1 /*- 2 * Copyright (c) 2004-2006 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /*- 34 * Intel(R) PRO/Wireless 2100 MiniPCI driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/linker.h> 52 #include <sys/firmware.h> 53 54 #include <machine/bus.h> 55 #include <machine/resource.h> 56 #include <sys/rman.h> 57 58 #include <dev/pci/pcireg.h> 59 #include <dev/pci/pcivar.h> 60 61 #include <net/bpf.h> 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_arp.h> 65 #include <net/ethernet.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 70 #include <net80211/ieee80211_var.h> 71 #include <net80211/ieee80211_radiotap.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/if_ether.h> 78 79 #include <dev/ipw/if_ipwreg.h> 80 #include <dev/ipw/if_ipwvar.h> 81 82 #define IPW_DEBUG 83 #ifdef IPW_DEBUG 84 #define DPRINTF(x) do { if (ipw_debug > 0) printf x; } while (0) 85 #define DPRINTFN(n, x) do { if (ipw_debug >= (n)) printf x; } while (0) 86 int ipw_debug = 0; 87 SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level"); 88 #else 89 #define DPRINTF(x) 90 #define DPRINTFN(n, x) 91 #endif 92 93 MODULE_DEPEND(ipw, pci, 1, 1, 1); 94 MODULE_DEPEND(ipw, wlan, 1, 1, 1); 95 MODULE_DEPEND(ipw, firmware, 1, 1, 1); 96 97 struct ipw_ident { 98 uint16_t vendor; 99 uint16_t device; 100 const char *name; 101 }; 102 103 static const struct ipw_ident ipw_ident_table[] = { 104 { 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" }, 105 106 { 0, 0, NULL } 107 }; 108 109 static struct ieee80211vap *ipw_vap_create(struct ieee80211com *, 110 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 111 const uint8_t [IEEE80211_ADDR_LEN], 112 const uint8_t [IEEE80211_ADDR_LEN]); 113 static void ipw_vap_delete(struct ieee80211vap *); 114 static int ipw_dma_alloc(struct ipw_softc *); 115 static void ipw_release(struct ipw_softc *); 116 static void ipw_media_status(struct ifnet *, struct ifmediareq *); 117 static int ipw_newstate(struct ieee80211vap *, enum ieee80211_state, int); 118 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t); 119 static uint16_t ipw_read_chanmask(struct ipw_softc *); 120 static void ipw_rx_cmd_intr(struct ipw_softc *, struct ipw_soft_buf *); 121 static void ipw_rx_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *); 122 static void ipw_rx_data_intr(struct ipw_softc *, struct ipw_status *, 123 struct ipw_soft_bd *, struct ipw_soft_buf *); 124 static void ipw_rx_intr(struct ipw_softc *); 125 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *); 126 static void ipw_tx_intr(struct ipw_softc *); 127 static void ipw_intr(void *); 128 static void ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int); 129 static const char * ipw_cmdname(int); 130 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t); 131 static int ipw_tx_start(struct ipw_softc *, struct mbuf *, 132 struct ieee80211_node *); 133 static int ipw_raw_xmit(struct ieee80211_node *, struct mbuf *, 134 const struct ieee80211_bpf_params *); 135 static int ipw_transmit(struct ieee80211com *, struct mbuf *); 136 static void ipw_start(struct ipw_softc *); 137 static void ipw_watchdog(void *); 138 static void ipw_parent(struct ieee80211com *); 139 static void ipw_stop_master(struct ipw_softc *); 140 static int ipw_enable(struct ipw_softc *); 141 static int ipw_disable(struct ipw_softc *); 142 static int ipw_reset(struct ipw_softc *); 143 static int ipw_load_ucode(struct ipw_softc *, const char *, int); 144 static int ipw_load_firmware(struct ipw_softc *, const char *, int); 145 static int ipw_config(struct ipw_softc *); 146 static void ipw_assoc(struct ieee80211com *, struct ieee80211vap *); 147 static void ipw_disassoc(struct ieee80211com *, struct ieee80211vap *); 148 static void ipw_init_task(void *, int); 149 static void ipw_init(void *); 150 static void ipw_init_locked(struct ipw_softc *); 151 static void ipw_stop(void *); 152 static void ipw_stop_locked(struct ipw_softc *); 153 static int ipw_sysctl_stats(SYSCTL_HANDLER_ARGS); 154 static int ipw_sysctl_radio(SYSCTL_HANDLER_ARGS); 155 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t); 156 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t); 157 #if 0 158 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, 159 uint32_t *); 160 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, 161 bus_size_t); 162 #endif 163 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, 164 const uint8_t *, bus_size_t); 165 static int ipw_scan(struct ipw_softc *); 166 static void ipw_scan_start(struct ieee80211com *); 167 static void ipw_scan_end(struct ieee80211com *); 168 static void ipw_getradiocaps(struct ieee80211com *, int, int *, 169 struct ieee80211_channel[]); 170 static void ipw_set_channel(struct ieee80211com *); 171 static void ipw_scan_curchan(struct ieee80211_scan_state *, 172 unsigned long maxdwell); 173 static void ipw_scan_mindwell(struct ieee80211_scan_state *); 174 175 static int ipw_probe(device_t); 176 static int ipw_attach(device_t); 177 static int ipw_detach(device_t); 178 static int ipw_shutdown(device_t); 179 static int ipw_suspend(device_t); 180 static int ipw_resume(device_t); 181 182 static device_method_t ipw_methods[] = { 183 /* Device interface */ 184 DEVMETHOD(device_probe, ipw_probe), 185 DEVMETHOD(device_attach, ipw_attach), 186 DEVMETHOD(device_detach, ipw_detach), 187 DEVMETHOD(device_shutdown, ipw_shutdown), 188 DEVMETHOD(device_suspend, ipw_suspend), 189 DEVMETHOD(device_resume, ipw_resume), 190 191 DEVMETHOD_END 192 }; 193 194 static driver_t ipw_driver = { 195 "ipw", 196 ipw_methods, 197 sizeof (struct ipw_softc) 198 }; 199 200 static devclass_t ipw_devclass; 201 202 DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, NULL, NULL); 203 204 MODULE_VERSION(ipw, 1); 205 206 static int 207 ipw_probe(device_t dev) 208 { 209 const struct ipw_ident *ident; 210 211 for (ident = ipw_ident_table; ident->name != NULL; ident++) { 212 if (pci_get_vendor(dev) == ident->vendor && 213 pci_get_device(dev) == ident->device) { 214 device_set_desc(dev, ident->name); 215 return (BUS_PROBE_DEFAULT); 216 } 217 } 218 return ENXIO; 219 } 220 221 /* Base Address Register */ 222 static int 223 ipw_attach(device_t dev) 224 { 225 struct ipw_softc *sc = device_get_softc(dev); 226 struct ieee80211com *ic = &sc->sc_ic; 227 uint16_t val; 228 int error, i; 229 230 sc->sc_dev = dev; 231 232 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 233 MTX_DEF | MTX_RECURSE); 234 mbufq_init(&sc->sc_snd, ifqmaxlen); 235 TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc); 236 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 237 238 pci_write_config(dev, 0x41, 0, 1); 239 240 /* enable bus-mastering */ 241 pci_enable_busmaster(dev); 242 243 i = PCIR_BAR(0); 244 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 245 if (sc->mem == NULL) { 246 device_printf(dev, "could not allocate memory resource\n"); 247 goto fail; 248 } 249 250 sc->sc_st = rman_get_bustag(sc->mem); 251 sc->sc_sh = rman_get_bushandle(sc->mem); 252 253 i = 0; 254 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 255 RF_ACTIVE | RF_SHAREABLE); 256 if (sc->irq == NULL) { 257 device_printf(dev, "could not allocate interrupt resource\n"); 258 goto fail1; 259 } 260 261 if (ipw_reset(sc) != 0) { 262 device_printf(dev, "could not reset adapter\n"); 263 goto fail2; 264 } 265 266 if (ipw_dma_alloc(sc) != 0) { 267 device_printf(dev, "could not allocate DMA resources\n"); 268 goto fail2; 269 } 270 271 ic->ic_softc = sc; 272 ic->ic_name = device_get_nameunit(dev); 273 ic->ic_opmode = IEEE80211_M_STA; 274 ic->ic_phytype = IEEE80211_T_DS; 275 276 /* set device capabilities */ 277 ic->ic_caps = 278 IEEE80211_C_STA /* station mode supported */ 279 | IEEE80211_C_IBSS /* IBSS mode supported */ 280 | IEEE80211_C_MONITOR /* monitor mode supported */ 281 | IEEE80211_C_PMGT /* power save supported */ 282 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 283 | IEEE80211_C_WPA /* 802.11i supported */ 284 ; 285 286 /* read MAC address from EEPROM */ 287 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0); 288 ic->ic_macaddr[0] = val >> 8; 289 ic->ic_macaddr[1] = val & 0xff; 290 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1); 291 ic->ic_macaddr[2] = val >> 8; 292 ic->ic_macaddr[3] = val & 0xff; 293 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2); 294 ic->ic_macaddr[4] = val >> 8; 295 ic->ic_macaddr[5] = val & 0xff; 296 297 sc->chanmask = ipw_read_chanmask(sc); 298 ipw_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 299 ic->ic_channels); 300 301 /* check support for radio transmitter switch in EEPROM */ 302 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8)) 303 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH; 304 305 ieee80211_ifattach(ic); 306 ic->ic_scan_start = ipw_scan_start; 307 ic->ic_scan_end = ipw_scan_end; 308 ic->ic_getradiocaps = ipw_getradiocaps; 309 ic->ic_set_channel = ipw_set_channel; 310 ic->ic_scan_curchan = ipw_scan_curchan; 311 ic->ic_scan_mindwell = ipw_scan_mindwell; 312 ic->ic_raw_xmit = ipw_raw_xmit; 313 ic->ic_vap_create = ipw_vap_create; 314 ic->ic_vap_delete = ipw_vap_delete; 315 ic->ic_transmit = ipw_transmit; 316 ic->ic_parent = ipw_parent; 317 318 ieee80211_radiotap_attach(ic, 319 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 320 IPW_TX_RADIOTAP_PRESENT, 321 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 322 IPW_RX_RADIOTAP_PRESENT); 323 324 /* 325 * Add a few sysctl knobs. 