xref: /freebsd/sys/dev/ipw/if_ipw.c (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2004-2006
5  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*-
34  * Intel(R) PRO/Wireless 2100 MiniPCI driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/linker.h>
52 #include <sys/firmware.h>
53 
54 #include <machine/bus.h>
55 #include <machine/resource.h>
56 #include <sys/rman.h>
57 
58 #include <dev/pci/pcireg.h>
59 #include <dev/pci/pcivar.h>
60 
61 #include <net/bpf.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/ethernet.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_radiotap.h>
71 
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76 #include <netinet/if_ether.h>
77 
78 #include <dev/ipw/if_ipwreg.h>
79 #include <dev/ipw/if_ipwvar.h>
80 
81 #ifdef IPW_DEBUG
82 #define DPRINTF(x)	do { if (ipw_debug > 0) printf x; } while (0)
83 #define DPRINTFN(n, x)	do { if (ipw_debug >= (n)) printf x; } while (0)
84 int ipw_debug = 0;
85 SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level");
86 #else
87 #define DPRINTF(x)
88 #define DPRINTFN(n, x)
89 #endif
90 
91 MODULE_DEPEND(ipw, pci,  1, 1, 1);
92 MODULE_DEPEND(ipw, wlan, 1, 1, 1);
93 MODULE_DEPEND(ipw, firmware, 1, 1, 1);
94 
95 struct ipw_ident {
96 	uint16_t	vendor;
97 	uint16_t	device;
98 	const char	*name;
99 };
100 
101 static const struct ipw_ident ipw_ident_table[] = {
102 	{ 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" },
103 
104 	{ 0, 0, NULL }
105 };
106 
107 static int	ipw_dma_alloc(struct ipw_softc *);
108 static void	ipw_release(struct ipw_softc *);
109 static int	ipw_media_change(struct ifnet *);
110 static void	ipw_media_status(struct ifnet *, struct ifmediareq *);
111 static int	ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
112 static uint16_t	ipw_read_prom_word(struct ipw_softc *, uint8_t);
113 static void	ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
114 static void	ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
115 static void	ipw_data_intr(struct ipw_softc *, struct ipw_status *,
116 		    struct ipw_soft_bd *, struct ipw_soft_buf *);
117 static void	ipw_rx_intr(struct ipw_softc *);
118 static void	ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
119 static void	ipw_tx_intr(struct ipw_softc *);
120 static void	ipw_intr(void *);
121 static void	ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int);
122 static int	ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
123 static int	ipw_tx_start(struct ifnet *, struct mbuf *,
124 		    struct ieee80211_node *);
125 static void	ipw_start(struct ifnet *);
126 static void	ipw_watchdog(struct ifnet *);
127 static int	ipw_ioctl(struct ifnet *, u_long, caddr_t);
128 static void	ipw_stop_master(struct ipw_softc *);
129 static int	ipw_reset(struct ipw_softc *);
130 static int	ipw_load_ucode(struct ipw_softc *, const char *, int);
131 static int	ipw_load_firmware(struct ipw_softc *, const char *, int);
132 static int	ipw_config(struct ipw_softc *);
133 static void	ipw_init_task(void *, int);
134 static void	ipw_init(void *);
135 static void	ipw_stop(void *);
136 static int	ipw_sysctl_stats(SYSCTL_HANDLER_ARGS);
137 static int	ipw_sysctl_radio(SYSCTL_HANDLER_ARGS);
138 static uint32_t	ipw_read_table1(struct ipw_softc *, uint32_t);
139 static void	ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
140 static int	ipw_read_table2(struct ipw_softc *, uint32_t, void *,
141 		    uint32_t *);
142 static void	ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
143 		    bus_size_t);
144 static void	ipw_write_mem_1(struct ipw_softc *, bus_size_t,
145 		    const uint8_t *, bus_size_t);
146 
147 static int ipw_probe(device_t);
148 static int ipw_attach(device_t);
149 static int ipw_detach(device_t);
150 static int ipw_shutdown(device_t);
151 static int ipw_suspend(device_t);
152 static int ipw_resume(device_t);
153 
154 static device_method_t ipw_methods[] = {
155 	/* Device interface */
156 	DEVMETHOD(device_probe,		ipw_probe),
157 	DEVMETHOD(device_attach,	ipw_attach),
158 	DEVMETHOD(device_detach,	ipw_detach),
159 	DEVMETHOD(device_shutdown,	ipw_shutdown),
160 	DEVMETHOD(device_suspend,	ipw_suspend),
161 	DEVMETHOD(device_resume,	ipw_resume),
162 
163 	{ 0, 0 }
164 };
165 
166 static driver_t ipw_driver = {
167 	"ipw",
168 	ipw_methods,
169 	sizeof (struct ipw_softc)
170 };
171 
172 static devclass_t ipw_devclass;
173 
174 DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, 0, 0);
175 
176 /*
177  * Supported rates for 802.11b mode (in 500Kbps unit).
178  */
179 static const struct ieee80211_rateset ipw_rateset_11b =
180 	{ 4, { 2, 4, 11, 22 } };
181 
182 static int
183 ipw_probe(device_t dev)
184 {
185 	const struct ipw_ident *ident;
186 
187 	for (ident = ipw_ident_table; ident->name != NULL; ident++) {
188 		if (pci_get_vendor(dev) == ident->vendor &&
189 		    pci_get_device(dev) == ident->device) {
190 			device_set_desc(dev, ident->name);
191 			return 0;
192 		}
193 	}
194 	return ENXIO;
195 }
196 
197 /* Base Address Register */
198 #define IPW_PCI_BAR0	0x10
199 
200 static int
201 ipw_attach(device_t dev)
202 {
203 	struct ipw_softc *sc = device_get_softc(dev);
204 	struct ifnet *ifp;
205 	struct ieee80211com *ic = &sc->sc_ic;
206 	uint16_t val;
207 	int error, i;
208 
209 	sc->sc_dev = dev;
210 
211 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
212 	    MTX_DEF | MTX_RECURSE);
213 
214 	TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc);
215 
216 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
217 		device_printf(dev, "chip is in D%d power mode "
218 		    "-- setting to D0\n", pci_get_powerstate(dev));
219 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
220 	}
221 
222 	pci_write_config(dev, 0x41, 0, 1);
223 
224 	/* enable bus-mastering */
225 	pci_enable_busmaster(dev);
226 
227 	sc->mem_rid = IPW_PCI_BAR0;
228 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
229 	    RF_ACTIVE);
230 	if (sc->mem == NULL) {
231 		device_printf(dev, "could not allocate memory resource\n");
232 		goto fail;
233 	}
234 
235 	sc->sc_st = rman_get_bustag(sc->mem);
236 	sc->sc_sh = rman_get_bushandle(sc->mem);
237 
238 	sc->irq_rid = 0;
239 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
240 	    RF_ACTIVE | RF_SHAREABLE);
241 	if (sc->irq == NULL) {
242 		device_printf(dev, "could not allocate interrupt resource\n");
243 		goto fail;
244 	}
245 
246 	if (ipw_reset(sc) != 0) {
247 		device_printf(dev, "could not reset adapter\n");
248 		goto fail;
249 	}
250 
251 	if (ipw_dma_alloc(sc) != 0) {
252 		device_printf(dev, "could not allocate DMA resources\n");
253 		goto fail;
254 	}
255 
256 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
257 	if (ifp == NULL) {
258 		device_printf(dev, "can not if_alloc()\n");
259 		goto fail;
260 	}
261 
262 	ifp->if_softc = sc;
263 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
264 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
265 	ifp->if_init = ipw_init;
266 	ifp->if_ioctl = ipw_ioctl;
267 	ifp->if_start = ipw_start;
268 	ifp->if_watchdog = ipw_watchdog;
269 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
270 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
271 	IFQ_SET_READY(&ifp->if_snd);
272 
273 	ic->ic_ifp = ifp;
274 	ic->ic_phytype = IEEE80211_T_DS;
275 	ic->ic_opmode = IEEE80211_M_STA;
276 	ic->ic_state = IEEE80211_S_INIT;
277 
278 	/* set device capabilities */
279 	ic->ic_caps =
280 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
281 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
282 	    IEEE80211_C_TXPMGT |	/* tx power management */
283 	    IEEE80211_C_SHPREAMBLE;	/* short preamble supported */
284 
285 	/* read MAC address from EEPROM */
286 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
287 	ic->ic_myaddr[0] = val >> 8;
288 	ic->ic_myaddr[1] = val & 0xff;
289 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
290 	ic->ic_myaddr[2] = val >> 8;
291 	ic->ic_myaddr[3] = val & 0xff;
292 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
293 	ic->ic_myaddr[4] = val >> 8;
294 	ic->ic_myaddr[5] = val & 0xff;
295 
296 	/* set supported .11b rates */
297 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ipw_rateset_11b;
298 
299 	/* set supported .11b channels */
300 	for (i = 1; i < 14; i++) {
301 		ic->ic_channels[i].ic_freq =
302 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
303 		ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
304 	}
305 
306 	/* check support for radio transmitter switch in EEPROM */
307 	if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
308 		sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
309 
310 	ieee80211_ifattach(ic);
311 	/* override state transition machine */
312 	sc->sc_newstate = ic->ic_newstate;
313 	ic->ic_newstate = ipw_newstate;
314 	ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
315 
316 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
317 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
318 
319 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
320 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
321 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
322 
323 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
324 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
325 	sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
326 
327 	/*
328 	 * Add a few sysctl knobs.
