xref: /freebsd/sys/dev/ipw/if_ipw.c (revision 4f29da19bd44f0e99f021510460a81bf754c21d2)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2004-2006
5  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*-
34  * Intel(R) PRO/Wireless 2100 MiniPCI driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/linker.h>
52 #include <sys/firmware.h>
53 
54 #include <machine/bus.h>
55 #include <machine/resource.h>
56 #include <machine/clock.h>
57 #include <sys/rman.h>
58 
59 #include <dev/pci/pcireg.h>
60 #include <dev/pci/pcivar.h>
61 
62 #include <net/bpf.h>
63 #include <net/if.h>
64 #include <net/if_arp.h>
65 #include <net/ethernet.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_types.h>
69 
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/if_ether.h>
78 
79 #include <dev/ipw/if_ipwreg.h>
80 #include <dev/ipw/if_ipwvar.h>
81 
82 #ifdef IPW_DEBUG
83 #define DPRINTF(x)	do { if (ipw_debug > 0) printf x; } while (0)
84 #define DPRINTFN(n, x)	do { if (ipw_debug >= (n)) printf x; } while (0)
85 int ipw_debug = 0;
86 SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level");
87 #else
88 #define DPRINTF(x)
89 #define DPRINTFN(n, x)
90 #endif
91 
92 MODULE_DEPEND(ipw, pci,  1, 1, 1);
93 MODULE_DEPEND(ipw, wlan, 1, 1, 1);
94 MODULE_DEPEND(ipw, firmware, 1, 1, 1);
95 
96 struct ipw_ident {
97 	uint16_t	vendor;
98 	uint16_t	device;
99 	const char	*name;
100 };
101 
102 static const struct ipw_ident ipw_ident_table[] = {
103 	{ 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" },
104 
105 	{ 0, 0, NULL }
106 };
107 
108 static int	ipw_dma_alloc(struct ipw_softc *);
109 static void	ipw_release(struct ipw_softc *);
110 static int	ipw_media_change(struct ifnet *);
111 static void	ipw_media_status(struct ifnet *, struct ifmediareq *);
112 static int	ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
113 static uint16_t	ipw_read_prom_word(struct ipw_softc *, uint8_t);
114 static void	ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
115 static void	ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
116 static void	ipw_data_intr(struct ipw_softc *, struct ipw_status *,
117 		    struct ipw_soft_bd *, struct ipw_soft_buf *);
118 static void	ipw_rx_intr(struct ipw_softc *);
119 static void	ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
120 static void	ipw_tx_intr(struct ipw_softc *);
121 static void	ipw_intr(void *);
122 static void	ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int);
123 static int	ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
124 static int	ipw_tx_start(struct ifnet *, struct mbuf *,
125 		    struct ieee80211_node *);
126 static void	ipw_start(struct ifnet *);
127 static void	ipw_watchdog(struct ifnet *);
128 static int	ipw_ioctl(struct ifnet *, u_long, caddr_t);
129 static void	ipw_stop_master(struct ipw_softc *);
130 static int	ipw_reset(struct ipw_softc *);
131 static int	ipw_load_ucode(struct ipw_softc *, const char *, int);
132 static int	ipw_load_firmware(struct ipw_softc *, const char *, int);
133 static int	ipw_config(struct ipw_softc *);
134 static void	ipw_init_task(void *, int);
135 static void	ipw_init(void *);
136 static void	ipw_stop(void *);
137 static int	ipw_sysctl_stats(SYSCTL_HANDLER_ARGS);
138 static int	ipw_sysctl_radio(SYSCTL_HANDLER_ARGS);
139 static uint32_t	ipw_read_table1(struct ipw_softc *, uint32_t);
140 static void	ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
141 static int	ipw_read_table2(struct ipw_softc *, uint32_t, void *,
142 		    uint32_t *);
143 static void	ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
144 		    bus_size_t);
145 static void	ipw_write_mem_1(struct ipw_softc *, bus_size_t,
146 		    const uint8_t *, bus_size_t);
147 
148 static int ipw_probe(device_t);
149 static int ipw_attach(device_t);
150 static int ipw_detach(device_t);
151 static int ipw_shutdown(device_t);
152 static int ipw_suspend(device_t);
153 static int ipw_resume(device_t);
154 
155 static device_method_t ipw_methods[] = {
156 	/* Device interface */
157 	DEVMETHOD(device_probe,		ipw_probe),
158 	DEVMETHOD(device_attach,	ipw_attach),
159 	DEVMETHOD(device_detach,	ipw_detach),
160 	DEVMETHOD(device_shutdown,	ipw_shutdown),
161 	DEVMETHOD(device_suspend,	ipw_suspend),
162 	DEVMETHOD(device_resume,	ipw_resume),
163 
164 	{ 0, 0 }
165 };
166 
167 static driver_t ipw_driver = {
168 	"ipw",
169 	ipw_methods,
170 	sizeof (struct ipw_softc)
171 };
172 
173 static devclass_t ipw_devclass;
174 
175 DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, 0, 0);
176 
177 /*
178  * Supported rates for 802.11b mode (in 500Kbps unit).
179  */
180 static const struct ieee80211_rateset ipw_rateset_11b =
181 	{ 4, { 2, 4, 11, 22 } };
182 
183 static int
184 ipw_probe(device_t dev)
185 {
186 	const struct ipw_ident *ident;
187 
188 	for (ident = ipw_ident_table; ident->name != NULL; ident++) {
189 		if (pci_get_vendor(dev) == ident->vendor &&
190 		    pci_get_device(dev) == ident->device) {
191 			device_set_desc(dev, ident->name);
192 			return 0;
193 		}
194 	}
195 	return ENXIO;
196 }
197 
198 /* Base Address Register */
199 #define IPW_PCI_BAR0	0x10
200 
201 static int
202 ipw_attach(device_t dev)
203 {
204 	struct ipw_softc *sc = device_get_softc(dev);
205 	struct ifnet *ifp;
206 	struct ieee80211com *ic = &sc->sc_ic;
207 	uint16_t val;
208 	int error, i;
209 
210 	sc->sc_dev = dev;
211 
212 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
213 	    MTX_DEF | MTX_RECURSE);
214 
215 	TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc);
216 
217 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
218 		device_printf(dev, "chip is in D%d power mode "
219 		    "-- setting to D0\n", pci_get_powerstate(dev));
220 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
221 	}
222 
223 	pci_write_config(dev, 0x41, 0, 1);
224 
225 	/* enable bus-mastering */
226 	pci_enable_busmaster(dev);
227 
228 	sc->mem_rid = IPW_PCI_BAR0;
229 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
230 	    RF_ACTIVE);
231 	if (sc->mem == NULL) {
232 		device_printf(dev, "could not allocate memory resource\n");
233 		goto fail;
234 	}
235 
236 	sc->sc_st = rman_get_bustag(sc->mem);
237 	sc->sc_sh = rman_get_bushandle(sc->mem);
238 
239 	sc->irq_rid = 0;
240 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
241 	    RF_ACTIVE | RF_SHAREABLE);
242 	if (sc->irq == NULL) {
243 		device_printf(dev, "could not allocate interrupt resource\n");
244 		goto fail;
245 	}
246 
247 	if (ipw_reset(sc) != 0) {
248 		device_printf(dev, "could not reset adapter\n");
249 		goto fail;
250 	}
251 
252 	if (ipw_dma_alloc(sc) != 0) {
253 		device_printf(dev, "could not allocate DMA resources\n");
254 		goto fail;
255 	}
256 
257 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
258 	if (ifp == NULL) {
259 		device_printf(dev, "can not if_alloc()\n");
260 		goto fail;
261 	}
262 
263 	ifp->if_softc = sc;
264 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
265 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
266 	ifp->if_init = ipw_init;
267 	ifp->if_ioctl = ipw_ioctl;
268 	ifp->if_start = ipw_start;
269 	ifp->if_watchdog = ipw_watchdog;
270 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
271 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
272 	IFQ_SET_READY(&ifp->if_snd);
273 
274 	ic->ic_ifp = ifp;
275 	ic->ic_phytype = IEEE80211_T_DS;
276 	ic->ic_opmode = IEEE80211_M_STA;
277 	ic->ic_state = IEEE80211_S_INIT;
278 
279 	/* set device capabilities */
280 	ic->ic_caps =
281 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
282 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
283 	    IEEE80211_C_TXPMGT |	/* tx power management */
284 	    IEEE80211_C_SHPREAMBLE;	/* short preamble supported */
285 
286 	/* read MAC address from EEPROM */
287 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
288 	ic->ic_myaddr[0] = val >> 8;
289 	ic->ic_myaddr[1] = val & 0xff;
290 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
291 	ic->ic_myaddr[2] = val >> 8;
292 	ic->ic_myaddr[3] = val & 0xff;
293 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
294 	ic->ic_myaddr[4] = val >> 8;
295 	ic->ic_myaddr[5] = val & 0xff;
296 
297 	/* set supported .11b rates */
298 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b;
299 
300 	/* set supported .11b channels */
301 	for (i = 1; i < 14; i++) {
302 		ic->ic_channels[i].ic_freq =
303 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
304 		ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
305 	}
306 
307 	/* check support for radio transmitter switch in EEPROM */
308 	if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
309 		sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
310 
311 	ieee80211_ifattach(ic);
312 	/* override state transition machine */
313 	sc->sc_newstate = ic->ic_newstate;
314 	ic->ic_newstate = ipw_newstate;
315 	ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
316 
317 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
318 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
319 
320 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
321 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
322 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
323 
324 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
325 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
326 	sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
327 
328 	/*
329 	 * Add a few sysctl knobs.