326 */ 327 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 328 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio", 329 CTLTYPE_INT | CTLFLAG_RD, sc, 0, ipw_sysctl_radio, "I", 330 "radio transmitter switch state (0=off, 1=on)"); 331 332 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 333 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", 334 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, ipw_sysctl_stats, "S", 335 "statistics"); 336 337 /* 338 * Hook our interrupt after all initialization is complete. 339 */ 340 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 341 NULL, ipw_intr, sc, &sc->sc_ih); 342 if (error != 0) { 343 device_printf(dev, "could not set up interrupt\n"); 344 goto fail3; 345 } 346 347 if (bootverbose) 348 ieee80211_announce(ic); 349 350 return 0; 351 fail3: 352 ipw_release(sc); 353 fail2: 354 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 355 fail1: 356 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 357 sc->mem); 358 fail: 359 mtx_destroy(&sc->sc_mtx); 360 return ENXIO; 361 } 362 363 static int 364 ipw_detach(device_t dev) 365 { 366 struct ipw_softc *sc = device_get_softc(dev); 367 struct ieee80211com *ic = &sc->sc_ic; 368 369 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 370 371 ieee80211_draintask(ic, &sc->sc_init_task); 372 ipw_stop(sc); 373 374 ieee80211_ifdetach(ic); 375 376 callout_drain(&sc->sc_wdtimer); 377 mbufq_drain(&sc->sc_snd); 378 379 ipw_release(sc); 380 381 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 382 383 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 384 sc->mem); 385 386 if (sc->sc_firmware != NULL) { 387 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 388 sc->sc_firmware = NULL; 389 } 390 391 mtx_destroy(&sc->sc_mtx); 392 393 return 0; 394 } 395 396 static struct ieee80211vap * 397 ipw_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 398 enum ieee80211_opmode opmode, int flags, 399 const uint8_t bssid[IEEE80211_ADDR_LEN], 400 const uint8_t mac[IEEE80211_ADDR_LEN]) 401 { 402 struct ipw_softc *sc = ic->ic_softc; 403 struct ipw_vap *ivp; 404 struct ieee80211vap *vap; 405 const struct firmware *fp; 406 const struct ipw_firmware_hdr *hdr; 407 const char *imagename; 408 409 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 410 return NULL; 411 412 switch (opmode) { 413 case IEEE80211_M_STA: 414 imagename = "ipw_bss"; 415 break; 416 case IEEE80211_M_IBSS: 417 imagename = "ipw_ibss"; 418 break; 419 case IEEE80211_M_MONITOR: 420 imagename = "ipw_monitor"; 421 break; 422 default: 423 return NULL; 424 } 425 426 /* 427 * Load firmware image using the firmware(9) subsystem. Doing 428 * this unlocked is ok since we're single-threaded by the 429 * 802.11 layer. 430 */ 431 if (sc->sc_firmware == NULL || 432 strcmp(sc->sc_firmware->name, imagename) != 0) { 433 if (sc->sc_firmware != NULL) 434 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 435 sc->sc_firmware = firmware_get(imagename); 436 } 437 if (sc->sc_firmware == NULL) { 438 device_printf(sc->sc_dev, 439 "could not load firmware image '%s'\n", imagename); 440 return NULL; 441 } 442 fp = sc->sc_firmware; 443 if (fp->datasize < sizeof *hdr) { 444 device_printf(sc->sc_dev, 445 "firmware image too short %zu\n", fp->datasize); 446 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 447 sc->sc_firmware = NULL; 448 return NULL; 449 } 450 hdr = (const struct ipw_firmware_hdr *)fp->data; 451 if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) + 452 le32toh(hdr->ucodesz)) { 453 device_printf(sc->sc_dev, 454 "firmware image too short %zu\n", fp->datasize); 455 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 456 sc->sc_firmware = NULL; 457 return NULL; 458 } 459 460 ivp = malloc(sizeof(struct ipw_vap), M_80211_VAP, M_WAITOK | M_ZERO); 461 vap = &ivp->vap; 462 463 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 464 /* override with driver methods */ 465 ivp->newstate = vap->iv_newstate; 466 vap->iv_newstate = ipw_newstate; 467 468 /* complete setup */ 469 ieee80211_vap_attach(vap, ieee80211_media_change, ipw_media_status, 470 mac); 471 ic->ic_opmode = opmode; 472 return vap; 473 } 474 475 static void 476 ipw_vap_delete(struct ieee80211vap *vap) 477 { 478 struct ipw_vap *ivp = IPW_VAP(vap); 479 480 ieee80211_vap_detach(vap); 481 free(ivp, M_80211_VAP); 482 } 483 484 static int 485 ipw_dma_alloc(struct ipw_softc *sc) 486 { 487 struct ipw_soft_bd *sbd; 488 struct ipw_soft_hdr *shdr; 489 struct ipw_soft_buf *sbuf; 490 bus_addr_t physaddr; 491 int error, i; 492 493 /* 494 * Allocate parent DMA tag for subsequent allocations. 495 */ 496 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 497 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 498 BUS_SPACE_MAXSIZE_32BIT, BUS_SPACE_UNRESTRICTED, 499 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->parent_dmat); 500 if (error != 0) { 501 device_printf(sc->sc_dev, "could not create parent DMA tag\n"); 502 goto fail; 503 } 504 505 /* 506 * Allocate and map tx ring. 507 */ 508 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 509 BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL, 510 NULL, &sc->tbd_dmat); 511 if (error != 0) { 512 device_printf(sc->sc_dev, "could not create tx ring DMA tag\n"); 513 goto fail; 514 } 515 516 error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list, 517 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map); 518 if (error != 0) { 519 device_printf(sc->sc_dev, 520 "could not allocate tx ring DMA memory\n"); 521 goto fail; 522 } 523 524 error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list, 525 IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0); 526 if (error != 0) { 527 device_printf(sc->sc_dev, "could not map tx ring DMA memory\n"); 528 goto fail; 529 } 530 531 /* 532 * Allocate and map rx ring. 533 */ 534 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 535 BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL, 536 NULL, &sc->rbd_dmat); 537 if (error != 0) { 538 device_printf(sc->sc_dev, "could not create rx ring DMA tag\n"); 539 goto fail; 540 } 541 542 error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list, 543 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map); 544 if (error != 0) { 545 device_printf(sc->sc_dev, 546 "could not allocate rx ring DMA memory\n"); 547 goto fail; 548 } 549 550 error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list, 551 IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0); 552 if (error != 0) { 553 device_printf(sc->sc_dev, "could not map rx ring DMA memory\n"); 554 goto fail; 555 } 556 557 /* 558 * Allocate and map status ring. 559 */ 560 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 561 BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0, 562 NULL, NULL, &sc->status_dmat); 563 if (error != 0) { 564 device_printf(sc->sc_dev, 565 "could not create status ring DMA tag\n"); 566 goto fail; 567 } 568 569 error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list, 570 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map); 571 if (error != 0) { 572 device_printf(sc->sc_dev, 573 "could not allocate status ring DMA memory\n"); 574 goto fail; 575 } 576 577 error = bus_dmamap_load(sc->status_dmat, sc->status_map, 578 sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys, 579 0); 580 if (error != 0) { 581 device_printf(sc->sc_dev, 582 "could not map status ring DMA memory\n"); 583 goto fail; 584 } 585 586 /* 587 * Allocate command DMA map. 588 */ 589 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 590 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1, 591 sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat); 592 if (error != 0) { 593 device_printf(sc->sc_dev, "could not create command DMA tag\n"); 594 goto fail; 595 } 596 597 error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map); 598 if (error != 0) { 599 device_printf(sc->sc_dev, 600 "could not create command DMA map\n"); 601 goto fail; 602 } 603 604 /* 605 * Allocate headers DMA maps. 606 */ 607 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 608 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1, 609 sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat); 610 if (error != 0) { 611 device_printf(sc->sc_dev, "could not create header DMA tag\n"); 612 goto fail; 613 } 614 615 SLIST_INIT(&sc->free_shdr); 616 for (i = 0; i < IPW_NDATA; i++) { 617 shdr = &sc->shdr_list[i]; 618 error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map); 619 if (error != 0) { 620 device_printf(sc->sc_dev, 621 "could not create header DMA map\n"); 622 goto fail; 623 } 624 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 625 } 626 627 /* 628 * Allocate tx buffers DMA maps. 629 */ 630 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 631 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0, 632 NULL, NULL, &sc->txbuf_dmat); 633 if (error != 0) { 634 device_printf(sc->sc_dev, "could not create tx DMA tag\n"); 635 goto fail; 636 } 637 638 SLIST_INIT(&sc->free_sbuf); 639 for (i = 0; i < IPW_NDATA; i++) { 640 sbuf = &sc->tx_sbuf_list[i]; 641 error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map); 642 if (error != 0) { 643 device_printf(sc->sc_dev, 644 "could not create tx DMA map\n"); 645 goto fail; 646 } 647 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 648 } 649 650 /* 651 * Initialize tx ring. 652 */ 653 for (i = 0; i < IPW_NTBD; i++) { 654 sbd = &sc->stbd_list[i]; 655 sbd->bd = &sc->tbd_list[i]; 656 sbd->type = IPW_SBD_TYPE_NOASSOC; 657 } 658 659 /* 660 * Pre-allocate rx buffers and DMA maps. 661 */ 662 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 663 