32(0x3); /* 1, 2 */
1797 	DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
1798 	error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
1799 	if (error != 0)
1800 		return error;
1801 
1802 	data = htole32(0xf); /* 1, 2, 5.5, 11 */
1803 	DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
1804 	error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
1805 	if (error != 0)
1806 		return error;
1807 
1808 	data = htole32(IPW_POWER_MODE_CAM);
1809 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
1810 	error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
1811 	if (error != 0)
1812 		return error;
1813 
1814 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1815 		data = htole32(32); /* default value */
1816 		DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
1817 		error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
1818 		    sizeof data);
1819 		if (error != 0)
1820 			return error;
1821 	}
1822 
1823 	data = htole32(ic->ic_rtsthreshold);
1824 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
1825 	error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
1826 	if (error != 0)
1827 		return error;
1828 
1829 	data = htole32(ic->ic_fragthreshold);
1830 	DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
1831 	error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
1832 	if (error != 0)
1833 		return error;
1834 
1835 #ifdef IPW_DEBUG
1836 	if (ipw_debug > 0) {
1837 		printf("Setting ESSID to ");
1838 		ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
1839 		printf("\n");
1840 	}
1841 #endif
1842 	error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
1843 	    ic->ic_des_esslen);
1844 	if (error != 0)
1845 		return error;
1846 
1847 	/* no mandatory BSSID */
1848 	DPRINTF(("Setting mandatory BSSID to null\n"));
1849 	error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
1850 	if (error != 0)
1851 		return error;
1852 
1853 	if (ic->ic_flags & IEEE80211_F_DESBSSID) {
1854 		DPRINTF(("Setting desired BSSID to %6D\n", ic->ic_des_bssid,
1855 		    ":"));
1856 		error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
1857 		    ic->ic_des_bssid, IEEE80211_ADDR_LEN);
1858 		if (error != 0)
1859 			return error;
1860 	}
1861 
1862 	memset(&security, 0, sizeof security);
1863 	security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
1864 	    IPW_AUTH_SHARED : IPW_AUTH_OPEN;
1865 	security.ciphers = htole32(IPW_CIPHER_NONE);
1866 	DPRINTF(("Setting authmode to %u\n", security.authmode));
1867 	error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
1868 	    sizeof security);
1869 	if (error != 0)
1870 		return error;
1871 
1872 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
1873 		k = ic->ic_crypto.cs_nw_keys;
1874 		for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
1875 			if (k->wk_keylen == 0)
1876 				continue;
1877 
1878 			wepkey.idx = i;
1879 			wepkey.len = k->wk_keylen;
1880 			memset(wepkey.key, 0, sizeof wepkey.key);
1881 			memcpy(wepkey.key, k->wk_key, k->wk_keylen);
1882 			DPRINTF(("Setting wep key index %u len %u\n",
1883 			    wepkey.idx, wepkey.len));
1884 			error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
1885 			    sizeof wepkey);
1886 			if (error != 0)
1887 				return error;
1888 		}
1889 
1890 		data = htole32(ic->ic_crypto.cs_def_txkey);
1891 		DPRINTF(("Setting wep tx key index to %u\n", le32toh(data)));
1892 		error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
1893 		    sizeof data);
1894 		if (error != 0)
1895 			return error;
1896 	}
1897 
1898 	data = htole32((ic->ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
1899 	DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
1900 	error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
1901 	if (error != 0)
1902 		return error;
1903 
1904 #if 0
1905 	struct ipw_wpa_ie ie;
1906 
1907 	memset(&ie, 0, sizeof ie);
1908 	ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
1909 	DPRINTF(("Setting wpa ie\n"));
1910 	error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
1911 	if (error != 0)
1912 		return error;
1913 #endif
1914 
1915 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1916 		data = htole32(ic->ic_bintval);
1917 		DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
1918 		error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
1919 		    sizeof data);
1920 		if (error != 0)
1921 			return error;
1922 	}
1923 
1924 	options.flags = 0;
1925 	options.channels = htole32(0x3fff); /* scan channels 1-14 */
1926 	DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
1927 	error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
1928 	if (error != 0)
1929 		return error;
1930 
1931 	/* finally, enable adapter (start scanning for an access point) */
1932 	DPRINTF(("Enabling adapter\n"));
1933 	return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1934 }
1935 
1936 /*
1937  * Handler for sc_init_task.  This is a simple wrapper around ipw_init().
1938  * It is called on firmware panics or on watchdog timeouts.
