xref: /freebsd/sys/dev/ipw/if_ipw.c (revision 282a3889ebf826db9839be296ff1dd903f6d6d6e)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2004-2006
5  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*-
34  * Intel(R) PRO/Wireless 2100 MiniPCI driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/linker.h>
52 #include <sys/firmware.h>
53 
54 #include <machine/bus.h>
55 #include <machine/resource.h>
56 #include <sys/rman.h>
57 
58 #include <dev/pci/pcireg.h>
59 #include <dev/pci/pcivar.h>
60 
61 #include <net/bpf.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/ethernet.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_radiotap.h>
71 
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76 #include <netinet/if_ether.h>
77 
78 #include <dev/ipw/if_ipwreg.h>
79 #include <dev/ipw/if_ipwvar.h>
80 
81 #ifdef IPW_DEBUG
82 #define DPRINTF(x)	do { if (ipw_debug > 0) printf x; } while (0)
83 #define DPRINTFN(n, x)	do { if (ipw_debug >= (n)) printf x; } while (0)
84 int ipw_debug = 0;
85 SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level");
86 #else
87 #define DPRINTF(x)
88 #define DPRINTFN(n, x)
89 #endif
90 
91 MODULE_DEPEND(ipw, pci,  1, 1, 1);
92 MODULE_DEPEND(ipw, wlan, 1, 1, 1);
93 MODULE_DEPEND(ipw, firmware, 1, 1, 1);
94 
95 struct ipw_ident {
96 	uint16_t	vendor;
97 	uint16_t	device;
98 	const char	*name;
99 };
100 
101 static const struct ipw_ident ipw_ident_table[] = {
102 	{ 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" },
103 
104 	{ 0, 0, NULL }
105 };
106 
107 static int	ipw_dma_alloc(struct ipw_softc *);
108 static void	ipw_release(struct ipw_softc *);
109 static int	ipw_media_change(struct ifnet *);
110 static void	ipw_media_status(struct ifnet *, struct ifmediareq *);
111 static int	ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
112 static uint16_t	ipw_read_prom_word(struct ipw_softc *, uint8_t);
113 static void	ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
114 static void	ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
115 static void	ipw_data_intr(struct ipw_softc *, struct ipw_status *,
116 		    struct ipw_soft_bd *, struct ipw_soft_buf *);
117 static void	ipw_rx_intr(struct ipw_softc *);
118 static void	ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
119 static void	ipw_tx_intr(struct ipw_softc *);
120 static void	ipw_intr(void *);
121 static void	ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int);
122 static int	ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
123 static int	ipw_tx_start(struct ifnet *, struct mbuf *,
124 		    struct ieee80211_node *);
125 static void	ipw_start(struct ifnet *);
126 static void	ipw_watchdog(struct ifnet *);
127 static int	ipw_ioctl(struct ifnet *, u_long, caddr_t);
128 static void	ipw_stop_master(struct ipw_softc *);
129 static int	ipw_reset(struct ipw_softc *);
130 static int	ipw_load_ucode(struct ipw_softc *, const char *, int);
131 static int	ipw_load_firmware(struct ipw_softc *, const char *, int);
132 static int	ipw_config(struct ipw_softc *);
133 static void	ipw_init_task(void *, int);
134 static void	ipw_init(void *);
135 static void	ipw_stop(void *);
136 static int	ipw_sysctl_stats(SYSCTL_HANDLER_ARGS);
137 static int	ipw_sysctl_radio(SYSCTL_HANDLER_ARGS);
138 static uint32_t	ipw_read_table1(struct ipw_softc *, uint32_t);
139 static void	ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
140 static int	ipw_read_table2(struct ipw_softc *, uint32_t, void *,
141 		    uint32_t *);
142 static void	ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
143 		    bus_size_t);
144 static void	ipw_write_mem_1(struct ipw_softc *, bus_size_t,
145 		    const uint8_t *, bus_size_t);
146 
147 static int ipw_probe(device_t);
148 static int ipw_attach(device_t);
149 static int ipw_detach(device_t);
150 static int ipw_shutdown(device_t);
151 static int ipw_suspend(device_t);
152 static int ipw_resume(device_t);
153 
154 static device_method_t ipw_methods[] = {
155 	/* Device interface */
156 	DEVMETHOD(device_probe,		ipw_probe),
157 	DEVMETHOD(device_attach,	ipw_attach),
158 	DEVMETHOD(device_detach,	ipw_detach),
159 	DEVMETHOD(device_shutdown,	ipw_shutdown),
160 	DEVMETHOD(device_suspend,	ipw_suspend),
161 	DEVMETHOD(device_resume,	ipw_resume),
162 
163 	{ 0, 0 }
164 };
165 
166 static driver_t ipw_driver = {
167 	"ipw",
168 	ipw_methods,
169 	sizeof (struct ipw_softc)
170 };
171 
172 static devclass_t ipw_devclass;
173 
174 DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, 0, 0);
175 
176 static int
177 ipw_probe(device_t dev)
178 {
179 	const struct ipw_ident *ident;
180 
181 	for (ident = ipw_ident_table; ident->name != NULL; ident++) {
182 		if (pci_get_vendor(dev) == ident->vendor &&
183 		    pci_get_device(dev) == ident->device) {
184 			device_set_desc(dev, ident->name);
185 			return 0;
186 		}
187 	}
188 	return ENXIO;
189 }
190 
191 /* Base Address Register */
192 #define IPW_PCI_BAR0	0x10
193 
194 static int
195 ipw_attach(device_t dev)
196 {
197 	struct ipw_softc *sc = device_get_softc(dev);
198 	struct ifnet *ifp;
199 	struct ieee80211com *ic = &sc->sc_ic;