330 	 */
331 	sc->dwelltime = 100;
332 
333 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
334 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio",
335 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, ipw_sysctl_radio, "I",
336 	    "radio transmitter switch state (0=off, 1=on)");
337 
338 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
339 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats",
340 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, ipw_sysctl_stats, "S",
341 	    "statistics");
342 
343 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
344 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
345 	    CTLFLAG_RW, &sc->dwelltime, 0,
346 	    "channel dwell time (ms) for AP/station scanning");
347 
348 	/*
349 	 * Hook our interrupt after all initialization is complete.
350 	 */
351 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
352 	    ipw_intr, sc, &sc->sc_ih);
353 	if (error != 0) {
354 		device_printf(dev, "could not set up interrupt\n");
355 		goto fail;
356 	}
357 
358 	if (bootverbose)
359 		ieee80211_announce(ic);
360 
361 	return 0;
362 
363 fail:	ipw_detach(dev);
364 	return ENXIO;
365 }
366 
367 static int
368 ipw_detach(device_t dev)
369 {
370 	struct ipw_softc *sc = device_get_softc(dev);
371 	struct ieee80211com *ic = &sc->sc_ic;
372 	struct ifnet *ifp = ic->ic_ifp;
373 
374 	ipw_stop(sc);
375 
376 	if (ifp != NULL) {
377 		bpfdetach(ifp);
378 		ieee80211_ifdetach(ic);
379 	}
380 
381 	ipw_release(sc);
382 
383 	if (sc->irq != NULL) {
384 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
385 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
386 	}
387 
388 	if (sc->mem != NULL)
389 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
390 
391 	if (ifp != NULL)
392 		if_free(ifp);
393 
394 	mtx_destroy(&sc->sc_mtx);
395 
396 	return 0;
397 }
398 
399 static int
400 ipw_dma_alloc(struct ipw_softc *sc)
401 {
402 	struct ipw_soft_bd *sbd;
403 	struct ipw_soft_hdr *shdr;
404 	struct ipw_soft_buf *sbuf;
405 	bus_addr_t physaddr;
406 	int error, i;
407 
408 	/*
409 	 * Allocate and map tx ring.
410 	 */
411 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
412 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL,
413 	    NULL, &sc->tbd_dmat);
414 	if (error != 0) {
415 		device_printf(sc->sc_dev, "could not create tx ring DMA tag\n");
416 		goto fail;
417 	}
418 
419 	error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list,
420 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map);
421 	if (error != 0) {
422 		device_printf(sc->sc_dev,
423 		    "could not allocate tx ring DMA memory\n");
424 		goto fail;
425 	}
426 
427 	error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list,
428 	    IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0);
429 	if (error != 0) {
430 		device_printf(sc->sc_dev, "could not map tx ring DMA memory\n");
431 		goto fail;
432 	}
433 
434 	/*
435 	 * Allocate and map rx ring.
436 	 */
437 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
438 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL,
439 	    NULL, &sc->rbd_dmat);
440 	if (error != 0) {
441 		device_printf(sc->sc_dev, "could not create rx ring DMA tag\n");
442 		goto fail;
443 	}
444 
445 	error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list,
446 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map);
447 	if (error != 0) {
448 		device_printf(sc->sc_dev,
449 		    "could not allocate rx ring DMA memory\n");
450 		goto fail;
451 	}
452 
453 	error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list,
454 	    IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0);
455 	if (error != 0) {
456 		device_printf(sc->sc_dev, "could not map rx ring DMA memory\n");
457 		goto fail;
458 	}
459 
460 	/*
461 	 * Allocate and map status ring.
462 	 */
463 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
464 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0,
465 	    NULL, NULL, &sc->status_dmat);
466 	if (error != 0) {
467 		device_printf(sc->sc_dev,
468 		    "could not create status ring DMA tag\n");
469 		goto fail;
470 	}
471 
472 	error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list,
473 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map);
474 	if (error != 0) {
475 		device_printf(sc->sc_dev,
476 		    "could not allocate status ring DMA memory\n");
477 		goto fail;
478 	}
479 
480 	error = bus_dmamap_load(sc->status_dmat, sc->status_map,
481 	    sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys,
482 	    0);
483 	if (error != 0) {
484 		device_printf(sc->sc_dev,
485 		    "could not map status ring DMA memory\n");
486 		goto fail;
487 	}
488 
489 	/*
490 	 * Allocate command DMA map.
491 	 */
492 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
493 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1,
494 	    sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat);
495 	if (error != 0) {
496 		device_printf(sc->sc_dev, "could not create command DMA tag\n");
497 		goto fail;
498 	}
499 
500 	error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map);
501 	if (error != 0) {
502 		device_printf(sc->sc_dev,
503 		    "could not create command DMA map\n");
504 		goto fail;
505 	}
506 
507 	/*
508 	 * Allocate headers DMA maps.
509 	 */
510 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
511 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1,
512 	    sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat);
513 	if (error != 0) {
514 		device_printf(sc->sc_dev, "could not create header DMA tag\n");
515 		goto fail;
516 	}
517 
518 	SLIST_INIT(&sc->free_shdr);
519 	for (i = 0; i < IPW_NDATA; i++) {
520 		shdr = &sc->shdr_list[i];
521 		error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map);
522 		if (error != 0) {
523 			device_printf(sc->sc_dev,
524 			    "could not create header DMA map\n");
525 			goto fail;
526 		}
527 		SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
528 	}
529 
530 	/*
531 	 * Allocate tx buffers DMA maps.
532 	 */
533 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
534 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0,
535 	    NULL, NULL, &sc->txbuf_dmat);
536 	if (error != 0) {
537 		device_printf(sc->sc_dev, "could not create tx DMA tag\n");
538 		goto fail;
539 	}
540 
541 	SLIST_INIT(&sc->free_sbuf);
542 	for (i = 0; i < IPW_NDATA; i++) {
543 		sbuf = &sc->tx_sbuf_list[i];
544 		error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map);
545 		if (error != 0) {
546 			device_printf(sc->sc_dev,
547 			    "could not create tx DMA map\n");
548 			goto fail;
549 		}
550 		SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
551 	}
552 
553 	/*
554 	 * Initialize tx ring.
555 	 */
556 	for (i = 0; i < IPW_NTBD; i++) {
557 		sbd = &sc->stbd_list[i];
558 		sbd->bd = &sc->tbd_list[i];
559 		sbd->type = IPW_SBD_TYPE_NOASSOC;
560 	}
561 
562 	/*
563 	 * Pre-allocate rx buffers and DMA maps.
