1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004-2006 5 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 6 * Copyright (c) 2006 Sam Leffler, Errno Consulting 7 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /*- 36 * Intel(R) PRO/Wireless 2100 MiniPCI driver 37 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 38 */ 39 40 #include <sys/param.h> 41 #include <sys/sysctl.h> 42 #include <sys/sockio.h> 43 #include <sys/mbuf.h> 44 #include <sys/kernel.h> 45 #include <sys/socket.h> 46 #include <sys/systm.h> 47 #include <sys/malloc.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 #include <sys/module.h> 51 #include <sys/bus.h> 52 #include <sys/endian.h> 53 #include <sys/linker.h> 54 #include <sys/firmware.h> 55 56 #include <machine/bus.h> 57 #include <machine/resource.h> 58 #include <sys/rman.h> 59 60 #include <dev/pci/pcireg.h> 61 #include <dev/pci/pcivar.h> 62 63 #include <net/bpf.h> 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/if_arp.h> 67 #include <net/ethernet.h> 68 #include <net/if_dl.h> 69 #include <net/if_media.h> 70 #include <net/if_types.h> 71 72 #include <net80211/ieee80211_var.h> 73 #include <net80211/ieee80211_radiotap.h> 74 75 #include <netinet/in.h> 76 #include <netinet/in_systm.h> 77 #include <netinet/in_var.h> 78 #include <netinet/ip.h> 79 #include <netinet/if_ether.h> 80 81 #include <dev/ipw/if_ipwreg.h> 82 #include <dev/ipw/if_ipwvar.h> 83 84 #define IPW_DEBUG 85 #ifdef IPW_DEBUG 86 #define DPRINTF(x) do { if (ipw_debug > 0) printf x; } while (0) 87 #define DPRINTFN(n, x) do { if (ipw_debug >= (n)) printf x; } while (0) 88 int ipw_debug = 0; 89 SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level"); 90 #else 91 #define DPRINTF(x) 92 #define DPRINTFN(n, x) 93 #endif 94 95 MODULE_DEPEND(ipw, pci, 1, 1, 1); 96 MODULE_DEPEND(ipw, wlan, 1, 1, 1); 97 MODULE_DEPEND(ipw, firmware, 1, 1, 1); 98 99 struct ipw_ident { 100 uint16_t vendor; 101 uint16_t device; 102 const char *name; 103 }; 104 105 static const struct ipw_ident ipw_ident_table[] = { 106 { 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" }, 107 108 { 0, 0, NULL } 109 }; 110 111 static struct ieee80211vap *ipw_vap_create(struct ieee80211com *, 112 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 113 const uint8_t [IEEE80211_ADDR_LEN], 114 const uint8_t [IEEE80211_ADDR_LEN]); 115 static void ipw_vap_delete(struct ieee80211vap *); 116 static int ipw_dma_alloc(struct ipw_softc *); 117 static void ipw_release(struct ipw_softc *); 118 static void ipw_media_status(struct ifnet *, struct ifmediareq *); 119 static int ipw_newstate(struct ieee80211vap *, enum ieee80211_state, int); 120 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t); 121 static uint16_t ipw_read_chanmask(struct ipw_softc *); 122 static void ipw_rx_cmd_intr(struct ipw_softc *, struct ipw_soft_buf *); 123 static void ipw_rx_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *); 124 static void ipw_rx_data_intr(struct ipw_softc *, struct ipw_status *, 125 struct ipw_soft_bd *, struct ipw_soft_buf *); 126 static void ipw_rx_intr(struct ipw_softc *); 127 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *); 128 static void ipw_tx_intr(struct ipw_softc *); 129 static void ipw_intr(void *); 130 static void ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int); 131 static const char * ipw_cmdname(int); 132 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t); 133 static int ipw_tx_start(struct ipw_softc *, struct mbuf *, 134 struct ieee80211_node *); 135 static int ipw_raw_xmit(struct ieee80211_node *, struct mbuf *, 136 const struct ieee80211_bpf_params *); 137 static int ipw_transmit(struct ieee80211com *, struct mbuf *); 138 static void ipw_start(struct ipw_softc *); 139 static void ipw_watchdog(void *); 140 static void ipw_parent(struct ieee80211com *); 141 static void ipw_stop_master(struct ipw_softc *); 142 static int ipw_enable(struct ipw_softc *); 143 static int ipw_disable(struct ipw_softc *); 144 static int ipw_reset(struct ipw_softc *); 145 static int ipw_load_ucode(struct ipw_softc *, const char *, int); 146 static int ipw_load_firmware(struct ipw_softc *, const char *, int); 147 static int ipw_config(struct ipw_softc *); 148 static void ipw_assoc(struct ieee80211com *, struct ieee80211vap *); 149 static void ipw_disassoc(struct ieee80211com *, struct ieee80211vap *); 150 static void ipw_init_task(void *, int); 151 static void ipw_init(void *); 152 static void ipw_init_locked(struct ipw_softc *); 153 static void ipw_stop(void *); 154 static void ipw_stop_locked(struct ipw_softc *); 155 static int ipw_sysctl_stats(SYSCTL_HANDLER_ARGS); 156 static int ipw_sysctl_radio(SYSCTL_HANDLER_ARGS); 157 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t); 158 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t); 159 #if 0 160 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, 161 uint32_t *); 162 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, 163 bus_size_t); 164 #endif 165 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, 166 const uint8_t *, bus_size_t); 167 static int ipw_scan(struct ipw_softc *); 168 static void ipw_scan_start(struct ieee80211com *); 169 static void ipw_scan_end(struct ieee80211com *); 170 static void ipw_getradiocaps(struct ieee80211com *, int, int *, 171 struct ieee80211_channel[]); 172 static void ipw_set_channel(struct ieee80211com *); 173 static void ipw_scan_curchan(struct ieee80211_scan_state *, 174 unsigned long maxdwell); 175 static void ipw_scan_mindwell(struct ieee80211_scan_state *); 176 177 static int ipw_probe(device_t); 178 static int ipw_attach(device_t); 179 static int ipw_detach(device_t); 180 static int ipw_shutdown(device_t); 181 static int ipw_suspend(device_t); 182 static int ipw_resume(device_t); 183 184 static device_method_t ipw_methods[] = { 185 /* Device interface */ 186 DEVMETHOD(device_probe, ipw_probe), 187 DEVMETHOD(device_attach, ipw_attach), 188 DEVMETHOD(device_detach, ipw_detach), 189 DEVMETHOD(device_shutdown, ipw_shutdown), 190 DEVMETHOD(device_suspend, ipw_suspend), 191 DEVMETHOD(device_resume, ipw_resume), 192 193 DEVMETHOD_END 194 }; 195 196 static driver_t ipw_driver = { 197 "ipw", 198 ipw_methods, 199 sizeof (struct ipw_softc) 200 }; 201 202 static devclass_t ipw_devclass; 203 204 DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, NULL, NULL); 205 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ipw, ipw_ident_table, 206 nitems(ipw_ident_table) - 1); 207 208 MODULE_VERSION(ipw, 1); 209 210 static int 211 ipw_probe(device_t dev) 212 { 213 const struct ipw_ident *ident; 214 215 for (ident = ipw_ident_table; ident->name != NULL; ident++) { 216 if (pci_get_vendor(dev) == ident->vendor && 217 pci_get_device(dev) == ident->device) { 218 device_set_desc(dev, ident->name); 219 return (BUS_PROBE_DEFAULT); 220 } 221 } 222 return ENXIO; 223 } 224 225 /* Base Address Register */ 226 static int 227 ipw_attach(device_t dev) 228 { 229 struct ipw_softc *sc = device_get_softc(dev); 230 struct ieee80211com *ic = &sc->sc_ic; 231 uint16_t val; 232 int error, i; 233 234 sc->sc_dev = dev; 235 236 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 237 MTX_DEF | MTX_RECURSE); 238 mbufq_init(&sc->sc_snd, ifqmaxlen); 239 TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc); 240 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 241 242 pci_write_config(dev, 0x41, 0, 1); 243 244 /* enable bus-mastering */ 245 pci_enable_busmaster(dev); 246 247 i = PCIR_BAR(0); 248 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 249 if (sc->mem == NULL) { 250 device_printf(dev, "could not allocate memory resource\n"); 251 goto fail; 252 } 253 254 sc->sc_st = rman_get_bustag(sc->mem); 255 sc->sc_sh = rman_get_bushandle(sc->mem); 256 257 i = 0; 258 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 259 RF_ACTIVE | RF_SHAREABLE); 260 if (sc->irq == NULL) { 261 device_printf(dev, "could not allocate interrupt resource\n"); 262 goto fail1; 263 } 264 265 if (ipw_reset(sc) != 0) { 266 device_printf(dev, "could not reset adapter\n"); 267 goto fail2; 268 } 269 270 if (ipw_dma_alloc(sc) != 0) { 271 device_printf(dev, "could not allocate DMA resources\n"); 272 goto fail2; 273 } 274 275 ic->ic_softc = sc; 276 ic->ic_name = device_get_nameunit(dev); 277 ic->ic_opmode = IEEE80211_M_STA; 278 ic->ic_phytype = IEEE80211_T_DS; 279 280 /* set device capabilities */ 281 ic->ic_caps = 282 IEEE80211_C_STA /* station mode supported */ 283 | IEEE80211_C_IBSS /* IBSS mode supported */ 284 | IEEE80211_C_MONITOR /* monitor mode supported */ 285 | IEEE80211_C_PMGT /* power save supported */ 286 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 287 | IEEE80211_C_WPA /* 802.11i supported */ 288 ; 289 290 /* read MAC address from EEPROM */ 291 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0); 292 ic->ic_macaddr[0] = val >> 8; 293 ic->ic_macaddr[1] = val & 0xff; 294 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1); 295 ic->ic_macaddr[2] = val >> 8; 296 ic->ic_macaddr[3] = val & 0xff; 297 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2); 298 ic->ic_macaddr[4] = val >> 8; 299 ic->ic_macaddr[5] = val & 0xff; 300 301 sc->chanmask = ipw_read_chanmask(sc); 302 ipw_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 303 ic->ic_channels); 304 305 /* check support for radio transmitter switch in EEPROM */ 306 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8)) 307 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH; 308 309 ieee80211_ifattach(ic); 310 ic->ic_scan_start = ipw_scan_start; 311 ic->ic_scan_end = ipw_scan_end; 312 ic->ic_getradiocaps = ipw_getradiocaps; 313 ic->ic_set_channel = ipw_set_channel; 314 ic->ic_scan_curchan = ipw_scan_curchan; 315 ic->ic_scan_mindwell = ipw_scan_mindwell; 316 ic->ic_raw_xmit = ipw_raw_xmit; 317 ic->ic_vap_create = ipw_vap_create; 318 ic->ic_vap_delete = ipw_vap_delete; 319 ic->ic_transmit = ipw_transmit; 320 ic->ic_parent = ipw_parent; 321 322 ieee80211_radiotap_attach(ic, 323 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 324 IPW_TX_RADIOTAP_PRESENT, 325 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 326 IPW_RX_RADIOTAP_PRESENT); 327 328 /* 329 * Add a few sysctl knobs. 