200 	struct ieee80211_channel *c;
201 	uint16_t val;
202 	int error, i;
203 
204 	sc->sc_dev = dev;
205 
206 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
207 	    MTX_DEF | MTX_RECURSE);
208 
209 	TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc);
210 
211 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
212 		device_printf(dev, "chip is in D%d power mode "
213 		    "-- setting to D0\n", pci_get_powerstate(dev));
214 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
215 	}
216 
217 	pci_write_config(dev, 0x41, 0, 1);
218 
219 	/* enable bus-mastering */
220 	pci_enable_busmaster(dev);
221 
222 	sc->mem_rid = IPW_PCI_BAR0;
223 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
224 	    RF_ACTIVE);
225 	if (sc->mem == NULL) {
226 		device_printf(dev, "could not allocate memory resource\n");
227 		goto fail;
228 	}
229 
230 	sc->sc_st = rman_get_bustag(sc->mem);
231 	sc->sc_sh = rman_get_bushandle(sc->mem);
232 
233 	sc->irq_rid = 0;
234 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
235 	    RF_ACTIVE | RF_SHAREABLE);
236 	if (sc->irq == NULL) {
237 		device_printf(dev, "could not allocate interrupt resource\n");
238 		goto fail;
239 	}
240 
241 	if (ipw_reset(sc) != 0) {
242 		device_printf(dev, "could not reset adapter\n");
243 		goto fail;
244 	}
245 
246 	if (ipw_dma_alloc(sc) != 0) {
247 		device_printf(dev, "could not allocate DMA resources\n");
248 		goto fail;
249 	}
250 
251 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
252 	if (ifp == NULL) {
253 		device_printf(dev, "can not if_alloc()\n");
254 		goto fail;
255 	}
256 
257 	ifp->if_softc = sc;
258 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
259 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
260 	ifp->if_init = ipw_init;
261 	ifp->if_ioctl = ipw_ioctl;
262 	ifp->if_start = ipw_start;
263 	ifp->if_watchdog = ipw_watchdog;
264 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
265 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
266 	IFQ_SET_READY(&ifp->if_snd);
267 
268 	ic->ic_ifp = ifp;
269 	ic->ic_phytype = IEEE80211_T_DS;
270 	ic->ic_opmode = IEEE80211_M_STA;
271 	ic->ic_state = IEEE80211_S_INIT;
272 
273 	/* set device capabilities */
274 	ic->ic_caps =
275 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
276 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
277 	    IEEE80211_C_TXPMGT |	/* tx power management */
278 	    IEEE80211_C_SHPREAMBLE;	/* short preamble supported */
279 
280 	/* read MAC address from EEPROM */
281 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
282 	ic->ic_myaddr[0] = val >> 8;
283 	ic->ic_myaddr[1] = val & 0xff;
284 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
285 	ic->ic_myaddr[2] = val >> 8;
286 	ic->ic_myaddr[3] = val & 0xff;
287 	val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
288 	ic->ic_myaddr[4] = val >> 8;
289 	ic->ic_myaddr[5] = val & 0xff;
290 
291 	/* set supported .11b channels (read from EEPROM) */
292 	if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0)
293 		val = 0x7ff; /* default to channels 1-11 */
294 	val <<= 1;
295 	for (i = 1; i < 16; i++) {
296 		if (val & (1 << i)) {
297 			c = &ic->ic_channels[ic->ic_nchans++];
298 			c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
299 			c->ic_flags = IEEE80211_CHAN_B;
300 			c->ic_ieee = i;
301 		}
302 	}
303 
304 	/* check support for radio transmitter switch in EEPROM */
305 	if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
306 		sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
307 
308 	ieee80211_ifattach(ic);
309 	/* override state transition machine */
310 	sc->sc_newstate = ic->ic_newstate;
311 	ic->ic_newstate = ipw_newstate;
312 	ieee80211_media_init(ic, ipw_media_change, ipw_media_status);
313 
314 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
315 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
316 	    &sc->sc_drvbpf);
317 
318 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
319 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
320 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
321 
322 	sc->sc_txtap_len = sizeof sc->sc_txtap;
323 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
324 	sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
325 
326 	/*
327 	 * Add a few sysctl knobs.
328 	 */
329 	sc->dwelltime = 100;
330 
331 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
332 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio",
333 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, ipw_sysctl_radio, "I",
334 	    "radio transmitter switch state (0=off, 1=on)");
335 
336 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
337 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats",
338 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, ipw_sysctl_stats, "S",
339 	    "statistics");
340 
341 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
342 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
343 	    CTLFLAG_RW, &sc->dwelltime, 0,
344 	    "channel dwell time (ms) for AP/station scanning");
345 
346 	/*
347 	 * Hook our interrupt after all initialization is complete.