1939  */
1940 static void
1941 ipw_init_task(void *context, int pending)
1942 {
1943 	ipw_init(context);
1944 }
1945 
1946 static void
1947 ipw_init(void *priv)
1948 {
1949 	struct ipw_softc *sc = priv;
1950 	struct ieee80211com *ic = &sc->sc_ic;
1951 	struct ifnet *ifp = ic->ic_ifp;
1952 	const struct firmware *fp;
1953 	const struct ipw_firmware_hdr *hdr;
1954 	const char *imagename, *fw;
1955 	int owned;
1956 
1957 	/*
1958 	 * ipw_init() is exposed through ifp->if_init so it might be called
1959 	 * without the driver's lock held.  Since msleep() doesn't like being
1960 	 * called on a recursed mutex, we acquire the driver's lock only if
1961 	 * we're not already holding it.
1962 	 */
1963 	if (!(owned = mtx_owned(&sc->sc_mtx)))
1964 		mtx_lock(&sc->sc_mtx);
1965 
1966 	/*
1967 	 * Avoid re-entrant calls.  We need to release the mutex in ipw_init()
1968 	 * when loading the firmware and we don't want to be called during this
1969 	 * operation.
1970 	 */
1971 	if (sc->flags & IPW_FLAG_INIT_LOCKED) {
1972 		if (!owned)
1973 			mtx_unlock(&sc->sc_mtx);
1974 		return;
1975 	}
1976 	sc->flags |= IPW_FLAG_INIT_LOCKED;
1977 
1978 	ipw_stop(sc);
1979 
1980 	if (ipw_reset(sc) != 0) {
1981 		device_printf(sc->sc_dev, "could not reset adapter\n");
1982 		goto fail1;
1983 	}
1984 
1985 	switch (ic->ic_opmode) {
1986 	case IEEE80211_M_STA:
1987 		imagename = "ipw_bss";
1988 		break;
1989 	case IEEE80211_M_IBSS:
1990 		imagename = "ipw_ibss";
1991 		break;
1992 	case IEEE80211_M_MONITOR:
1993 		imagename = "ipw_monitor";
1994 		break;
1995 	default:
1996 		imagename = NULL;	/* should not get there */
1997 	}
1998 
1999 	/*
2000 	 * Load firmware image using the firmware(9) subsystem.  We need to
2001 	 * release the driver's lock first.
2002 	 */
2003 	if (sc->sc_firmware == NULL || strcmp(sc->sc_firmware->name,
2004 	    imagename) != 0) {
2005 		mtx_unlock(&sc->sc_mtx);
2006 		if (sc->sc_firmware != NULL)
2007 			firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
2008 		sc->sc_firmware = firmware_get(imagename);
2009 		mtx_lock(&sc->sc_mtx);
2010 	}
2011 
2012 	if (sc->sc_firmware == NULL) {
2013 		device_printf(sc->sc_dev,
2014 		    "could not load firmware image '%s'\n", imagename);
2015 		goto fail1;
2016 	}
2017 
2018 	fp = sc->sc_firmware;
2019 	if (fp->datasize < sizeof *hdr) {
2020 		device_printf(sc->sc_dev,
2021 		    "firmware image too short %zu\n", fp->datasize);
2022 		goto fail2;
2023 	}
2024 
2025 	hdr = (const struct ipw_firmware_hdr *)fp->data;
2026 
2027 	if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) +
2028 	    le32toh(hdr->ucodesz)) {
2029 		device_printf(sc->sc_dev,
2030 		    "firmware image too short %zu\n", fp->datasize);
2031 		goto fail2;
2032 	}
2033 
2034 	fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz);
2035 	if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) {
2036 		device_printf(sc->sc_dev, "could not load microcode\n");
2037 		goto fail2;
2038 	}
2039 
2040 	ipw_stop_master(sc);
2041 
2042 	/*
2043 	 * Setup tx, rx and status rings.