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, 664 NULL, &sc->rxbuf_dmat); 665 if (error != 0) { 666 device_printf(sc->sc_dev, "could not create rx DMA tag\n"); 667 goto fail; 668 } 669 670 for (i = 0; i < IPW_NRBD; i++) { 671 sbd = &sc->srbd_list[i]; 672 sbuf = &sc->rx_sbuf_list[i]; 673 sbd->bd = &sc->rbd_list[i]; 674 675 sbuf->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 676 if (sbuf->m == NULL) { 677 device_printf(sc->sc_dev, 678 "could not allocate rx mbuf\n"); 679 error = ENOMEM; 680 goto fail; 681 } 682 683 error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map); 684 if (error != 0) { 685 device_printf(sc->sc_dev, 686 "could not create rx DMA map\n"); 687 goto fail; 688 } 689 690 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 691 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 692 &physaddr, 0); 693 if (error != 0) { 694 device_printf(sc->sc_dev, 695 "could not map rx DMA memory\n"); 696 goto fail; 697 } 698 699 sbd->type = IPW_SBD_TYPE_DATA; 700 sbd->priv = sbuf; 701 sbd->bd->physaddr = htole32(physaddr); 702 sbd->bd->len = htole32(MCLBYTES); 703 } 704 705 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 706 707 return 0; 708 709 fail: ipw_release(sc); 710 return error; 711 } 712 713 static void 714 ipw_release(struct ipw_softc *sc) 715 { 716 struct ipw_soft_buf *sbuf; 717 int i; 718 719 if (sc->parent_dmat != NULL) { 720 bus_dma_tag_destroy(sc->parent_dmat); 721 } 722 723 if (sc->tbd_dmat != NULL) { 724 bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map); 725 bus_dmamem_free(sc->tbd_dmat, sc->tbd_list, sc->tbd_map); 726 bus_dma_tag_destroy(sc->tbd_dmat); 727 } 728 729 if (sc->rbd_dmat != NULL) { 730 if (sc->rbd_list != NULL) { 731 bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map); 732 bus_dmamem_free(sc->rbd_dmat, sc->rbd_list, 733 sc->rbd_map); 734 } 735 bus_dma_tag_destroy(sc->rbd_dmat); 736 } 737 738 if (sc->status_dmat != NULL) { 739 if (sc->status_list != NULL) { 740 bus_dmamap_unload(sc->status_dmat, sc->status_map); 741 bus_dmamem_free(sc->status_dmat, sc->status_list, 742 sc->status_map); 743 } 744 bus_dma_tag_destroy(sc->status_dmat); 745 } 746 747 for (i = 0; i < IPW_NTBD; i++) 748 ipw_release_sbd(sc, &sc->stbd_list[i]); 749 750 if (sc->cmd_dmat != NULL) { 751 bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map); 752 bus_dma_tag_destroy(sc->cmd_dmat); 753 } 754 755 if (sc->hdr_dmat != NULL) { 756 for (i = 0; i < IPW_NDATA; i++) 757 bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map); 758 bus_dma_tag_destroy(sc->hdr_dmat); 759 } 760 761 if (sc->txbuf_dmat != NULL) { 762 for (i = 0; i < IPW_NDATA; i++) { 763 bus_dmamap_destroy(sc->txbuf_dmat, 764 sc->tx_sbuf_list[i].map); 765 } 766 bus_dma_tag_destroy(sc->txbuf_dmat); 767 } 768 769 if (sc->rxbuf_dmat != NULL) { 770 for (i = 0; i < IPW_NRBD; i++) { 771 sbuf = &sc->rx_sbuf_list[i]; 772 if (sbuf->m != NULL) { 773 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, 774 BUS_DMASYNC_POSTREAD); 775 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 776 m_freem(sbuf->m); 777 } 778 bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map); 779 } 780 bus_dma_tag_destroy(sc->rxbuf_dmat); 781 } 782 } 783 784 static int 785 ipw_shutdown(device_t dev) 786 { 787 struct ipw_softc *sc = device_get_softc(dev); 788 789 ipw_stop(sc); 790 791 return 0; 792 } 793 794 static int 795 ipw_suspend(device_t dev) 796 { 797 struct ipw_softc *sc = device_get_softc(dev); 798 struct ieee80211com *ic = &sc->sc_ic; 799 800 ieee80211_suspend_all(ic); 801 return 0; 802 } 803 804 static int 805 ipw_resume(device_t dev) 806 { 807 struct ipw_softc *sc = device_get_softc(dev); 808 struct ieee80211com *ic = &sc->sc_ic; 809 810 pci_write_config(dev, 0x41, 0, 1); 811 812 ieee80211_resume_all(ic); 813 return 0; 814 } 815 816 static int 817 ipw_cvtrate(int ipwrate) 818 { 819 switch (ipwrate) { 820 case IPW_RATE_DS1: return 2; 821 case IPW_RATE_DS2: return 4; 822 case IPW_RATE_DS5: return 11; 823 case IPW_RATE_DS11: return 22; 824 } 825 return 0; 826 } 827 828 /* 829 * The firmware automatically adapts the transmit speed. We report its current 830 * value here. 831 */ 832 static void 833 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr) 834 { 835 struct ieee80211vap *vap = ifp->if_softc; 836 struct ieee80211com *ic = vap->iv_ic; 837 struct ipw_softc *sc = ic->ic_softc; 838 839 /* read current transmission rate from adapter */ 840 vap->iv_bss->ni_txrate = ipw_cvtrate( 841 ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf); 842 ieee80211_media_status(ifp, imr); 843 } 844 845 static int 846 ipw_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 847 { 848 struct ipw_vap *ivp = IPW_VAP(vap); 849 struct ieee80211com *ic = vap->iv_ic; 850 struct ipw_softc *sc = ic->ic_softc; 851 enum ieee80211_state ostate; 852 853 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 854 ieee80211_state_name[vap->iv_state], 855 ieee80211_state_name[nstate], sc->flags)); 856 857 ostate = vap->iv_state; 858 IEEE80211_UNLOCK(ic); 859 860 switch (nstate) { 861 case IEEE80211_S_RUN: 862 if (ic->ic_opmode == IEEE80211_M_IBSS) { 863 /* 864 * XXX when joining an ibss network we are called 865 * with a SCAN -> RUN transition on scan complete. 866 * Use that to call ipw_assoc. On completing the 867 * join we are then called again with an AUTH -> RUN 868 * transition and we want to do nothing. This is 869 * all totally bogus and needs to be redone. 870 */ 871 if (ostate == IEEE80211_S_SCAN) 872 ipw_assoc(ic, vap); 873 } 874 break; 875 876 case IEEE80211_S_INIT: 877 if (sc->flags & IPW_FLAG_ASSOCIATED) 878 ipw_disassoc(ic, vap); 879 break; 880 881 case IEEE80211_S_AUTH: 882 /* 883 * Move to ASSOC state after the ipw_assoc() call. Firmware 884 * takes care of authentication, after the call we'll receive 885 * only an assoc response which would otherwise be discared 886 * if we are still in AUTH state. 887 */ 888 nstate = IEEE80211_S_ASSOC; 889 ipw_assoc(ic, vap); 890 break; 891 892 case IEEE80211_S_ASSOC: 893 /* 894 * If we are not transitioning from AUTH then resend the 895 * association request. 896 */ 897 if (ostate != IEEE80211_S_AUTH) 898 ipw_assoc(ic, vap); 899 break; 900 901 default: 902 break; 903 } 904 IEEE80211_LOCK(ic); 905 return ivp->newstate(vap, nstate, arg); 906 } 907 908 /* 909 * Read 16 bits at address 'addr' from the serial EEPROM. 910 */ 911 static uint16_t 912 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr) 913 { 914 uint32_t tmp; 915 uint16_t val; 916 int n; 917 918 /* clock C once before the first command */ 919 IPW_EEPROM_CTL(sc, 0); 920 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 921 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 922 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 923 924 /* write start bit (1) */ 925 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 926 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 927 928 /* write READ opcode (10) */ 929 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 930 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 931 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 932 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 933 934 /* write address A7-A0 */ 935 for (n = 7; n >= 0; n--) { 936 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 937 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D)); 938 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 939 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C); 940 } 941 942 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 943 944 /* read data Q15-Q0 */ 945 val = 0; 946 for (n = 15; n >= 0; n--) { 947 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 948 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 949 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL); 950 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n; 951 } 952 953 IPW_EEPROM_CTL(sc, 0); 954 955 /* clear Chip Select and clock C */ 956 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 957 IPW_EEPROM_CTL(sc, 0); 958 IPW_EEPROM_CTL(sc, IPW_EEPROM_C); 959 960 return le16toh(val); 961 } 962 963 static uint16_t 964 ipw_read_chanmask(struct ipw_softc *sc) 965 { 966 uint16_t val; 967 968 /* set supported .11b channels (read from EEPROM) */ 969 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0) 970 val = 0x7ff; /* default to channels 1-11 */ 971 val <<= 1; 972 973 return (val); 974 } 975 976 static void 977 ipw_rx_cmd_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 978 { 979 struct ipw_cmd *cmd; 980 981 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 982 983 cmd = mtod(sbuf->m, struct ipw_cmd *); 984 985 DPRINTFN(9, ("cmd ack'ed %s(%u, %u, %u, %u, %u)\n", 986 ipw_cmdname(le32toh(cmd->type)), le32toh(cmd->type), 987 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len), 988 le32toh(cmd->status))); 989 990 sc->flags &= ~IPW_FLAG_BUSY; 991 wakeup(sc); 992 } 993 994 static void 995 ipw_rx_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 996 { 997 #define IEEESTATE(vap) ieee80211_state_name[vap->iv_state] 998 struct ieee80211com *ic = &sc->sc_ic; 999 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1000 uint32_t state; 1001 1002 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1003 1004 state = le32toh(*mtod(sbuf->m, uint32_t *)); 1005 1006 switch (state) { 1007 case IPW_STATE_ASSOCIATED: 1008 DPRINTFN(2, ("Association succeeded (%s flags 0x%x)\n", 1009 IEEESTATE(vap), sc->flags)); 1010 /* XXX suppress state change in case the fw auto-associates */ 1011 if ((sc->flags & IPW_FLAG_ASSOCIATING) == 0) { 1012 DPRINTF(("Unexpected association (%s, flags 0x%x)\n", 1013 IEEESTATE(vap), sc->flags)); 1014 break; 1015 } 1016 sc->flags &= ~IPW_FLAG_ASSOCIATING; 1017 sc->flags |= IPW_FLAG_ASSOCIATED; 1018 break; 1019 1020 case IPW_STATE_SCANNING: 1021 DPRINTFN(3, ("Scanning (%s flags 0x%x)\n", 1022 IEEESTATE(vap), sc->flags)); 1023 /* 1024 * NB: Check driver state for association on assoc 1025 * loss as the firmware will immediately start to 1026 * scan and we would treat it as a beacon miss if 1027 * we checked the 802.11 layer state. 