348 	 */
349 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
350 	    NULL, ipw_intr, sc, &sc->sc_ih);
351 	if (error != 0) {
352 		device_printf(dev, "could not set up interrupt\n");
353 		goto fail;
354 	}
355 
356 	if (bootverbose)
357 		ieee80211_announce(ic);
358 
359 	return 0;
360 
361 fail:	ipw_detach(dev);
362 	return ENXIO;
363 }
364 
365 static int
366 ipw_detach(device_t dev)
367 {
368 	struct ipw_softc *sc = device_get_softc(dev);
369 	struct ieee80211com *ic = &sc->sc_ic;
370 	struct ifnet *ifp = ic->ic_ifp;
371 
372 	ipw_stop(sc);
373 
374 	if (ifp != NULL) {
375 		bpfdetach(ifp);
376 		ieee80211_ifdetach(ic);
377 	}
378 
379 	ipw_release(sc);
380 
381 	if (sc->irq != NULL) {
382 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
383 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
384 	}
385 
386 	if (sc->mem != NULL)
387 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
388 
389 	if (ifp != NULL)
390 		if_free(ifp);
391 
392 	if (sc->sc_firmware != NULL) {
393 		firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
394 		sc->sc_firmware = NULL;
395 	}
396 
397 	mtx_destroy(&sc->sc_mtx);
398 
399 	return 0;
400 }
401 
402 static int
403 ipw_dma_alloc(struct ipw_softc *sc)
404 {
405 	struct ipw_soft_bd *sbd;
406 	struct ipw_soft_hdr *shdr;
407 	struct ipw_soft_buf *sbuf;
408 	bus_addr_t physaddr;
409 	int error, i;
410 
411 	/*
412 	 * Allocate and map tx ring.
413 	 */
414 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
415 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL,
416 	    NULL, &sc->tbd_dmat);
417 	if (error != 0) {
418 		device_printf(sc->sc_dev, "could not create tx ring DMA tag\n");
419 		goto fail;
420 	}
421 
422 	error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list,
423 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map);
424 	if (error != 0) {
425 		device_printf(sc->sc_dev,
426 		    "could not allocate tx ring DMA memory\n");
427 		goto fail;
428 	}
429 
430 	error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list,
431 	    IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0);
432 	if (error != 0) {
433 		device_printf(sc->sc_dev, "could not map tx ring DMA memory\n");
434 		goto fail;
435 	}
436 
437 	/*
438 	 * Allocate and map rx ring.
439 	 */
440 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
441 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL,
442 	    NULL, &sc->rbd_dmat);
443 	if (error != 0) {
444 		device_printf(sc->sc_dev, "could not create rx ring DMA tag\n");
445 		goto fail;
446 	}
447 
448 	error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list,
449 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map);
450 	if (error != 0) {
451 		device_printf(sc->sc_dev,
452 		    "could not allocate rx ring DMA memory\n");
453 		goto fail;
454 	}
455 
456 	error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list,
457 	    IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0);
458 	if (error != 0) {
459 		device_printf(sc->sc_dev, "could not map rx ring DMA memory\n");
460 		goto fail;
461 	}
462 
463 	/*
464 	 * Allocate and map status ring.
465 	 */
466 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
467 	    BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0,
468 	    NULL, NULL, &sc->status_dmat);
469 	if (error != 0) {
470 		device_printf(sc->sc_dev,
471 		    "could not create status ring DMA tag\n");
472 		goto fail;
473 	}
474 
475 	error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list,
476 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map);
477 	if (error != 0) {
478 		device_printf(sc->sc_dev,
479 		    "could not allocate status ring DMA memory\n");
480 		goto fail;
481 	}
482 
483 	error = bus_dmamap_load(sc->status_dmat, sc->status_map,
484 	    sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys,
485 	    0);
486 	if (error != 0) {
487 		device_printf(sc->sc_dev,
488 		    "could not map status ring DMA memory\n");
489 		goto fail;
490 	}
491 
492 	/*
493 	 * Allocate command DMA map.
494 	 */
495 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
496 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1,
497 	    sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat);
498 	if (error != 0) {
499 		device_printf(sc->sc_dev, "could not create command DMA tag\n");
500 		goto fail;
501 	}
502 
503 	error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map);
504 	if (error != 0) {
505 		device_printf(sc->sc_dev,
506 		    "could not create command DMA map\n");
507 		goto fail;
508 	}
509 
510 	/*
511 	 * Allocate headers DMA maps.
512 	 */
513 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
514 	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1,
515 	    sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat);
516 	if (error != 0) {
517 		device_printf(sc->sc_dev, "could not create header DMA tag\n");
518 		goto fail;
519 	}
520 
521 	SLIST_INIT(&sc->free_shdr);
522 	for (i = 0; i < IPW_NDATA; i++) {
523 		shdr = &sc->shdr_list[i];
524 		error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map);
525 		if (error != 0) {
526 			device_printf(sc->sc_dev,
527 			    "could not create header DMA map\n");
528 			goto fail;
529 		}
530 		SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
531 	}
532 
533 	/*
534 	 * Allocate tx buffers DMA maps.