329 	 */
330 	sc->dwelltime = 100;
331 
332 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
333 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio",
334 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, ipw_sysctl_radio, "I",
335 	    "radio transmitter switch state (0=off, 1=on)");
336 
337 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
338 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats",
339 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, ipw_sysctl_stats, "S",
340 	    "statistics");
341 
342 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
343 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
344 	    CTLFLAG_RW, &sc->dwelltime, 0,
345 	    "channel dwell time (ms) for AP/station scanning");
346 
347 	/*
348 	 * Hook our interrupt after all initialization is complete.
349 	 */
350 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
351 	    NULL, ipw_intr, sc, &sc->sc_ih);
352 	if (error != 0) {
353 		device_printf(dev, "could not set up interrupt\n");
354 		goto fail;
355 	}
356 
357 	if (bootverbose)
358 		ieee80211_announce(ic);
359 
360 	return 0;
361 
362 fail:	ipw_detach(dev);
363 	return ENXIO;
364 }
365 
366 static int
367 ipw_detach(device_t dev)
368 {
369 	struct ipw_softc *sc = device_get_softc(dev);
370 	struct ieee80211com *ic = &sc->sc_ic;
371 	struct ifnet *ifp = ic->ic_ifp;
372 
373 	ipw_stop(sc);
374 
375 	if (ifp != NULL) {
376 		bpfdetach(ifp);
377 		ieee80211_ifdetach(ic);
378 	}
379 
380 	ipw_release(sc);
381 
382 	if (sc->irq != NULL) {
383 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
384 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
385 	}
386 
387 	if (sc->mem != NULL)
388 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
389 
390 	if (ifp != NULL)
391 		if_free(ifp);
392 
393 	if (sc->sc_firmware != NULL) {
394 		firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
395 		sc->sc_firmware = NULL;
396 	}
397 
398 	mtx_destroy(&sc->sc_mtx);
399 
400 	return 0;
401 }
402 
403 static int
404 ipw_dma_alloc(struct ipw_softc *sc)
405 {
406 	struct ipw_soft_bd *sbd;
407 	struct ipw_soft_hdr *shdr;
408 	struct ipw_soft_buf *sbuf;
409 	bus_addr_t physaddr;
410 	int error, i;
411 
412 	/*
413 	 * Allocate and map tx ring.
414 	 */
415 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
416 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL,
417 	    NULL, &sc->tbd_dmat);
418 	if (error != 0) {
419 		device_printf(sc->sc_dev, "could not create tx ring DMA tag\n");
420 		goto fail;
421 	}
422 
423 	error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list,
424 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map);
425 	if (error != 0) {
426 		device_printf(sc->sc_dev,
427 		    "could not allocate tx ring DMA memory\n");
428 		goto fail;
429 	}
430 
431 	error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list,
432 	    IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0);
433 	if (error != 0) {
434 		device_printf(sc->sc_dev, "could not map tx ring DMA memory\n");
435 		goto fail;
436 	}
437 
438 	/*
439 	 * Allocate and map rx ring.
440 	 */
441 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
442 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL,
443 	    NULL, &sc->rbd_dmat);
444 	if (error != 0) {
445 		device_printf(sc->sc_dev, "could not create rx ring DMA tag\n");
446 		goto fail;
447 	}
448 
449 	error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list,
450 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map);
451 	if (error != 0) {
452 		device_printf(sc->sc_dev,
453 		    "could not allocate rx ring DMA memory\n");
454 		goto fail;
455 	}
456 
457 	error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list,
458 	    IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0);
459 	if (error != 0) {
460 		device_printf(sc->sc_dev, "could not map rx ring DMA memory\n");
461 		goto fail;
462 	}
463 
464 	/*
465 	 * Allocate and map status ring.
466 	 */
467 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
468 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0,
469 	    NULL, NULL, &sc->status_dmat);
470 	if (error != 0) {
471 		device_printf(sc->sc_dev,
472 		    "could not create status ring DMA tag\n");
473 		goto fail;
474 	}
475 
476 	error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list,
477 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map);
478 	if (error != 0) {
479 		device_printf(sc->sc_dev,
480 		    "could not allocate status ring DMA memory\n");
481 		goto fail;
482 	}
483 
484 	error = bus_dmamap_load(sc->status_dmat, sc->status_map,
485 	    sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys,
486 	    0);
487 	if (error != 0) {
488 		device_printf(sc->sc_dev,
489 		    "could not map status ring DMA memory\n");
490 		goto fail;
491 	}
492 
493 	/*
494 	 * Allocate command DMA map.
495 	 */
496 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
497 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1,
498 	    sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat);
499 	if (error != 0) {
500 		device_printf(sc->sc_dev, "could not create command DMA tag\n");
501 		goto fail;
502 	}
503 
504 	error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map);
505 	if (error != 0) {
506 		device_printf(sc->sc_dev,
507 		    "could not create command DMA map\n");
508 		goto fail;
509 	}
510 
511 	/*
512 	 * Allocate headers DMA maps.
513 	 */
514 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
515 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1,
516 	    sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat);
517 	if (error != 0) {
518 		device_printf(sc->sc_dev, "could not create header DMA tag\n");
519 		goto fail;
520 	}
521 
522 	SLIST_INIT(&sc->free_shdr);
523 	for (i = 0; i < IPW_NDATA; i++) {
524 		shdr = &sc->shdr_list[i];
525 		error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map);
526 		if (error != 0) {
527 			device_printf(sc->sc_dev,
528 			    "could not create header DMA map\n");
529 			goto fail;
530 		}
531 		SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
532 	}
533 
534 	/*
535 	 * Allocate tx buffers DMA maps.
536 	 */
537 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
538 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0,
539 	    NULL, NULL, &sc->txbuf_dmat);
540 	if (error != 0) {
541 		device_printf(sc->sc_dev, "could not create tx DMA tag\n");
542 		goto fail;
543 	}
544 
545 	SLIST_INIT(&sc->free_sbuf);
546 	for (i = 0; i < IPW_NDATA; i++) {
547 		sbuf = &sc->tx_sbuf_list[i];
548 		error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map);
549 		if (error != 0) {
550 			device_printf(sc->sc_dev,
551 			    "could not create tx DMA map\n");
552 			goto fail;
553 		}
554 		SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
555 	}
556 
557 	/*
558 	 * Initialize tx ring.
559 	 */
560 	for (i = 0; i < IPW_NTBD; i++) {
561 		sbd = &sc->stbd_list[i];
562 		sbd->bd = &sc->tbd_list[i];
563 		sbd->type = IPW_SBD_TYPE_NOASSOC;
564 	}
565 
566 	/*
567 	 * Pre-allocate rx buffers and DMA maps.