1028 */ 1029 if (sc->flags & IPW_FLAG_ASSOCIATED) { 1030 IPW_UNLOCK(sc); 1031 /* XXX probably need to issue disassoc to fw */ 1032 ieee80211_beacon_miss(ic); 1033 IPW_LOCK(sc); 1034 } 1035 break; 1036 1037 case IPW_STATE_SCAN_COMPLETE: 1038 /* 1039 * XXX For some reason scan requests generate scan 1040 * started + scan done events before any traffic is 1041 * received (e.g. probe response frames). We work 1042 * around this by marking the HACK flag and skipping 1043 * the first scan complete event. 1044 */ 1045 DPRINTFN(3, ("Scan complete (%s flags 0x%x)\n", 1046 IEEESTATE(vap), sc->flags)); 1047 if (sc->flags & IPW_FLAG_HACK) { 1048 sc->flags &= ~IPW_FLAG_HACK; 1049 break; 1050 } 1051 if (sc->flags & IPW_FLAG_SCANNING) { 1052 IPW_UNLOCK(sc); 1053 ieee80211_scan_done(vap); 1054 IPW_LOCK(sc); 1055 sc->flags &= ~IPW_FLAG_SCANNING; 1056 sc->sc_scan_timer = 0; 1057 } 1058 break; 1059 1060 case IPW_STATE_ASSOCIATION_LOST: 1061 DPRINTFN(2, ("Association lost (%s flags 0x%x)\n", 1062 IEEESTATE(vap), sc->flags)); 1063 sc->flags &= ~(IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1064 if (vap->iv_state == IEEE80211_S_RUN) { 1065 IPW_UNLOCK(sc); 1066 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1067 IPW_LOCK(sc); 1068 } 1069 break; 1070 1071 case IPW_STATE_DISABLED: 1072 /* XXX? is this right? */ 1073 sc->flags &= ~(IPW_FLAG_HACK | IPW_FLAG_SCANNING | 1074 IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1075 DPRINTFN(2, ("Firmware disabled (%s flags 0x%x)\n", 1076 IEEESTATE(vap), sc->flags)); 1077 break; 1078 1079 case IPW_STATE_RADIO_DISABLED: 1080 device_printf(sc->sc_dev, "radio turned off\n"); 1081 ieee80211_notify_radio(ic, 0); 1082 ipw_stop_locked(sc); 1083 /* XXX start polling thread to detect radio on */ 1084 break; 1085 1086 default: 1087 DPRINTFN(2, ("%s: unhandled state %u %s flags 0x%x\n", 1088 __func__, state, IEEESTATE(vap), sc->flags)); 1089 break; 1090 } 1091 #undef IEEESTATE 1092 } 1093 1094 /* 1095 * Set driver state for current channel. 1096 */ 1097 static void 1098 ipw_setcurchan(struct ipw_softc *sc, struct ieee80211_channel *chan) 1099 { 1100 struct ieee80211com *ic = &sc->sc_ic; 1101 1102 ic->ic_curchan = chan; 1103 ieee80211_radiotap_chan_change(ic); 1104 } 1105 1106 /* 1107 * XXX: Hack to set the current channel to the value advertised in beacons or 1108 * probe responses. Only used during AP detection. 1109 */ 1110 static void 1111 ipw_fix_channel(struct ipw_softc *sc, struct mbuf *m) 1112 { 1113 struct ieee80211com *ic = &sc->sc_ic; 1114 struct ieee80211_channel *c; 1115 struct ieee80211_frame *wh; 1116 uint8_t subtype; 1117 uint8_t *frm, *efrm; 1118 1119 wh = mtod(m, struct ieee80211_frame *); 1120 1121 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 1122 return; 1123 1124 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1125 1126 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 1127 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1128 return; 1129 1130 /* XXX use ieee80211_parse_beacon */ 1131 frm = (uint8_t *)(wh + 1); 1132 efrm = mtod(m, uint8_t *) + m->m_len; 1133 1134 frm += 12; /* skip tstamp, bintval and capinfo fields */ 1135 while (frm < efrm) { 1136 if (*frm == IEEE80211_ELEMID_DSPARMS) 1137 #if IEEE80211_CHAN_MAX < 255 1138 if (frm[2] <= IEEE80211_CHAN_MAX) 1139 #endif 1140 { 1141 DPRINTF(("Fixing channel to %d\n", frm[2])); 1142 c = ieee80211_find_channel(ic, 1143 ieee80211_ieee2mhz(frm[2], 0), 1144 IEEE80211_CHAN_B); 1145 if (c == NULL) 1146 c = &ic->ic_channels[0]; 1147 ipw_setcurchan(sc, c); 1148 } 1149 1150 frm += frm[1] + 2; 1151 } 1152 } 1153 1154 static void 1155 ipw_rx_data_intr(struct ipw_softc *sc, struct ipw_status *status, 1156 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf) 1157 { 1158 struct ieee80211com *ic = &sc->sc_ic; 1159 struct mbuf *mnew, *m; 1160 struct ieee80211_node *ni; 1161 bus_addr_t physaddr; 1162 int error; 1163 int8_t rssi, nf; 1164 1165 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len), 1166 status->rssi)); 1167 1168 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) || 1169 le32toh(status->len) > MCLBYTES) 1170 return; 1171 1172 /* 1173 * Try to allocate a new mbuf for this ring element and load it before 1174 * processing the current mbuf. If the ring element cannot be loaded, 1175 * drop the received packet and reuse the old mbuf. In the unlikely 1176 * case that the old mbuf can't be reloaded either, explicitly panic. 1177 */ 1178 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1179 if (mnew == NULL) { 1180 counter_u64_add(ic->ic_ierrors, 1); 1181 return; 1182 } 1183 1184 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1185 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 1186 1187 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *), 1188 MCLBYTES, ipw_dma_map_addr, &physaddr, 0); 1189 if (error != 0) { 1190 m_freem(mnew); 1191 1192 /* try to reload the old mbuf */ 1193 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 1194 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 1195 &physaddr, 0); 1196 if (error != 0) { 1197 /* very unlikely that it will fail... */ 1198 panic("%s: could not load old rx mbuf", 1199 device_get_name(sc->sc_dev)); 1200 } 1201 counter_u64_add(ic->ic_ierrors, 1); 1202 return; 1203 } 1204 1205 /* 1206 * New mbuf successfully loaded, update Rx ring and continue 1207 * processing. 1208 */ 1209 m = sbuf->m; 1210 sbuf->m = mnew; 1211 sbd->bd->physaddr = htole32(physaddr); 1212 m->m_pkthdr.len = m->m_len = le32toh(status->len); 1213 1214 rssi = status->rssi + IPW_RSSI_TO_DBM; 1215 nf = -95; 1216 if (ieee80211_radiotap_active(ic)) { 1217 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap; 1218 1219 tap->wr_flags = 0; 1220 tap->wr_antsignal = rssi; 1221 tap->wr_antnoise = nf; 1222 } 1223 1224 if (sc->flags & IPW_FLAG_SCANNING) 1225 ipw_fix_channel(sc, m); 1226 1227 IPW_UNLOCK(sc); 1228 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1229 if (ni != NULL) { 1230 (void) ieee80211_input(ni, m, rssi - nf, nf); 1231 ieee80211_free_node(ni); 1232 } else 1233 (void) ieee80211_input_all(ic, m, rssi - nf, nf); 1234 IPW_LOCK(sc); 1235 1236 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1237 } 1238 1239 static void 1240 ipw_rx_intr(struct ipw_softc *sc) 1241 { 1242 struct ipw_status *status; 1243 struct ipw_soft_bd *sbd; 1244 struct ipw_soft_buf *sbuf; 1245 uint32_t r, i; 1246 1247 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1248 return; 1249 1250 r = CSR_READ_4(sc, IPW_CSR_RX_READ); 1251 1252 bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD); 1253 1254 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) { 1255 status = &sc->status_list[i]; 1256 sbd = &sc->srbd_list[i]; 1257 sbuf = sbd->priv; 1258 1259 switch (le16toh(status->code) & 0xf) { 1260 case IPW_STATUS_CODE_COMMAND: 1261 ipw_rx_cmd_intr(sc, sbuf); 1262 break; 1263 1264 case IPW_STATUS_CODE_NEWSTATE: 1265 ipw_rx_newstate_intr(sc, sbuf); 1266 break; 1267 1268 case IPW_STATUS_CODE_DATA_802_3: 1269 case IPW_STATUS_CODE_DATA_802_11: 1270 ipw_rx_data_intr(sc, status, sbd, sbuf); 1271 break; 1272 1273 case IPW_STATUS_CODE_NOTIFICATION: 1274 DPRINTFN(2, ("notification status, len %u flags 0x%x\n", 1275 le32toh(status->len), status->flags)); 1276 /* XXX maybe drive state machine AUTH->ASSOC? */ 1277 break; 1278 1279 default: 1280 device_printf(sc->sc_dev, "unexpected status code %u\n", 1281 le16toh(status->code)); 1282 } 1283 1284 /* firmware was killed, stop processing received frames */ 1285 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1286 return; 1287 1288 sbd->bd->flags = 0; 1289 } 1290 1291 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1292 1293 /* kick the firmware */ 1294 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1; 1295 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 1296 } 1297 1298 static void 1299 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd) 1300 { 1301 struct ipw_soft_hdr *shdr; 1302 struct ipw_soft_buf *sbuf; 1303 1304 switch (sbd->type) { 1305 case IPW_SBD_TYPE_COMMAND: 1306 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, 1307 BUS_DMASYNC_POSTWRITE); 1308 bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map); 1309 break; 1310 1311 case IPW_SBD_TYPE_HEADER: 1312 shdr = sbd->priv; 1313 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE); 1314 bus_dmamap_unload(sc->hdr_dmat, shdr->map); 1315 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 1316 break; 1317 1318 case IPW_SBD_TYPE_DATA: 1319 sbuf = sbd->priv; 1320 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, 1321 BUS_DMASYNC_POSTWRITE); 1322 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1323 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 1324 1325 if (sbuf->m->m_flags & M_TXCB) 1326 ieee80211_process_callback(sbuf->ni, sbuf->m, 0/*XXX*/); 1327 m_freem(sbuf->m); 1328 ieee80211_free_node(sbuf->ni); 1329 1330 sc->sc_tx_timer = 0; 1331 break; 1332 } 1333 1334 sbd->type = IPW_SBD_TYPE_NOASSOC; 1335 } 1336 1337 