535 	 */
536 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
537 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0,
538 	    NULL, NULL, &sc->txbuf_dmat);
539 	if (error != 0) {
540 		device_printf(sc->sc_dev, "could not create tx DMA tag\n");
541 		goto fail;
542 	}
543 
544 	SLIST_INIT(&sc->free_sbuf);
545 	for (i = 0; i < IPW_NDATA; i++) {
546 		sbuf = &sc->tx_sbuf_list[i];
547 		error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map);
548 		if (error != 0) {
549 			device_printf(sc->sc_dev,
550 			    "could not create tx DMA map\n");
551 			goto fail;
552 		}
553 		SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
554 	}
555 
556 	/*
557 	 * Initialize tx ring.
558 	 */
559 	for (i = 0; i < IPW_NTBD; i++) {
560 		sbd = &sc->stbd_list[i];
561 		sbd->bd = &sc->tbd_list[i];
562 		sbd->type = IPW_SBD_TYPE_NOASSOC;
563 	}
564 
565 	/*
566 	 * Pre-allocate rx buffers and DMA maps.
567 	 */
568 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
569 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
570 	    NULL, &sc->rxbuf_dmat);
571 	if (error != 0) {
572 		device_printf(sc->sc_dev, "could not create rx DMA tag\n");
573 		goto fail;
574 	}
575 
576 	for (i = 0; i < IPW_NRBD; i++) {
577 		sbd = &sc->srbd_list[i];
578 		sbuf = &sc->rx_sbuf_list[i];
579 		sbd->bd = &sc->rbd_list[i];
580 
581 		sbuf->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
582 		if (sbuf->m == NULL) {
583 			device_printf(sc->sc_dev,
584 			    "could not allocate rx mbuf\n");
585 			error = ENOMEM;
586 			goto fail;
587 		}
588 
589 		error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map);
590 		if (error != 0) {
591 			device_printf(sc->sc_dev,
592 			    "could not create rx DMA map\n");
593 			goto fail;
594 		}
595 
596 		error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
597 		    mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
598 		    &physaddr, 0);
599 		if (error != 0) {
600 			device_printf(sc->sc_dev,
601 			    "could not map rx DMA memory\n");
602 			goto fail;
603 		}
604 
605 		sbd->type = IPW_SBD_TYPE_DATA;
606 		sbd->priv = sbuf;
607 		sbd->bd->physaddr = htole32(physaddr);
608 		sbd->bd->len = htole32(MCLBYTES);
609 	}
610 
611 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
612 
613 	return 0;
614 
615 fail:	ipw_release(sc);
616 	return error;
617 }
618 
619 static void
620 ipw_release(struct ipw_softc *sc)
621 {
622 	struct ipw_soft_buf *sbuf;
623 	int i;
624 
625 	if (sc->tbd_dmat != NULL) {
626 		if (sc->stbd_list != NULL) {
627 			bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map);
628 			bus_dmamem_free(sc->tbd_dmat, sc->tbd_list,
629 			    sc->tbd_map);
630 		}
631 		bus_dma_tag_destroy(sc->tbd_dmat);
632 	}
633 
634 	if (sc->rbd_dmat != NULL) {
635 		if (sc->rbd_list != NULL) {
636 			bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map);
637 			bus_dmamem_free(sc->rbd_dmat, sc->rbd_list,
638 			    sc->rbd_map);
639 		}
640 		bus_dma_tag_destroy(sc->rbd_dmat);
641 	}
642 
643 	if (sc->status_dmat != NULL) {
644 		if (sc->status_list != NULL) {
645 			bus_dmamap_unload(sc->status_dmat, sc->status_map);
646 			bus_dmamem_free(sc->status_dmat, sc->status_list,
647 			    sc->status_map);
648 		}
649 		bus_dma_tag_destroy(sc->status_dmat);
650 	}
651 
652 	for (i = 0; i < IPW_NTBD; i++)
653 		ipw_release_sbd(sc, &sc->stbd_list[i]);
654 
655 	if (sc->cmd_dmat != NULL) {
656 		bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map);
657 		bus_dma_tag_destroy(sc->cmd_dmat);
658 	}
659 
660 	if (sc->hdr_dmat != NULL) {
661 		for (i = 0; i < IPW_NDATA; i++)
662 			bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map);
663 		bus_dma_tag_destroy(sc->hdr_dmat);
664 	}
665 
666 	if (sc->txbuf_dmat != NULL) {
667 		for (i = 0; i < IPW_NDATA; i++) {
668 			bus_dmamap_destroy(sc->txbuf_dmat,
669 			    sc->tx_sbuf_list[i].map);
670 		}
671 		bus_dma_tag_destroy(sc->txbuf_dmat);
672 	}
673 
674 	if (sc->rxbuf_dmat != NULL) {
675 		for (i = 0; i < IPW_NRBD; i++) {
676 			sbuf = &sc->rx_sbuf_list[i];
677 			if (sbuf->m != NULL) {
678 				bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map,