568 	 */
569 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
570 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
571 	    NULL, &sc->rxbuf_dmat);
572 	if (error != 0) {
573 		device_printf(sc->sc_dev, "could not create rx DMA tag\n");
574 		goto fail;
575 	}
576 
577 	for (i = 0; i < IPW_NRBD; i++) {
578 		sbd = &sc->srbd_list[i];
579 		sbuf = &sc->rx_sbuf_list[i];
580 		sbd->bd = &sc->rbd_list[i];
581 
582 		sbuf->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
583 		if (sbuf->m == NULL) {
584 			device_printf(sc->sc_dev,
585 			    "could not allocate rx mbuf\n");
586 			error = ENOMEM;
587 			goto fail;
588 		}
589 
590 		error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map);
591 		if (error != 0) {
592 			device_printf(sc->sc_dev,
593 			    "could not create rx DMA map\n");
594 			goto fail;
595 		}
596 
597 		error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
598 		    mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
599 		    &physaddr, 0);
600 		if (error != 0) {
601 			device_printf(sc->sc_dev,
602 			    "could not map rx DMA memory\n");
603 			goto fail;
604 		}
605 
606 		sbd->type = IPW_SBD_TYPE_DATA;
607 		sbd->priv = sbuf;
608 		sbd->bd->physaddr = htole32(physaddr);
609 		sbd->bd->len = htole32(MCLBYTES);
610 	}
611 
612 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
613 
614 	return 0;
615 
616 fail:	ipw_release(sc);
617 	return error;
618 }
619 
620 static void
621 ipw_release(struct ipw_softc *sc)
622 {
623 	struct ipw_soft_buf *sbuf;
624 	int i;
625 
626 	if (sc->tbd_dmat != NULL) {
627 		if (sc->stbd_list != NULL) {
628 			bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map);
629 			bus_dmamem_free(sc->tbd_dmat, sc->tbd_list,
630 			    sc->tbd_map);
631 		}
632 		bus_dma_tag_destroy(sc->tbd_dmat);
633 	}
634 
635 	if (sc->rbd_dmat != NULL) {
636 		if (sc->rbd_list != NULL) {
637 			bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map);
638 			bus_dmamem_free(sc->rbd_dmat, sc->rbd_list,
639 			    sc->rbd_map);
640 		}
641 		bus_dma_tag_destroy(sc->rbd_dmat);
642 	}
643 
644 	if (sc->status_dmat != NULL) {
645 		if (sc->status_list != NULL) {
646 			bus_dmamap_unload(sc->status_dmat, sc->status_map);
647 			bus_dmamem_free(sc->status_dmat, sc->status_list,
648 			    sc->status_map);
649 		}
650 		bus_dma_tag_destroy(sc->status_dmat);
651 	}
652 
653 	for (i = 0; i < IPW_NTBD; i++)
654 		ipw_release_sbd(sc, &sc->stbd_list[i]);
655 
656 	if (sc->cmd_dmat != NULL) {
657 		bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map);
658 		bus_dma_tag_destroy(sc->cmd_dmat);
659 	}
660 
661 	if (sc->hdr_dmat != NULL) {
662 		for (i = 0; i < IPW_NDATA; i++)
663 			bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map);
664 		bus_dma_tag_destroy(sc->hdr_dmat);
665 	}
666 
667 	if (sc->txbuf_dmat != NULL) {
668 		for (i = 0; i < IPW_NDATA; i++) {
669 			bus_dmamap_destroy(sc->txbuf_dmat,
670 			    sc->tx_sbuf_list[i].map);
671 		}
672 		bus_dma_tag_destroy(sc->txbuf_dmat);
673 	}
674 
675 	if (sc->rxbuf_dmat != NULL) {
676 		for (i = 0; i < IPW_NRBD; i++) {
677 			sbuf = &sc->rx_sbuf_list[i];
678 			if (sbuf->m != NULL) {
679 				bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map,
680 				    BUS_DMASYNC_POSTREAD);
681 				bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
682 				m_freem(sbuf->m);
683 			}
684 			bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map);
685 		}
686 		bus_dma_tag_destroy(sc->rxbuf_dmat);
687 	}
688 }
689 
690 static int
691 ipw_shutdown(device_t dev)
692 {
693 	struct ipw_softc *sc = device_get_softc(dev);
694 
695 	ipw_stop(sc);
696 
697 	return 0;
698 }
699 
700 static int
701 ipw_suspend(device_t dev)
702 {
703 	struct ipw_softc *sc = device_get_softc(dev);
704 
705 	ipw_stop(sc);
706 
707 	return 0;
708 }
709 
710 static int
711 ipw_resume(device_t dev)
712 {
713 	struct ipw_softc *sc = device_get_softc(dev);
714 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
715 
716 	mtx_lock(&sc->sc_mtx);
717 
718 	pci_write_config(dev, 0x41, 0, 1);
719 
720 	if (ifp->if_flags & IFF_UP) {
721 		ifp->if_init(ifp->if_softc);
722 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
723 			ifp->if_start(ifp);
724 	}
725 
726 	mtx_unlock(&sc->sc_mtx);
727 
728 	return 0;
729 }
730 
731 static int
732 ipw_media_change(struct ifnet *ifp)
733 {
734 	struct ipw_softc *sc = ifp->if_softc;
735 	int error;
736 
737 	mtx_lock(&sc->sc_mtx);
738 
739 	error = ieee80211_media_change(ifp);
740 	if (error != ENETRESET) {
741 		mtx_unlock(&sc->sc_mtx);
742 		return error;
743 	}
744 
745 	if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
746 		ipw_init(sc);
747 
748 	mtx_unlock(&sc->sc_mtx);
749 
750 	return 0;
751 }
752 
753 /*
754  * The firmware automatically adapts the transmit speed. We report its current
755  * value here.
756  */
757 static void
758 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
759 {
760 #define N(a)	(sizeof (a) / sizeof (a[0]))
761 	struct ipw_softc *sc = ifp->if_softc;
762 	struct ieee80211com *ic = &sc->sc_ic;
763 	static const struct {
764 		uint32_t	val;
765 		int		rate;
766 	} rates[] = {
767 		{ IPW_RATE_DS1,   2 },
768 		{ IPW_RATE_DS2,   4 },
769 		{ IPW_RATE_DS5,  11 },
770 		{ IPW_RATE_DS11, 22 },
771 	};
772 	uint32_t val;
773 	int rate, i;
774 
775 	imr->ifm_status = IFM_AVALID;
776 	imr->ifm_active = IFM_IEEE80211;
777 	if (ic->ic_state == IEEE80211_S_RUN)
778 		imr->ifm_status |= IFM_ACTIVE;
779 
780 	/* read current transmission rate from adapter */
781 	val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
782 
783 	/* convert ipw rate to 802.11 rate */
784 	for (i = 0; i < N(rates) && rates[i].val != val; i++);
785 	rate = (i < N(rates)) ? rates[i].rate : 0;
786 
787 	imr->ifm_active |= IFM_IEEE80211_11B;
788 	imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
789 	switch (ic->ic_opmode) {
790 	case IEEE80211_M_STA:
791 		break;
792 
793 	case IEEE80211_M_IBSS:
794 		imr->ifm_active |= IFM_IEEE80211_IBSS;
795 		break;
796 
797 	case IEEE80211_M_MONITOR:
798 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
799 		break;
800 
801 	case IEEE80211_M_AHDEMO:
802 	case IEEE80211_M_HOSTAP:
803 		/* should not get there */
804 		break;
805 	}
806 #undef N
807 }
808 
809 static int
810 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
811 {
812 	struct ifnet *ifp = ic->ic_ifp;
813 	struct ipw_softc *sc = ifp->if_softc;
814 	struct ieee80211_node *ni;
815 	uint8_t macaddr[IEEE80211_ADDR_LEN];
816 	uint32_t len;
817 
818 	switch (nstate) {
819 	case IEEE80211_S_RUN:
820 		DELAY(200); /* firmware needs a short delay here */
821 
822 		len = IEEE80211_ADDR_LEN;
823 		ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
824 
825 		ni = ieee80211_find_node(&ic->ic_scan, macaddr);
826 		if (ni == NULL)
827 			break;
828 
829 		ieee80211_ref_node(ni);
830 		ieee80211_sta_join(ic, ni);
831 		ieee80211_node_authorize(ni);
832 
833 		if (ic->ic_opmode == IEEE80211_M_STA)
834 			ieee80211_notify_node_join(ic, ni, 1);
835 		break;
836 
837 	case IEEE80211_S_INIT:
838 	case IEEE80211_S_SCAN:
839 	case IEEE80211_S_AUTH:
840 	case IEEE80211_S_ASSOC:
841 		break;
842 	}
843 
844 	ic->ic_state = nstate;
845 
846 	return 0;
847 }
848 
849 /*
850  * Read 16 bits at address 'addr' from the serial EEPROM.