2044 	 */
2045 	sc->txold = IPW_NTBD - 1;
2046 	sc->txcur = 0;
2047 	sc->txfree = IPW_NTBD - 2;
2048 	sc->rxcur = IPW_NRBD - 1;
2049 
2050 	CSR_WRITE_4(sc, IPW_CSR_TX_BASE,  sc->tbd_phys);
2051 	CSR_WRITE_4(sc, IPW_CSR_TX_SIZE,  IPW_NTBD);
2052 	CSR_WRITE_4(sc, IPW_CSR_TX_READ,  0);
2053 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2054 
2055 	CSR_WRITE_4(sc, IPW_CSR_RX_BASE,  sc->rbd_phys);
2056 	CSR_WRITE_4(sc, IPW_CSR_RX_SIZE,  IPW_NRBD);
2057 	CSR_WRITE_4(sc, IPW_CSR_RX_READ,  0);
2058 	CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2059 
2060 	CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys);
2061 
2062 	fw = (const char *)fp->data + sizeof *hdr;
2063 	if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) {
2064 		device_printf(sc->sc_dev, "could not load firmware\n");
2065 		goto fail2;
2066 	}
2067 
2068 	sc->flags |= IPW_FLAG_FW_INITED;
2069 
2070 	/* retrieve information tables base addresses */
2071 	sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2072 	sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2073 
2074 	ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2075 
2076 	if (ipw_config(sc) != 0) {
2077 		device_printf(sc->sc_dev, "device configuration failed\n");
2078 		goto fail1;
2079 	}
2080 
2081 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2082 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2083 
2084 	sc->flags &=~ IPW_FLAG_INIT_LOCKED;
2085 
2086 	if (!owned)
2087 		mtx_unlock(&sc->sc_mtx);
2088 
2089 	return;
2090 
2091 fail2:	firmware_put(fp, FIRMWARE_UNLOAD);
2092 	sc->sc_firmware = NULL;
2093 fail1:	ifp->if_flags &= ~IFF_UP;
2094 	ipw_stop(sc);
2095 	sc->flags &=~ IPW_FLAG_INIT_LOCKED;
2096 	if (!owned)
2097 		mtx_unlock(&sc->sc_mtx);
2098 }
2099 
2100 static void
2101 ipw_stop(void *priv)
2102 {
2103 	struct ipw_softc *sc = priv;
2104 	struct ieee80211com *ic = &sc->sc_ic;
2105 	struct ifnet *ifp = ic->ic_ifp;
2106 	int i;
2107 
2108 	mtx_lock(&sc->sc_mtx);
2109 
2110 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2111 
2112 	ipw_stop_master(sc);
2113 
2114 	CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2115 
2116 	/*
2117 	 * Release tx buffers.
2118 	 */
2119 	for (i = 0; i < IPW_NTBD; i++)
2120 		ipw_release_sbd(sc, &sc->stbd_list[i]);
2121 
2122 	sc->sc_tx_timer = 0;
2123 	ifp->if_timer = 0;
2124 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2125 
2126 	mtx_unlock(&sc->sc_mtx);
2127 }
2128 
2129 static int
2130 ipw_sysctl_stats(SYSCTL_HANDLER_ARGS)
2131 {
2132 	struct ipw_softc *sc = arg1;
2133 	uint32_t i, size, buf[256];
2134 
2135 	if (!(sc->flags & IPW_FLAG_FW_INITED)) {
2136 		memset(buf, 0, sizeof buf);
2137 		return SYSCTL_OUT(req, buf, sizeof buf);
2138 	}
2139 
2140 	CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
2141 
2142 	size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256);
2143 	for (i = 1; i < size; i++)
2144 		buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA));
2145 
2146 	return SYSCTL_OUT(req, buf, sizeof buf);
2147 }
2148 
2149 static int
2150 ipw_sysctl_radio(SYSCTL_HANDLER_ARGS)
2151 {
2152 	struct ipw_softc *sc = arg1;
2153 	int val;
2154 
2155 	val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) &&
2156 	        (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED));
2157 
2158 	return SYSCTL_OUT(req, &val, sizeof val);
2159 }
2160 
2161 static uint32_t
2162 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
2163 {
2164 	return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
2165 }
2166 
2167 static void
2168 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
2169 {
2170 	MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
2171 }
2172 
2173 static int
2174 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
2175 {
2176 	uint32_t addr, info;
2177 	uint16_t count, size;
2178 	uint32_t total;
2179 
2180 	/* addr[4] + count[2] + size[2] */
2181 	addr = MEM_READ_4(sc, sc->table2_base + off);
2182 	info = MEM_READ_4(sc, sc->table2_base + off + 4);
2183 
2184 	count = info >> 16;
2185 	size = info & 0xffff;
2186 	total = count * size;
2187 
2188 	if (total > *len) {
2189 		*len = total;
2190 		return EINVAL;
2191 	}
2192 
2193 	*len = total;
2194 	ipw_read_mem_1(sc, addr, buf, total);
2195 
2196 	return 0;
2197 }
2198 
2199 static void
2200 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2201     bus_size_t count)
2202 {
2203 	for (; count > 0; offset++, datap++, count--) {
2204 		CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2205 		*datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2206 	}
2207 }
2208 
2209 static void
2210 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap,
2211     bus_size_t count)
2212 {
2213 	for (; count > 0; offset++, datap++, count--) {
2214 		CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2215 		CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2216 	}
2217 }
2218