330 */ 331 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 332 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio", 333 CTLTYPE_INT | CTLFLAG_RD, sc, 0, ipw_sysctl_radio, "I", 334 "radio transmitter switch state (0=off, 1=on)"); 335 336 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 337 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", 338 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, ipw_sysctl_stats, "S", 339 "statistics"); 340 341 /* 342 * Hook our interrupt after all initialization is complete. 343 */ 344 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 345 NULL, ipw_intr, sc, &sc->sc_ih); 346 if (error != 0) { 347 device_printf(dev, "could not set up interrupt\n"); 348 goto fail3; 349 } 350 351 if (bootverbose) 352 ieee80211_announce(ic); 353 354 return 0; 355 fail3: 356 ipw_release(sc); 357 fail2: 358 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 359 fail1: 360 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 361 sc->mem); 362 fail: 363 mtx_destroy(&sc->sc_mtx); 364 return ENXIO; 365 } 366 367 static int 368 ipw_detach(device_t dev) 369 { 370 struct ipw_softc *sc = device_get_softc(dev); 371 struct ieee80211com *ic = &sc->sc_ic; 372 373 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 374 375 ieee80211_draintask(ic, &sc->sc_init_task); 376 ipw_stop(sc); 377 378 ieee80211_ifdetach(ic); 379 380 callout_drain(&sc->sc_wdtimer); 381 mbufq_drain(&sc->sc_snd); 382 383 ipw_release(sc); 384 385 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 386 387 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 388 sc->mem); 389 390 if (sc->sc_firmware != NULL) { 391 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 392 sc->sc_firmware = NULL; 393 } 394 395 mtx_destroy(&sc->sc_mtx); 396 397 return 0; 398 } 399 400 static struct ieee80211vap * 401 ipw_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 402 enum ieee80211_opmode opmode, int flags, 403 const uint8_t bssid[IEEE80211_ADDR_LEN], 404 const uint8_t mac[IEEE80211_ADDR_LEN]) 405 { 406 struct ipw_softc *sc = ic->ic_softc; 407 struct ipw_vap *ivp; 408 struct ieee80211vap *vap; 409 const struct firmware *fp; 410 const struct ipw_firmware_hdr *hdr; 411 const char *imagename; 412 413 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 414 return NULL; 415 416 switch (opmode) { 417 case IEEE80211_M_STA: 418 imagename = "ipw_bss"; 419 break; 420 case IEEE80211_M_IBSS: 421 imagename = "ipw_ibss"; 422 break; 423 case IEEE80211_M_MONITOR: 424 imagename = "ipw_monitor"; 425 break; 426 default: 427 return NULL; 428 } 429 430 /* 431 * Load firmware image using the firmware(9) subsystem. Doing 432 * this unlocked is ok since we're single-threaded by the 433 * 802.11 layer. 434 */ 435 if (sc->sc_firmware == NULL || 436 strcmp(sc->sc_firmware->name, imagename) != 0) { 437 if (sc->sc_firmware != NULL) 438 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 439 sc->sc_firmware = firmware_get(imagename); 440 } 441 if (sc->sc_firmware == NULL) { 442 device_printf(sc->sc_dev, 443 "could not load firmware image '%s'\n", imagename); 444 return NULL; 445 } 446 fp = sc->sc_firmware; 447 if (fp->datasize < sizeof *hdr) { 448 device_printf(sc->sc_dev, 449 "firmware image too short %zu\n", fp->datasize); 450 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 451 sc->sc_firmware = NULL; 452 return NULL; 453 } 454 hdr = (const struct ipw_firmware_hdr *)fp->data; 455 if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) + 456 le32toh(hdr->ucodesz)) { 457 device_printf(sc->sc_dev, 458 "firmware image too short %zu\n", fp->datasize); 459 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 460 sc->sc_firmware = NULL; 461 return NULL; 462 } 463 464 ivp = malloc(sizeof(struct ipw_vap), M_80211_VAP, M_WAITOK | M_ZERO); 465 vap = &ivp->vap; 466 467 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 468 /* override with driver methods */ 469 ivp->newstate = vap->iv_newstate; 470 vap->iv_newstate = ipw_newstate; 471 472 /* complete setup */ 473 ieee80211_vap_attach(vap, ieee80211_media_change, ipw_media_status, 474 mac); 475 ic->ic_opmode = opmode; 476 return vap; 477 } 478 479 static void 480 ipw_vap_delete(struct ieee80211vap *vap) 481 { 482 struct ipw_vap *ivp = IPW_VAP(vap); 483 484 ieee80211_vap_detach(vap); 485 free(ivp, M_80211_VAP); 486 } 487 488 static int 489 ipw_dma_alloc(struct ipw_softc *sc) 490 { 491 struct ipw_soft_bd *sbd; 492 struct ipw_soft_hdr *shdr; 493 struct ipw_soft_buf *sbuf; 494 bus_addr_t physaddr; 495 int error, i; 496 497 /* 498 * Allocate parent DMA tag for subsequent allocations. 499 */ 500 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 501 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 502 BUS_SPACE_MAXSIZE_32BIT, BUS_SPACE_UNRESTRICTED, 503 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->parent_dmat); 504 if (error != 0) { 505 device_printf(sc->sc_dev, "could not create parent DMA tag\n"); 506 goto fail; 507 } 508 509 /* 510 * Allocate and map tx ring. 511 */ 512 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 513 BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL, 514 NULL, &sc->tbd_dmat); 515 if (error != 0) { 516 device_printf(sc->sc_dev, "could not create tx ring DMA tag\n"); 517 goto fail; 518 } 519 520 error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list, 521 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map); 522 if (error != 0) { 523 device_printf(sc->sc_dev, 524 "could not allocate tx ring DMA memory\n"); 525 goto fail; 526 } 527 528 error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list, 529 IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0); 530 if (error != 0) { 531 device_printf(sc->sc_dev, "could not map tx ring DMA memory\n"); 532 goto fail; 533 } 534 535 /* 536 * Allocate and map rx ring. 537 */ 538 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 539 BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL, 540 NULL, &sc->rbd_dmat); 541 if (error != 0) { 542 device_printf(sc->sc_dev, "could not create rx ring DMA tag\n"); 543 goto fail; 544 } 545 546 error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list, 547 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map); 548 if (error != 0) { 549 device_printf(sc->sc_dev, 550 "could not allocate rx ring DMA memory\n"); 551 goto fail; 552 } 553 554 error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list, 555 IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0); 556 if (error != 0) { 557 device_printf(sc->sc_dev, "could not map rx ring DMA memory\n"); 558 goto fail; 559 } 560 561 /* 562 * Allocate and map status ring. 563 */ 564 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 565 BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0, 566 NULL, NULL, &sc->status_dmat); 567 if (error != 0) { 568 device_printf(sc->sc_dev, 569 "could not create status ring DMA tag\n"); 570 goto fail; 571 } 572 573 error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list, 574 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map); 575 if (error != 0) { 576 device_printf(sc->sc_dev, 577 "could not allocate status ring DMA memory\n"); 578 goto fail; 579 } 580 581 error = bus_dmamap_load(sc->status_dmat, sc->status_map, 582 sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys, 583 0); 584 if (error != 0) { 585 device_printf(sc->sc_dev, 586 "could not map status ring DMA memory\n"); 587 goto fail; 588 } 589 590 /* 591 * Allocate command DMA map. 592 */ 593 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 594 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1, 595 sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat); 596 if (error != 0) { 597 device_printf(sc->sc_dev, "could not create command DMA tag\n"); 598 goto fail; 599 } 600 601 error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map); 602 if (error != 0) { 603 device_printf(sc->sc_dev, 604 "could not create command DMA map\n"); 605 goto fail; 606 } 607 608 /* 609 * Allocate headers DMA maps. 610 */ 611 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 612 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1, 613 sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat); 614 if (error != 0) { 615 device_printf(sc->sc_dev, "could not create header DMA tag\n"); 616 goto fail; 617 } 618 619 SLIST_INIT(&sc->free_shdr); 620 for (i = 0; i < IPW_NDATA; i++) { 621 shdr = &sc->shdr_list[i]; 622 error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map); 623 if (error != 0) { 624 device_printf(sc->sc_dev, 625 "could not create header DMA map\n"); 626 goto fail; 627 } 628 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 629 } 630 631 /* 632 * Allocate tx buffers DMA maps. 633 */ 634 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 635 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0, 636 NULL, NULL, &sc->txbuf_dmat); 637 if (error != 0) { 638 device_printf(sc->sc_dev, "could not create tx DMA tag\n"); 639 goto fail; 640 } 641 642 SLIST_INIT(&sc->free_sbuf); 643 for (i = 0; i < IPW_NDATA; i++) { 644 sbuf = &sc->tx_sbuf_list[i]; 645 error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map); 646 if (error != 0) { 647 device_printf(sc->sc_dev, 648 "could not create tx DMA map\n"); 649 goto fail; 650 } 651 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 652 } 653 654 /* 655 * Initialize tx ring. 656 */ 657 for (i = 0; i < IPW_NTBD; i++) { 658 sbd = &sc->stbd_list[i]; 659 sbd->bd = &sc->tbd_list[i]; 660 sbd->type = IPW_SBD_TYPE_NOASSOC; 661 } 662 663 /* 664 * Pre-allocate rx buffers and DMA maps. 665 */ 666 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 667 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, 668 NULL, &sc->rxbuf_dmat); 669 if (error != 0) { 670 device_printf(sc->sc_dev, "could not create rx DMA tag\n"); 671 goto fail; 672 } 673 674 for (i = 0; i < IPW_NRBD; i++) { 675 sbd = &sc->srbd_list[i]; 676 sbuf = &sc->rx_sbuf_list[i]; 677 sbd->bd = &sc->rbd_list[i]; 678 679 sbuf->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 680 if (sbuf->m == NULL) { 681 device_printf(sc->sc_dev, 682 "could not allocate rx mbuf\n"); 683 error = ENOMEM; 684 goto fail; 685 } 686 687 error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map); 688 if (error != 0) { 689 device_printf(sc->sc_dev, 690 "could not create rx DMA map\n"); 691 goto fail; 692 } 693 694 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 695 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 696 &physaddr, 0); 697 if (error != 0) { 698 device_printf(sc->sc_dev, 699 "could not map rx DMA memory\n"); 700 goto fail; 701 } 702 703 sbd->type = IPW_SBD_TYPE_DATA; 704 sbd->priv = sbuf; 705 sbd->bd->physaddr = htole32(physaddr); 706 sbd->bd->len = htole32(MCLBYTES); 707 } 708 709 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 710 711 return 0; 712 713 fail: ipw_release(sc); 714 return error; 715 } 716 717 static void 718 ipw_release(struct ipw_softc *sc) 719 { 720 struct ipw_soft_buf *sbuf; 721 int i; 722 723 if (sc->parent_dmat != NULL) { 724 bus_dma_tag_destroy(sc->parent_dmat); 725 } 726 727 if (sc->tbd_dmat != NULL) { 728 bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map); 729 bus_dmamem_free(sc->tbd_dmat, sc->tbd_list, sc->tbd_map); 730 bus_dma_tag_destroy(sc->tbd_dmat); 731 } 732 733 if (sc->rbd_dmat != NULL) { 734 if (sc->rbd_list != NULL) { 735 bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map); 736 bus_dmamem_free(sc->rbd_dmat, sc->rbd_list, 737 sc->rbd_map); 738 } 739 bus_dma_tag_destroy(sc->rbd_dmat); 740 } 741 742 if (sc->status_dmat != NULL) { 743 if (sc->status_list != NULL) { 744 bus_dmamap_unload(sc->status_dmat, sc->status_map); 745 bus_dmamem_free(sc->status_dmat, sc->status_list, 746 sc->status_map); 747 } 748 bus_dma_tag_destroy(sc->status_dmat); 749 } 750 751 for (i = 0; i < IPW_NTBD; i++) 752 ipw_release_sbd(sc, &sc->stbd_list[i]); 753 754 if (sc->cmd_dmat != NULL) { 755 bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map); 756 bus_dma_tag_destroy(sc->cmd_dmat); 757 } 758 759 if (sc->hdr_dmat != NULL) { 760 for (i = 0; i < IPW_NDATA; i++) 761 bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map); 762 bus_dma_tag_destroy(sc->hdr_dmat); 763 } 764 765 if (sc->txbuf_dmat != NULL) { 766 for (i = 0; i < IPW_NDATA; i++) { 767 bus_dmamap_destroy(sc->txbuf_dmat, 768 sc->tx_sbuf_list[i].map); 769 } 770 bus_dma_tag_destroy(sc->txbuf_dmat); 771 } 772 773 if (sc->rxbuf_dmat != NULL) { 774 for (i = 0; i < IPW_NRBD; i++) { 775 sbuf = &sc->rx_sbuf_list[i]; 776 if (sbuf->m != NULL) { 777 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, 778 BUS_DMASYNC_POSTREAD); 779 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 780 m_freem(sbuf->m); 781 } 782 bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map); 783 } 784 bus_dma_tag_destroy(sc->rxbuf_dmat); 785 } 786 } 787 788 static int 789 ipw_shutdown(device_t dev) 790 { 791 struct ipw_softc *sc = device_get_softc(dev); 792 793 ipw_stop(sc); 794 795 return 0; 796 } 797 798 static int 799 ipw_suspend(device_t dev) 800 { 801 struct ipw_softc *sc = device_get_softc(dev); 802 struct ieee80211com *ic = &sc->sc_ic; 803 804 ieee80211_suspend_all(ic); 805 return 0; 806 } 807 808 static int 809 ipw_resume(device_t dev) 810 { 811 struct ipw_softc *sc = device_get_softc(dev); 812 struct ieee80211com *ic = &sc->sc_ic; 813 814 pci_write_config(dev, 0x41, 0, 1); 815 816 ieee80211_resume_all(ic); 817 return 0; 818 } 819 820 static int 821 ipw_cvtrate(int ipwrate) 822 { 823 switch (ipwrate) { 824 case IPW_RATE_DS1: return 2; 825 case IPW_RATE_DS2: return 4; 826 case IPW_RATE_DS5: return 11; 827 case IPW_RATE_DS11: return 22; 828 } 829 return 0; 830 } 831 832 /* 833 * The firmware automatically adapts the transmit speed. We report its current 834 * value here. 835 */ 836 static void 837 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr) 838 { 839 struct ieee80211vap *vap = ifp->if_softc; 840 struct ieee80211com *ic = vap->iv_ic; 841 struct ipw_softc *sc = ic->ic_softc; 842 843 /* read current transmission rate from adapter */ 844 vap->iv_bss->ni_txrate = ipw_cvtrate( 845 ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf); 846 ieee80211_media_status(ifp, imr); 847 } 848 849 static int 850 ipw_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 851 { 852 struct ipw_vap *ivp = IPW_VAP(vap); 853 struct ieee80211com *ic = vap->iv_ic; 854 struct ipw_softc *sc = ic->ic_softc; 855 enum ieee80211_state ostate; 856 857 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 858 ieee80211_state_name[vap->iv_state], 859 ieee80211_state_name[nstate], sc->flags)); 860 861 ostate = vap->iv_state; 862 IEEE80211_UNLOCK(ic); 863 864 switch (nstate) { 865 case IEEE80211_S_RUN: 866 if (ic->ic_opmode == IEEE80211_M_IBSS) { 867 /* 868 * XXX when joining an ibss network we are called 869 * with a SCAN -> RUN transition on scan complete. 870 * Use that to call ipw_assoc. On completing the 871 * join we are then called again with an AUTH -> RUN 872 * transition and we want to do nothing. This is 873 * all totally bogus and needs to be redone. 874 */ 875 if (ostate == IEEE80211_S_SCAN) 876 ipw_assoc(ic, vap); 877 } 878 break; 879 880 case IEEE80211_S_INIT: 881 if (sc->flags & IPW_FLAG_ASSOCIATED) 882 ipw_disassoc(ic, vap); 883 break; 884 885 case IEEE80211_S_AUTH: 886 /* 887 * Move to ASSOC state after the ipw_assoc() call. Firmware 888 * takes care of authentication, after the call we'll receive 889 * only an assoc response which would otherwise be discared 890 * if we are still in AUTH state. 891 */ 892 nstate = IEEE80211_S_ASSOC; 893 ipw_assoc(ic, vap); 894 break; 895 896 case IEEE80211_S_ASSOC: 897 /* 898 * If we are not transitioning from AUTH then resend the 899 * association request. 900 */ 901 if (ostate != IEEE80211_S_AUTH) 902 ipw_assoc(ic, vap); 903 break; 904 905 default: 906 break; 907 } 908 IEEE80211_LOCK(ic); 909 return ivp->newstate(vap, nstate, arg); 910 } 911 912 /* 913 * Read 16 bits at address 'addr' from the serial EEPROM. 914 */ 915 static uint16_t 916 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr) 917 { 918 uint32_t tmp; 919 uint16_t val; 920 int n; 921 922 /* clock C once before the first command */ 923 IPW_EEPROM_CTL(sc, 0); 924 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 925 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 926 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 927 928 /* write start bit (1) */ 929 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 930 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 931 932 /* write READ opcode (10) */ 933 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 934 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 935 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 936 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 937 938 /* write address A7-A0 */ 939 for (n = 7; n >= 0; n--) { 940 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 941 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D)); 942 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 943 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C); 944 } 945 946 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 947 948 /* read data Q15-Q0 */ 949 val = 0; 950 for (n = 15; n >= 0; n--) { 951 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 952 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 953 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL); 954 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n; 955 } 956 957 IPW_EEPROM_CTL(sc, 0); 958 959 /* clear Chip Select and clock C */ 960 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 961 IPW_EEPROM_CTL(sc, 0); 962 IPW_EEPROM_CTL(sc, IPW_EEPROM_C); 963 964 return le16toh(val); 965 } 966 967 static uint16_t 968 ipw_read_chanmask(struct ipw_softc *sc) 969 { 970 uint16_t val; 971 972 /* set supported .11b channels (read from EEPROM) */ 973 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0) 974 val = 0x7ff; /* default to channels 1-11 */ 975 val <<= 1; 976 977 return (val); 978 } 979 980 static void 981 ipw_rx_cmd_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 982 { 983 struct ipw_cmd *cmd; 984 985 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 986 987 cmd = mtod(sbuf->m, struct ipw_cmd *); 988 989 DPRINTFN(9, ("cmd ack'ed %s(%u, %u, %u, %u, %u)\n", 990 ipw_cmdname(le32toh(cmd->type)), le32toh(cmd->type), 991 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len), 992 le32toh(cmd->status))); 993 994 sc->flags &= ~IPW_FLAG_BUSY; 995 wakeup(sc); 996 } 997 998 static void 999 ipw_rx_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 1000 { 1001 #define IEEESTATE(vap) ieee80211_state_name[vap->iv_state] 1002 struct ieee80211com *ic = &sc->sc_ic; 1003 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1004 uint32_t state; 1005 1006 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1007 1008 state = le32toh(*mtod(sbuf->m, uint32_t *)); 1009 1010 switch (state) { 1011 case IPW_STATE_ASSOCIATED: 1012 DPRINTFN(2, ("Association succeeded (%s flags 0x%x)\n", 1013 IEEESTATE(vap), sc->flags)); 1014 /* XXX suppress state change in case the fw auto-associates */ 1015 if ((sc->flags & IPW_FLAG_ASSOCIATING) == 0) { 1016 DPRINTF(("Unexpected association (%s, flags 0x%x)\n", 1017 IEEESTATE(vap), sc->flags)); 1018 break; 1019 } 1020 sc->flags &= ~IPW_FLAG_ASSOCIATING; 1021 sc->flags |= IPW_FLAG_ASSOCIATED; 1022 break; 1023 1024 case IPW_STATE_SCANNING: 1025 DPRINTFN(3, ("Scanning (%s flags 0x%x)\n", 1026 IEEESTATE(vap), sc->flags)); 1027 /* 1028 * NB: Check driver state for association on assoc 1029 * loss as the firmware will immediately start to 1030 * scan and we would treat it as a beacon miss if 1031 * we checked the 802.11 layer state. 