851  */
852 static uint16_t
853 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
854 {
855 	uint32_t tmp;
856 	uint16_t val;
857 	int n;
858 
859 	/* clock C once before the first command */
860 	IPW_EEPROM_CTL(sc, 0);
861 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
862 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
863 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
864 
865 	/* write start bit (1) */
866 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
867 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
868 
869 	/* write READ opcode (10) */
870 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
871 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
872 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
873 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
874 
875 	/* write address A7-A0 */
876 	for (n = 7; n >= 0; n--) {
877 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
878 		    (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
879 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
880 		    (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
881 	}
882 
883 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
884 
885 	/* read data Q15-Q0 */
886 	val = 0;
887 	for (n = 15; n >= 0; n--) {
888 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
889 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
890 		tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
891 		val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
892 	}
893 
894 	IPW_EEPROM_CTL(sc, 0);
895 
896 	/* clear Chip Select and clock C */
897 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
898 	IPW_EEPROM_CTL(sc, 0);
899 	IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
900 
901 	return le16toh(val);
902 }
903 
904 static void
905 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
906 {
907 	struct ipw_cmd *cmd;
908 
909 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
910 
911 	cmd = mtod(sbuf->m, struct ipw_cmd *);
912 
913 	DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
914 	    le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
915 	    le32toh(cmd->status)));
916 
917 	wakeup(sc);
918 }
919 
920 static void
921 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
922 {
923 	struct ieee80211com *ic = &sc->sc_ic;
924 	uint32_t state;
925 
926 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
927 
928 	state = le32toh(*mtod(sbuf->m, uint32_t *));
929 
930 	DPRINTFN(2, ("entering state %u\n", state));
931 
932 	switch (state) {
933 	case IPW_STATE_ASSOCIATED:
934 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
935 		break;
936 
937 	case IPW_STATE_SCANNING:
938 		/* don't leave run state on background scan */
939 		if (ic->ic_state != IEEE80211_S_RUN)
940 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
941 
942 		ic->ic_flags |= IEEE80211_F_SCAN;
943 		break;
944 
945 	case IPW_STATE_SCAN_COMPLETE:
946 		ieee80211_notify_scan_done(ic);
947 		ic->ic_flags &= ~IEEE80211_F_SCAN;
948 		break;
949 
950 	case IPW_STATE_ASSOCIATION_LOST:
951 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
952 		break;
953 
954 	case IPW_STATE_RADIO_DISABLED:
955 		ic->ic_ifp->if_flags &= ~IFF_UP;
956 		ipw_stop(sc);
957 		break;
958 	}
959 }
960 
961 /*
962  * XXX: Hack to set the current channel to the value advertised in beacons or
963  * probe responses. Only used during AP detection.
964  */
965 static void
966 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
967 {
968 	struct ieee80211_frame *wh;
969 	uint8_t subtype;
970 	uint8_t *frm, *efrm;
971 
972 	wh = mtod(m, struct ieee80211_frame *);
973 
974 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
975 		return;
976 
977 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
978 
979 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
980 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
981 		return;
982 
983 	frm = (uint8_t *)(wh + 1);
984 	efrm = mtod(m, uint8_t *) + m->m_len;
985 
986 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
987 	while (frm < efrm) {
988 		if (*frm == IEEE80211_ELEMID_DSPARMS)
989 #if IEEE80211_CHAN_MAX < 255
990 		if (frm[2] <= IEEE80211_CHAN_MAX)
991 #endif
992 			ic->ic_curchan = &ic->ic_channels[frm[2]];
993 
994 		frm += frm[1] + 2;
995 	}
996 }
997 
998 static void
999 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
1000     struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
1001 {
1002 	struct ieee80211com *ic = &sc->sc_ic;
1003 	struct ifnet *ifp = ic->ic_ifp;
1004 	struct mbuf *mnew, *m;
1005 	struct ieee80211_frame *wh;
1006 	struct ieee80211_node *ni;
1007 	bus_addr_t physaddr;
1008 	int error;
1009 
1010 	DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
1011 	    status->rssi));
1012 
1013 	if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
1014 	    le32toh(status->len) > MCLBYTES)
1015 		return;
1016 
1017 	/*
1018 	 * Try to allocate a new mbuf for this ring element and load it before
1019 	 * processing the current mbuf. If the ring element cannot be loaded,
1020 	 * drop the received packet and reuse the old mbuf. In the unlikely
1021 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1022 	 */
1023 	mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1024 	if (mnew == NULL) {
1025 		ifp->if_ierrors++;
1026 		return;
1027 	}
1028 
1029 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
1030 	bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
1031 
1032 	error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *),
1033 	    MCLBYTES, ipw_dma_map_addr, &physaddr, 0);
1034 	if (error != 0) {
1035 		m_freem(mnew);
1036 
1037 		/* try to reload the old mbuf */
1038 		error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
1039 		    mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
1040 		    &physaddr, 0);
1041 		if (error != 0) {
1042 			/* very unlikely that it will fail... */
1043 			panic("%s: could not load old rx mbuf",
1044 			    device_get_name(sc->sc_dev));
1045 		}
1046 		ifp->if_ierrors++;
1047 		return;
1048 	}
1049 
1050 	/*
1051 	 * New mbuf successfully loaded, update Rx ring and continue
1052 	 * processing.
1053 	 */
1054 	m = sbuf->m;
1055 	sbuf->m = mnew;
1056 	sbd->bd->physaddr = htole32(physaddr);
1057 
1058 	/* finalize mbuf */
1059 	m->m_pkthdr.rcvif = ifp;
1060 	m->m_pkthdr.len = m->m_len = le32toh(status->len);
1061 
1062 	if (bpf_peers_present(sc->sc_drvbpf)) {
1063 		struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1064 
1065 		tap->wr_flags = 0;
1066 		tap->wr_antsignal = status->rssi;
1067 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1068 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1069 
1070 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1071 	}
1072 
1073 	if (ic->ic_state == IEEE80211_S_SCAN)
1074 		ipw_fix_channel(ic, m);
1075 
1076 	wh = mtod(m, struct ieee80211_frame *);
1077 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1078 
1079 	/* send the frame to the 802.11 layer */
1080 	ieee80211_input(ic, m, ni, status->rssi, 0);
1081 
1082 	/* node is no longer needed */
1083 	ieee80211_free_node(ni);
1084 
1085 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
1086 }
1087 
1088 static void
1089 ipw_rx_intr(struct ipw_softc *sc)
1090 {
1091 	struct ipw_status *status;
1092 	struct ipw_soft_bd *sbd;
1093 	struct ipw_soft_buf *sbuf;
1094 	uint32_t r, i;
1095 
1096 	if (!(sc->flags & IPW_FLAG_FW_INITED))
1097 		return;
1098 
1099 	r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1100 
1101 	bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD);
1102 
1103 	for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1104 		status = &sc->status_list[i];