564 	 */
565 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
566 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
567 	    NULL, &sc->rxbuf_dmat);
568 	if (error != 0) {
569 		device_printf(sc->sc_dev, "could not create rx DMA tag\n");
570 		goto fail;
571 	}
572 
573 	for (i = 0; i < IPW_NRBD; i++) {
574 		sbd = &sc->srbd_list[i];
575 		sbuf = &sc->rx_sbuf_list[i];
576 		sbd->bd = &sc->rbd_list[i];
577 
578 		sbuf->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
579 		if (sbuf->m == NULL) {
580 			device_printf(sc->sc_dev,
581 			    "could not allocate rx mbuf\n");
582 			error = ENOMEM;
583 			goto fail;
584 		}
585 
586 		error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map);
587 		if (error != 0) {
588 			device_printf(sc->sc_dev,
589 			    "could not create rx DMA map\n");
590 			goto fail;
591 		}
592 
593 		error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
594 		    mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
595 		    &physaddr, 0);
596 		if (error != 0) {
597 			device_printf(sc->sc_dev,
598 			    "could not map rx DMA memory\n");
599 			goto fail;
600 		}
601 
602 		sbd->type = IPW_SBD_TYPE_DATA;
603 		sbd->priv = sbuf;
604 		sbd->bd->physaddr = htole32(physaddr);
605 		sbd->bd->len = htole32(MCLBYTES);
606 	}
607 
608 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
609 
610 	return 0;
611 
612 fail:	ipw_release(sc);
613 	return error;
614 }
615 
616 static void
617 ipw_release(struct ipw_softc *sc)
618 {
619 	struct ipw_soft_buf *sbuf;
620 	int i;
621 
622 	if (sc->tbd_dmat != NULL) {
623 		if (sc->stbd_list != NULL) {
624 			bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map);
625 			bus_dmamem_free(sc->tbd_dmat, sc->tbd_list,
626 			    sc->tbd_map);
627 		}
628 		bus_dma_tag_destroy(sc->tbd_dmat);
629 	}
630 
631 	if (sc->rbd_dmat != NULL) {
632 		if (sc->rbd_list != NULL) {
633 			bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map);
634 			bus_dmamem_free(sc->rbd_dmat, sc->rbd_list,
635 			    sc->rbd_map);
636 		}
637 		bus_dma_tag_destroy(sc->rbd_dmat);
638 	}
639 
640 	if (sc->status_dmat != NULL) {
641 		if (sc->status_list != NULL) {
642 			bus_dmamap_unload(sc->status_dmat, sc->status_map);
643 			bus_dmamem_free(sc->status_dmat, sc->status_list,
644 			    sc->status_map);
645 		}
646 		bus_dma_tag_destroy(sc->status_dmat);
647 	}
648 
649 	for (i = 0; i < IPW_NTBD; i++)
650 		ipw_release_sbd(sc, &sc->stbd_list[i]);
651 
652 	if (sc->cmd_dmat != NULL) {
653 		bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map);
654 		bus_dma_tag_destroy(sc->cmd_dmat);
655 	}
656 
657 	if (sc->hdr_dmat != NULL) {
658 		for (i = 0; i < IPW_NDATA; i++)
659 			bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map);
660 		bus_dma_tag_destroy(sc->hdr_dmat);
661 	}
662 
663 	if (sc->txbuf_dmat != NULL) {
664 		for (i = 0; i < IPW_NDATA; i++) {
665 			bus_dmamap_destroy(sc->txbuf_dmat,
666 			    sc->tx_sbuf_list[i].map);
667 		}
668 		bus_dma_tag_destroy(sc->txbuf_dmat);
669 	}
670 
671 	if (sc->rxbuf_dmat != NULL) {
672 		for (i = 0; i < IPW_NRBD; i++) {
673 			sbuf = &sc->rx_sbuf_list[i];
674 			if (sbuf->m != NULL) {
675 				bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map,
676 				    BUS_DMASYNC_POSTREAD);
677 				bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
678 				m_freem(sbuf->m);
679 			}
680 			bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map);
681 		}
682 		bus_dma_tag_destroy(sc->rxbuf_dmat);
683 	}
684 }
685 
686 static int
687 ipw_shutdown(device_t dev)
688 {
689 	struct ipw_softc *sc = device_get_softc(dev);
690 
691 	ipw_stop(sc);
692 
693 	return 0;
694 }
695 
696 static int
697 ipw_suspend(device_t dev)
698 {
699 	struct ipw_softc *sc = device_get_softc(dev);
700 
701 	ipw_stop(sc);
702 
703 	return 0;
704 }
705 
706 static int
707 ipw_resume(device_t dev)
708 {
709 	struct ipw_softc *sc = device_get_softc(dev);
710 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
711 
712 	mtx_lock(&sc->sc_mtx);
713 
714 	pci_write_config(dev, 0x41, 0, 1);
715 
716 	if (ifp->if_flags & IFF_UP) {
717 		ifp->if_init(ifp->if_softc);
718 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
719 			ifp->if_start(ifp);
720 	}
721 
722 	mtx_unlock(&sc->sc_mtx);
723 
724 	return 0;
725 }
726 
727 static int
728 ipw_media_change(struct ifnet *ifp)
729 {
730 	struct ipw_softc *sc = ifp->if_softc;
731 	int error;
732 
733 	mtx_lock(&sc->sc_mtx);
734 
735 	error = ieee80211_media_change(ifp);
736 	if (error != ENETRESET) {
737 		mtx_unlock(&sc->sc_mtx);
738 		return error;
739 	}
740 
741 	if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
742 		ipw_init(sc);
743 
744 	mtx_unlock(&sc->sc_mtx);
745 
746 	return 0;
747 }
748 
749 /*
750  * The firmware automatically adapts the transmit speed. We report its current
751  * value here.
752  */
753 static void
754 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
755 {
756 #define N(a)	(sizeof (a) / sizeof (a[0]))
757 	struct ipw_softc *sc = ifp->if_softc;
758 	struct ieee80211com *ic = &sc->sc_ic;
759 	static const struct {
760 		uint32_t	val;
761 		int		rate;
762 	} rates[] = {
763 		{ IPW_RATE_DS1,   2 },
764 		{ IPW_RATE_DS2,   4 },
765 		{ IPW_RATE_DS5,  11 },
766 		{ IPW_RATE_DS11, 22 },
767 	};
768 	uint32_t val;
769 	int rate, i;
770 
771 	imr->ifm_status = IFM_AVALID;
772 	imr->ifm_active = IFM_IEEE80211;
773 	if (ic->ic_state == IEEE80211_S_RUN)
774 		imr->ifm_status |= IFM_ACTIVE;
775 
776 	/* read current transmission rate from adapter */
777 	val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
778 
779 	/* convert ipw rate to 802.11 rate */
780 	for (i = 0; i < N(rates) && rates[i].val != val; i++);
781 	rate = (i < N(rates)) ? rates[i].rate : 0;
782 
783 	imr->ifm_active |= IFM_IEEE80211_11B;
784 	imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
785 	switch (ic->ic_opmode) {
786 	case IEEE80211_M_STA:
787 		break;
788 
789 	case IEEE80211_M_IBSS:
790 		imr->ifm_active |= IFM_IEEE80211_IBSS;
791 		break;
792 
793 	case IEEE80211_M_MONITOR:
794 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
795 		break;
796 
797 	case IEEE80211_M_AHDEMO:
798 	case IEEE80211_M_HOSTAP:
799 		/* should not get there */
800 		break;
801 	}
802 #undef N
803 }
804 
805 static int
806 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
807 {
808 	struct ifnet *ifp = ic->ic_ifp;
809 	struct ipw_softc *sc = ifp->if_softc;
810 	struct ieee80211_node *ni;
811 	uint8_t macaddr[IEEE80211_ADDR_LEN];
812 	uint32_t len;
813 
814 	switch (nstate) {
815 	case IEEE80211_S_RUN:
816 		DELAY(200); /* firmware needs a short delay here */
817 
818 		len = IEEE80211_ADDR_LEN;
819 		ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
820 
821 		ni = ieee80211_find_node(&ic->ic_scan, macaddr);
822 		if (ni == NULL)
823 			break;
824 
825 		ieee80211_ref_node(ni);
826 		ieee80211_sta_join(ic, ni);
827 		ieee80211_node_authorize(ni);
828 
829 		if (ic->ic_opmode == IEEE80211_M_STA)
830 			ieee80211_notify_node_join(ic, ni, 1);
831 		break;
832 
833 	case IEEE80211_S_INIT:
834 	case IEEE80211_S_SCAN:
835 	case IEEE80211_S_AUTH:
836 	case IEEE80211_S_ASSOC:
837 		break;
838 	}
839 
840 	ic->ic_state = nstate;
841 
842 	return 0;
843 }
844 
845 /*
846  * Read 16 bits at address 'addr' from the serial EEPROM.