1032 */ 1033 if (sc->flags & IPW_FLAG_ASSOCIATED) { 1034 IPW_UNLOCK(sc); 1035 /* XXX probably need to issue disassoc to fw */ 1036 ieee80211_beacon_miss(ic); 1037 IPW_LOCK(sc); 1038 } 1039 break; 1040 1041 case IPW_STATE_SCAN_COMPLETE: 1042 /* 1043 * XXX For some reason scan requests generate scan 1044 * started + scan done events before any traffic is 1045 * received (e.g. probe response frames). We work 1046 * around this by marking the HACK flag and skipping 1047 * the first scan complete event. 1048 */ 1049 DPRINTFN(3, ("Scan complete (%s flags 0x%x)\n", 1050 IEEESTATE(vap), sc->flags)); 1051 if (sc->flags & IPW_FLAG_HACK) { 1052 sc->flags &= ~IPW_FLAG_HACK; 1053 break; 1054 } 1055 if (sc->flags & IPW_FLAG_SCANNING) { 1056 IPW_UNLOCK(sc); 1057 ieee80211_scan_done(vap); 1058 IPW_LOCK(sc); 1059 sc->flags &= ~IPW_FLAG_SCANNING; 1060 sc->sc_scan_timer = 0; 1061 } 1062 break; 1063 1064 case IPW_STATE_ASSOCIATION_LOST: 1065 DPRINTFN(2, ("Association lost (%s flags 0x%x)\n", 1066 IEEESTATE(vap), sc->flags)); 1067 sc->flags &= ~(IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1068 if (vap->iv_state == IEEE80211_S_RUN) { 1069 IPW_UNLOCK(sc); 1070 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1071 IPW_LOCK(sc); 1072 } 1073 break; 1074 1075 case IPW_STATE_DISABLED: 1076 /* XXX? is this right? */ 1077 sc->flags &= ~(IPW_FLAG_HACK | IPW_FLAG_SCANNING | 1078 IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1079 DPRINTFN(2, ("Firmware disabled (%s flags 0x%x)\n", 1080 IEEESTATE(vap), sc->flags)); 1081 break; 1082 1083 case IPW_STATE_RADIO_DISABLED: 1084 device_printf(sc->sc_dev, "radio turned off\n"); 1085 ieee80211_notify_radio(ic, 0); 1086 ipw_stop_locked(sc); 1087 /* XXX start polling thread to detect radio on */ 1088 break; 1089 1090 default: 1091 DPRINTFN(2, ("%s: unhandled state %u %s flags 0x%x\n", 1092 __func__, state, IEEESTATE(vap), sc->flags)); 1093 break; 1094 } 1095 #undef IEEESTATE 1096 } 1097 1098 /* 1099 * Set driver state for current channel. 1100 */ 1101 static void 1102 ipw_setcurchan(struct ipw_softc *sc, struct ieee80211_channel *chan) 1103 { 1104 struct ieee80211com *ic = &sc->sc_ic; 1105 1106 ic->ic_curchan = chan; 1107 ieee80211_radiotap_chan_change(ic); 1108 } 1109 1110 /* 1111 * XXX: Hack to set the current channel to the value advertised in beacons or 1112 * probe responses. Only used during AP detection. 1113 */ 1114 static void 1115 ipw_fix_channel(struct ipw_softc *sc, struct mbuf *m) 1116 { 1117 struct ieee80211com *ic = &sc->sc_ic; 1118 struct ieee80211_channel *c; 1119 struct ieee80211_frame *wh; 1120 uint8_t subtype; 1121 uint8_t *frm, *efrm; 1122 1123 wh = mtod(m, struct ieee80211_frame *); 1124 1125 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 1126 return; 1127 1128 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1129 1130 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 1131 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1132 return; 1133 1134 /* XXX use ieee80211_parse_beacon */ 1135 frm = (uint8_t *)(wh + 1); 1136 efrm = mtod(m, uint8_t *) + m->m_len; 1137 1138 frm += 12; /* skip tstamp, bintval and capinfo fields */ 1139 while (frm < efrm) { 1140 if (*frm == IEEE80211_ELEMID_DSPARMS) 1141 #if IEEE80211_CHAN_MAX < 255 1142 if (frm[2] <= IEEE80211_CHAN_MAX) 1143 #endif 1144 { 1145 DPRINTF(("Fixing channel to %d\n", frm[2])); 1146 c = ieee80211_find_channel(ic, 1147 ieee80211_ieee2mhz(frm[2], 0), 1148 IEEE80211_CHAN_B); 1149 if (c == NULL) 1150 c = &ic->ic_channels[0]; 1151 ipw_setcurchan(sc, c); 1152 } 1153 1154 frm += frm[1] + 2; 1155 } 1156 } 1157 1158 static void 1159 ipw_rx_data_intr(struct ipw_softc *sc, struct ipw_status *status, 1160 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf) 1161 { 1162 struct ieee80211com *ic = &sc->sc_ic; 1163 struct mbuf *mnew, *m; 1164 struct ieee80211_node *ni; 1165 bus_addr_t physaddr; 1166 int error; 1167 int8_t rssi, nf; 1168 1169 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len), 1170 status->rssi)); 1171 1172 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) || 1173 le32toh(status->len) > MCLBYTES) 1174 return; 1175 1176 /* 1177 * Try to allocate a new mbuf for this ring element and load it before 1178 * processing the current mbuf. If the ring element cannot be loaded, 1179 * drop the received packet and reuse the old mbuf. In the unlikely 1180 * case that the old mbuf can't be reloaded either, explicitly panic. 1181 */ 1182 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1183 if (mnew == NULL) { 1184 counter_u64_add(ic->ic_ierrors, 1); 1185 return; 1186 } 1187 1188 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1189 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 1190 1191 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *), 1192 MCLBYTES, ipw_dma_map_addr, &physaddr, 0); 1193 if (error != 0) { 1194 m_freem(mnew); 1195 1196 /* try to reload the old mbuf */ 1197 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 1198 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 1199 &physaddr, 0); 1200 if (error != 0) { 1201 /* very unlikely that it will fail... */ 1202 panic("%s: could not load old rx mbuf", 1203 device_get_name(sc->sc_dev)); 1204 } 1205 counter_u64_add(ic->ic_ierrors, 1); 1206 return; 1207 } 1208 1209 /* 1210 * New mbuf successfully loaded, update Rx ring and continue 1211 * processing. 1212 */ 1213 m = sbuf->m; 1214 sbuf->m = mnew; 1215 sbd->bd->physaddr = htole32(physaddr); 1216 m->m_pkthdr.len = m->m_len = le32toh(status->len); 1217 1218 rssi = status->rssi + IPW_RSSI_TO_DBM; 1219 nf = -95; 1220 if (ieee80211_radiotap_active(ic)) { 1221 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap; 1222 1223 tap->wr_flags = 0; 1224 tap->wr_antsignal = rssi; 1225 tap->wr_antnoise = nf; 1226 } 1227 1228 if (sc->flags & IPW_FLAG_SCANNING) 1229 ipw_fix_channel(sc, m); 1230 1231 IPW_UNLOCK(sc); 1232 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1233 if (ni != NULL) { 1234 (void) ieee80211_input(ni, m, rssi - nf, nf); 1235 ieee80211_free_node(ni); 1236 } else 1237 (void) ieee80211_input_all(ic, m, rssi - nf, nf); 1238 IPW_LOCK(sc); 1239 1240 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1241 } 1242 1243 static void 1244 ipw_rx_intr(struct ipw_softc *sc) 1245 { 1246 struct ipw_status *status; 1247 struct ipw_soft_bd *sbd; 1248 struct ipw_soft_buf *sbuf; 1249 uint32_t r, i; 1250 1251 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1252 return; 1253 1254 r = CSR_READ_4(sc, IPW_CSR_RX_READ); 1255 1256 bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD); 1257 1258 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) { 1259 status = &sc->status_list[i]; 1260 sbd = &sc->srbd_list[i]; 1261 sbuf = sbd->priv; 1262 1263 switch (le16toh(status->code) & 0xf) { 1264 case IPW_STATUS_CODE_COMMAND: 1265 ipw_rx_cmd_intr(sc, sbuf); 1266 break; 1267 1268 case IPW_STATUS_CODE_NEWSTATE: 1269 ipw_rx_newstate_intr(sc, sbuf); 1270 break; 1271 1272 case IPW_STATUS_CODE_DATA_802_3: 1273 case IPW_STATUS_CODE_DATA_802_11: 1274 ipw_rx_data_intr(sc, status, sbd, sbuf); 1275 break; 1276 1277 case IPW_STATUS_CODE_NOTIFICATION: 1278 DPRINTFN(2, ("notification status, len %u flags 0x%x\n", 1279 le32toh(status->len), status->flags)); 1280 /* XXX maybe drive state machine AUTH->ASSOC? */ 1281 break; 1282 1283 default: 1284 device_printf(sc->sc_dev, "unexpected status code %u\n", 1285 le16toh(status->code)); 1286 } 1287 1288 /* firmware was killed, stop processing received frames */ 1289 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1290 return; 1291 1292 sbd->bd->flags = 0; 1293 } 1294 1295 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1296 1297 /* kick the firmware */ 1298 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1; 1299 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 1300 } 1301 1302 static void 1303 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd) 1304 { 1305 struct ipw_soft_hdr *shdr; 1306 struct ipw_soft_buf *sbuf; 1307 1308 switch (sbd->type) { 1309 case IPW_SBD_TYPE_COMMAND: 1310 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, 1311 BUS_DMASYNC_POSTWRITE); 1312 bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map); 1313 break; 1314 1315 case IPW_SBD_TYPE_HEADER: 1316 shdr = sbd->priv; 1317 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE); 1318 bus_dmamap_unload(sc->hdr_dmat, shdr->map); 1319 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 1320 break; 1321 1322 case IPW_SBD_TYPE_DATA: 1323 sbuf = sbd->priv; 1324 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, 