1105 		sbd = &sc->srbd_list[i];
1106 		sbuf = sbd->priv;
1107 
1108 		switch (le16toh(status->code) & 0xf) {
1109 		case IPW_STATUS_CODE_COMMAND:
1110 			ipw_command_intr(sc, sbuf);
1111 			break;
1112 
1113 		case IPW_STATUS_CODE_NEWSTATE:
1114 			ipw_newstate_intr(sc, sbuf);
1115 			break;
1116 
1117 		case IPW_STATUS_CODE_DATA_802_3:
1118 		case IPW_STATUS_CODE_DATA_802_11:
1119 			ipw_data_intr(sc, status, sbd, sbuf);
1120 			break;
1121 
1122 		case IPW_STATUS_CODE_NOTIFICATION:
1123 			DPRINTFN(2, ("received notification\n"));
1124 			break;
1125 
1126 		default:
1127 			device_printf(sc->sc_dev, "unknown status code %u\n",
1128 			    le16toh(status->code));
1129 		}
1130 
1131 		/* firmware was killed, stop processing received frames */
1132 		if (!(sc->flags & IPW_FLAG_FW_INITED))
1133 			return;
1134 
1135 		sbd->bd->flags = 0;
1136 	}
1137 
1138 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
1139 
1140 	/* kick the firmware */
1141 	sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1142 	CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1143 }
1144 
1145 static void
1146 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1147 {
1148 	struct ipw_soft_hdr *shdr;
1149 	struct ipw_soft_buf *sbuf;
1150 
1151 	switch (sbd->type) {
1152 	case IPW_SBD_TYPE_COMMAND:
1153 		bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map,
1154 		    BUS_DMASYNC_POSTWRITE);
1155 		bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map);
1156 		break;
1157 
1158 	case IPW_SBD_TYPE_HEADER:
1159 		shdr = sbd->priv;
1160 		bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE);
1161 		bus_dmamap_unload(sc->hdr_dmat, shdr->map);
1162 		SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
1163 		break;
1164 
1165 	case IPW_SBD_TYPE_DATA:
1166 		sbuf = sbd->priv;
1167 		bus_dmamap_sync(sc->txbuf_dmat, sbuf->map,
1168 		    BUS_DMASYNC_POSTWRITE);
1169 		bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
1170 		SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
1171 
1172 		m_freem(sbuf->m);
1173 		ieee80211_free_node(sbuf->ni);
1174 
1175 		sc->sc_tx_timer = 0;
1176 		break;
1177 	}
1178 
1179 	sbd->type = IPW_SBD_TYPE_NOASSOC;
1180 }
1181 
1182 static void
1183 ipw_tx_intr(struct ipw_softc *sc)
1184 {
1185 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1186 	struct ipw_soft_bd *sbd;
1187 	uint32_t r, i;
1188 
1189 	if (!(sc->flags & IPW_FLAG_FW_INITED))
1190 		return;
1191 
1192 	r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1193 
1194 	for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1195 		sbd = &sc->stbd_list[i];
1196 
1197 		if (sbd->type == IPW_SBD_TYPE_DATA)
1198 			ifp->if_opackets++;
1199 
1200 		ipw_release_sbd(sc, sbd);
1201 		sc->txfree++;
1202 	}
1203 
1204 	/* remember what the firmware has processed */
1205 	sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1206 
1207 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1208 	ipw_start(ifp);
1209 }
1210 
1211 static void
1212 ipw_intr(void *arg)
1213 {
1214 	struct ipw_softc *sc = arg;
1215 	uint32_t r;
1216 
1217 	mtx_lock(&sc->sc_mtx);
1218 
1219 	if ((r = CSR_READ_4(sc, IPW_CSR_INTR)) == 0 || r == 0xffffffff) {
1220 		mtx_unlock(&sc->sc_mtx);
1221 		return;
1222 	}
1223 
1224 	/* disable interrupts */
1225 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1226 
1227 	/* acknowledge all interrupts */
1228 	CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1229 
1230 	if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1231 		device_printf(sc->sc_dev, "firmware error\n");
1232 		taskqueue_enqueue_fast(taskqueue_fast, &sc->sc_init_task);
1233 		r = 0;	/* don't process more interrupts */
1234 	}
1235 
1236 	if (r & IPW_INTR_FW_INIT_DONE)
1237 		wakeup(sc);
1238 
1239 	if (r & IPW_INTR_RX_TRANSFER)
1240 		ipw_rx_intr(sc);
1241 
1242 	if (r & IPW_INTR_TX_TRANSFER)
1243 		ipw_tx_intr(sc);
1244 
1245 	/* re-enable interrupts */
1246 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1247 
1248 	mtx_unlock(&sc->sc_mtx);
1249 }
1250 
1251 static void
1252 ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1253 {
1254 	if (error != 0)
1255 		return;
1256 
1257 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1258 
1259 	*(bus_addr_t *)arg = segs[0].ds_addr;
1260 }
1261 
1262 /*
1263  * Send a command to the firmware and wait for the acknowledgement.
1264  */
1265 static int
1266 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1267 {
1268 	struct ipw_soft_bd *sbd;
1269 	bus_addr_t physaddr;
1270 	int error;
1271 
1272 	sbd = &sc->stbd_list[sc->txcur];
1273 
1274 	error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd,
1275 	    sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0);
1276 	if (error != 0) {
1277 		device_printf(sc->sc_dev, "could not map command DMA memory\n");
1278 		return error;
1279 	}
1280 
1281 	sc->cmd.type = htole32(type);
1282 	sc->cmd.subtype = 0;
1283 	sc->cmd.len = htole32(len);
1284 	sc->cmd.seq = 0;
1285 	memcpy(sc->cmd.data, data, len);
1286 
1287 	sbd->type = IPW_SBD_TYPE_COMMAND;
1288 	sbd->bd->physaddr = htole32(physaddr);
1289 	sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1290 	sbd->bd->nfrag = 1;
1291 	sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1292 	    IPW_BD_FLAG_TX_LAST_FRAGMENT;
1293 
1294 	bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE);
1295 	bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
1296 
1297 	DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
1298 
1299 	/* kick firmware */
1300 	sc->txfree--;
1301 	sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1302 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1303 
1304 	/* wait at most one second for command to complete */
1305 	return msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz);
1306 }
1307 
1308 static int
1309 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
1310 {
1311 	struct ipw_softc *sc = ifp->if_softc;
1312 	struct ieee80211com *ic = &sc->sc_ic;
1313 	struct ieee80211_frame *wh;
1314 	struct ipw_soft_bd *sbd;
1315 	struct ipw_soft_hdr *shdr;
1316 	struct ipw_soft_buf *sbuf;
1317 	struct ieee80211_key *k;
1318 	struct mbuf *mnew;
1319 	bus_dma_segment_t segs[IPW_MAX_NSEG];
1320 	bus_addr_t physaddr;
1321 	int nsegs, error, i;
1322 
1323 	wh = mtod(m0, struct ieee80211_frame *);
1324 
1325 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1326 		k = ieee80211_crypto_encap(ic, ni, m0);
1327 		if (k == NULL) {
1328 			m_freem(m0);
1329 			return ENOBUFS;
1330 		}
1331 
1332 		/* packet header may have moved, reset our local pointer */
1333 		wh = mtod(m0, struct ieee80211_frame *);
1334 	}
1335 
1336 	if (bpf_peers_present(sc->sc_drvbpf)) {
1337 		struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1338 
1339 		tap->wt_flags = 0;
1340 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1341 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1342 
1343 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1344 	}
1345 
1346 	shdr = SLIST_FIRST(&sc->free_shdr);
1347 	sbuf = SLIST_FIRST(&sc->free_sbuf);
1348 	KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool"));
1349 
1350 	shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND);
1351 	shdr->hdr.subtype = 0;
1352 	shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
1353 	shdr->hdr.encrypt = 0;
1354 	shdr->hdr.keyidx = 0;
1355 	shdr->hdr.keysz = 0;
1356 	shdr->hdr.fragmentsz = 0;
1357 	IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2);
1358 	if (ic->ic_opmode == IEEE80211_M_STA)
1359 		IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3);
1360 	else
1361 		IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1);