847  */
848 static uint16_t
849 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
850 {
851 	uint32_t tmp;
852 	uint16_t val;
853 	int n;
854 
855 	/* clock C once before the first command */
856 	IPW_EEPROM_CTL(sc, 0);
857 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
858 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
859 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
860 
861 	/* write start bit (1) */
862 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
863 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
864 
865 	/* write READ opcode (10) */
866 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
867 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
868 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
869 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
870 
871 	/* write address A7-A0 */
872 	for (n = 7; n >= 0; n--) {
873 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
874 		    (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
875 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
876 		    (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
877 	}
878 
879 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
880 
881 	/* read data Q15-Q0 */
882 	val = 0;
883 	for (n = 15; n >= 0; n--) {
884 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
885 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
886 		tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
887 		val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
888 	}
889 
890 	IPW_EEPROM_CTL(sc, 0);
891 
892 	/* clear Chip Select and clock C */
893 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
894 	IPW_EEPROM_CTL(sc, 0);
895 	IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
896 
897 	return le16toh(val);
898 }
899 
900 static void
901 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
902 {
903 	struct ipw_cmd *cmd;
904 
905 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
906 
907 	cmd = mtod(sbuf->m, struct ipw_cmd *);
908 
909 	DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
910 	    le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
911 	    le32toh(cmd->status)));
912 
913 	wakeup(sc);
914 }
915 
916 static void
917 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
918 {
919 	struct ieee80211com *ic = &sc->sc_ic;
920 	uint32_t state;
921 
922 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
923 
924 	state = le32toh(*mtod(sbuf->m, uint32_t *));
925 
926 	DPRINTFN(2, ("entering state %u\n", state));
927 
928 	switch (state) {
929 	case IPW_STATE_ASSOCIATED:
930 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
931 		break;
932 
933 	case IPW_STATE_SCANNING:
934 		/* don't leave run state on background scan */
935 		if (ic->ic_state != IEEE80211_S_RUN)
936 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
937 
938 		ic->ic_flags |= IEEE80211_F_SCAN;
939 		break;
940 
941 	case IPW_STATE_SCAN_COMPLETE:
942 		ieee80211_notify_scan_done(ic);
943 		ic->ic_flags &= ~IEEE80211_F_SCAN;
944 		break;
945 
946 	case IPW_STATE_ASSOCIATION_LOST:
947 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
948 		break;
949 
950 	case IPW_STATE_RADIO_DISABLED:
951 		ic->ic_ifp->if_flags &= ~IFF_UP;
952 		ipw_stop(sc);
953 		break;
954 	}
955 }
956 
957 /*
958  * XXX: Hack to set the current channel to the value advertised in beacons or
959  * probe responses. Only used during AP detection.
960  */
961 static void
962 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
963 {
964 	struct ieee80211_frame *wh;
965 	uint8_t subtype;
966 	uint8_t *frm, *efrm;
967 
968 	wh = mtod(m, struct ieee80211_frame *);
969 
970 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
971 		return;
972 
973 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
974 
975 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
976 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
977 		return;
978 
979 	frm = (uint8_t *)(wh + 1);
980 	efrm = mtod(m, uint8_t *) + m->m_len;
981 
982 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
983 	while (frm < efrm) {
984 		if (*frm == IEEE80211_ELEMID_DSPARMS)
985 #if IEEE80211_CHAN_MAX < 255
986 		if (frm[2] <= IEEE80211_CHAN_MAX)
987 #endif
988 			ic->ic_curchan = &ic->ic_channels[frm[2]];
989 
990 		frm += frm[1] + 2;
991 	}
992 }
993 
994 static void
995 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
996     struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
997 {
998 	struct ieee80211com *ic = &sc->sc_ic;
999 	struct ifnet *ifp = ic->ic_ifp;
1000 	struct mbuf *mnew, *m;
1001 	struct ieee80211_frame *wh;
1002 	struct ieee80211_node *ni;
1003 	bus_addr_t physaddr;
1004 	int error;
1005 
1006 	DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
1007 	    status->rssi));
1008 
1009 	if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
1010 	    le32toh(status->len) > MCLBYTES)
1011 		return;
1012 
1013 	/*
1014 	 * Try to allocate a new mbuf for this ring element and load it before
1015 	 * processing the current mbuf. If the ring element cannot be loaded,
1016 	 * drop the received packet and reuse the old mbuf. In the unlikely
1017 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1018 	 */
1019 	mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1020 	if (mnew == NULL) {
1021 		ifp->if_ierrors++;
1022 		return;
1023 	}
1024 
1025 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
1026 	bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
1027 
1028 	error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *),
1029 	    MCLBYTES, ipw_dma_map_addr, &physaddr, 0);
1030 	if (error != 0) {
1031 		m_freem(mnew);
1032 
1033 		/* try to reload the old mbuf */
1034 		error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
1035 		    mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
1036 		    &physaddr, 0);
1037 		if (error != 0) {
1038 			/* very unlikely that it will fail... */
1039 			panic("%s: could not load old rx mbuf",
1040 			    device_get_name(sc->sc_dev));
1041 		}
1042 		ifp->if_ierrors++;
1043 		return;
1044 	}
1045 
1046 	/*
1047 	 * New mbuf successfully loaded, update Rx ring and continue
1048 	 * processing.
1049 	 */
1050 	m = sbuf->m;
1051 	sbuf->m = mnew;
1052 	sbd->bd->physaddr = htole32(physaddr);
1053 
1054 	/* finalize mbuf */
1055 	m->m_pkthdr.rcvif = ifp;
1056 	m->m_pkthdr.len = m->m_len = le32toh(status->len);
1057 
1058 	if (sc->sc_drvbpf != NULL) {
1059 		struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1060 
1061 		tap->wr_flags = 0;
1062 		tap->wr_antsignal = status->rssi;
1063 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1064 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1065 
1066 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1067 	}
1068 
1069 	if (ic->ic_state == IEEE80211_S_SCAN)
1070 		ipw_fix_channel(ic, m);
1071 
1072 	wh = mtod(m, struct ieee80211_frame *);
1073 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1074 
1075 	/* send the frame to the 802.11 layer */
1076 	ieee80211_input(ic, m, ni, status->rssi, 0);
1077 
1078 	/* node is no longer needed */
1079 	ieee80211_free_node(ni);
1080 
1081 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
1082 }
1083 
1084 static void
1085 ipw_rx_intr(struct ipw_softc *sc)
1086 {
1087 	struct ipw_status *status;
1088 	struct ipw_soft_bd *sbd;
1089 	struct ipw_soft_buf *sbuf;
1090 	uint32_t r, i;
1091 
1092 	if (!(sc->flags & IPW_FLAG_FW_INITED))
1093 		return;
1094 
1095 	r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1096 
1097 	bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD);
1098 
1099 	for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1100 		status = &sc->status_list[i];