679 				    BUS_DMASYNC_POSTREAD);
680 				bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
681 				m_freem(sbuf->m);
682 			}
683 			bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map);
684 		}
685 		bus_dma_tag_destroy(sc->rxbuf_dmat);
686 	}
687 }
688 
689 static int
690 ipw_shutdown(device_t dev)
691 {
692 	struct ipw_softc *sc = device_get_softc(dev);
693 
694 	ipw_stop(sc);
695 
696 	return 0;
697 }
698 
699 static int
700 ipw_suspend(device_t dev)
701 {
702 	struct ipw_softc *sc = device_get_softc(dev);
703 
704 	ipw_stop(sc);
705 
706 	return 0;
707 }
708 
709 static int
710 ipw_resume(device_t dev)
711 {
712 	struct ipw_softc *sc = device_get_softc(dev);
713 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
714 
715 	mtx_lock(&sc->sc_mtx);
716 
717 	pci_write_config(dev, 0x41, 0, 1);
718 
719 	if (ifp->if_flags & IFF_UP) {
720 		ifp->if_init(ifp->if_softc);
721 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
722 			ifp->if_start(ifp);
723 	}
724 
725 	mtx_unlock(&sc->sc_mtx);
726 
727 	return 0;
728 }
729 
730 static int
731 ipw_media_change(struct ifnet *ifp)
732 {
733 	struct ipw_softc *sc = ifp->if_softc;
734 	int error;
735 
736 	mtx_lock(&sc->sc_mtx);
737 
738 	error = ieee80211_media_change(ifp);
739 	if (error != ENETRESET) {
740 		mtx_unlock(&sc->sc_mtx);
741 		return error;
742 	}
743 
744 	if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
745 		ipw_init(sc);
746 
747 	mtx_unlock(&sc->sc_mtx);
748 
749 	return 0;
750 }
751 
752 /*
753  * The firmware automatically adapts the transmit speed. We report its current
754  * value here.
755  */
756 static void
757 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
758 {
759 #define N(a)	(sizeof (a) / sizeof (a[0]))
760 	struct ipw_softc *sc = ifp->if_softc;
761 	struct ieee80211com *ic = &sc->sc_ic;
762 	static const struct {
763 		uint32_t	val;
764 		int		rate;
765 	} rates[] = {
766 		{ IPW_RATE_DS1,   2 },
767 		{ IPW_RATE_DS2,   4 },
768 		{ IPW_RATE_DS5,  11 },
769 		{ IPW_RATE_DS11, 22 },
770 	};
771 	uint32_t val;
772 	int rate, i;
773 
774 	imr->ifm_status = IFM_AVALID;
775 	imr->ifm_active = IFM_IEEE80211;
776 	if (ic->ic_state == IEEE80211_S_RUN)
777 		imr->ifm_status |= IFM_ACTIVE;
778 
779 	/* read current transmission rate from adapter */
780 	val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf;
781 
782 	/* convert ipw rate to 802.11 rate */
783 	for (i = 0; i < N(rates) && rates[i].val != val; i++);
784 	rate = (i < N(rates)) ? rates[i].rate : 0;
785 
786 	imr->ifm_active |= IFM_IEEE80211_11B;
787 	imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
788 	switch (ic->ic_opmode) {
789 	case IEEE80211_M_STA:
790 		break;
791 
792 	case IEEE80211_M_IBSS:
793 		imr->ifm_active |= IFM_IEEE80211_IBSS;
794 		break;
795 
796 	case IEEE80211_M_MONITOR:
797 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
798 		break;
799 
800 	case IEEE80211_M_AHDEMO:
801 	case IEEE80211_M_HOSTAP:
802 	case IEEE80211_M_WDS:
803 		/* should not get there */
804 		break;
805 	}
806 #undef N
807 }
808 
809 static int
810 ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
811 {
812 	struct ifnet *ifp = ic->ic_ifp;
813 	struct ipw_softc *sc = ifp->if_softc;
814 	uint8_t macaddr[IEEE80211_ADDR_LEN];
815 	uint32_t len;
816 
817 	switch (nstate) {
818 	case IEEE80211_S_RUN:
819 		DELAY(200); /* firmware needs a short delay here */
820 
821 		len = IEEE80211_ADDR_LEN;
822 		ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len);
823 
824 #if 0
825 		ni = ieee80211_find_node(&ic->ic_scan, macaddr);
826 		if (ni == NULL)
827 			break;
828 
829 		ieee80211_ref_node(ni);
830 		ieee80211_sta_join(ic, ni);
831 		ieee80211_node_authorize(ni);
832 
833 		if (ic->ic_opmode == IEEE80211_M_STA)
834 			ieee80211_notify_node_join(ic, ni, 1);
835 #endif
836 		break;
837 
838 	case IEEE80211_S_INIT:
839 	case IEEE80211_S_SCAN:
840 	case IEEE80211_S_AUTH:
841 	case IEEE80211_S_ASSOC:
842 		break;
843 	}
844 
845 	ic->ic_state = nstate;
846 
847 	return 0;
848 }
849 
850 /*
851  * Read 16 bits at address 'addr' from the serial EEPROM.