1325 BUS_DMASYNC_POSTWRITE); 1326 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1327 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 1328 1329 ieee80211_tx_complete(sbuf->ni, sbuf->m, 0/*XXX*/); 1330 1331 sc->sc_tx_timer = 0; 1332 break; 1333 } 1334 1335 sbd->type = IPW_SBD_TYPE_NOASSOC; 1336 } 1337 1338 static void 1339 ipw_tx_intr(struct ipw_softc *sc) 1340 { 1341 struct ipw_soft_bd *sbd; 1342 uint32_t r, i; 1343 1344 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1345 return; 1346 1347 r = CSR_READ_4(sc, IPW_CSR_TX_READ); 1348 1349 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) { 1350 sbd = &sc->stbd_list[i]; 1351 ipw_release_sbd(sc, sbd); 1352 sc->txfree++; 1353 } 1354 1355 /* remember what the firmware has processed */ 1356 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1; 1357 1358 ipw_start(sc); 1359 } 1360 1361 static void 1362 ipw_fatal_error_intr(struct ipw_softc *sc) 1363 { 1364 struct ieee80211com *ic = &sc->sc_ic; 1365 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1366 1367 device_printf(sc->sc_dev, "firmware error\n"); 1368 if (vap != NULL) { 1369 IPW_UNLOCK(sc); 1370 ieee80211_cancel_scan(vap); 1371 IPW_LOCK(sc); 1372 } 1373 ieee80211_runtask(ic, &sc->sc_init_task); 1374 } 1375 1376 static void 1377 ipw_intr(void *arg) 1378 { 1379 struct ipw_softc *sc = arg; 1380 uint32_t r; 1381 1382 IPW_LOCK(sc); 1383 1384 r = CSR_READ_4(sc, IPW_CSR_INTR); 1385 if (r == 0 || r == 0xffffffff) 1386 goto done; 1387 1388 /* disable interrupts */ 1389 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1390 1391 /* acknowledge all interrupts */ 1392 CSR_WRITE_4(sc, IPW_CSR_INTR, r); 1393 1394 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) { 1395 ipw_fatal_error_intr(sc); 1396 goto done; 1397 } 1398 1399 if (r & IPW_INTR_FW_INIT_DONE) 1400 wakeup(sc); 1401 1402 if (r & IPW_INTR_RX_TRANSFER) 1403 ipw_rx_intr(sc); 1404 1405 if (r & IPW_INTR_TX_TRANSFER) 1406 ipw_tx_intr(sc); 1407 1408 /* re-enable interrupts */ 1409 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1410 done: 1411 IPW_UNLOCK(sc); 1412 } 1413 1414 static void 1415 ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1416 { 1417 if (error != 0) 1418 return; 1419 1420 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 1421 1422 *(bus_addr_t *)arg = segs[0].ds_addr; 1423 } 1424 1425 static const char * 1426 ipw_cmdname(int cmd) 1427 { 1428 static const struct { 1429 int cmd; 1430 const char *name; 1431 } cmds[] = { 1432 { IPW_CMD_ADD_MULTICAST, "ADD_MULTICAST" }, 1433 { IPW_CMD_BROADCAST_SCAN, "BROADCAST_SCAN" }, 1434 { IPW_CMD_DISABLE, "DISABLE" }, 1435 { IPW_CMD_DISABLE_PHY, "DISABLE_PHY" }, 1436 { IPW_CMD_ENABLE, "ENABLE" }, 1437 { IPW_CMD_PREPARE_POWER_DOWN, "PREPARE_POWER_DOWN" }, 1438 { IPW_CMD_SET_BASIC_TX_RATES, "SET_BASIC_TX_RATES" }, 1439 { IPW_CMD_SET_BEACON_INTERVAL, "SET_BEACON_INTERVAL" }, 1440 { IPW_CMD_SET_CHANNEL, "SET_CHANNEL" }, 1441 { IPW_CMD_SET_CONFIGURATION, "SET_CONFIGURATION" }, 1442 { IPW_CMD_SET_DESIRED_BSSID, "SET_DESIRED_BSSID" }, 1443 { IPW_CMD_SET_ESSID, "SET_ESSID" }, 1444 { IPW_CMD_SET_FRAG_THRESHOLD, "SET_FRAG_THRESHOLD" }, 1445 { IPW_CMD_SET_MAC_ADDRESS, "SET_MAC_ADDRESS" }, 1446 { IPW_CMD_SET_MANDATORY_BSSID, "SET_MANDATORY_BSSID" }, 1447 { IPW_CMD_SET_MODE, "SET_MODE" }, 1448 { IPW_CMD_SET_MSDU_TX_RATES, "SET_MSDU_TX_RATES" }, 1449 { IPW_CMD_SET_POWER_MODE, "SET_POWER_MODE" }, 1450 { IPW_CMD_SET_RTS_THRESHOLD, "SET_RTS_THRESHOLD" }, 1451 { IPW_CMD_SET_SCAN_OPTIONS, "SET_SCAN_OPTIONS" }, 1452 { IPW_CMD_SET_SECURITY_INFO, "SET_SECURITY_INFO" }, 1453 { IPW_CMD_SET_TX_POWER_INDEX, "SET_TX_POWER_INDEX" }, 1454 { IPW_CMD_SET_TX_RATES, "SET_TX_RATES" }, 1455 { IPW_CMD_SET_WEP_FLAGS, "SET_WEP_FLAGS" }, 1456 { IPW_CMD_SET_WEP_KEY, "SET_WEP_KEY" }, 1457 { IPW_CMD_SET_WEP_KEY_INDEX, "SET_WEP_KEY_INDEX" }, 1458 { IPW_CMD_SET_WPA_IE, "SET_WPA_IE" }, 1459 1460 }; 1461 static char buf[12]; 1462 int i; 1463 1464 for (i = 0; i < nitems(cmds); i++) 1465 if (cmds[i].cmd == cmd) 1466 return cmds[i].name; 1467 snprintf(buf, sizeof(buf), "%u", cmd); 1468 return buf; 1469 } 1470 1471 /* 1472 * Send a command to the firmware and wait for the acknowledgement. 1473 */ 1474 static int 1475 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len) 1476 { 1477 struct ipw_soft_bd *sbd; 1478 bus_addr_t physaddr; 1479 int error; 1480 1481 IPW_LOCK_ASSERT(sc); 1482 1483 if (sc->flags & IPW_FLAG_BUSY) { 1484 device_printf(sc->sc_dev, "%s: %s not sent, busy\n", 1485 __func__, ipw_cmdname(type)); 1486 return EAGAIN; 1487 } 1488 sc->flags |= IPW_FLAG_BUSY; 1489 1490 sbd = &sc->stbd_list[sc->txcur]; 1491 1492 error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd, 1493 sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0); 1494 if (error != 0) { 1495 device_printf(sc->sc_dev, "could not map command DMA memory\n"); 1496 sc->flags &= ~IPW_FLAG_BUSY; 1497 return error; 1498 } 1499 1500 sc->cmd.type = htole32(type); 1501 sc->cmd.subtype = 0; 1502 sc->cmd.len = htole32(len); 1503 sc->cmd.seq = 0; 1504 memcpy(sc->cmd.data, data, len); 1505 1506 sbd->type = IPW_SBD_TYPE_COMMAND; 1507 sbd->bd->physaddr = htole32(physaddr); 1508 sbd->bd->len = htole32(sizeof (struct ipw_cmd)); 1509 sbd->bd->nfrag = 1; 1510 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND | 1511 IPW_BD_FLAG_TX_LAST_FRAGMENT; 1512 1513 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE); 1514 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1515 1516 #ifdef IPW_DEBUG 1517 if (ipw_debug >= 4) { 1518 printf("sending %s(%u, %u, %u, %u)", ipw_cmdname(type), type, 1519 0, 0, len); 1520 /* Print the data buffer in the higher debug level */ 1521 if (ipw_debug >= 9 && len > 0) { 1522 printf(" data: 0x"); 1523 for (int i = 1; i <= len; i++) 1524 printf("%1D", (u_char *)data + len - i, ""); 1525 } 1526 printf("\n"); 1527 } 1528 #endif 1529 1530 /* kick firmware */ 1531 sc->txfree--; 1532 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1533 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1534 1535 /* wait at most one second for command to complete */ 1536 error = msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz); 1537 if (error != 0) { 1538 device_printf(sc->sc_dev, "%s: %s failed, timeout (error %u)\n", 1539 __func__, ipw_cmdname(type), error); 1540 sc->flags &= ~IPW_FLAG_BUSY; 1541 return (error); 1542 } 1543 return (0); 1544 } 1545 1546 static int 1547 ipw_tx_start(struct ipw_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1548 { 1549 struct ieee80211com *ic = &sc->sc_ic; 1550 struct ieee80211vap *vap = ni->ni_vap; 1551 struct ieee80211_frame *wh; 1552 struct ipw_soft_bd *sbd; 1553 struct ipw_soft_hdr *shdr; 1554 struct ipw_soft_buf *sbuf; 1555 struct ieee80211_key *k; 1556 struct mbuf *mnew; 1557 bus_dma_segment_t segs[IPW_MAX_NSEG]; 1558 bus_addr_t physaddr; 1559 int nsegs, error, i; 1560 1561 wh = mtod(m0, struct ieee80211_frame *); 1562 1563 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1564 k = ieee80211_crypto_encap(ni, m0); 1565 if (k == NULL) { 1566 m_freem(m0); 1567 return ENOBUFS; 1568 } 1569 /* packet header may have moved, reset our local pointer */ 1570 wh = mtod(m0, struct ieee80211_frame *); 1571 } 1572 1573 if (ieee80211_radiotap_active_vap(vap)) { 1574 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap; 1575 1576 tap->wt_flags = 0; 1577 1578 ieee80211_radiotap_tx(vap, m0); 1579 } 1580 1581 shdr = SLIST_FIRST(&sc->free_shdr); 1582 sbuf = SLIST_FIRST(&sc->free_sbuf); 1583 KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool")); 1584 1585 shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND); 1586 shdr->hdr.subtype = 0; 1587 shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) ? 1 : 0; 1588 shdr->hdr.encrypt = 0; 1589 shdr->hdr.keyidx = 0; 1590 shdr->hdr.keysz = 0; 1591 shdr->hdr.fragmentsz = 0; 1592 IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2); 1593 if (ic->ic_opmode == IEEE80211_M_STA) 1594 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3); 1595 else 1596 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1); 1597 1598 /* trim IEEE802.11 header */ 1599 m_adj(m0, sizeof (struct ieee80211_frame)); 1600 1601 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs, 1602 &nsegs, 0); 1603 if (error != 0 && error != EFBIG) { 1604 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1605 error); 1606 m_freem(m0); 1607 return error; 1608 } 1609 if (error != 0) { 1610 mnew = m_defrag(m0, M_NOWAIT); 1611 if (mnew == NULL) { 1612 device_printf(sc->sc_dev, 1613 "could not defragment mbuf\n"); 1614 m_freem(m0); 1615 return ENOBUFS; 1616 } 1617 m0 = mnew; 1618 1619 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, 1620 segs, &nsegs, 0); 1621 if (error != 0) { 1622 device_printf(sc->sc_dev, 1623 "could not map mbuf (error %d)\n", error); 1624 m_freem(m0); 1625 return error; 1626 } 1627 } 1628 1629 error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr, 1630 sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0); 1631 if (error != 0) { 1632 device_printf(sc->sc_dev, "could not map header DMA memory\n"); 1633 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1634 m_freem(m0); 1635 return error; 1636 } 1637 1638 SLIST_REMOVE_HEAD(&sc->free_sbuf, next); 1639 SLIST_REMOVE_HEAD(&sc->free_shdr, next); 1640 1641 sbd = &sc->stbd_list[sc->txcur]; 1642 sbd->type = IPW_SBD_TYPE_HEADER; 1643 sbd->priv = shdr; 1644 sbd->bd->physaddr = htole32(physaddr); 1645 sbd->bd->len = htole32(sizeof (struct ipw_hdr)); 1646 sbd->bd->nfrag = 1 + nsegs; 1647 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 | 1648 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1649 