1101 		sbd = &sc->srbd_list[i];
1102 		sbuf = sbd->priv;
1103 
1104 		switch (le16toh(status->code) & 0xf) {
1105 		case IPW_STATUS_CODE_COMMAND:
1106 			ipw_command_intr(sc, sbuf);
1107 			break;
1108 
1109 		case IPW_STATUS_CODE_NEWSTATE:
1110 			ipw_newstate_intr(sc, sbuf);
1111 			break;
1112 
1113 		case IPW_STATUS_CODE_DATA_802_3:
1114 		case IPW_STATUS_CODE_DATA_802_11:
1115 			ipw_data_intr(sc, status, sbd, sbuf);
1116 			break;
1117 
1118 		case IPW_STATUS_CODE_NOTIFICATION:
1119 			DPRINTFN(2, ("received notification\n"));
1120 			break;
1121 
1122 		default:
1123 			device_printf(sc->sc_dev, "unknown status code %u\n",
1124 			    le16toh(status->code));
1125 		}
1126 
1127 		/* firmware was killed, stop processing received frames */
1128 		if (!(sc->flags & IPW_FLAG_FW_INITED))
1129 			return;
1130 
1131 		sbd->bd->flags = 0;
1132 	}
1133 
1134 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
1135 
1136 	/* kick the firmware */
1137 	sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1138 	CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1139 }
1140 
1141 static void
1142 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1143 {
1144 	struct ipw_soft_hdr *shdr;
1145 	struct ipw_soft_buf *sbuf;
1146 
1147 	switch (sbd->type) {
1148 	case IPW_SBD_TYPE_COMMAND:
1149 		bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map,
1150 		    BUS_DMASYNC_POSTWRITE);
1151 		bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map);
1152 		break;
1153 
1154 	case IPW_SBD_TYPE_HEADER:
1155 		shdr = sbd->priv;
1156 		bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE);
1157 		bus_dmamap_unload(sc->hdr_dmat, shdr->map);
1158 		SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
1159 		break;
1160 
1161 	case IPW_SBD_TYPE_DATA:
1162 		sbuf = sbd->priv;
1163 		bus_dmamap_sync(sc->txbuf_dmat, sbuf->map,
1164 		    BUS_DMASYNC_POSTWRITE);
1165 		bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
1166 		SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
1167 
1168 		m_freem(sbuf->m);
1169 		ieee80211_free_node(sbuf->ni);
1170 
1171 		sc->sc_tx_timer = 0;
1172 		break;
1173 	}
1174 
1175 	sbd->type = IPW_SBD_TYPE_NOASSOC;
1176 }
1177 
1178 static void
1179 ipw_tx_intr(struct ipw_softc *sc)
1180 {
1181 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1182 	struct ipw_soft_bd *sbd;
1183 	uint32_t r, i;
1184 
1185 	if (!(sc->flags & IPW_FLAG_FW_INITED))
1186 		return;
1187 
1188 	r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1189 
1190 	for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1191 		sbd = &sc->stbd_list[i];
1192 
1193 		if (sbd->type == IPW_SBD_TYPE_DATA)
1194 			ifp->if_opackets++;
1195 
1196 		ipw_release_sbd(sc, sbd);
1197 		sc->txfree++;
1198 	}
1199 
1200 	/* remember what the firmware has processed */
1201 	sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1202 
1203 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1204 	ipw_start(ifp);
1205 }
1206 
1207 static void
1208 ipw_intr(void *arg)
1209 {
1210 	struct ipw_softc *sc = arg;
1211 	uint32_t r;
1212 
1213 	mtx_lock(&sc->sc_mtx);
1214 
1215 	if ((r = CSR_READ_4(sc, IPW_CSR_INTR)) == 0 || r == 0xffffffff) {
1216 		mtx_unlock(&sc->sc_mtx);
1217 		return;
1218 	}
1219 
1220 	/* disable interrupts */
1221 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1222 
1223 	/* acknowledge all interrupts */
1224 	CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1225 
1226 	if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1227 		device_printf(sc->sc_dev, "firmware error\n");
1228 		taskqueue_enqueue_fast(taskqueue_fast, &sc->sc_init_task);
1229 		r = 0;	/* don't process more interrupts */
1230 	}
1231 
1232 	if (r & IPW_INTR_FW_INIT_DONE)
1233 		wakeup(sc);
1234 
1235 	if (r & IPW_INTR_RX_TRANSFER)
1236 		ipw_rx_intr(sc);
1237 
1238 	if (r & IPW_INTR_TX_TRANSFER)
1239 		ipw_tx_intr(sc);
1240 
1241 	/* re-enable interrupts */
1242 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1243 
1244 	mtx_unlock(&sc->sc_mtx);
1245 }
1246 
1247 static void
1248 ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1249 {
1250 	if (error != 0)
1251 		return;
1252 
1253 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1254 
1255 	*(bus_addr_t *)arg = segs[0].ds_addr;
1256 }
1257 
1258 /*
1259  * Send a command to the firmware and wait for the acknowledgement.
1260  */
1261 static int
1262 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1263 {
1264 	struct ipw_soft_bd *sbd;
1265 	bus_addr_t physaddr;
1266 	int error;
1267 
1268 	sbd = &sc->stbd_list[sc->txcur];
1269 
1270 	error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd,
1271 	    sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0);
1272 	if (error != 0) {
1273 		device_printf(sc->sc_dev, "could not map command DMA memory\n");
1274 		return error;
1275 	}
1276 
1277 	sc->cmd.type = htole32(type);
1278 	sc->cmd.subtype = 0;
1279 	sc->cmd.len = htole32(len);
1280 	sc->cmd.seq = 0;
1281 	memcpy(sc->cmd.data, data, len);
1282 
1283 	sbd->type = IPW_SBD_TYPE_COMMAND;
1284 	sbd->bd->physaddr = htole32(physaddr);
1285 	sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1286 	sbd->bd->nfrag = 1;
1287 	sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1288 	    IPW_BD_FLAG_TX_LAST_FRAGMENT;
1289 
1290 	bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE);
1291 	bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
1292 
1293 	DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
1294 
1295 	/* kick firmware */
1296 	sc->txfree--;
1297 	sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1298 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1299 
1300 	/* wait at most one second for command to complete */
1301 	return msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz);
1302 }
1303 
1304 static int
1305 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
1306 {
1307 	struct ipw_softc *sc = ifp->if_softc;
1308 	struct ieee80211com *ic = &sc->sc_ic;
1309 	struct ieee80211_frame *wh;
1310 	struct ipw_soft_bd *sbd;
1311 	struct ipw_soft_hdr *shdr;
1312 	struct ipw_soft_buf *sbuf;
1313 	struct ieee80211_key *k;
1314 	struct mbuf *mnew;
1315 	bus_dma_segment_t segs[IPW_MAX_NSEG];
1316 	bus_addr_t physaddr;
1317 	int nsegs, error, i;
1318 
1319 	wh = mtod(m0, struct ieee80211_frame *);
1320 
1321 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1322 		k = ieee80211_crypto_encap(ic, ni, m0);
1323 		if (k == NULL) {
1324 			m_freem(m0);
1325 			return ENOBUFS;
1326 		}
1327 
1328 		/* packet header may have moved, reset our local pointer */
1329 		wh = mtod(m0, struct ieee80211_frame *);
1330 	}
1331 
1332 	if (sc->sc_drvbpf != NULL) {
1333 		struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1334 
1335 		tap->wt_flags = 0;
1336 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1337 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1338 
1339 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1340 	}
1341 
1342 	shdr = SLIST_FIRST(&sc->free_shdr);
1343 	sbuf = SLIST_FIRST(&sc->free_sbuf);
1344 	KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool"));
1345 
1346 	shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND);
1347 	shdr->hdr.subtype = 0;
1348 	shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
1349 	shdr->hdr.encrypt = 0;
1350 	shdr->hdr.keyidx = 0;
1351 	shdr->hdr.keysz = 0;
1352 	shdr->hdr.fragmentsz = 0;
1353 	IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2);
1354 	if (ic->ic_opmode == IEEE80211_M_STA)
1355 		IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3);
1356 	else
1357 		IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1);