852  */
853 static uint16_t
854 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
855 {
856 	uint32_t tmp;
857 	uint16_t val;
858 	int n;
859 
860 	/* clock C once before the first command */
861 	IPW_EEPROM_CTL(sc, 0);
862 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
863 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
864 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
865 
866 	/* write start bit (1) */
867 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
868 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
869 
870 	/* write READ opcode (10) */
871 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
872 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
873 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
874 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
875 
876 	/* write address A7-A0 */
877 	for (n = 7; n >= 0; n--) {
878 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
879 		    (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
880 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
881 		    (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
882 	}
883 
884 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
885 
886 	/* read data Q15-Q0 */
887 	val = 0;
888 	for (n = 15; n >= 0; n--) {
889 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
890 		IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
891 		tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
892 		val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
893 	}
894 
895 	IPW_EEPROM_CTL(sc, 0);
896 
897 	/* clear Chip Select and clock C */
898 	IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
899 	IPW_EEPROM_CTL(sc, 0);
900 	IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
901 
902 	return le16toh(val);
903 }
904 
905 static void
906 ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
907 {
908 	struct ipw_cmd *cmd;
909 
910 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
911 
912 	cmd = mtod(sbuf->m, struct ipw_cmd *);
913 
914 	DPRINTFN(2, ("cmd ack'ed (%u, %u, %u, %u, %u)\n", le32toh(cmd->type),
915 	    le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
916 	    le32toh(cmd->status)));
917 
918 	wakeup(sc);
919 }
920 
921 static void
922 ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
923 {
924 	struct ieee80211com *ic = &sc->sc_ic;
925 	uint32_t state;
926 
927 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
928 
929 	state = le32toh(*mtod(sbuf->m, uint32_t *));
930 
931 	DPRINTFN(2, ("entering state %u\n", state));
932 
933 	switch (state) {
934 	case IPW_STATE_ASSOCIATED:
935 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
936 		break;
937 
938 	case IPW_STATE_SCANNING:
939 		/* don't leave run state on background scan */
940 		if (ic->ic_state != IEEE80211_S_RUN)
941 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
942 
943 		ic->ic_flags |= IEEE80211_F_SCAN;
944 		break;
945 
946 	case IPW_STATE_SCAN_COMPLETE:
947 		ieee80211_notify_scan_done(ic);
948 		ic->ic_flags &= ~IEEE80211_F_SCAN;
949 		break;
950 
951 	case IPW_STATE_ASSOCIATION_LOST:
952 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
953 		break;
954 
955 	case IPW_STATE_RADIO_DISABLED:
956 		ic->ic_ifp->if_flags &= ~IFF_UP;
957 		ipw_stop(sc);
958 		break;
959 	}
960 }
961 
962 /*
963  * XXX: Hack to set the current channel to the value advertised in beacons or
964  * probe responses. Only used during AP detection.
965  */
966 static void
967 ipw_fix_channel(struct ieee80211com *ic, struct mbuf *m)
968 {
969 	struct ieee80211_frame *wh;
970 	uint8_t subtype;
971 	uint8_t *frm, *efrm;
972 
973 	wh = mtod(m, struct ieee80211_frame *);
974 
975 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
976 		return;
977 
978 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
979 
980 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
981 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
982 		return;
983 
984 	frm = (uint8_t *)(wh + 1);
985 	efrm = mtod(m, uint8_t *) + m->m_len;
986 
987 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
988 	while (frm < efrm) {
989 		if (*frm == IEEE80211_ELEMID_DSPARMS)
990 #if IEEE80211_CHAN_MAX < 255
991 		if (frm[2] <= IEEE80211_CHAN_MAX)
992 #endif
993 			ic->ic_bsschan = ieee80211_find_channel(ic,
994 				ieee80211_ieee2mhz(frm[2], 0),
995 				IEEE80211_MODE_AUTO);
996 
997 		frm += frm[1] + 2;
998 	}
999 }
1000 
1001 static void
1002 ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
1003     struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
1004 {
1005 	struct ieee80211com *ic = &sc->sc_ic;
1006 	struct ifnet *ifp = ic->ic_ifp;
1007 	struct mbuf *mnew, *m;
1008 	struct ieee80211_frame *wh;
1009 	struct ieee80211_node *ni;
1010 	bus_addr_t physaddr;
1011 	int error;
1012 
1013 	DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
1014 	    status->rssi));
1015 
1016 	if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
1017 	    le32toh(status->len) > MCLBYTES)
1018 		return;
1019 
1020 	/*
1021 	 * Try to allocate a new mbuf for this ring element and load it before
1022 	 * processing the current mbuf. If the ring element cannot be loaded,
1023 	 * drop the received packet and reuse the old mbuf. In the unlikely
1024 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1025 	 */
1026 	mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1027 	if (mnew == NULL) {
1028 		ifp->if_ierrors++;
1029 		return;
1030 	}
1031 
1032 	bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
1033 	bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
1034 
1035 	error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *),
1036 	    MCLBYTES, ipw_dma_map_addr, &physaddr, 0);
1037 	if (error != 0) {
1038 		m_freem(mnew);
1039 
1040 		/* try to reload the old mbuf */
1041 		error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
1042 		    mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
1043 		    &physaddr, 0);
1044 		if (error != 0) {
1045 			/* very unlikely that it will fail... */
1046 			panic("%s: could not load old rx mbuf",
1047 			    device_get_name(sc->sc_dev));
1048 		}
1049 		ifp->if_ierrors++;
1050 		return;
1051 	}
1052 
1053 	/*
1054 	 * New mbuf successfully loaded, update Rx ring and continue
1055 	 * processing.