1362 
1363 	/* trim IEEE802.11 header */
1364 	m_adj(m0, sizeof (struct ieee80211_frame));
1365 
1366 	error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs,
1367 	    &nsegs, 0);
1368 	if (error != 0 && error != EFBIG) {
1369 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1370 		    error);
1371 		m_freem(m0);
1372 		return error;
1373 	}
1374 	if (error != 0) {
1375 		mnew = m_defrag(m0, M_DONTWAIT);
1376 		if (mnew == NULL) {
1377 			device_printf(sc->sc_dev,
1378 			    "could not defragment mbuf\n");
1379 			m_freem(m0);
1380 			return ENOBUFS;
1381 		}
1382 		m0 = mnew;
1383 
1384 		error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0,
1385 		    segs, &nsegs, 0);
1386 		if (error != 0) {
1387 			device_printf(sc->sc_dev,
1388 			    "could not map mbuf (error %d)\n", error);
1389 			m_freem(m0);
1390 			return error;
1391 		}
1392 	}
1393 
1394 	error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr,
1395 	    sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0);
1396 	if (error != 0) {
1397 		device_printf(sc->sc_dev, "could not map header DMA memory\n");
1398 		bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
1399 		m_freem(m0);
1400 		return error;
1401 	}
1402 
1403 	SLIST_REMOVE_HEAD(&sc->free_sbuf, next);
1404 	SLIST_REMOVE_HEAD(&sc->free_shdr, next);
1405 
1406 	sbd = &sc->stbd_list[sc->txcur];
1407 	sbd->type = IPW_SBD_TYPE_HEADER;
1408 	sbd->priv = shdr;
1409 	sbd->bd->physaddr = htole32(physaddr);
1410 	sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1411 	sbd->bd->nfrag = 1 + nsegs;
1412 	sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1413 	    IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1414 
1415 	DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n",
1416 	    shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted,
1417 	    shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr,
1418 	    ":"));
1419 
1420 	sc->txfree--;
1421 	sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1422 
1423 	sbuf->m = m0;
1424 	sbuf->ni = ni;
1425 
1426 	for (i = 0; i < nsegs; i++) {
1427 		sbd = &sc->stbd_list[sc->txcur];
1428 
1429 		sbd->bd->physaddr = htole32(segs[i].ds_addr);
1430 		sbd->bd->len = htole32(segs[i].ds_len);
1431 		sbd->bd->nfrag = 0;
1432 		sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1433 		if (i == nsegs - 1) {
1434 			sbd->type = IPW_SBD_TYPE_DATA;
1435 			sbd->priv = sbuf;
1436 			sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1437 		} else {
1438 			sbd->type = IPW_SBD_TYPE_NOASSOC;
1439 			sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1440 		}
1441 
1442 		DPRINTFN(5, ("sending fragment (%d, %d)\n", i, segs[i].ds_len));
1443 
1444 		sc->txfree--;
1445 		sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1446 	}
1447 
1448 	bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE);
1449 	bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE);
1450 	bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
1451 
1452 	/* kick firmware */
1453 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1454 
1455 	return 0;
1456 }
1457 
1458 static void
1459 ipw_start(struct ifnet *ifp)
1460 {
1461 	struct ipw_softc *sc = ifp->if_softc;
1462 	struct ieee80211com *ic = &sc->sc_ic;
1463 	struct mbuf *m0;
1464 	struct ether_header *eh;
1465 	struct ieee80211_node *ni;
1466 
1467 	mtx_lock(&sc->sc_mtx);
1468 
1469 	if (ic->ic_state != IEEE80211_S_RUN) {
1470 		mtx_unlock(&sc->sc_mtx);
1471 		return;
1472 	}
1473 
1474 	for (;;) {
1475 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1476 		if (m0 == NULL)
1477 			break;
1478 
1479 		if (sc->txfree < 1 + IPW_MAX_NSEG) {
1480 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1481 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1482 			break;
1483 		}
1484 
1485 		if (m0->m_len < sizeof (struct ether_header) &&
1486 		    (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
1487 			continue;
1488 
1489 		eh = mtod(m0, struct ether_header *);
1490 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1491 		if (ni == NULL) {
1492 			m_freem(m0);
1493 			continue;
1494 		}
1495 		BPF_MTAP(ifp, m0);
1496 
1497 		m0 = ieee80211_encap(ic, m0, ni);
1498 		if (m0 == NULL) {
1499 			ieee80211_free_node(ni);
1500 			continue;
1501 		}
1502 
1503 		if (bpf_peers_present(ic->ic_rawbpf))
1504 			bpf_mtap(ic->ic_rawbpf, m0);
1505 
1506 		if (ipw_tx_start(ifp, m0, ni) != 0) {
1507 			ieee80211_free_node(ni);
1508 			ifp->if_oerrors++;
1509 			break;
1510 		}
1511 
1512 		/* start watchdog timer */
1513 		sc->sc_tx_timer = 5;
1514 		ifp->if_timer = 1;
1515 	}
1516 
1517 	mtx_unlock(&sc->sc_mtx);
1518 }
1519 
1520 static void
1521 ipw_watchdog(struct ifnet *ifp)
1522 {
1523 	struct ipw_softc *sc = ifp->if_softc;
1524 	struct ieee80211com *ic = &sc->sc_ic;
1525 
1526 	mtx_lock(&sc->sc_mtx);
1527 
1528 	ifp->if_timer = 0;
1529 
1530 	if (sc->sc_tx_timer > 0) {
1531 		if (--sc->sc_tx_timer == 0) {
1532 			if_printf(ifp, "device timeout\n");
1533 			ifp->if_oerrors++;
1534 			taskqueue_enqueue_fast(taskqueue_fast,
1535 			    &sc->sc_init_task);
1536 			mtx_unlock(&sc->sc_mtx);
1537 			return;
1538 		}
1539 		ifp->if_timer = 1;
1540 	}
1541 
1542 	ieee80211_watchdog(ic);
1543 
1544 	mtx_unlock(&sc->sc_mtx);
1545 }
1546 
1547 static int
1548 ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1549 {
1550 	struct ipw_softc *sc = ifp->if_softc;
1551 	struct ieee80211com *ic = &sc->sc_ic;
1552 	int error = 0;
1553 
1554 	mtx_lock(&sc->sc_mtx);
1555 
1556 	switch (cmd) {
1557 	case SIOCSIFFLAGS:
1558 		if (ifp->if_flags & IFF_UP) {
1559 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1560 				ipw_init(sc);
1561 		} else {
1562 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1563 				ipw_stop(sc);
1564 		}
1565 		break;
1566 
1567 	default:
1568 		error = ieee80211_ioctl(ic, cmd, data);
1569 	}
1570 
1571 	if (error == ENETRESET) {
1572 		if ((ifp->if_flags & IFF_UP) &&
1573 		    (ifp->if_drv_flags & IFF_DRV_RUNNING))
1574 			ipw_init(sc);
1575 		error = 0;
1576 	}
1577 
1578 	mtx_unlock(&sc->sc_mtx);
1579 
1580 	return error;
1581 }
1582 
1583 static void
1584 ipw_stop_master(struct ipw_softc *sc)
1585 {
1586 	uint32_t tmp;
1587 	int ntries;
1588 
1589 	/* disable interrupts */
1590 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1591 
1592 	CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1593 	for (ntries = 0; ntries < 50; ntries++) {
1594 		if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1595 			break;
1596 		DELAY(10);
1597 	}
1598 	if (ntries == 50)
1599 		device_printf(sc->sc_dev, "timeout waiting for master\n");
1600 
1601 	tmp = CSR_READ_4(sc, IPW_CSR_RST);
1602 	CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET);
1603 
1604 	sc->flags &= ~IPW_FLAG_FW_INITED;
1605 }
1606 
1607 static int
1608 ipw_reset(struct ipw_softc *sc)
1609 {
1610 	uint32_t tmp;
1611 	int ntries;
1612 
1613 	ipw_stop_master(sc);
1614 
1615 	/* move adapter to D0 state */
1616 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1617 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
1618 
1619 	/* wait for clock stabilization */
1620 	for (ntries = 0; ntries < 1000; ntries++) {
1621 		if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1622 			break;
1623 		DELAY(200);
1624 	}
1625 	if (ntries == 1000)
1626 		return EIO;
1627 
1628 	tmp =  CSR_READ_4(sc, IPW_CSR_RST);
1629 	CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET);
1630 
1631 	DELAY(10);
1632 
1633 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1634 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
1635 
1636 	return 0;
1637 }
1638 
1639 /*
1640  * Upload the microcode to the device.