1358 
1359 	/* trim IEEE802.11 header */
1360 	m_adj(m0, sizeof (struct ieee80211_frame));
1361 
1362 	error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs,
1363 	    &nsegs, 0);
1364 	if (error != 0 && error != EFBIG) {
1365 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1366 		    error);
1367 		m_freem(m0);
1368 		return error;
1369 	}
1370 	if (error != 0) {
1371 		mnew = m_defrag(m0, M_DONTWAIT);
1372 		if (mnew == NULL) {
1373 			device_printf(sc->sc_dev,
1374 			    "could not defragment mbuf\n");
1375 			m_freem(m0);
1376 			return ENOBUFS;
1377 		}
1378 		m0 = mnew;
1379 
1380 		error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0,
1381 		    segs, &nsegs, 0);
1382 		if (error != 0) {
1383 			device_printf(sc->sc_dev,
1384 			    "could not map mbuf (error %d)\n", error);
1385 			m_freem(m0);
1386 			return error;
1387 		}
1388 	}
1389 
1390 	error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr,
1391 	    sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0);
1392 	if (error != 0) {
1393 		device_printf(sc->sc_dev, "could not map header DMA memory\n");
1394 		bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
1395 		m_freem(m0);
1396 		return error;
1397 	}
1398 
1399 	SLIST_REMOVE_HEAD(&sc->free_sbuf, next);
1400 	SLIST_REMOVE_HEAD(&sc->free_shdr, next);
1401 
1402 	sbd = &sc->stbd_list[sc->txcur];
1403 	sbd->type = IPW_SBD_TYPE_HEADER;
1404 	sbd->priv = shdr;
1405 	sbd->bd->physaddr = htole32(physaddr);
1406 	sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1407 	sbd->bd->nfrag = 1 + nsegs;
1408 	sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1409 	    IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1410 
1411 	DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n",
1412 	    shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted,
1413 	    shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr,
1414 	    ":"));
1415 
1416 	sc->txfree--;
1417 	sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1418 
1419 	sbuf->m = m0;
1420 	sbuf->ni = ni;
1421 
1422 	for (i = 0; i < nsegs; i++) {
1423 		sbd = &sc->stbd_list[sc->txcur];
1424 
1425 		sbd->bd->physaddr = htole32(segs[i].ds_addr);
1426 		sbd->bd->len = htole32(segs[i].ds_len);
1427 		sbd->bd->nfrag = 0;
1428 		sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1429 		if (i == nsegs - 1) {
1430 			sbd->type = IPW_SBD_TYPE_DATA;
1431 			sbd->priv = sbuf;
1432 			sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1433 		} else {
1434 			sbd->type = IPW_SBD_TYPE_NOASSOC;
1435 			sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1436 		}
1437 
1438 		DPRINTFN(5, ("sending fragment (%d, %d)\n", i, segs[i].ds_len));
1439 
1440 		sc->txfree--;
1441 		sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1442 	}
1443 
1444 	bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE);
1445 	bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE);
1446 	bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
1447 
1448 	/* kick firmware */
1449 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1450 
1451 	return 0;
1452 }
1453 
1454 static void
1455 ipw_start(struct ifnet *ifp)
1456 {
1457 	struct ipw_softc *sc = ifp->if_softc;
1458 	struct ieee80211com *ic = &sc->sc_ic;
1459 	struct mbuf *m0;
1460 	struct ether_header *eh;
1461 	struct ieee80211_node *ni;
1462 
1463 	mtx_lock(&sc->sc_mtx);
1464 
1465 	if (ic->ic_state != IEEE80211_S_RUN) {
1466 		mtx_unlock(&sc->sc_mtx);
1467 		return;
1468 	}
1469 
1470 	for (;;) {
1471 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1472 		if (m0 == NULL)
1473 			break;
1474 
1475 		if (sc->txfree < 1 + IPW_MAX_NSEG) {
1476 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1477 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1478 			break;
1479 		}
1480 
1481 		if (m0->m_len < sizeof (struct ether_header) &&
1482 		    (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
1483 			continue;
1484 
1485 		eh = mtod(m0, struct ether_header *);
1486 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1487 		if (ni == NULL) {
1488 			m_freem(m0);
1489 			continue;
1490 		}
1491 		BPF_MTAP(ifp, m0);
1492 
1493 		m0 = ieee80211_encap(ic, m0, ni);
1494 		if (m0 == NULL) {
1495 			ieee80211_free_node(ni);
1496 			continue;
1497 		}
1498 
1499 		if (ic->ic_rawbpf != NULL)
1500 			bpf_mtap(ic->ic_rawbpf, m0);
1501 
1502 		if (ipw_tx_start(ifp, m0, ni) != 0) {
1503 			ieee80211_free_node(ni);
1504 			ifp->if_oerrors++;
1505 			break;
1506 		}
1507 
1508 		/* start watchdog timer */
1509 		sc->sc_tx_timer = 5;
1510 		ifp->if_timer = 1;
1511 	}
1512 
1513 	mtx_unlock(&sc->sc_mtx);
1514 }
1515 
1516 static void
1517 ipw_watchdog(struct ifnet *ifp)
1518 {
1519 	struct ipw_softc *sc = ifp->if_softc;
1520 	struct ieee80211com *ic = &sc->sc_ic;
1521 
1522 	mtx_lock(&sc->sc_mtx);
1523 
1524 	ifp->if_timer = 0;
1525 
1526 	if (sc->sc_tx_timer > 0) {
1527 		if (--sc->sc_tx_timer == 0) {
1528 			if_printf(ifp, "device timeout\n");
1529 			ifp->if_oerrors++;
1530 			taskqueue_enqueue_fast(taskqueue_fast,
1531 			    &sc->sc_init_task);
1532 			mtx_unlock(&sc->sc_mtx);
1533 			return;
1534 		}
1535 		ifp->if_timer = 1;
1536 	}
1537 
1538 	ieee80211_watchdog(ic);
1539 
1540 	mtx_unlock(&sc->sc_mtx);
1541 }
1542 
1543 static int
1544 ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1545 {
1546 	struct ipw_softc *sc = ifp->if_softc;
1547 	struct ieee80211com *ic = &sc->sc_ic;
1548 	int error = 0;
1549 
1550 	mtx_lock(&sc->sc_mtx);
1551 
1552 	switch (cmd) {
1553 	case SIOCSIFFLAGS:
1554 		if (ifp->if_flags & IFF_UP) {
1555 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1556 				ipw_init(sc);
1557 		} else {
1558 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1559 				ipw_stop(sc);
1560 		}
1561 		break;
1562 
1563 	default:
1564 		error = ieee80211_ioctl(ic, cmd, data);
1565 	}
1566 
1567 	if (error == ENETRESET) {
1568 		if ((ifp->if_flags & IFF_UP) &&
1569 		    (ifp->if_drv_flags & IFF_DRV_RUNNING))
1570 			ipw_init(sc);
1571 		error = 0;
1572 	}
1573 
1574 	mtx_unlock(&sc->sc_mtx);
1575 
1576 	return error;
1577 }
1578 
1579 static void
1580 ipw_stop_master(struct ipw_softc *sc)
1581 {
1582 	uint32_t tmp;
1583 	int ntries;
1584 
1585 	/* disable interrupts */
1586 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1587 
1588 	CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1589 	for (ntries = 0; ntries < 50; ntries++) {
1590 		if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1591 			break;
1592 		DELAY(10);
1593 	}
1594 	if (ntries == 50)
1595 		device_printf(sc->sc_dev, "timeout waiting for master\n");
1596 
1597 	tmp = CSR_READ_4(sc, IPW_CSR_RST);
1598 	CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET);
1599 
1600 	sc->flags &= ~IPW_FLAG_FW_INITED;
1601 }
1602 
1603 static int
1604 ipw_reset(struct ipw_softc *sc)
1605 {
1606 	uint32_t tmp;
1607 	int ntries;
1608 
1609 	ipw_stop_master(sc);
1610 
1611 	/* move adapter to D0 state */
1612 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1613 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
1614 
1615 	/* wait for clock stabilization */
1616 	for (ntries = 0; ntries < 1000; ntries++) {
1617 		if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1618 			break;
1619 		DELAY(200);
1620 	}
1621 	if (ntries == 1000)
1622 		return EIO;
1623 
1624 	tmp =  CSR_READ_4(sc, IPW_CSR_RST);
1625 	CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET);
1626 
1627 	DELAY(10);
1628 
1629 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1630 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
1631 
1632 	return 0;
1633 }
1634 
1635 /*
1636  * Upload the microcode to the device.