1650 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n", 1651 shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted, 1652 shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr, 1653 ":")); 1654 1655 sc->txfree--; 1656 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1657 1658 sbuf->m = m0; 1659 sbuf->ni = ni; 1660 1661 for (i = 0; i < nsegs; i++) { 1662 sbd = &sc->stbd_list[sc->txcur]; 1663 1664 sbd->bd->physaddr = htole32(segs[i].ds_addr); 1665 sbd->bd->len = htole32(segs[i].ds_len); 1666 sbd->bd->nfrag = 0; 1667 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3; 1668 if (i == nsegs - 1) { 1669 sbd->type = IPW_SBD_TYPE_DATA; 1670 sbd->priv = sbuf; 1671 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT; 1672 } else { 1673 sbd->type = IPW_SBD_TYPE_NOASSOC; 1674 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1675 } 1676 1677 DPRINTFN(5, ("sending fragment (%d)\n", i)); 1678 1679 sc->txfree--; 1680 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1681 } 1682 1683 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE); 1684 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE); 1685 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1686 1687 /* kick firmware */ 1688 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1689 1690 return 0; 1691 } 1692 1693 static int 1694 ipw_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1695 const struct ieee80211_bpf_params *params) 1696 { 1697 /* no support; just discard */ 1698 m_freem(m); 1699 ieee80211_free_node(ni); 1700 return 0; 1701 } 1702 1703 static int 1704 ipw_transmit(struct ieee80211com *ic, struct mbuf *m) 1705 { 1706 struct ipw_softc *sc = ic->ic_softc; 1707 int error; 1708 1709 IPW_LOCK(sc); 1710 if ((sc->flags & IPW_FLAG_RUNNING) == 0) { 1711 IPW_UNLOCK(sc); 1712 return (ENXIO); 1713 } 1714 error = mbufq_enqueue(&sc->sc_snd, m); 1715 if (error) { 1716 IPW_UNLOCK(sc); 1717 return (error); 1718 } 1719 ipw_start(sc); 1720 IPW_UNLOCK(sc); 1721 return (0); 1722 } 1723 1724 static void 1725 ipw_start(struct ipw_softc *sc) 1726 { 1727 struct ieee80211_node *ni; 1728 struct mbuf *m; 1729 1730 IPW_LOCK_ASSERT(sc); 1731 1732 while (sc->txfree >= 1 + IPW_MAX_NSEG && 1733 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1734 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1735 if (ipw_tx_start(sc, m, ni) != 0) { 1736 if_inc_counter(ni->ni_vap->iv_ifp, 1737 IFCOUNTER_OERRORS, 1); 1738 ieee80211_free_node(ni); 1739 break; 1740 } 1741 /* start watchdog timer */ 1742 sc->sc_tx_timer = 5; 1743 } 1744 } 1745 1746 static void 1747 ipw_watchdog(void *arg) 1748 { 1749 struct ipw_softc *sc = arg; 1750 struct ieee80211com *ic = &sc->sc_ic; 1751 1752 IPW_LOCK_ASSERT(sc); 1753 1754 if (sc->sc_tx_timer > 0) { 1755 if (--sc->sc_tx_timer == 0) { 1756 device_printf(sc->sc_dev, "device timeout\n"); 1757 counter_u64_add(ic->ic_oerrors, 1); 1758 taskqueue_enqueue(taskqueue_swi, &sc->sc_init_task); 1759 } 1760 } 1761 if (sc->sc_scan_timer > 0) { 1762 if (--sc->sc_scan_timer == 0) { 1763 DPRINTFN(3, ("Scan timeout\n")); 1764 /* End the scan */ 1765 if (sc->flags & IPW_FLAG_SCANNING) { 1766 IPW_UNLOCK(sc); 1767 ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); 1768 IPW_LOCK(sc); 1769 sc->flags &= ~IPW_FLAG_SCANNING; 1770 } 1771 } 1772 } 1773 if (sc->flags & IPW_FLAG_RUNNING) 1774 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 1775 } 1776 1777 static void 1778 ipw_parent(struct ieee80211com *ic) 1779 { 1780 struct ipw_softc *sc = ic->ic_softc; 1781 int startall = 0; 1782 1783 IPW_LOCK(sc); 1784 if (ic->ic_nrunning > 0) { 1785 if (!(sc->flags & IPW_FLAG_RUNNING)) { 1786 ipw_init_locked(sc); 1787 startall = 1; 1788 } 1789 } else if (sc->flags & IPW_FLAG_RUNNING) 1790 ipw_stop_locked(sc); 1791 IPW_UNLOCK(sc); 1792 if (startall) 1793 ieee80211_start_all(ic); 1794 } 1795 1796 static void 1797 ipw_stop_master(struct ipw_softc *sc) 1798 { 1799 uint32_t tmp; 1800 int ntries; 1801 1802 /* disable interrupts */ 1803 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1804 1805 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER); 1806 for (ntries = 0; ntries < 50; ntries++) { 1807 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED) 1808 break; 1809 DELAY(10); 1810 } 1811 if (ntries == 50) 1812 device_printf(sc->sc_dev, "timeout waiting for master\n"); 1813 1814 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1815 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET); 1816 1817 /* Clear all flags except the following */ 1818 sc->flags &= IPW_FLAG_HAS_RADIO_SWITCH; 1819 } 1820 1821 static int 1822 ipw_reset(struct ipw_softc *sc) 1823 { 1824 uint32_t tmp; 1825 int ntries; 1826 1827 ipw_stop_master(sc); 1828 1829 /* move adapter to D0 state */ 1830 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1831 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1832 1833 /* wait for clock stabilization */ 1834 for (ntries = 0; ntries < 1000; ntries++) { 1835 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY) 1836 break; 1837 DELAY(200); 1838 } 1839 if (ntries == 1000) 1840 return EIO; 1841 1842 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1843 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET); 1844 1845 DELAY(10); 1846 1847 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1848 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1849 1850 return 0; 1851 } 1852 1853 static int 1854 ipw_waitfordisable(struct ipw_softc *sc, int waitfor) 1855 { 1856 int ms = hz < 1000 ? 1 : hz/10; 1857 int i, error; 1858 1859 for (i = 0; i < 100; i++) { 1860 if (ipw_read_table1(sc, IPW_INFO_CARD_DISABLED) == waitfor) 1861 return 0; 1862 error = msleep(sc, &sc->sc_mtx, PCATCH, __func__, ms); 1863 if (error == 0 || error != EWOULDBLOCK) 1864 return 0; 1865 } 1866 DPRINTF(("%s: timeout waiting for %s\n", 1867 __func__, waitfor ? "disable" : "enable")); 1868 return ETIMEDOUT; 1869 } 1870 1871 static int 1872 ipw_enable(struct ipw_softc *sc) 1873 { 1874 int error; 1875 1876 if ((sc->flags & IPW_FLAG_ENABLED) == 0) { 1877 DPRINTF(("Enable adapter\n")); 1878 error = ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); 1879 if (error != 0) 1880 return error; 1881 error = ipw_waitfordisable(sc, 0); 1882 if (error != 0) 1883 return error; 1884 sc->flags |= IPW_FLAG_ENABLED; 1885 } 1886 return 0; 1887 } 1888 1889 static int 1890 ipw_disable(struct ipw_softc *sc) 1891 { 1892 int error; 1893 1894 if (sc->flags & IPW_FLAG_ENABLED) { 1895 DPRINTF(("Disable adapter\n")); 1896 error = ipw_cmd(sc, IPW_CMD_DISABLE, NULL, 0); 1897 if (error != 0) 1898 return error; 1899 error = ipw_waitfordisable(sc, 1); 1900 if (error != 0) 1901 return error; 1902 sc->flags &= ~IPW_FLAG_ENABLED; 1903 } 1904 return 0; 1905 } 1906 1907 /* 1908 * Upload the microcode to the device. 1909 */ 1910 static int 1911 ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size) 1912 { 1913 int ntries; 1914 1915 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 1916 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1917 1918 MEM_WRITE_2(sc, 0x220000, 0x0703); 1919 MEM_WRITE_2(sc, 0x220000, 0x0707); 1920 1921 MEM_WRITE_1(sc, 0x210014, 0x72); 1922 MEM_WRITE_1(sc, 0x210014, 0x72); 1923 1924 MEM_WRITE_1(sc, 0x210000, 0x40); 1925 MEM_WRITE_1(sc, 0x210000, 0x00); 1926 MEM_WRITE_1(sc, 0x210000, 0x40); 1927 1928 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size); 1929 1930 MEM_WRITE_1(sc, 0x210000, 0x00); 1931 MEM_WRITE_1(sc, 0x210000, 0x00); 1932 MEM_WRITE_1(sc, 0x210000, 0x80); 1933 1934 MEM_WRITE_2(sc, 0x220000, 0x0703); 1935 MEM_WRITE_2(sc, 0x220000, 0x0707); 1936 1937 MEM_WRITE_1(sc, 0x210014, 0x72); 1938 MEM_WRITE_1(sc, 0x210014, 0x72); 1939 1940 MEM_WRITE_1(sc, 0x210000, 0x00); 1941 MEM_WRITE_1(sc, 0x210000, 0x80); 1942 1943 for (ntries = 0; ntries < 10; ntries++) { 1944 if (MEM_READ_1(sc, 0x210000) & 1) 1945 break; 1946 DELAY(10); 1947 } 1948 if (ntries == 10) { 1949 device_printf(sc->sc_dev, 1950 "timeout waiting for ucode to initialize\n"); 1951 return EIO; 1952 } 1953 1954 MEM_WRITE_4(sc, 0x3000e0, 0); 1955 1956 return 0; 1957 } 1958 1959 /* set of macros to handle unaligned little endian data in firmware image */ 1960 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 1961 #define GETLE16(p) ((p)[0] | (p)[1] << 8) 1962 static int 1963 ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size) 1964 { 1965 const uint8_t *p, *end; 1966 uint32_t tmp, dst; 1967 uint16_t len; 1968 int error; 1969 1970 p = fw; 1971 end = fw + size; 1972 while (p < end) { 1973 dst = GETLE32(p); p += 4; 1974 len = GETLE16(p); p += 2; 1975 1976 ipw_write_mem_1(sc, dst, p, len); 1977 p += len; 1978 } 1979 1980 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK | 1981 IPW_IO_LED_OFF); 1982 1983 /* enable interrupts */ 1984 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1985 1986 /* kick the firmware */ 1987 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1988 1989 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1990 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY); 1991 1992 /* wait at most one second for firmware initialization to complete */ 1993 if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) { 1994 device_printf(sc->sc_dev, "timeout waiting for firmware " 1995 "initialization to complete\n"); 1996 return error; 1997 } 1998 1999 tmp = CSR_READ_4(sc, IPW_CSR_IO); 2000 CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK | 2001 IPW_IO_GPIO3_MASK); 2002 2003 return 0; 2004 } 2005 2006 static int 2007 ipw_setwepkeys(struct ipw_softc *sc) 2008 { 2009 struct ieee80211com *ic = &sc->sc_ic; 2010 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2011 