1056 	 */
1057 	m = sbuf->m;
1058 	sbuf->m = mnew;
1059 	sbd->bd->physaddr = htole32(physaddr);
1060 
1061 	/* finalize mbuf */
1062 	m->m_pkthdr.rcvif = ifp;
1063 	m->m_pkthdr.len = m->m_len = le32toh(status->len);
1064 
1065 	if (bpf_peers_present(sc->sc_drvbpf)) {
1066 		struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
1067 
1068 		tap->wr_flags = 0;
1069 		tap->wr_antsignal = status->rssi;
1070 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1071 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1072 
1073 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1074 	}
1075 
1076 	if (ic->ic_state == IEEE80211_S_SCAN)
1077 		ipw_fix_channel(ic, m);
1078 
1079 	wh = mtod(m, struct ieee80211_frame *);
1080 	mtx_unlock(&sc->sc_mtx);
1081 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1082 
1083 	/* send the frame to the 802.11 layer */
1084 	ieee80211_input(ic, m, ni, status->rssi, -95/*XXX*/, 0);
1085 
1086 	/* node is no longer needed */
1087 	ieee80211_free_node(ni);
1088 	mtx_lock(&sc->sc_mtx);
1089 
1090 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
1091 }
1092 
1093 static void
1094 ipw_rx_intr(struct ipw_softc *sc)
1095 {
1096 	struct ipw_status *status;
1097 	struct ipw_soft_bd *sbd;
1098 	struct ipw_soft_buf *sbuf;
1099 	uint32_t r, i;
1100 
1101 	if (!(sc->flags & IPW_FLAG_FW_INITED))
1102 		return;
1103 
1104 	r = CSR_READ_4(sc, IPW_CSR_RX_READ);
1105 
1106 	bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD);
1107 
1108 	for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
1109 		status = &sc->status_list[i];
1110 		sbd = &sc->srbd_list[i];
1111 		sbuf = sbd->priv;
1112 
1113 		switch (le16toh(status->code) & 0xf) {
1114 		case IPW_STATUS_CODE_COMMAND:
1115 			ipw_command_intr(sc, sbuf);
1116 			break;
1117 
1118 		case IPW_STATUS_CODE_NEWSTATE:
1119 			ipw_newstate_intr(sc, sbuf);
1120 			break;
1121 
1122 		case IPW_STATUS_CODE_DATA_802_3:
1123 		case IPW_STATUS_CODE_DATA_802_11:
1124 			ipw_data_intr(sc, status, sbd, sbuf);
1125 			break;
1126 
1127 		case IPW_STATUS_CODE_NOTIFICATION:
1128 			DPRINTFN(2, ("received notification\n"));
1129 			break;
1130 
1131 		default:
1132 			device_printf(sc->sc_dev, "unknown status code %u\n",
1133 			    le16toh(status->code));
1134 		}
1135 
1136 		/* firmware was killed, stop processing received frames */
1137 		if (!(sc->flags & IPW_FLAG_FW_INITED))
1138 			return;
1139 
1140 		sbd->bd->flags = 0;
1141 	}
1142 
1143 	bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
1144 
1145 	/* kick the firmware */
1146 	sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
1147 	CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
1148 }
1149 
1150 static void
1151 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
1152 {
1153 	struct ipw_soft_hdr *shdr;
1154 	struct ipw_soft_buf *sbuf;
1155 
1156 	switch (sbd->type) {
1157 	case IPW_SBD_TYPE_COMMAND:
1158 		bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map,
1159 		    BUS_DMASYNC_POSTWRITE);
1160 		bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map);
1161 		break;
1162 
1163 	case IPW_SBD_TYPE_HEADER:
1164 		shdr = sbd->priv;
1165 		bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE);
1166 		bus_dmamap_unload(sc->hdr_dmat, shdr->map);
1167 		SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
1168 		break;
1169 
1170 	case IPW_SBD_TYPE_DATA:
1171 		sbuf = sbd->priv;
1172 		bus_dmamap_sync(sc->txbuf_dmat, sbuf->map,
1173 		    BUS_DMASYNC_POSTWRITE);
1174 		bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
1175 		SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
1176 
1177 		if (sbuf->m->m_flags & M_TXCB)
1178 			ieee80211_process_callback(sbuf->ni, sbuf->m, 0/*XXX*/);
1179 		m_freem(sbuf->m);
1180 		ieee80211_free_node(sbuf->ni);
1181 
1182 		sc->sc_tx_timer = 0;
1183 		break;
1184 	}
1185 
1186 	sbd->type = IPW_SBD_TYPE_NOASSOC;
1187 }
1188 
1189 static void
1190 ipw_tx_intr(struct ipw_softc *sc)
1191 {
1192 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1193 	struct ipw_soft_bd *sbd;
1194 	uint32_t r, i;
1195 
1196 	if (!(sc->flags & IPW_FLAG_FW_INITED))