static void 1338 ipw_tx_intr(struct ipw_softc *sc) 1339 { 1340 struct ipw_soft_bd *sbd; 1341 uint32_t r, i; 1342 1343 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1344 return; 1345 1346 r = CSR_READ_4(sc, IPW_CSR_TX_READ); 1347 1348 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) { 1349 sbd = &sc->stbd_list[i]; 1350 ipw_release_sbd(sc, sbd); 1351 sc->txfree++; 1352 } 1353 1354 /* remember what the firmware has processed */ 1355 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1; 1356 1357 ipw_start(sc); 1358 } 1359 1360 static void 1361 ipw_fatal_error_intr(struct ipw_softc *sc) 1362 { 1363 struct ieee80211com *ic = &sc->sc_ic; 1364 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1365 1366 device_printf(sc->sc_dev, "firmware error\n"); 1367 if (vap != NULL) { 1368 IPW_UNLOCK(sc); 1369 ieee80211_cancel_scan(vap); 1370 IPW_LOCK(sc); 1371 } 1372 ieee80211_runtask(ic, &sc->sc_init_task); 1373 } 1374 1375 static void 1376 ipw_intr(void *arg) 1377 { 1378 struct ipw_softc *sc = arg; 1379 uint32_t r; 1380 1381 IPW_LOCK(sc); 1382 1383 r = CSR_READ_4(sc, IPW_CSR_INTR); 1384 if (r == 0 || r == 0xffffffff) 1385 goto done; 1386 1387 /* disable interrupts */ 1388 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1389 1390 /* acknowledge all interrupts */ 1391 CSR_WRITE_4(sc, IPW_CSR_INTR, r); 1392 1393 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) { 1394 ipw_fatal_error_intr(sc); 1395 goto done; 1396 } 1397 1398 if (r & IPW_INTR_FW_INIT_DONE) 1399 wakeup(sc); 1400 1401 if (r & IPW_INTR_RX_TRANSFER) 1402 ipw_rx_intr(sc); 1403 1404 if (r & IPW_INTR_TX_TRANSFER) 1405 ipw_tx_intr(sc); 1406 1407 /* re-enable interrupts */ 1408 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1409 done: 1410 IPW_UNLOCK(sc); 1411 } 1412 1413 static void 1414 ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1415 { 1416 if (error != 0) 1417 return; 1418 1419 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 1420 1421 *(bus_addr_t *)arg = segs[0].ds_addr; 1422 } 1423 1424 static const char * 1425 ipw_cmdname(int cmd) 1426 { 1427 static const struct { 1428 int cmd; 1429 const char *name; 1430 } cmds[] = { 1431 { IPW_CMD_ADD_MULTICAST, "ADD_MULTICAST" }, 1432 { IPW_CMD_BROADCAST_SCAN, "BROADCAST_SCAN" }, 1433 { IPW_CMD_DISABLE, "DISABLE" }, 1434 { IPW_CMD_DISABLE_PHY, "DISABLE_PHY" }, 1435 { IPW_CMD_ENABLE, "ENABLE" }, 1436 { IPW_CMD_PREPARE_POWER_DOWN, "PREPARE_POWER_DOWN" }, 1437 { IPW_CMD_SET_BASIC_TX_RATES, "SET_BASIC_TX_RATES" }, 1438 { IPW_CMD_SET_BEACON_INTERVAL, "SET_BEACON_INTERVAL" }, 1439 { IPW_CMD_SET_CHANNEL, "SET_CHANNEL" }, 1440 { IPW_CMD_SET_CONFIGURATION, "SET_CONFIGURATION" }, 1441 { IPW_CMD_SET_DESIRED_BSSID, "SET_DESIRED_BSSID" }, 1442 { IPW_CMD_SET_ESSID, "SET_ESSID" }, 1443 { IPW_CMD_SET_FRAG_THRESHOLD, "SET_FRAG_THRESHOLD" }, 1444 { IPW_CMD_SET_MAC_ADDRESS, "SET_MAC_ADDRESS" }, 1445 { IPW_CMD_SET_MANDATORY_BSSID, "SET_MANDATORY_BSSID" }, 1446 { IPW_CMD_SET_MODE, "SET_MODE" }, 1447 { IPW_CMD_SET_MSDU_TX_RATES, "SET_MSDU_TX_RATES" }, 1448 { IPW_CMD_SET_POWER_MODE, "SET_POWER_MODE" }, 1449 { IPW_CMD_SET_RTS_THRESHOLD, "SET_RTS_THRESHOLD" }, 1450 { IPW_CMD_SET_SCAN_OPTIONS, "SET_SCAN_OPTIONS" }, 1451 { IPW_CMD_SET_SECURITY_INFO, "SET_SECURITY_INFO" }, 1452 { IPW_CMD_SET_TX_POWER_INDEX, "SET_TX_POWER_INDEX" }, 1453 { IPW_CMD_SET_TX_RATES, "SET_TX_RATES" }, 1454 { IPW_CMD_SET_WEP_FLAGS, "SET_WEP_FLAGS" }, 1455 { IPW_CMD_SET_WEP_KEY, "SET_WEP_KEY" }, 1456 { IPW_CMD_SET_WEP_KEY_INDEX, "SET_WEP_KEY_INDEX" }, 1457 { IPW_CMD_SET_WPA_IE, "SET_WPA_IE" }, 1458 1459 }; 1460 static char buf[12]; 1461 int i; 1462 1463 for (i = 0; i < nitems(cmds); i++) 1464 if (cmds[i].cmd == cmd) 1465 return cmds[i].name; 1466 snprintf(buf, sizeof(buf), "%u", cmd); 1467 return buf; 1468 } 1469 1470 /* 1471 * Send a command to the firmware and wait for the acknowledgement. 1472 */ 1473 static int 1474 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len) 1475 { 1476 struct ipw_soft_bd *sbd; 1477 bus_addr_t physaddr; 1478 int error; 1479 1480 IPW_LOCK_ASSERT(sc); 1481 1482 if (sc->flags & IPW_FLAG_BUSY) { 1483 device_printf(sc->sc_dev, "%s: %s not sent, busy\n", 1484 __func__, ipw_cmdname(type)); 1485 return EAGAIN; 1486 } 1487 sc->flags |= IPW_FLAG_BUSY; 1488 1489 sbd = &sc->stbd_list[sc->txcur]; 1490 1491 error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd, 1492 sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0); 1493 if (error != 0) { 1494 device_printf(sc->sc_dev, "could not map command DMA memory\n"); 1495 sc->flags &= ~IPW_FLAG_BUSY; 1496 return error; 1497 } 1498 1499 sc->cmd.type = htole32(type); 1500 sc->cmd.subtype = 0; 1501 sc->cmd.len = htole32(len); 1502 sc->cmd.seq = 0; 1503 memcpy(sc->cmd.data, data, len); 1504 1505 sbd->type = IPW_SBD_TYPE_COMMAND; 1506 sbd->bd->physaddr = htole32(physaddr); 1507 sbd->bd->len = htole32(sizeof (struct ipw_cmd)); 1508 sbd->bd->nfrag = 1; 1509 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND | 1510 IPW_BD_FLAG_TX_LAST_FRAGMENT; 1511 1512 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE); 1513 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1514 1515 #ifdef IPW_DEBUG 1516 if (ipw_debug >= 4) { 1517 printf("sending %s(%u, %u, %u, %u)", ipw_cmdname(type), type, 1518 0, 0, len); 1519 /* Print the data buffer in the higher debug level */ 1520 if (ipw_debug >= 9 && len > 0) { 1521 printf(" data: 0x"); 1522 for (int i = 1; i <= len; i++) 1523 printf("%1D", (u_char *)data + len - i, ""); 1524 } 1525 printf("\n"); 1526 } 1527 #endif 1528 1529 /* kick firmware */ 1530 sc->txfree--; 1531 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1532 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1533 1534 /* wait at most one second for command to complete */ 1535 error = msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz); 1536 if (error != 0) { 1537 device_printf(sc->sc_dev, "%s: %s failed, timeout (error %u)\n", 1538 __func__, ipw_cmdname(type), error); 1539 sc->flags &= ~IPW_FLAG_BUSY; 1540 return (error); 1541 } 1542 return (0); 1543 } 1544 1545 static int 1546 ipw_tx_start(struct ipw_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1547 { 1548 struct ieee80211com *ic = &sc->sc_ic; 1549 struct ieee80211vap *vap = ni->ni_vap; 1550 struct ieee80211_frame *wh; 1551 struct ipw_soft_bd *sbd; 1552 struct ipw_soft_hdr *shdr; 1553 struct ipw_soft_buf *sbuf; 1554 struct ieee80211_key *k; 1555 struct mbuf *mnew; 1556 bus_dma_segment_t segs[IPW_MAX_NSEG]; 1557 bus_addr_t physaddr; 1558 int nsegs, error, i; 1559 1560 wh = mtod(m0, struct ieee80211_frame *); 1561 1562 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1563 k = ieee80211_crypto_encap(ni, m0); 1564 if (k == NULL) { 1565 m_freem(m0); 1566 return ENOBUFS; 1567 } 1568 /* packet header may have moved, reset our local pointer */ 1569 wh = mtod(m0, struct ieee80211_frame *); 1570 } 1571 1572 if (ieee80211_radiotap_active_vap(vap)) { 1573 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap; 1574 1575 tap->wt_flags = 0; 1576 1577 ieee80211_radiotap_tx(vap, m0); 1578 } 1579 1580 shdr = SLIST_FIRST(&sc->free_shdr); 1581 sbuf = SLIST_FIRST(&sc->free_sbuf); 1582 KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool")); 1583 1584 shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND); 1585 shdr->hdr.subtype = 0; 1586 shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) ? 1 : 0; 1587 shdr->hdr.encrypt = 0; 1588 shdr->hdr.keyidx = 0; 1589 shdr->hdr.keysz = 0; 1590 shdr->hdr.fragmentsz = 0; 1591 IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2); 1592 if (ic->ic_opmode == IEEE80211_M_STA) 1593 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3); 1594 else 1595 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1); 1596 1597 /* trim IEEE802.11 header */ 1598 m_adj(m0, sizeof (struct ieee80211_frame)); 1599 1600 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs, 1601 &nsegs, 0); 1602 if (error != 0 && error != EFBIG) { 1603 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1604 error); 1605 m_freem(m0); 1606 return error; 1607 } 1608 if (error != 0) { 1609 mnew = m_defrag(m0, M_NOWAIT); 1610 if (mnew == NULL) { 1611 device_printf(sc->sc_dev, 1612 "could not defragment mbuf\n"); 1613 m_freem(m0); 1614 return ENOBUFS; 1615 } 1616 m0 = mnew; 1617 1618 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, 1619 segs, &nsegs, 0); 1620 if (error != 0) { 1621 device_printf(sc->sc_dev, 1622 "could not map mbuf (error %d)\n", error); 1623 m_freem(m0); 1624 return error; 1625 } 1626 } 1627 1628 error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr, 1629 sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0); 1630 if (error != 0) { 1631 device_printf(sc->sc_dev, "could not map header DMA memory\n"); 1632 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1633 m_freem(m0); 1634 return error; 1635 } 1636 1637 SLIST_REMOVE_HEAD(&sc->free_sbuf, next); 1638 SLIST_REMOVE_HEAD(&sc->free_shdr, next); 1639 1640 sbd = &sc->stbd_list[sc->txcur]; 1641 sbd->type = IPW_SBD_TYPE_HEADER; 1642 sbd->priv = shdr; 1643 sbd->bd->physaddr = htole32(physaddr); 1644 sbd->bd->len = htole32(sizeof (struct ipw_hdr)); 1645 sbd->bd->nfrag = 1 + nsegs; 1646 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 | 1647 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1648 1649 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n", 1650 shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted, 1651 shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr, 1652 ":")); 1653 1654 sc->txfree--; 1655 