1641  */
1642 static int
1643 ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size)
1644 {
1645 	int ntries;
1646 
1647 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1648 	CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1649 
1650 	MEM_WRITE_2(sc, 0x220000, 0x0703);
1651 	MEM_WRITE_2(sc, 0x220000, 0x0707);
1652 
1653 	MEM_WRITE_1(sc, 0x210014, 0x72);
1654 	MEM_WRITE_1(sc, 0x210014, 0x72);
1655 
1656 	MEM_WRITE_1(sc, 0x210000, 0x40);
1657 	MEM_WRITE_1(sc, 0x210000, 0x00);
1658 	MEM_WRITE_1(sc, 0x210000, 0x40);
1659 
1660 	MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1661 
1662 	MEM_WRITE_1(sc, 0x210000, 0x00);
1663 	MEM_WRITE_1(sc, 0x210000, 0x00);
1664 	MEM_WRITE_1(sc, 0x210000, 0x80);
1665 
1666 	MEM_WRITE_2(sc, 0x220000, 0x0703);
1667 	MEM_WRITE_2(sc, 0x220000, 0x0707);
1668 
1669 	MEM_WRITE_1(sc, 0x210014, 0x72);
1670 	MEM_WRITE_1(sc, 0x210014, 0x72);
1671 
1672 	MEM_WRITE_1(sc, 0x210000, 0x00);
1673 	MEM_WRITE_1(sc, 0x210000, 0x80);
1674 
1675 	for (ntries = 0; ntries < 10; ntries++) {
1676 		if (MEM_READ_1(sc, 0x210000) & 1)
1677 			break;
1678 		DELAY(10);
1679 	}
1680 	if (ntries == 10) {
1681 		device_printf(sc->sc_dev,
1682 		    "timeout waiting for ucode to initialize\n");
1683 		return EIO;
1684 	}
1685 
1686 	MEM_WRITE_4(sc, 0x3000e0, 0);
1687 
1688 	return 0;
1689 }
1690 
1691 /* set of macros to handle unaligned little endian data in firmware image */
1692 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1693 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1694 static int
1695 ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size)
1696 {
1697 	const uint8_t *p, *end;
1698 	uint32_t tmp, dst;
1699 	uint16_t len;
1700 	int error;
1701 
1702 	p = fw;
1703 	end = fw + size;
1704 	while (p < end) {
1705 		dst = GETLE32(p); p += 4;
1706 		len = GETLE16(p); p += 2;
1707 
1708 		ipw_write_mem_1(sc, dst, p, len);
1709 		p += len;
1710 	}
1711 
1712 	CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1713 	    IPW_IO_LED_OFF);
1714 
1715 	/* enable interrupts */
1716 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1717 
1718 	/* kick the firmware */
1719 	CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1720 
1721 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1722 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY);
1723 
1724 	/* wait at most one second for firmware initialization to complete */
1725 	if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) {
1726 		device_printf(sc->sc_dev, "timeout waiting for firmware "
1727 		    "initialization to complete\n");
1728 		return error;
1729 	}
1730 
1731 	tmp = CSR_READ_4(sc, IPW_CSR_IO);
1732 	CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK |
1733 	    IPW_IO_GPIO3_MASK);
1734 
1735 	return 0;
1736 }
1737 
1738 static int
1739 ipw_config(struct ipw_softc *sc)
1740 {
1741 	struct ieee80211com *ic = &sc->sc_ic;
1742 	struct ifnet *ifp = ic->ic_ifp;
1743 	struct ipw_security security;
1744 	struct ieee80211_key *k;
1745 	struct ipw_wep_key wepkey;
1746 	struct ipw_scan_options options;
1747 	struct ipw_configuration config;
1748 	uint32_t data;
1749 	int error, i;
1750 
1751 	switch (ic->ic_opmode) {
1752 	case IEEE80211_M_STA:
1753 	case IEEE80211_M_HOSTAP:
1754 		data = htole32(IPW_MODE_BSS);
1755 		break;
1756 	case IEEE80211_M_IBSS:
1757 	case IEEE80211_M_AHDEMO:
1758 		data = htole32(IPW_MODE_IBSS);
1759 		break;
1760 	case IEEE80211_M_MONITOR:
1761 		data = htole32(IPW_MODE_MONITOR);
1762 		break;
1763 	}
1764 	DPRINTF(("Setting mode to %u\n", le32toh(data)));
1765 	error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
1766 	if (error != 0)
1767 		return error;
1768 
1769 	if (ic->ic_opmode == IEEE80211_M_IBSS ||
1770 	    ic->ic_opmode == IEEE80211_M_MONITOR) {
1771 		data = htole32(ieee80211_chan2ieee(ic, ic->ic_curchan));
1772 		DPRINTF(("Setting channel to %u\n", le32toh(data)));
1773 		error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
1774 		if (error != 0)
1775 			return error;
1776 	}
1777 
1778 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1779 		DPRINTF(("Enabling adapter\n"));
1780 		return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1781 	}
1782 
1783 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1784 	DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":"));
1785 	error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
1786 	    IEEE80211_ADDR_LEN);
1787 	if (error != 0)
1788 		return error;
1789 
1790 	config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
1791 	    IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
1792 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1793 		config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
1794 	if (ifp->if_flags & IFF_PROMISC)
1795 		config.flags |= htole32(IPW_CFG_PROMISCUOUS);
1796 	config.bss_chan = htole32(0x3fff); /* channels 1-14 */
1797 	config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
1798 	DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags)));
1799 	error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
1800 	if (error != 0)
1801 		return error;
1802 
1803 	data = htole32(0x3); /* 1, 2 */
1804 	DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
1805 	error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
1806 	if (error != 0)
1807 		return error;
1808 
1809 	data = htole32(0xf); /* 1, 2, 5.5, 11 */
1810 	DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
1811 	error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
1812 	if (error != 0)
1813 		return error;
1814 
1815 	data = htole32(IPW_POWER_MODE_CAM);
1816 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
1817 	error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
1818 	if (error != 0)
1819 		return error;
1820 
1821 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1822 		data = htole32(32); /* default value */
1823 		DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
1824 		error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
1825 		    sizeof data);
1826 		if (error != 0)
1827 			return error;
1828 	}
1829 
1830 	data = htole32(ic->ic_rtsthreshold);
1831 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
1832 	error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
1833 	if (error != 0)
1834 		return error;
1835 
1836 	data = htole32(ic->ic_fragthreshold);
1837 	DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
1838 	error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
1839 	if (error != 0)
1840 		return error;
1841 
1842 #ifdef IPW_DEBUG
1843 	if (ipw_debug > 0) {
1844 		printf("Setting ESSID to ");
1845 		ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
1846 		printf("\n");
1847 	}
1848 #endif
1849 	error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
1850 	    ic->ic_des_esslen);
1851 	if (error != 0)
1852 		return error;
1853 
1854 	/* no mandatory BSSID */
1855 	DPRINTF(("Setting mandatory BSSID to null\n"));
1856 	error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
1857 	if (error != 0)
1858 		return error;
1859 
1860 	if (ic->ic_flags & IEEE80211_F_DESBSSID) {
1861 		DPRINTF(("Setting desired BSSID to %6D\n", ic->ic_des_bssid,
1862 		    ":"));
1863 		error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
1864 		    ic->ic_des_bssid, IEEE80211_ADDR_LEN);
1865 		if (error != 0)
1866 			return error;
1867 	}
1868 
1869 	memset(&security, 0, sizeof security);
1870 	security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
1871 	    IPW_AUTH_SHARED : IPW_AUTH_OPEN;
1872 	security.ciphers = htole32(IPW_CIPHER_NONE);
1873 	DPRINTF(("Setting authmode to %u\n", security.authmode));
1874 	error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
1875 	    sizeof security);
1876 	if (error != 0)
1877 		return error;
1878 
1879 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
1880 		k = ic->ic_crypto.cs_nw_keys;
1881 		for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
1882 			if (k->wk_keylen == 0)
1883 				continue;
1884 
1885 			wepkey.idx = i;
1886 			wepkey.len = k->wk_keylen;
1887 			memset(wepkey.key, 0, sizeof wepkey.key);
1888 			memcpy(wepkey.key, k->wk_key, k->wk_keylen);
1889 			DPRINTF(("Setting wep key index %u len %u\n",
1890 			    wepkey.idx, wepkey.len));
1891 			error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
1892 			    sizeof wepkey);
1893 			if (error != 0)
1894 				return error;
1895 		}
1896 
1897 		data = htole32(ic->ic_crypto.cs_def_txkey);
1898 		DPRINTF(("Setting wep tx key index to %u\n", le32toh(data)));
1899 		error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
1900 		    sizeof data);
1901 		if (error != 0)
1902 			return error;
1903 	}
1904 
1905 	data = htole32((ic->ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
1906 	DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
1907 	error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
1908 	if (error != 0)
1909 		return error;
1910 
1911 #if 0
1912 	struct ipw_wpa_ie ie;
1913 
1914 	memset(&ie, 0, sizeof ie);
1915 	ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
1916 	DPRINTF(("Setting wpa ie\n"));
1917 	error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
1918 	if (error != 0)
1919 		return error;
1920 #endif
1921 
1922 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1923 		data = htole32(ic->ic_bintval);
1924 		DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
1925 		error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
1926 		    sizeof data);
1927 		if (error != 0)
1928 			return error;
1929 	}
1930 
1931 	options.flags = 0;
1932 	options.channels = htole32(0x3fff); /* scan channels 1-14 */
1933 	DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
1934 	error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
1935 	if (error != 0)
1936 		return error;
1937 
1938 	/* finally, enable adapter (start scanning for an access point) */
1939 	DPRINTF(("Enabling adapter\n"));
1940 	return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1941 }
1942 
1943 /*
1944  * Handler for sc_init_task.  This is a simple wrapper around ipw_init().
1945  * It is called on firmware panics or on watchdog timeouts.
1946  */
1947 static void
1948 ipw_init_task(void *context, int pending)
1949 {
1950 	ipw_init(context);
1951 }
1952 
1953 static void
1954 ipw_init(void *priv)
1955 {
1956 	struct ipw_softc *sc = priv;
1957 	struct ieee80211com *ic = &sc->sc_ic;
1958 	struct ifnet *ifp = ic->ic_ifp;
1959 	const struct firmware *fp;
1960 	const struct ipw_firmware_hdr *hdr;
1961 	const char *imagename, *fw;
1962 	int owned;
1963 
1964 	/*
1965 	 * ipw_init() is exposed through ifp->if_init so it might be called
1966 	 * without the driver's lock held.  Since msleep() doesn't like being
1967 	 * called on a recursed mutex, we acquire the driver's lock only if
1968 	 * we're not already holding it.