struct ipw_wep_key wepkey; 2012 struct ieee80211_key *wk; 2013 int error, i; 2014 2015 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2016 wk = &vap->iv_nw_keys[i]; 2017 2018 if (wk->wk_cipher == NULL || 2019 wk->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP) 2020 continue; 2021 2022 wepkey.idx = i; 2023 wepkey.len = wk->wk_keylen; 2024 memset(wepkey.key, 0, sizeof wepkey.key); 2025 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2026 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2027 wepkey.len)); 2028 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey, 2029 sizeof wepkey); 2030 if (error != 0) 2031 return error; 2032 } 2033 return 0; 2034 } 2035 2036 static int 2037 ipw_setwpaie(struct ipw_softc *sc, const void *ie, int ielen) 2038 { 2039 struct ipw_wpa_ie wpaie; 2040 2041 memset(&wpaie, 0, sizeof(wpaie)); 2042 wpaie.len = htole32(ielen); 2043 /* XXX verify length */ 2044 memcpy(&wpaie.ie, ie, ielen); 2045 DPRINTF(("Setting WPA IE\n")); 2046 return ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &wpaie, sizeof(wpaie)); 2047 } 2048 2049 static int 2050 ipw_setbssid(struct ipw_softc *sc, uint8_t *bssid) 2051 { 2052 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 2053 2054 if (bssid == NULL || bcmp(bssid, zerobssid, IEEE80211_ADDR_LEN) == 0) { 2055 DPRINTF(("Setting mandatory BSSID to null\n")); 2056 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0); 2057 } else { 2058 DPRINTF(("Setting mandatory BSSID to %6D\n", bssid, ":")); 2059 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, 2060 bssid, IEEE80211_ADDR_LEN); 2061 } 2062 } 2063 2064 static int 2065 ipw_setssid(struct ipw_softc *sc, void *ssid, size_t ssidlen) 2066 { 2067 if (ssidlen == 0) { 2068 /* 2069 * A bug in the firmware breaks the ``don't associate'' 2070 * bit in the scan options command. To compensate for 2071 * this install a bogus ssid when no ssid is specified 2072 * so the firmware won't try to associate. 2073 */ 2074 DPRINTF(("Setting bogus ESSID to WAR firmware bug\n")); 2075 return ipw_cmd(sc, IPW_CMD_SET_ESSID, 2076 "\x18\x19\x20\x21\x22\x23\x24\x25\x26\x27" 2077 "\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31" 2078 "\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b" 2079 "\x3c\x3d", IEEE80211_NWID_LEN); 2080 } else { 2081 #ifdef IPW_DEBUG 2082 if (ipw_debug > 0) { 2083 printf("Setting ESSID to "); 2084 ieee80211_print_essid(ssid, ssidlen); 2085 printf("\n"); 2086 } 2087 #endif 2088 return ipw_cmd(sc, IPW_CMD_SET_ESSID, ssid, ssidlen); 2089 } 2090 } 2091 2092 static int 2093 ipw_setscanopts(struct ipw_softc *sc, uint32_t chanmask, uint32_t flags) 2094 { 2095 struct ipw_scan_options opts; 2096 2097 DPRINTF(("Scan options: mask 0x%x flags 0x%x\n", chanmask, flags)); 2098 opts.channels = htole32(chanmask); 2099 opts.flags = htole32(flags); 2100 return ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &opts, sizeof(opts)); 2101 } 2102 2103 static int 2104 ipw_scan(struct ipw_softc *sc) 2105 { 2106 uint32_t params; 2107 int error; 2108 2109 DPRINTF(("%s: flags 0x%x\n", __func__, sc->flags)); 2110 2111 if (sc->flags & IPW_FLAG_SCANNING) 2112 return (EBUSY); 2113 sc->flags |= IPW_FLAG_SCANNING | IPW_FLAG_HACK; 2114 2115 /* NB: IPW_SCAN_DO_NOT_ASSOCIATE does not work (we set it anyway) */ 2116 error = ipw_setscanopts(sc, 0x3fff, IPW_SCAN_DO_NOT_ASSOCIATE); 2117 if (error != 0) 2118 goto done; 2119 2120 /* 2121 * Setup null/bogus ssid so firmware doesn't use any previous 2122 * ssid to try and associate. This is because the ``don't 2123 * associate'' option bit is broken (sigh). 2124 */ 2125 error = ipw_setssid(sc, NULL, 0); 2126 if (error != 0) 2127 goto done; 2128 2129 /* 2130 * NB: the adapter may be disabled on association lost; 2131 * if so just re-enable it to kick off scanning. 2132 */ 2133 DPRINTF(("Starting scan\n")); 2134 sc->sc_scan_timer = 3; 2135 if (sc->flags & IPW_FLAG_ENABLED) { 2136 params = 0; /* XXX? */ 2137 error = ipw_cmd(sc, IPW_CMD_BROADCAST_SCAN, 2138 ¶ms, sizeof(params)); 2139 } else 2140 error = ipw_enable(sc); 2141 done: 2142 if (error != 0) { 2143 DPRINTF(("Scan failed\n")); 2144 sc->flags &= ~(IPW_FLAG_SCANNING | IPW_FLAG_HACK); 2145 } 2146 return (error); 2147 } 2148 2149 static int 2150 ipw_setchannel(struct ipw_softc *sc, struct ieee80211_channel *chan) 2151 { 2152 struct ieee80211com *ic = &sc->sc_ic; 2153 uint32_t data; 2154 int error; 2155 2156 data = htole32(ieee80211_chan2ieee(ic, chan)); 2157 DPRINTF(("Setting channel to %u\n", le32toh(data))); 2158 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data); 2159 if (error == 0) 2160 ipw_setcurchan(sc, chan); 2161 return error; 2162 } 2163 2164 static void 2165 ipw_assoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2166 { 2167 struct ipw_softc *sc = ic->ic_softc; 2168 struct ieee80211_node *ni = vap->iv_bss; 2169 struct ipw_security security; 2170 uint32_t data; 2171 int error; 2172 2173 IPW_LOCK(sc); 2174 error = ipw_disable(sc); 2175 if (error != 0) 2176 goto done; 2177 2178 memset(&security, 0, sizeof security); 2179 security.authmode = (ni->ni_authmode == IEEE80211_AUTH_SHARED) ? 2180 IPW_AUTH_SHARED : IPW_AUTH_OPEN; 2181 security.ciphers = htole32(IPW_CIPHER_NONE); 2182 DPRINTF(("Setting authmode to %u\n", security.authmode)); 2183 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFO, &security, 2184 sizeof security); 2185 if (error != 0) 2186 goto done; 2187 2188 data = htole32(vap->iv_rtsthreshold); 2189 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2190 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2191 if (error != 0) 2192 goto done; 2193 2194 data = htole32(vap->iv_fragthreshold); 2195 DPRINTF(("Setting frag threshold to %u\n", le32toh(data))); 2196 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2197 if (error != 0) 2198 goto done; 2199 2200 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 2201 error = ipw_setwepkeys(sc); 2202 if (error != 0) 2203 goto done; 2204 2205 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { 2206 data = htole32(vap->iv_def_txkey); 2207 DPRINTF(("Setting wep tx key index to %u\n", 2208 le32toh(data))); 2209 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data, 2210 sizeof data); 2211 if (error != 0) 2212 goto done; 2213 } 2214 } 2215 2216 data = htole32((vap->iv_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0); 2217 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data))); 2218 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data); 2219 if (error != 0) 2220 goto done; 2221 2222 error = ipw_setssid(sc, ni->ni_essid, ni->ni_esslen); 2223 if (error != 0) 2224 goto done; 2225 2226 error = ipw_setbssid(sc, ni->ni_bssid); 2227 if (error != 0) 2228 goto done; 2229 2230 if (vap->iv_appie_wpa != NULL) { 2231 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2232 error = ipw_setwpaie(sc, ie->ie_data, ie->ie_len); 2233 if (error != 0) 2234 goto done; 2235 } 2236 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2237 error = ipw_setchannel(sc, ni->ni_chan); 2238 if (error != 0) 2239 goto done; 2240 } 2241 2242 /* lock scan to ap's channel and enable associate */ 2243 error = ipw_setscanopts(sc, 2244 1<<(ieee80211_chan2ieee(ic, ni->ni_chan)-1), 0); 2245 if (error != 0) 2246 goto done; 2247 2248 error = ipw_enable(sc); /* finally, enable adapter */ 2249 if (error == 0) 2250 sc->flags |= IPW_FLAG_ASSOCIATING; 2251 done: 2252 IPW_UNLOCK(sc); 2253 } 2254 2255 static void 2256 ipw_disassoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2257 { 2258 struct ieee80211_node *ni = vap->iv_bss; 2259 struct ipw_softc *sc = ic->ic_softc; 2260 2261 IPW_LOCK(sc); 2262 DPRINTF(("Disassociate from %6D\n", ni->ni_bssid, ":")); 2263 /* 2264 * NB: don't try to do this if ipw_stop_master has 2265 * shutdown the firmware and disabled interrupts. 2266 */ 2267 if (sc->flags & IPW_FLAG_FW_INITED) { 2268 sc->flags &= ~IPW_FLAG_ASSOCIATED; 2269 /* 2270 * NB: firmware currently ignores bssid parameter, but 2271 * supply it in case this changes (follow linux driver). 2272 */ 2273 (void) ipw_cmd(sc, IPW_CMD_DISASSOCIATE, 2274 ni->ni_bssid, IEEE80211_ADDR_LEN); 2275 } 2276 IPW_UNLOCK(sc); 2277 } 2278 2279 /* 2280 * Handler for sc_init_task. This is a simple wrapper around ipw_init(). 2281 * It is called on firmware panics or on watchdog timeouts. 2282 */ 2283 static void 2284 ipw_init_task(void *context, int pending) 2285 { 2286 ipw_init(context); 2287 } 2288 2289 static void 2290 ipw_init(void *priv) 2291 { 2292 struct ipw_softc *sc = priv; 2293 struct ieee80211com *ic = &sc->sc_ic; 2294 2295 IPW_LOCK(sc); 2296 ipw_init_locked(sc); 2297 IPW_UNLOCK(sc); 2298 2299 if (sc->flags & IPW_FLAG_RUNNING) 2300 ieee80211_start_all(ic); /* start all vap's */ 2301 } 2302 2303 static void 2304 ipw_init_locked(struct ipw_softc *sc) 2305 { 2306 struct ieee80211com *ic = &sc->sc_ic; 2307 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2308 const struct firmware *fp; 2309 const struct ipw_firmware_hdr *hdr; 2310 const char *fw; 2311 2312 IPW_LOCK_ASSERT(sc); 2313 2314 DPRINTF(("%s: state %s flags 0x%x\n", __func__, 2315 ieee80211_state_name[vap->iv_state], sc->flags)); 2316 2317 /* 2318 * Avoid re-entrant calls. We need to release the mutex in ipw_init() 2319 * when loading the firmware and we don't want to be called during this 2320 * operation. 