1637  */
1638 static int
1639 ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size)
1640 {
1641 	int ntries;
1642 
1643 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1644 	CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1645 
1646 	MEM_WRITE_2(sc, 0x220000, 0x0703);
1647 	MEM_WRITE_2(sc, 0x220000, 0x0707);
1648 
1649 	MEM_WRITE_1(sc, 0x210014, 0x72);
1650 	MEM_WRITE_1(sc, 0x210014, 0x72);
1651 
1652 	MEM_WRITE_1(sc, 0x210000, 0x40);
1653 	MEM_WRITE_1(sc, 0x210000, 0x00);
1654 	MEM_WRITE_1(sc, 0x210000, 0x40);
1655 
1656 	MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1657 
1658 	MEM_WRITE_1(sc, 0x210000, 0x00);
1659 	MEM_WRITE_1(sc, 0x210000, 0x00);
1660 	MEM_WRITE_1(sc, 0x210000, 0x80);
1661 
1662 	MEM_WRITE_2(sc, 0x220000, 0x0703);
1663 	MEM_WRITE_2(sc, 0x220000, 0x0707);
1664 
1665 	MEM_WRITE_1(sc, 0x210014, 0x72);
1666 	MEM_WRITE_1(sc, 0x210014, 0x72);
1667 
1668 	MEM_WRITE_1(sc, 0x210000, 0x00);
1669 	MEM_WRITE_1(sc, 0x210000, 0x80);
1670 
1671 	for (ntries = 0; ntries < 10; ntries++) {
1672 		if (MEM_READ_1(sc, 0x210000) & 1)
1673 			break;
1674 		DELAY(10);
1675 	}
1676 	if (ntries == 10) {
1677 		device_printf(sc->sc_dev,
1678 		    "timeout waiting for ucode to initialize\n");
1679 		return EIO;
1680 	}
1681 
1682 	MEM_WRITE_4(sc, 0x3000e0, 0);
1683 
1684 	return 0;
1685 }
1686 
1687 /* set of macros to handle unaligned little endian data in firmware image */
1688 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1689 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1690 static int
1691 ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size)
1692 {
1693 	const uint8_t *p, *end;
1694 	uint32_t tmp, dst;
1695 	uint16_t len;
1696 	int error;
1697 
1698 	p = fw;
1699 	end = fw + size;
1700 	while (p < end) {
1701 		dst = GETLE32(p); p += 4;
1702 		len = GETLE16(p); p += 2;
1703 
1704 		ipw_write_mem_1(sc, dst, p, len);
1705 		p += len;
1706 	}
1707 
1708 	CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1709 	    IPW_IO_LED_OFF);
1710 
1711 	/* enable interrupts */
1712 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1713 
1714 	/* kick the firmware */
1715 	CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1716 
1717 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1718 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY);
1719 
1720 	/* wait at most one second for firmware initialization to complete */
1721 	if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) {
1722 		device_printf(sc->sc_dev, "timeout waiting for firmware "
1723 		    "initialization to complete\n");
1724 		return error;
1725 	}
1726 
1727 	tmp = CSR_READ_4(sc, IPW_CSR_IO);
1728 	CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK |
1729 	    IPW_IO_GPIO3_MASK);
1730 
1731 	return 0;
1732 }
1733 
1734 static int
1735 ipw_config(struct ipw_softc *sc)
1736 {
1737 	struct ieee80211com *ic = &sc->sc_ic;
1738 	struct ifnet *ifp = ic->ic_ifp;
1739 	struct ipw_security security;
1740 	struct ieee80211_key *k;
1741 	struct ipw_wep_key wepkey;
1742 	struct ipw_scan_options options;
1743 	struct ipw_configuration config;
1744 	uint32_t data;
1745 	int error, i;
1746 
1747 	switch (ic->ic_opmode) {
1748 	case IEEE80211_M_STA:
1749 	case IEEE80211_M_HOSTAP:
1750 		data = htole32(IPW_MODE_BSS);
1751 		break;
1752 	case IEEE80211_M_IBSS:
1753 	case IEEE80211_M_AHDEMO:
1754 		data = htole32(IPW_MODE_IBSS);
1755 		break;
1756 	case IEEE80211_M_MONITOR:
1757 		data = htole32(IPW_MODE_MONITOR);
1758 		break;
1759 	}
1760 	DPRINTF(("Setting mode to %u\n", le32toh(data)));
1761 	error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
1762 	if (error != 0)
1763 		return error;
1764 
1765 	if (ic->ic_opmode == IEEE80211_M_IBSS ||
1766 	    ic->ic_opmode == IEEE80211_M_MONITOR) {
1767 		data = htole32(ieee80211_chan2ieee(ic, ic->ic_curchan));
1768 		DPRINTF(("Setting channel to %u\n", le32toh(data)));
1769 		error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
1770 		if (error != 0)
1771 			return error;
1772 	}
1773 
1774 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1775 		DPRINTF(("Enabling adapter\n"));
1776 		return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1777 	}
1778 
1779 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1780 	DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":"));
1781 	error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
1782 	    IEEE80211_ADDR_LEN);
1783 	if (error != 0)
1784 		return error;
1785 
1786 	config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
1787 	    IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
1788 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1789 		config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
1790 	if (ifp->if_flags & IFF_PROMISC)
1791 		config.flags |= htole32(IPW_CFG_PROMISCUOUS);
1792 	config.bss_chan = htole32(0x3fff); /* channels 1-14 */
1793 	config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
1794 	DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags)));
1795 	error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
1796 	if (error != 0)
1797 		return error;
1798 
1799 	data = htole32(0x3); /* 1, 2 */
1800 	DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
1801 	error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
1802 	if (error != 0)
1803 		return error;
1804 
1805 	data = htole32(0xf); /* 1, 2, 5.5, 11 */
1806 	DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
1807 	error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
1808 	if (error != 0)
1809 		return error;
1810 
1811 	data = htole32(IPW_POWER_MODE_CAM);
1812 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
1813 	error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
1814 	if (error != 0)
1815 		return error;
1816 
1817 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1818 		data = htole32(32); /* default value */
1819 		DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
1820 		error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
1821 		    sizeof data);
1822 		if (error != 0)
1823 			return error;
1824 	}
1825 
1826 	data = htole32(ic->ic_rtsthreshold);
1827 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
1828 	error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
1829 	if (error != 0)
1830 		return error;
1831 
1832 	data = htole32(ic->ic_fragthreshold);
1833 	DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
1834 	error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
1835 	if (error != 0)
1836 		return error;
1837 
1838 #ifdef IPW_DEBUG
1839 	if (ipw_debug > 0) {
1840 		printf("Setting ESSID to ");
1841 		ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
1842 		printf("\n");
1843 	}
1844 #endif
1845 	error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
1846 	    ic->ic_des_esslen);
1847 	if (error != 0)
1848 		return error;
1849 
1850 	/* no mandatory BSSID */
1851 	DPRINTF(("Setting mandatory BSSID to null\n"));
1852 	error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
1853 	if (error != 0)
1854 		return error;
1855 
1856 	if (ic->ic_flags & IEEE80211_F_DESBSSID) {
1857 		DPRINTF(("Setting desired BSSID to %6D\n", ic->ic_des_bssid,
1858 		    ":"));
1859 		error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
1860 		    ic->ic_des_bssid, IEEE80211_ADDR_LEN);
1861 		if (error != 0)
1862 			return error;
1863 	}
1864 
1865 	memset(&security, 0, sizeof security);
1866 	security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
1867 	    IPW_AUTH_SHARED : IPW_AUTH_OPEN;
1868 	security.ciphers = htole32(IPW_CIPHER_NONE);
1869 	DPRINTF(("Setting authmode to %u\n", security.authmode));
1870 	error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
1871 	    sizeof security);
1872 	if (error != 0)
1873 		return error;
1874 
1875 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
1876 		k = ic->ic_crypto.cs_nw_keys;
1877 		for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
1878 			if (k->wk_keylen == 0)
1879 				continue;
1880 
1881 			wepkey.idx = i;
1882 			wepkey.len = k->wk_keylen;
1883 			memset(wepkey.key, 0, sizeof wepkey.key);
1884 			memcpy(wepkey.key, k->wk_key, k->wk_keylen);
1885 			DPRINTF(("Setting wep key index %u len %u\n",
1886 			    wepkey.idx, wepkey.len));
1887 			error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
1888 			    sizeof wepkey);
1889 			if (error != 0)
1890 				return error;
1891 		}
1892 
1893 		data = htole32(ic->ic_crypto.cs_def_txkey);
1894 		DPRINTF(("Setting wep tx key index to %u\n", le32toh(data)));
1895 		error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
1896 		    sizeof data);
1897 		if (error != 0)
1898 			return error;
1899 	}
1900 
1901 	data = htole32((ic->ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
1902 	DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
1903 	error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
1904 	if (error != 0)
1905 		return error;
1906 
1907 #if 0
1908 	struct ipw_wpa_ie ie;
1909 
1910 	memset(&ie, 0, sizeof ie);
1911 	ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
1912 	DPRINTF(("Setting wpa ie\n"));
1913 	error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
1914 	if (error != 0)
1915 		return error;
1916 #endif
1917 
1918 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1919 		data = htole32(ic->ic_bintval);
1920 		DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
1921 		error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
1922 		    sizeof data);
1923 		if (error != 0)
1924 			return error;
1925 	}
1926 
1927 	options.flags = 0;
1928 	options.channels = htole32(0x3fff); /* scan channels 1-14 */
1929 	DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
1930 	error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
1931 	if (error != 0)
1932 		return error;
1933 
1934 	/* finally, enable adapter (start scanning for an access point) */
1935 	DPRINTF(("Enabling adapter\n"));
1936 	return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1937 }
1938 
1939 /*
1940  * Handler for sc_init_task.  This is a simple wrapper around ipw_init().
1941  * It is called on firmware panics or on watchdog timeouts.
1942  */
1943 static void
1944 ipw_init_task(void *context, int pending)
1945 {
1946 	ipw_init(context);
1947 }
1948 
1949 static void
1950 ipw_init(void *priv)
1951 {
1952 	struct ipw_softc *sc = priv;
1953 	struct ieee80211com *ic = &sc->sc_ic;
1954 	struct ifnet *ifp = ic->ic_ifp;
1955 	struct firmware *fp;
1956 	const struct ipw_firmware_hdr *hdr;
1957 	const char *imagename, *fw;
1958 	int owned;
1959 
1960 	/*
1961 	 * ipw_init() is exposed through ifp->if_init so it might be called
1962 	 * without the driver's lock held.  Since msleep() doesn't like being
1963 	 * called on a recursed mutex, we acquire the driver's lock only if
1964 	 * we're not already holding it.