1969 	 */
1970 	if (!(owned = mtx_owned(&sc->sc_mtx)))
1971 		mtx_lock(&sc->sc_mtx);
1972 
1973 	/*
1974 	 * Avoid re-entrant calls.  We need to release the mutex in ipw_init()
1975 	 * when loading the firmware and we don't want to be called during this
1976 	 * operation.
1977 	 */
1978 	if (sc->flags & IPW_FLAG_INIT_LOCKED) {
1979 		if (!owned)
1980 			mtx_unlock(&sc->sc_mtx);
1981 		return;
1982 	}
1983 	sc->flags |= IPW_FLAG_INIT_LOCKED;
1984 
1985 	ipw_stop(sc);
1986 
1987 	if (ipw_reset(sc) != 0) {
1988 		device_printf(sc->sc_dev, "could not reset adapter\n");
1989 		goto fail1;
1990 	}
1991 
1992 	switch (ic->ic_opmode) {
1993 	case IEEE80211_M_STA:
1994 		imagename = "ipw_bss";
1995 		break;
1996 	case IEEE80211_M_IBSS:
1997 		imagename = "ipw_ibss";
1998 		break;
1999 	case IEEE80211_M_MONITOR:
2000 		imagename = "ipw_monitor";
2001 		break;
2002 	default:
2003 		imagename = NULL;	/* should not get there */
2004 	}
2005 
2006 	/*
2007 	 * Load firmware image using the firmware(9) subsystem.  We need to
2008 	 * release the driver's lock first.
2009 	 */
2010 	if (sc->sc_firmware == NULL || strcmp(sc->sc_firmware->name,
2011 	    imagename) != 0) {
2012 		mtx_unlock(&sc->sc_mtx);
2013 		if (sc->sc_firmware != NULL)
2014 			firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
2015 		sc->sc_firmware = firmware_get(imagename);
2016 		mtx_lock(&sc->sc_mtx);
2017 	}
2018 
2019 	if (sc->sc_firmware == NULL) {
2020 		device_printf(sc->sc_dev,
2021 		    "could not load firmware image '%s'\n", imagename);
2022 		goto fail1;
2023 	}
2024 
2025 	fp = sc->sc_firmware;
2026 	if (fp->datasize < sizeof *hdr) {
2027 		device_printf(sc->sc_dev,
2028 		    "firmware image too short %zu\n", fp->datasize);
2029 		goto fail2;
2030 	}
2031 
2032 	hdr = (const struct ipw_firmware_hdr *)fp->data;
2033 
2034 	if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) +
2035 	    le32toh(hdr->ucodesz)) {
2036 		device_printf(sc->sc_dev,
2037 		    "firmware image too short %zu\n", fp->datasize);
2038 		goto fail2;
2039 	}
2040 
2041 	fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz);
2042 	if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) {
2043 		device_printf(sc->sc_dev, "could not load microcode\n");
2044 		goto fail2;
2045 	}
2046 
2047 	ipw_stop_master(sc);
2048 
2049 	/*
2050 	 * Setup tx, rx and status rings.
2051 	 */
2052 	sc->txold = IPW_NTBD - 1;
2053 	sc->txcur = 0;
2054 	sc->txfree = IPW_NTBD - 2;
2055 	sc->rxcur = IPW_NRBD - 1;
2056 
2057 	CSR_WRITE_4(sc, IPW_CSR_TX_BASE,  sc->tbd_phys);
2058 	CSR_WRITE_4(sc, IPW_CSR_TX_SIZE,  IPW_NTBD);
2059 	CSR_WRITE_4(sc, IPW_CSR_TX_READ,  0);
2060 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2061 
2062 	CSR_WRITE_4(sc, IPW_CSR_RX_BASE,  sc->rbd_phys);
2063 	CSR_WRITE_4(sc, IPW_CSR_RX_SIZE,  IPW_NRBD);
2064 	CSR_WRITE_4(sc, IPW_CSR_RX_READ,  0);
2065 	CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2066 
2067 	CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys);
2068 
2069 	fw = (const char *)fp->data + sizeof *hdr;
2070 	if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) {
2071 		device_printf(sc->sc_dev, "could not load firmware\n");
2072 		goto fail2;
2073 	}
2074 
2075 	sc->flags |= IPW_FLAG_FW_INITED;
2076 
2077 	/* retrieve information tables base addresses */
2078 	sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2079 	sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2080 
2081 	ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2082 
2083 	if (ipw_config(sc) != 0) {
2084 		device_printf(sc->sc_dev, "device configuration failed\n");
2085 		goto fail1;
2086 	}
2087 
2088 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2089 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2090 
2091 	sc->flags &=~ IPW_FLAG_INIT_LOCKED;
2092 
2093 	if (!owned)
2094 		mtx_unlock(&sc->sc_mtx);
2095 
2096 	return;
2097 
2098 fail2:	firmware_put(fp, FIRMWARE_UNLOAD);
2099 	sc->sc_firmware = NULL;
2100 fail1:	ifp->if_flags &= ~IFF_UP;
2101 	ipw_stop(sc);
2102 	sc->flags &=~ IPW_FLAG_INIT_LOCKED;
2103 	if (!owned)
2104 		mtx_unlock(&sc->sc_mtx);
2105 }
2106 
2107 static void
2108 ipw_stop(void *priv)
2109 {
2110 	struct ipw_softc *sc = priv;
2111 	struct ieee80211com *ic = &sc->sc_ic;
2112 	struct ifnet *ifp = ic->ic_ifp;
2113 	int i;
2114 
2115 	mtx_lock(&sc->sc_mtx);
2116 
2117 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2118 
2119 	ipw_stop_master(sc);
2120 
2121 	CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2122 
2123 	/*
2124 	 * Release tx buffers.
2125 	 */
2126 	for (i = 0; i < IPW_NTBD; i++)
2127 		ipw_release_sbd(sc, &sc->stbd_list[i]);
2128 
2129 	sc->sc_tx_timer = 0;
2130 	ifp->if_timer = 0;
2131 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2132 
2133 	mtx_unlock(&sc->sc_mtx);
2134 }
2135 
2136 static int
2137 ipw_sysctl_stats(SYSCTL_HANDLER_ARGS)
2138 {
2139 	struct ipw_softc *sc = arg1;
2140 	uint32_t i, size, buf[256];
2141 
2142 	if (!(sc->flags & IPW_FLAG_FW_INITED)) {
2143 		memset(buf, 0, sizeof buf);
2144 		return SYSCTL_OUT(req, buf, sizeof buf);
2145 	}
2146 
2147 	CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
2148 
2149 	size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256);
2150 	for (i = 1; i < size; i++)
2151 		buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA));
2152 
2153 	return SYSCTL_OUT(req, buf, sizeof buf);
2154 }
2155 
2156 static int
2157 ipw_sysctl_radio(SYSCTL_HANDLER_ARGS)
2158 {
2159 	struct ipw_softc *sc = arg1;
2160 	int val;
2161 
2162 	val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) &&
2163 	        (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED));
2164 
2165 	return SYSCTL_OUT(req, &val, sizeof val);
2166 }
2167 
2168 static uint32_t
2169 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
2170 {
2171 	return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
2172 }
2173 
2174 static void
2175 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
2176 {
2177 	MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
2178 }
2179 
2180 static int
2181 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
2182 {
2183 	uint32_t addr, info;
2184 	uint16_t count, size;
2185 	uint32_t total;
2186 
2187 	/* addr[4] + count[2] + size[2] */
2188 	addr = MEM_READ_4(sc, sc->table2_base + off);
2189 	info = MEM_READ_4(sc, sc->table2_base + off + 4);
2190 
2191 	count = info >> 16;
2192 	size = info & 0xffff;
2193 	total = count * size;
2194 
2195 	if (total > *len) {
2196 		*len = total;
2197 		return EINVAL;
2198 	}
2199 
2200 	*len = total;
2201 	ipw_read_mem_1(sc, addr, buf, total);
2202 
2203 	return 0;
2204 }
2205 
2206 static void
2207 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2208     bus_size_t count)
2209 {
2210 	for (; count > 0; offset++, datap++, count--) {
2211 		CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2212 		*datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2213 	}
2214 }
2215 
2216 static void
2217 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap,
2218     bus_size_t count)
2219 {
2220 	for (; count > 0; offset++, datap++, count--) {
2221 		CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2222 		CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2223 	}
2224 }
2225