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1656 1657 sbuf->m = m0; 1658 sbuf->ni = ni; 1659 1660 for (i = 0; i < nsegs; i++) { 1661 sbd = &sc->stbd_list[sc->txcur]; 1662 1663 sbd->bd->physaddr = htole32(segs[i].ds_addr); 1664 sbd->bd->len = htole32(segs[i].ds_len); 1665 sbd->bd->nfrag = 0; 1666 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3; 1667 if (i == nsegs - 1) { 1668 sbd->type = IPW_SBD_TYPE_DATA; 1669 sbd->priv = sbuf; 1670 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT; 1671 } else { 1672 sbd->type = IPW_SBD_TYPE_NOASSOC; 1673 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1674 } 1675 1676 DPRINTFN(5, ("sending fragment (%d)\n", i)); 1677 1678 sc->txfree--; 1679 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1680 } 1681 1682 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE); 1683 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE); 1684 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1685 1686 /* kick firmware */ 1687 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1688 1689 return 0; 1690 } 1691 1692 static int 1693 ipw_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1694 const struct ieee80211_bpf_params *params) 1695 { 1696 /* no support; just discard */ 1697 m_freem(m); 1698 ieee80211_free_node(ni); 1699 return 0; 1700 } 1701 1702 static int 1703 ipw_transmit(struct ieee80211com *ic, struct mbuf *m) 1704 { 1705 struct ipw_softc *sc = ic->ic_softc; 1706 int error; 1707 1708 IPW_LOCK(sc); 1709 if ((sc->flags & IPW_FLAG_RUNNING) == 0) { 1710 IPW_UNLOCK(sc); 1711 return (ENXIO); 1712 } 1713 error = mbufq_enqueue(&sc->sc_snd, m); 1714 if (error) { 1715 IPW_UNLOCK(sc); 1716 return (error); 1717 } 1718 ipw_start(sc); 1719 IPW_UNLOCK(sc); 1720 return (0); 1721 } 1722 1723 static void 1724 ipw_start(struct ipw_softc *sc) 1725 { 1726 struct ieee80211_node *ni; 1727 struct mbuf *m; 1728 1729 IPW_LOCK_ASSERT(sc); 1730 1731 while (sc->txfree < 1 + IPW_MAX_NSEG && 1732 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1733 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1734 if (ipw_tx_start(sc, m, ni) != 0) { 1735 if_inc_counter(ni->ni_vap->iv_ifp, 1736 IFCOUNTER_OERRORS, 1); 1737 ieee80211_free_node(ni); 1738 break; 1739 } 1740 /* start watchdog timer */ 1741 sc->sc_tx_timer = 5; 1742 } 1743 } 1744 1745 static void 1746 ipw_watchdog(void *arg) 1747 { 1748 struct ipw_softc *sc = arg; 1749 struct ieee80211com *ic = &sc->sc_ic; 1750 1751 IPW_LOCK_ASSERT(sc); 1752 1753 if (sc->sc_tx_timer > 0) { 1754 if (--sc->sc_tx_timer == 0) { 1755 device_printf(sc->sc_dev, "device timeout\n"); 1756 counter_u64_add(ic->ic_oerrors, 1); 1757 taskqueue_enqueue(taskqueue_swi, &sc->sc_init_task); 1758 } 1759 } 1760 if (sc->sc_scan_timer > 0) { 1761 if (--sc->sc_scan_timer == 0) { 1762 DPRINTFN(3, ("Scan timeout\n")); 1763 /* End the scan */ 1764 if (sc->flags & IPW_FLAG_SCANNING) { 1765 IPW_UNLOCK(sc); 1766 ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); 1767 IPW_LOCK(sc); 1768 sc->flags &= ~IPW_FLAG_SCANNING; 1769 } 1770 } 1771 } 1772 if (sc->flags & IPW_FLAG_RUNNING) 1773 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 1774 } 1775 1776 static void 1777 ipw_parent(struct ieee80211com *ic) 1778 { 1779 struct ipw_softc *sc = ic->ic_softc; 1780 int startall = 0; 1781 1782 IPW_LOCK(sc); 1783 if (ic->ic_nrunning > 0) { 1784 if (!(sc->flags & IPW_FLAG_RUNNING)) { 1785 ipw_init_locked(sc); 1786 startall = 1; 1787 } 1788 } else if (sc->flags & IPW_FLAG_RUNNING) 1789 ipw_stop_locked(sc); 1790 IPW_UNLOCK(sc); 1791 if (startall) 1792 ieee80211_start_all(ic); 1793 } 1794 1795 static void 1796 ipw_stop_master(struct ipw_softc *sc) 1797 { 1798 uint32_t tmp; 1799 int ntries; 1800 1801 /* disable interrupts */ 1802 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1803 1804 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER); 1805 for (ntries = 0; ntries < 50; ntries++) { 1806 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED) 1807 break; 1808 DELAY(10); 1809 } 1810 if (ntries == 50) 1811 device_printf(sc->sc_dev, "timeout waiting for master\n"); 1812 1813 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1814 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET); 1815 1816 /* Clear all flags except the following */ 1817 sc->flags &= IPW_FLAG_HAS_RADIO_SWITCH; 1818 } 1819 1820 static int 1821 ipw_reset(struct ipw_softc *sc) 1822 { 1823 uint32_t tmp; 1824 int ntries; 1825 1826 ipw_stop_master(sc); 1827 1828 /* move adapter to D0 state */ 1829 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1830 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1831 1832 /* wait for clock stabilization */ 1833 for (ntries = 0; ntries < 1000; ntries++) { 1834 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY) 1835 break; 1836 DELAY(200); 1837 } 1838 if (ntries == 1000) 1839 return EIO; 1840 1841 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1842 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET); 1843 1844 DELAY(10); 1845 1846 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1847 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1848 1849 return 0; 1850 } 1851 1852 static int 1853 ipw_waitfordisable(struct ipw_softc *sc, int waitfor) 1854 { 1855 int ms = hz < 1000 ? 1 : hz/10; 1856 int i, error; 1857 1858 for (i = 0; i < 100; i++) { 1859 if (ipw_read_table1(sc, IPW_INFO_CARD_DISABLED) == waitfor) 1860 return 0; 1861 error = msleep(sc, &sc->sc_mtx, PCATCH, __func__, ms); 1862 if (error == 0 || error != EWOULDBLOCK) 1863 return 0; 1864 } 1865 DPRINTF(("%s: timeout waiting for %s\n", 1866 __func__, waitfor ? "disable" : "enable")); 1867 return ETIMEDOUT; 1868 } 1869 1870 static int 1871 ipw_enable(struct ipw_softc *sc) 1872 { 1873 int error; 1874 1875 if ((sc->flags & IPW_FLAG_ENABLED) == 0) { 1876 DPRINTF(("Enable adapter\n")); 1877 error = ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); 1878 if (error != 0) 1879 return error; 1880 error = ipw_waitfordisable(sc, 0); 1881 if (error != 0) 1882 return error; 1883 sc->flags |= IPW_FLAG_ENABLED; 1884 } 1885 return 0; 1886 } 1887 1888 static int 1889 ipw_disable(struct ipw_softc *sc) 1890 { 1891 int error; 1892 1893 if (sc->flags & IPW_FLAG_ENABLED) { 1894 DPRINTF(("Disable adapter\n")); 1895 error = ipw_cmd(sc, IPW_CMD_DISABLE, NULL, 0); 1896 if (error != 0) 1897 return error; 1898 error = ipw_waitfordisable(sc, 1); 1899 if (error != 0) 1900 return error; 1901 sc->flags &= ~IPW_FLAG_ENABLED; 1902 } 1903 return 0; 1904 } 1905 1906 /* 1907 * Upload the microcode to the device. 1908 */ 1909 static int 1910 ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size) 1911 { 1912 int ntries; 1913 1914 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 1915 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1916 1917 MEM_WRITE_2(sc, 0x220000, 0x0703); 1918 MEM_WRITE_2(sc, 0x220000, 0x0707); 1919 1920 MEM_WRITE_1(sc, 0x210014, 0x72); 1921 MEM_WRITE_1(sc, 0x210014, 0x72); 1922 1923 MEM_WRITE_1(sc, 0x210000, 0x40); 1924 MEM_WRITE_1(sc, 0x210000, 0x00); 1925 MEM_WRITE_1(sc, 0x210000, 0x40); 1926 1927 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size); 1928 1929 MEM_WRITE_1(sc, 0x210000, 0x00); 1930 MEM_WRITE_1(sc, 0x210000, 0x00); 1931 MEM_WRITE_1(sc, 0x210000, 0x80); 1932 1933 MEM_WRITE_2(sc, 0x220000, 0x0703); 1934 MEM_WRITE_2(sc, 0x220000, 0x0707); 1935 1936 MEM_WRITE_1(sc, 0x210014, 0x72); 1937 MEM_WRITE_1(sc, 0x210014, 0x72); 1938 1939 MEM_WRITE_1(sc, 0x210000, 0x00); 1940 MEM_WRITE_1(sc, 0x210000, 0x80); 1941 1942 for (ntries = 0; ntries < 10; ntries++) { 1943 if (MEM_READ_1(sc, 0x210000) & 1) 1944 break; 1945 DELAY(10); 1946 } 1947 if (ntries == 10) { 1948 device_printf(sc->sc_dev, 1949 "timeout waiting for ucode to initialize\n"); 1950 return EIO; 1951 } 1952 1953 MEM_WRITE_4(sc, 0x3000e0, 0); 1954 1955 return 0; 1956 } 1957 1958 /* set of macros to handle unaligned little endian data in firmware image */ 1959 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 1960 #define GETLE16(p) ((p)[0] | (p)[1] << 8) 1961 static int 1962 ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size) 1963 { 1964 const uint8_t *p, *end; 1965 uint32_t tmp, dst; 1966 uint16_t len; 1967 int error; 1968 1969 p = fw; 1970 end = fw + size; 1971 while (p < end) { 1972 dst = GETLE32(p); p += 4; 1973 len = GETLE16(p); p += 2; 1974 1975 ipw_write_mem_1(sc, dst, p, len); 1976 p += len; 1977 } 1978 1979 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK | 1980 IPW_IO_LED_OFF); 1981 1982 /* enable interrupts */ 1983 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1984 1985 /* kick the firmware */ 1986 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1987 1988 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1989 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY); 1990 1991 /* wait at most one second for firmware initialization to complete */ 1992 if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) { 1993 device_printf(sc->sc_dev, "timeout waiting for firmware " 1994 "initialization to complete\n"); 1995 return error; 1996 } 1997 1998 tmp = CSR_READ_4(sc, IPW_CSR_IO); 1999 CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK | 2000 IPW_IO_GPIO3_MASK); 2001 2002 return 0; 2003 } 2004 2005 static int 2006 ipw_setwepkeys(struct ipw_softc *sc) 2007 { 2008 struct ieee80211com *ic = &sc->sc_ic; 2009 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2010 struct ipw_wep_key wepkey; 2011 struct ieee80211_key *wk; 2012 int error, i; 2013 2014 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2015 wk = &vap->iv_nw_keys[i]; 2016 2017 if (wk->wk_cipher == NULL || 2018 wk->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP) 2019 continue; 2020 2021 wepkey.idx = i; 2022 wepkey.len = wk->wk_keylen; 2023 memset(wepkey.key, 0, sizeof wepkey.key); 2024 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2025 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2026 wepkey.len)); 2027 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey, 2028 sizeof wepkey); 2029 if (error != 0) 2030 return error; 2031 } 2032 return 0; 2033 } 2034 2035 static int 2036 ipw_setwpaie(struct ipw_softc *sc, const void *ie, int ielen) 2037 { 2038 struct ipw_wpa_ie wpaie; 2039 2040 memset(&wpaie, 0, sizeof(wpaie)); 2041 wpaie.len = htole32(ielen); 2042 /* XXX verify length */ 2043 memcpy(&wpaie.ie, ie, ielen); 2044 DPRINTF(("Setting WPA IE\n")); 2045 return ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &wpaie, sizeof(wpaie)); 2046 } 2047 2048 static int 2049 ipw_setbssid(struct ipw_softc *sc, uint8_t *bssid) 2050 { 2051 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 2052 2053 if (bssid == NULL || bcmp(bssid, zerobssid, IEEE80211_ADDR_LEN) == 0) { 2054 DPRINTF(("Setting mandatory BSSID to null\n")); 2055 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0); 2056 } else { 2057 DPRINTF(("Setting mandatory BSSID to %6D\n", bssid, ":")); 2058 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, 2059 bssid, IEEE80211_ADDR_LEN); 2060 } 2061 } 2062 2063 static int 2064 ipw_setssid(struct ipw_softc *sc, void *ssid, size_t ssidlen) 2065 { 2066 if (ssidlen == 0) { 2067 /* 2068 * A bug in the firmware breaks the ``don't associate'' 2069 * bit in the scan options command. To compensate for 2070 * this install a bogus ssid when no ssid is specified 2071 * so the firmware won't try to associate. 2072 */ 2073 DPRINTF(("Setting bogus ESSID to WAR firmware bug\n")); 2074 return ipw_cmd(sc, IPW_CMD_SET_ESSID, 2075 "\x18\x19\x20\x21\x22\x23\x24\x25\x26\x27" 2076 "\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31" 2077 "\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b" 2078 "\x3c\x3d", IEEE80211_NWID_LEN); 2079 } else { 2080 #ifdef IPW_DEBUG 2081 if (ipw_debug > 0) { 2082 printf("Setting ESSID to "); 2083 ieee80211_print_essid(ssid, ssidlen); 2084 printf("\n"); 2085 } 2086 #endif 2087 return ipw_cmd(sc, IPW_CMD_SET_ESSID, ssid, ssidlen); 2088 } 2089 } 2090 2091 static int 2092 ipw_setscanopts(struct ipw_softc *sc, uint32_t chanmask, uint32_t flags) 2093 { 2094 struct ipw_scan_options opts; 2095 2096 DPRINTF(("Scan options: mask 0x%x flags 0x%x\n", chanmask, flags)); 2097 opts.channels = htole32(chanmask); 2098 opts.flags = htole32(flags); 2099 return ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &opts, sizeof(opts)); 2100 } 2101 2102 static int 2103 ipw_scan(struct ipw_softc *sc) 2104 { 2105 uint32_t params; 2106 int error; 2107 2108 DPRINTF(("%s: flags 0x%x\n", __func__, sc->flags)); 2109 2110 if (sc->flags & IPW_FLAG_SCANNING) 2111 return (EBUSY); 2112 sc->flags |= IPW_FLAG_SCANNING | IPW_FLAG_HACK; 2113 2114 /* NB: IPW_SCAN_DO_NOT_ASSOCIATE does not work (we set it anyway) */ 2115 error = ipw_setscanopts(sc, 0x3fff, IPW_SCAN_DO_NOT_ASSOCIATE); 2116 if (error != 0) 2117 goto done; 2118 2119 /* 2120 * Setup null/bogus ssid so firmware doesn't use any previous 2121 * ssid to try and associate. This is because the ``don't 2122 * associate'' option bit is broken (sigh). 2123 */ 2124 error = ipw_setssid(sc, NULL, 0); 2125 if (error != 0) 2126 goto done; 2127 2128 /* 2129 * NB: the adapter may be disabled on association lost; 2130 * if so just re-enable it to kick off scanning. 2131 */ 2132 DPRINTF(("Starting scan\n")); 2133 sc->sc_scan_timer = 3; 2134 if (sc->flags & IPW_FLAG_ENABLED) { 2135 params = 0; /* XXX? */ 2136 error = ipw_cmd(sc, IPW_CMD_BROADCAST_SCAN, 2137 ¶ms, sizeof(params)); 2138 } else 2139 error = ipw_enable(sc); 2140 done: 2141 if (error != 0) { 2142 DPRINTF(("Scan failed\n")); 2143 sc->flags &= ~(IPW_FLAG_SCANNING | IPW_FLAG_HACK); 2144 } 2145 return (error); 2146 } 2147 2148 static int 2149 ipw_setchannel(struct ipw_softc *sc, struct ieee80211_channel *chan) 2150 { 2151 struct ieee80211com *ic = &sc->sc_ic; 2152 uint32_t data; 2153 int error; 2154 2155 data = htole32(ieee80211_chan2ieee(ic, chan)); 2156 DPRINTF(("Setting channel to %u\n", le32toh(data))); 2157 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data); 2158 if (error == 0) 2159 ipw_setcurchan(sc, chan); 2160 return error; 2161 } 2162 2163 static void 2164 ipw_assoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2165 { 2166 struct ipw_softc *sc = ic->ic_softc; 2167 struct ieee80211_node *ni = vap->iv_bss; 2168 struct ipw_security security; 2169 uint32_t data; 2170 int error; 2171 2172 IPW_LOCK(sc); 2173 error = ipw_disable(sc); 2174 if (error != 0) 2175 goto done; 2176 2177 memset(&security, 0, sizeof security); 2178 security.authmode = (ni->ni_authmode == IEEE80211_AUTH_SHARED) ? 2179 IPW_AUTH_SHARED : IPW_AUTH_OPEN; 2180 security.ciphers = htole32(IPW_CIPHER_NONE); 2181 DPRINTF(("Setting authmode to %u\n", security.authmode)); 2182 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFO, &security, 2183 sizeof security); 2184 if (error != 0) 2185 goto done; 2186 2187 data = htole32(vap->iv_rtsthreshold); 2188 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2189 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2190 if (error != 0) 2191 goto done; 2192 2193 data = htole32(vap->iv_fragthreshold); 2194 DPRINTF(("Setting frag threshold to %u\n", le32toh(data))); 2195 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2196 if (error != 0) 2197 goto done; 2198 2199 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 2200 error = ipw_setwepkeys(sc); 2201 if (error != 0) 2202 goto done; 2203 2204 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { 2205 data = htole32(vap->iv_def_txkey); 2206 DPRINTF(("Setting wep tx key index to %u\n", 2207 le32toh(data))); 2208 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data, 2209 sizeof data); 2210 if (error != 0) 2211 goto done; 2212 } 2213 } 2214 2215 data = htole32((vap->iv_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0); 2216 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data))); 2217 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data); 2218 if (error != 0) 2219 goto done; 2220 2221 error = ipw_setssid(sc, ni->ni_essid, ni->ni_esslen); 2222 if (error != 0) 2223 goto done; 2224 2225 error = ipw_setbssid(sc, ni->ni_bssid); 2226 if (error != 0) 2227 goto done; 2228 2229 if (vap->iv_appie_wpa != NULL) { 2230 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2231 error = ipw_setwpaie(sc, ie->ie_data, ie->ie_len); 2232 if (error != 0) 2233 goto done; 2234 } 2235 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2236 error = ipw_setchannel(sc, ni->ni_chan); 2237 if (error != 0) 2238 goto done; 2239 } 2240 2241 /* lock scan to ap's channel and enable associate */ 2242 error = ipw_setscanopts(sc, 2243 1<<(ieee80211_chan2ieee(ic, ni->ni_chan)-1), 0); 2244 if (error != 0) 2245 goto done; 2246 2247 error = ipw_enable(sc); /* finally, enable adapter */ 2248 if (error == 0) 2249 sc->flags |= IPW_FLAG_ASSOCIATING; 2250 done: 2251 IPW_UNLOCK(sc); 2252 } 2253 2254 static void 2255 ipw_disassoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2256 { 2257 struct ieee80211_node *ni = vap->iv_bss; 2258 struct ipw_softc *sc = ic->ic_softc; 2259 2260 IPW_LOCK(sc); 2261 DPRINTF(("Disassociate from %6D\n", ni->ni_bssid, ":")); 2262 /* 2263 * NB: don't try to do this if ipw_stop_master has 2264 * shutdown the firmware and disabled interrupts. 2265 */ 2266 if (sc->flags & IPW_FLAG_FW_INITED) { 2267 sc->flags &= ~IPW_FLAG_ASSOCIATED; 2268 /* 2269 * NB: firmware currently ignores bssid parameter, but 2270 * supply it in case this changes (follow linux driver). 2271 */ 2272 (void) ipw_cmd(sc, IPW_CMD_DISASSOCIATE, 2273 ni->ni_bssid, IEEE80211_ADDR_LEN); 2274 } 2275 IPW_UNLOCK(sc); 2276 } 2277 2278 /* 2279 * Handler for sc_init_task. This is a simple wrapper around ipw_init(). 2280 * It is called on firmware panics or on watchdog timeouts. 2281 */ 2282 static void 2283 ipw_init_task(void *context, int pending) 2284 { 2285 ipw_init(context); 2286 } 2287 2288 static void 2289 ipw_init(void *priv) 2290 { 2291 struct ipw_softc *sc = priv; 2292 struct ieee80211com *ic = &sc->sc_ic; 2293 2294 IPW_LOCK(sc); 2295 ipw_init_locked(sc); 2296 IPW_UNLOCK(sc); 2297 2298 if (sc->flags & IPW_FLAG_RUNNING) 2299 ieee80211_start_all(ic); /* start all vap's */ 2300 } 2301 2302 static void 2303 ipw_init_locked(struct ipw_softc *sc) 2304 { 2305 struct ieee80211com *ic = &sc->sc_ic; 2306 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2307 const struct firmware *fp; 2308 const struct ipw_firmware_hdr *hdr; 2309 const char *fw; 2310 2311 IPW_LOCK_ASSERT(sc); 2312 2313 DPRINTF(("%s: state %s flags 0x%x\n", __func__, 2314 ieee80211_state_name[vap->iv_state], sc->flags)); 2315 2316 /* 2317 * Avoid re-entrant calls. We need to release the mutex in ipw_init() 2318 * when loading the firmware and we don't want to be called during this 2319 * operation. 