1965 	 */
1966 	if (!(owned = mtx_owned(&sc->sc_mtx)))
1967 		mtx_lock(&sc->sc_mtx);
1968 
1969 	/*
1970 	 * Avoid re-entrant calls.  We need to release the mutex in ipw_init()
1971 	 * when loading the firmware and we don't want to be called during this
1972 	 * operation.
1973 	 */
1974 	if (sc->flags & IPW_FLAG_INIT_LOCKED) {
1975 		if (!owned)
1976 			mtx_unlock(&sc->sc_mtx);
1977 		return;
1978 	}
1979 	sc->flags |= IPW_FLAG_INIT_LOCKED;
1980 
1981 	ipw_stop(sc);
1982 
1983 	if (ipw_reset(sc) != 0) {
1984 		device_printf(sc->sc_dev, "could not reset adapter\n");
1985 		goto fail1;
1986 	}
1987 
1988 	switch (ic->ic_opmode) {
1989 	case IEEE80211_M_STA:
1990 		imagename = "ipw_bss";
1991 		break;
1992 	case IEEE80211_M_IBSS:
1993 		imagename = "ipw_ibss";
1994 		break;
1995 	case IEEE80211_M_MONITOR:
1996 		imagename = "ipw_monitor";
1997 		break;
1998 	default:
1999 		imagename = NULL;	/* should not get there */
2000 	}
2001 
2002 	/*
2003 	 * Load firmware image using the firmware(9) subsystem.  We need to
2004 	 * release the driver's lock first.
2005 	 */
2006 	mtx_unlock(&sc->sc_mtx);
2007 	fp = firmware_get(imagename);
2008 	mtx_lock(&sc->sc_mtx);
2009 
2010 	if (fp == NULL) {
2011 		device_printf(sc->sc_dev,
2012 		    "could not load firmware image '%s'\n", imagename);
2013 		goto fail1;
2014 	}
2015 
2016 	if (fp->datasize < sizeof *hdr) {
2017 		device_printf(sc->sc_dev,
2018 		    "firmware image too short %zu\n", fp->datasize);
2019 		goto fail2;
2020 	}
2021 
2022 	hdr = (const struct ipw_firmware_hdr *)fp->data;
2023 
2024 	if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) +
2025 	    le32toh(hdr->ucodesz)) {
2026 		device_printf(sc->sc_dev,
2027 		    "firmware image too short %zu\n", fp->datasize);
2028 		goto fail2;
2029 	}
2030 
2031 	fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz);
2032 	if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) {
2033 		device_printf(sc->sc_dev, "could not load microcode\n");
2034 		goto fail2;
2035 	}
2036 
2037 	ipw_stop_master(sc);
2038 
2039 	/*
2040 	 * Setup tx, rx and status rings.
2041 	 */
2042 	sc->txold = IPW_NTBD - 1;
2043 	sc->txcur = 0;
2044 	sc->txfree = IPW_NTBD - 2;
2045 	sc->rxcur = IPW_NRBD - 1;
2046 
2047 	CSR_WRITE_4(sc, IPW_CSR_TX_BASE,  sc->tbd_phys);
2048 	CSR_WRITE_4(sc, IPW_CSR_TX_SIZE,  IPW_NTBD);
2049 	CSR_WRITE_4(sc, IPW_CSR_TX_READ,  0);
2050 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2051 
2052 	CSR_WRITE_4(sc, IPW_CSR_RX_BASE,  sc->rbd_phys);
2053 	CSR_WRITE_4(sc, IPW_CSR_RX_SIZE,  IPW_NRBD);
2054 	CSR_WRITE_4(sc, IPW_CSR_RX_READ,  0);
2055 	CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2056 
2057 	CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys);
2058 
2059 	fw = (const char *)fp->data + sizeof *hdr;
2060 	if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) {
2061 		device_printf(sc->sc_dev, "could not load firmware\n");
2062 		goto fail2;
2063 	}
2064 
2065 	firmware_put(fp, FIRMWARE_UNLOAD);
2066 	sc->flags |= IPW_FLAG_FW_INITED;
2067 
2068 	/* retrieve information tables base addresses */
2069 	sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2070 	sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2071 
2072 	ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2073 
2074 	if (ipw_config(sc) != 0) {
2075 		device_printf(sc->sc_dev, "device configuration failed\n");
2076 		goto fail1;
2077 	}
2078 
2079 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2080 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2081 
2082 	sc->flags &=~ IPW_FLAG_INIT_LOCKED;
2083 
2084 	if (!owned)
2085 		mtx_unlock(&sc->sc_mtx);
2086 
2087 	return;
2088 
2089 fail2:	firmware_put(fp, FIRMWARE_UNLOAD);
2090 fail1:	ifp->if_flags &= ~IFF_UP;
2091 	ipw_stop(sc);
2092 	sc->flags &=~ IPW_FLAG_INIT_LOCKED;
2093 	if (!owned)
2094 		mtx_unlock(&sc->sc_mtx);
2095 }
2096 
2097 static void
2098 ipw_stop(void *priv)
2099 {
2100 	struct ipw_softc *sc = priv;
2101 	struct ieee80211com *ic = &sc->sc_ic;
2102 	struct ifnet *ifp = ic->ic_ifp;
2103 	int i;
2104 
2105 	mtx_lock(&sc->sc_mtx);
2106 
2107 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2108 
2109 	ipw_stop_master(sc);
2110 
2111 	CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2112 
2113 	/*
2114 	 * Release tx buffers.
2115 	 */
2116 	for (i = 0; i < IPW_NTBD; i++)
2117 		ipw_release_sbd(sc, &sc->stbd_list[i]);
2118 
2119 	sc->sc_tx_timer = 0;
2120 	ifp->if_timer = 0;
2121 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2122 
2123 	mtx_unlock(&sc->sc_mtx);
2124 }
2125 
2126 static int
2127 ipw_sysctl_stats(SYSCTL_HANDLER_ARGS)
2128 {
2129 	struct ipw_softc *sc = arg1;
2130 	uint32_t i, size, buf[256];
2131 
2132 	if (!(sc->flags & IPW_FLAG_FW_INITED)) {
2133 		memset(buf, 0, sizeof buf);
2134 		return SYSCTL_OUT(req, buf, sizeof buf);
2135 	}
2136 
2137 	CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
2138 
2139 	size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256);
2140 	for (i = 1; i < size; i++)
2141 		buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA));
2142 
2143 	return SYSCTL_OUT(req, buf, sizeof buf);
2144 }
2145 
2146 static int
2147 ipw_sysctl_radio(SYSCTL_HANDLER_ARGS)
2148 {
2149 	struct ipw_softc *sc = arg1;
2150 	int val;
2151 
2152 	val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) &&
2153 	        (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED));
2154 
2155 	return SYSCTL_OUT(req, &val, sizeof val);
2156 }
2157 
2158 static uint32_t
2159 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
2160 {
2161 	return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
2162 }
2163 
2164 static void
2165 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
2166 {
2167 	MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
2168 }
2169 
2170 static int
2171 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
2172 {
2173 	uint32_t addr, info;
2174 	uint16_t count, size;
2175 	uint32_t total;
2176 
2177 	/* addr[4] + count[2] + size[2] */
2178 	addr = MEM_READ_4(sc, sc->table2_base + off);
2179 	info = MEM_READ_4(sc, sc->table2_base + off + 4);
2180 
2181 	count = info >> 16;
2182 	size = info & 0xffff;
2183 	total = count * size;
2184 
2185 	if (total > *len) {
2186 		*len = total;
2187 		return EINVAL;
2188 	}
2189 
2190 	*len = total;
2191 	ipw_read_mem_1(sc, addr, buf, total);
2192 
2193 	return 0;
2194 }
2195 
2196 static void
2197 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2198     bus_size_t count)
2199 {
2200 	for (; count > 0; offset++, datap++, count--) {
2201 		CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2202 		*datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2203 	}
2204 }
2205 
2206 static void
2207 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap,
2208     bus_size_t count)
2209 {
2210 	for (; count > 0; offset++, datap++, count--) {
2211 		CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2212 		CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2213 	}
2214 }
2215