2321 */ 2322 if (sc->flags & IPW_FLAG_INIT_LOCKED) 2323 return; 2324 sc->flags |= IPW_FLAG_INIT_LOCKED; 2325 2326 ipw_stop_locked(sc); 2327 2328 if (ipw_reset(sc) != 0) { 2329 device_printf(sc->sc_dev, "could not reset adapter\n"); 2330 goto fail; 2331 } 2332 2333 if (sc->sc_firmware == NULL) { 2334 device_printf(sc->sc_dev, "no firmware\n"); 2335 goto fail; 2336 } 2337 /* NB: consistency already checked on load */ 2338 fp = sc->sc_firmware; 2339 hdr = (const struct ipw_firmware_hdr *)fp->data; 2340 2341 DPRINTF(("Loading firmware image '%s'\n", fp->name)); 2342 fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz); 2343 if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) { 2344 device_printf(sc->sc_dev, "could not load microcode\n"); 2345 goto fail; 2346 } 2347 2348 ipw_stop_master(sc); 2349 2350 /* 2351 * Setup tx, rx and status rings. 2352 */ 2353 sc->txold = IPW_NTBD - 1; 2354 sc->txcur = 0; 2355 sc->txfree = IPW_NTBD - 2; 2356 sc->rxcur = IPW_NRBD - 1; 2357 2358 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_phys); 2359 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD); 2360 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0); 2361 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 2362 2363 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_phys); 2364 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD); 2365 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0); 2366 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 2367 2368 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys); 2369 2370 fw = (const char *)fp->data + sizeof *hdr; 2371 if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) { 2372 device_printf(sc->sc_dev, "could not load firmware\n"); 2373 goto fail; 2374 } 2375 2376 sc->flags |= IPW_FLAG_FW_INITED; 2377 2378 /* retrieve information tables base addresses */ 2379 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE); 2380 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE); 2381 2382 ipw_write_table1(sc, IPW_INFO_LOCK, 0); 2383 2384 if (ipw_config(sc) != 0) { 2385 device_printf(sc->sc_dev, "device configuration failed\n"); 2386 goto fail; 2387 } 2388 2389 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 2390 sc->flags |= IPW_FLAG_RUNNING; 2391 sc->flags &= ~IPW_FLAG_INIT_LOCKED; 2392 return; 2393 2394 fail: 2395 ipw_stop_locked(sc); 2396 sc->flags &= ~IPW_FLAG_INIT_LOCKED; 2397 } 2398 2399 static int 2400 ipw_config(struct ipw_softc *sc) 2401 { 2402 struct ieee80211com *ic = &sc->sc_ic; 2403 struct ipw_configuration config; 2404 uint32_t data; 2405 int error; 2406 2407 error = ipw_disable(sc); 2408 if (error != 0) 2409 return error; 2410 2411 switch (ic->ic_opmode) { 2412 case IEEE80211_M_STA: 2413 case IEEE80211_M_HOSTAP: 2414 case IEEE80211_M_WDS: /* XXX */ 2415 data = htole32(IPW_MODE_BSS); 2416 break; 2417 case IEEE80211_M_IBSS: 2418 case IEEE80211_M_AHDEMO: 2419 data = htole32(IPW_MODE_IBSS); 2420 break; 2421 case IEEE80211_M_MONITOR: 2422 data = htole32(IPW_MODE_MONITOR); 2423 break; 2424 default: 2425 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2426 return EINVAL; 2427 } 2428 DPRINTF(("Setting mode to %u\n", le32toh(data))); 2429 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data); 2430 if (error != 0) 2431 return error; 2432 2433 if (ic->ic_opmode == IEEE80211_M_IBSS || 2434 ic->ic_opmode == IEEE80211_M_MONITOR) { 2435 error = ipw_setchannel(sc, ic->ic_curchan); 2436 if (error != 0) 2437 return error; 2438 } 2439 2440 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2441 return ipw_enable(sc); 2442 2443 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK | 2444 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE); 2445 if (ic->ic_opmode == IEEE80211_M_IBSS) 2446 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START); 2447 if (ic->ic_promisc > 0) 2448 config.flags |= htole32(IPW_CFG_PROMISCUOUS); 2449 config.bss_chan = htole32(0x3fff); /* channels 1-14 */ 2450 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */ 2451 DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags))); 2452 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config); 2453 if (error != 0) 2454 return error; 2455 2456 data = htole32(0xf); /* 1, 2, 5.5, 11 */ 2457 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data))); 2458 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data); 2459 if (error != 0) 2460 return error; 2461 2462 /* Use the same rate set */ 2463 DPRINTF(("Setting msdu tx rates to 0x%x\n", le32toh(data))); 2464 error = ipw_cmd(sc, IPW_CMD_SET_MSDU_TX_RATES, &data, sizeof data); 2465 if (error != 0) 2466 return error; 2467 2468 /* Use the same rate set */ 2469 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data))); 2470 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data); 2471 if (error != 0) 2472 return error; 2473 2474 data = htole32(IPW_POWER_MODE_CAM); 2475 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2476 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data); 2477 if (error != 0) 2478 return error; 2479 2480 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2481 data = htole32(32); /* default value */ 2482 DPRINTF(("Setting tx power index to %u\n", le32toh(data))); 2483 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data, 2484 sizeof data); 2485 if (error != 0) 2486 return error; 2487 } 2488 2489 return 0; 2490 } 2491 2492 static void 2493 ipw_stop(void *priv) 2494 { 2495 struct ipw_softc *sc = priv; 2496 2497 IPW_LOCK(sc); 2498 ipw_stop_locked(sc); 2499 IPW_UNLOCK(sc); 2500 } 2501 2502 static void 2503 ipw_stop_locked(struct ipw_softc *sc) 2504 { 2505 int i; 2506 2507 IPW_LOCK_ASSERT(sc); 2508 2509 callout_stop(&sc->sc_wdtimer); 2510 ipw_stop_master(sc); 2511 2512 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET); 2513 2514 /* 2515 * Release tx buffers. 2516 */ 2517 for (i = 0; i < IPW_NTBD; i++) 2518 ipw_release_sbd(sc, &sc->stbd_list[i]); 2519 2520 sc->sc_tx_timer = 0; 2521 sc->flags &= ~IPW_FLAG_RUNNING; 2522 } 2523 2524 static int 2525 ipw_sysctl_stats(SYSCTL_HANDLER_ARGS) 2526 { 2527 struct ipw_softc *sc = arg1; 2528 uint32_t i, size, buf[256]; 2529 2530 memset(buf, 0, sizeof buf); 2531 2532 if (!(sc->flags & IPW_FLAG_FW_INITED)) 2533 return SYSCTL_OUT(req, buf, sizeof buf); 2534 2535 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base); 2536 2537 size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256); 2538 for (i = 1; i < size; i++) 2539 buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA)); 2540 2541 return SYSCTL_OUT(req, buf, size); 2542 } 2543 2544 static int 2545 ipw_sysctl_radio(SYSCTL_HANDLER_ARGS) 2546 { 2547 struct ipw_softc *sc = arg1; 2548 int val; 2549 2550 val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) && 2551 (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)); 2552 2553 return SYSCTL_OUT(req, &val, sizeof val); 2554 } 2555 2556 static uint32_t 2557 ipw_read_table1(struct ipw_softc *sc, uint32_t off) 2558 { 2559 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off)); 2560 } 2561 2562 static void 2563 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info) 2564 { 2565 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info); 2566 } 2567 2568 #if 0 2569 static int 2570 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len) 2571 { 2572 uint32_t addr, info; 2573 uint16_t count, size; 2574 uint32_t total; 2575 2576 /* addr[4] + count[2] + size[2] */ 2577 addr = MEM_READ_4(sc, sc->table2_base + off); 2578 info = MEM_READ_4(sc, sc->table2_base + off + 4); 2579 2580 count = info >> 16; 2581 size = info & 0xffff; 2582 total = count * size; 2583 2584 if (total > *len) { 2585 *len = total; 2586 return EINVAL; 2587 } 2588 2589 *len = total; 2590 ipw_read_mem_1(sc, addr, buf, total); 2591 2592 return 0; 2593 } 2594 2595 static void 2596 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, 2597 bus_size_t count) 2598 { 2599 for (; count > 0; offset++, datap++, count--) { 2600 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2601 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3)); 2602 } 2603 } 2604 #endif 2605 2606 static void 2607 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap, 2608 bus_size_t count) 2609 { 2610 for (; count > 0; offset++, datap++, count--) { 2611 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2612 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap); 2613 } 2614 } 2615 2616 static void 2617 ipw_scan_start(struct ieee80211com *ic) 2618 { 2619 struct ipw_softc *sc = ic->ic_softc; 2620 2621 IPW_LOCK(sc); 2622 ipw_scan(sc); 2623 IPW_UNLOCK(sc); 2624 } 2625 2626 static void 2627 ipw_getradiocaps(struct ieee80211com *ic, 2628 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2629 { 2630 struct ipw_softc *sc = ic->ic_softc; 2631 uint8_t bands[IEEE80211_MODE_BYTES]; 2632 int i; 2633 2634 memset(bands, 0, sizeof(bands)); 2635 setbit(bands, IEEE80211_MODE_11B); 2636 2637 for (i = 1; i < 16; i++) { 2638 if (sc->chanmask & (1 << i)) { 2639 ieee80211_add_channel(chans, maxchans, nchans, 2640 i, 0, 0, 0, bands); 2641 } 2642 } 2643 2644 } 2645 2646 static void 2647 ipw_set_channel(struct ieee80211com *ic) 2648 { 2649 struct ipw_softc *sc = ic->ic_softc; 2650 2651 IPW_LOCK(sc); 2652 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2653 ipw_disable(sc); 2654 ipw_setchannel(sc, ic->ic_curchan); 2655 ipw_enable(sc); 2656 } 2657 IPW_UNLOCK(sc); 2658 } 2659 2660 static void 2661 ipw_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 2662 { 2663 /* NB: all channels are scanned at once */ 2664 } 2665 2666 static void 2667 ipw_scan_mindwell(struct ieee80211_scan_state *ss) 2668 { 2669 /* NB: don't try to abort scan; wait for firmware to finish */ 2670 } 2671 2672 static void 2673 ipw_scan_end(struct ieee80211com *ic) 2674 { 2675 struct ipw_softc *sc = ic->ic_softc; 2676 2677 IPW_LOCK(sc); 2678 sc->flags &= ~IPW_FLAG_SCANNING; 2679 IPW_UNLOCK(sc); 2680 } 2681