2320 */ 2321 if (sc->flags & IPW_FLAG_INIT_LOCKED) 2322 return; 2323 sc->flags |= IPW_FLAG_INIT_LOCKED; 2324 2325 ipw_stop_locked(sc); 2326 2327 if (ipw_reset(sc) != 0) { 2328 device_printf(sc->sc_dev, "could not reset adapter\n"); 2329 goto fail; 2330 } 2331 2332 if (sc->sc_firmware == NULL) { 2333 device_printf(sc->sc_dev, "no firmware\n"); 2334 goto fail; 2335 } 2336 /* NB: consistency already checked on load */ 2337 fp = sc->sc_firmware; 2338 hdr = (const struct ipw_firmware_hdr *)fp->data; 2339 2340 DPRINTF(("Loading firmware image '%s'\n", fp->name)); 2341 fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz); 2342 if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) { 2343 device_printf(sc->sc_dev, "could not load microcode\n"); 2344 goto fail; 2345 } 2346 2347 ipw_stop_master(sc); 2348 2349 /* 2350 * Setup tx, rx and status rings. 2351 */ 2352 sc->txold = IPW_NTBD - 1; 2353 sc->txcur = 0; 2354 sc->txfree = IPW_NTBD - 2; 2355 sc->rxcur = IPW_NRBD - 1; 2356 2357 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_phys); 2358 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD); 2359 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0); 2360 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 2361 2362 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_phys); 2363 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD); 2364 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0); 2365 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 2366 2367 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys); 2368 2369 fw = (const char *)fp->data + sizeof *hdr; 2370 if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) { 2371 device_printf(sc->sc_dev, "could not load firmware\n"); 2372 goto fail; 2373 } 2374 2375 sc->flags |= IPW_FLAG_FW_INITED; 2376 2377 /* retrieve information tables base addresses */ 2378 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE); 2379 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE); 2380 2381 ipw_write_table1(sc, IPW_INFO_LOCK, 0); 2382 2383 if (ipw_config(sc) != 0) { 2384 device_printf(sc->sc_dev, "device configuration failed\n"); 2385 goto fail; 2386 } 2387 2388 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 2389 sc->flags |= IPW_FLAG_RUNNING; 2390 sc->flags &= ~IPW_FLAG_INIT_LOCKED; 2391 return; 2392 2393 fail: 2394 ipw_stop_locked(sc); 2395 sc->flags &= ~IPW_FLAG_INIT_LOCKED; 2396 } 2397 2398 static int 2399 ipw_config(struct ipw_softc *sc) 2400 { 2401 struct ieee80211com *ic = &sc->sc_ic; 2402 struct ipw_configuration config; 2403 uint32_t data; 2404 int error; 2405 2406 error = ipw_disable(sc); 2407 if (error != 0) 2408 return error; 2409 2410 switch (ic->ic_opmode) { 2411 case IEEE80211_M_STA: 2412 case IEEE80211_M_HOSTAP: 2413 case IEEE80211_M_WDS: /* XXX */ 2414 data = htole32(IPW_MODE_BSS); 2415 break; 2416 case IEEE80211_M_IBSS: 2417 case IEEE80211_M_AHDEMO: 2418 data = htole32(IPW_MODE_IBSS); 2419 break; 2420 case IEEE80211_M_MONITOR: 2421 data = htole32(IPW_MODE_MONITOR); 2422 break; 2423 default: 2424 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2425 return EINVAL; 2426 } 2427 DPRINTF(("Setting mode to %u\n", le32toh(data))); 2428 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data); 2429 if (error != 0) 2430 return error; 2431 2432 if (ic->ic_opmode == IEEE80211_M_IBSS || 2433 ic->ic_opmode == IEEE80211_M_MONITOR) { 2434 error = ipw_setchannel(sc, ic->ic_curchan); 2435 if (error != 0) 2436 return error; 2437 } 2438 2439 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2440 return ipw_enable(sc); 2441 2442 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK | 2443 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE); 2444 if (ic->ic_opmode == IEEE80211_M_IBSS) 2445 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START); 2446 if (ic->ic_promisc > 0) 2447 config.flags |= htole32(IPW_CFG_PROMISCUOUS); 2448 config.bss_chan = htole32(0x3fff); /* channels 1-14 */ 2449 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */ 2450 DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags))); 2451 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config); 2452 if (error != 0) 2453 return error; 2454 2455 data = htole32(0xf); /* 1, 2, 5.5, 11 */ 2456 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data))); 2457 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data); 2458 if (error != 0) 2459 return error; 2460 2461 /* Use the same rate set */ 2462 DPRINTF(("Setting msdu tx rates to 0x%x\n", le32toh(data))); 2463 error = ipw_cmd(sc, IPW_CMD_SET_MSDU_TX_RATES, &data, sizeof data); 2464 if (error != 0) 2465 return error; 2466 2467 /* Use the same rate set */ 2468 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data))); 2469 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data); 2470 if (error != 0) 2471 return error; 2472 2473 data = htole32(IPW_POWER_MODE_CAM); 2474 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2475 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data); 2476 if (error != 0) 2477 return error; 2478 2479 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2480 data = htole32(32); /* default value */ 2481 DPRINTF(("Setting tx power index to %u\n", le32toh(data))); 2482 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data, 2483 sizeof data); 2484 if (error != 0) 2485 return error; 2486 } 2487 2488 return 0; 2489 } 2490 2491 static void 2492 ipw_stop(void *priv) 2493 { 2494 struct ipw_softc *sc = priv; 2495 2496 IPW_LOCK(sc); 2497 ipw_stop_locked(sc); 2498 IPW_UNLOCK(sc); 2499 } 2500 2501 static void 2502 ipw_stop_locked(struct ipw_softc *sc) 2503 { 2504 int i; 2505 2506 IPW_LOCK_ASSERT(sc); 2507 2508 callout_stop(&sc->sc_wdtimer); 2509 ipw_stop_master(sc); 2510 2511 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET); 2512 2513 /* 2514 * Release tx buffers. 2515 */ 2516 for (i = 0; i < IPW_NTBD; i++) 2517 ipw_release_sbd(sc, &sc->stbd_list[i]); 2518 2519 sc->sc_tx_timer = 0; 2520 sc->flags &= ~IPW_FLAG_RUNNING; 2521 } 2522 2523 static int 2524 ipw_sysctl_stats(SYSCTL_HANDLER_ARGS) 2525 { 2526 struct ipw_softc *sc = arg1; 2527 uint32_t i, size, buf[256]; 2528 2529 memset(buf, 0, sizeof buf); 2530 2531 if (!(sc->flags & IPW_FLAG_FW_INITED)) 2532 return SYSCTL_OUT(req, buf, sizeof buf); 2533 2534 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base); 2535 2536 size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256); 2537 for (i = 1; i < size; i++) 2538 buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA)); 2539 2540 return SYSCTL_OUT(req, buf, size); 2541 } 2542 2543 static int 2544 ipw_sysctl_radio(SYSCTL_HANDLER_ARGS) 2545 { 2546 struct ipw_softc *sc = arg1; 2547 int val; 2548 2549 val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) && 2550 (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)); 2551 2552 return SYSCTL_OUT(req, &val, sizeof val); 2553 } 2554 2555 static uint32_t 2556 ipw_read_table1(struct ipw_softc *sc, uint32_t off) 2557 { 2558 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off)); 2559 } 2560 2561 static void 2562 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info) 2563 { 2564 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info); 2565 } 2566 2567 #if 0 2568 static int 2569 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len) 2570 { 2571 uint32_t addr, info; 2572 uint16_t count, size; 2573 uint32_t total; 2574 2575 /* addr[4] + count[2] + size[2] */ 2576 addr = MEM_READ_4(sc, sc->table2_base + off); 2577 info = MEM_READ_4(sc, sc->table2_base + off + 4); 2578 2579 count = info >> 16; 2580 size = info & 0xffff; 2581 total = count * size; 2582 2583 if (total > *len) { 2584 *len = total; 2585 return EINVAL; 2586 } 2587 2588 *len = total; 2589 ipw_read_mem_1(sc, addr, buf, total); 2590 2591 return 0; 2592 } 2593 2594 static void 2595 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, 2596 bus_size_t count) 2597 { 2598 for (; count > 0; offset++, datap++, count--) { 2599 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2600 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3)); 2601 } 2602 } 2603 #endif 2604 2605 static void 2606 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap, 2607 bus_size_t count) 2608 { 2609 for (; count > 0; offset++, datap++, count--) { 2610 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2611 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap); 2612 } 2613 } 2614 2615 static void 2616 ipw_scan_start(struct ieee80211com *ic) 2617 { 2618 struct ipw_softc *sc = ic->ic_softc; 2619 2620 IPW_LOCK(sc); 2621 ipw_scan(sc); 2622 IPW_UNLOCK(sc); 2623 } 2624 2625 static void 2626 ipw_getradiocaps(struct ieee80211com *ic, 2627 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2628 { 2629 struct ipw_softc *sc = ic->ic_softc; 2630 uint8_t bands[IEEE80211_MODE_BYTES]; 2631 int i; 2632 2633 memset(bands, 0, sizeof(bands)); 2634 setbit(bands, IEEE80211_MODE_11B); 2635 2636 for (i = 1; i < 16; i++) { 2637 if (sc->chanmask & (1 << i)) { 2638 ieee80211_add_channel(chans, maxchans, nchans, 2639 i, 0, 0, 0, bands); 2640 } 2641 } 2642 2643 } 2644 2645 static void 2646 ipw_set_channel(struct ieee80211com *ic) 2647 { 2648 struct ipw_softc *sc = ic->ic_softc; 2649 2650 IPW_LOCK(sc); 2651 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2652 ipw_disable(sc); 2653 ipw_setchannel(sc, ic->ic_curchan); 2654 ipw_enable(sc); 2655 } 2656 IPW_UNLOCK(sc); 2657 } 2658 2659 static void 2660 ipw_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 2661 { 2662 /* NB: all channels are scanned at once */ 2663 } 2664 2665 static void 2666 ipw_scan_mindwell(struct ieee80211_scan_state *ss) 2667 { 2668 /* NB: don't try to abort scan; wait for firmware to finish */ 2669 } 2670 2671 static void 2672 ipw_scan_end(struct ieee80211com *ic) 2673 { 2674 struct ipw_softc *sc = ic->ic_softc; 2675 2676 IPW_LOCK(sc); 2677 sc->flags &= ~IPW_FLAG_SCANNING; 2678 IPW_UNLOCK(sc); 2679 } 2680