1197 		return;
1198 
1199 	r = CSR_READ_4(sc, IPW_CSR_TX_READ);
1200 
1201 	for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
1202 		sbd = &sc->stbd_list[i];
1203 
1204 		if (sbd->type == IPW_SBD_TYPE_DATA)
1205 			ifp->if_opackets++;
1206 
1207 		ipw_release_sbd(sc, sbd);
1208 		sc->txfree++;
1209 	}
1210 
1211 	/* remember what the firmware has processed */
1212 	sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
1213 
1214 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1215 	ipw_start(ifp);
1216 }
1217 
1218 static void
1219 ipw_intr(void *arg)
1220 {
1221 	struct ipw_softc *sc = arg;
1222 	uint32_t r;
1223 
1224 	mtx_lock(&sc->sc_mtx);
1225 
1226 	if ((r = CSR_READ_4(sc, IPW_CSR_INTR)) == 0 || r == 0xffffffff) {
1227 		mtx_unlock(&sc->sc_mtx);
1228 		return;
1229 	}
1230 
1231 	/* disable interrupts */
1232 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1233 
1234 	/* acknowledge all interrupts */
1235 	CSR_WRITE_4(sc, IPW_CSR_INTR, r);
1236 
1237 	if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
1238 		device_printf(sc->sc_dev, "firmware error\n");
1239 		taskqueue_enqueue_fast(taskqueue_fast, &sc->sc_init_task);
1240 		r = 0;	/* don't process more interrupts */
1241 	}
1242 
1243 	if (r & IPW_INTR_FW_INIT_DONE)
1244 		wakeup(sc);
1245 
1246 	if (r & IPW_INTR_RX_TRANSFER)
1247 		ipw_rx_intr(sc);
1248 
1249 	if (r & IPW_INTR_TX_TRANSFER)
1250 		ipw_tx_intr(sc);
1251 
1252 	/* re-enable interrupts */
1253 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1254 
1255 	mtx_unlock(&sc->sc_mtx);
1256 }
1257 
1258 static void
1259 ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1260 {
1261 	if (error != 0)
1262 		return;
1263 
1264 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1265 
1266 	*(bus_addr_t *)arg = segs[0].ds_addr;
1267 }
1268 
1269 /*
1270  * Send a command to the firmware and wait for the acknowledgement.
1271  */
1272 static int
1273 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
1274 {
1275 	struct ipw_soft_bd *sbd;
1276 	bus_addr_t physaddr;
1277 	int error;
1278 
1279 	sbd = &sc->stbd_list[sc->txcur];
1280 
1281 	error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd,
1282 	    sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0);
1283 	if (error != 0) {
1284 		device_printf(sc->sc_dev, "could not map command DMA memory\n");
1285 		return error;
1286 	}
1287 
1288 	sc->cmd.type = htole32(type);
1289 	sc->cmd.subtype = 0;
1290 	sc->cmd.len = htole32(len);
1291 	sc->cmd.seq = 0;
1292 	memcpy(sc->cmd.data, data, len);
1293 
1294 	sbd->type = IPW_SBD_TYPE_COMMAND;
1295 	sbd->bd->physaddr = htole32(physaddr);
1296 	sbd->bd->len = htole32(sizeof (struct ipw_cmd));
1297 	sbd->bd->nfrag = 1;
1298 	sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
1299 	    IPW_BD_FLAG_TX_LAST_FRAGMENT;
1300 
1301 	bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE);
1302 	bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
1303 
1304 	DPRINTFN(2, ("sending command (%u, %u, %u, %u)\n", type, 0, 0, len));
1305 
1306 	/* kick firmware */
1307 	sc->txfree--;
1308 	sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1309 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1310 
1311 	/* wait at most one second for command to complete */
1312 	return msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz);
1313 }
1314 
1315 static int
1316 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
1317 {
1318 	struct ipw_softc *sc = ifp->if_softc;
1319 	struct ieee80211com *ic = &sc->sc_ic;
1320 	struct ieee80211_frame *wh;
1321 	struct ipw_soft_bd *sbd;
1322 	struct ipw_soft_hdr *shdr;
1323 	struct ipw_soft_buf *sbuf;
1324 	struct ieee80211_key *k;
1325 	struct mbuf *mnew;
1326 	bus_dma_segment_t segs[IPW_MAX_NSEG];
1327 	bus_addr_t physaddr;
1328 	int nsegs, error, i;
1329 
1330 	wh = mtod(m0, struct ieee80211_frame *);
1331 
1332 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1333 		k = ieee80211_crypto_encap(ic, ni, m0);
1334 		if (k == NULL) {
1335 			m_freem(m0);
1336 			return ENOBUFS;
1337 		}
1338 
1339 		/* packet header may have moved, reset our local pointer */
1340 		wh = mtod(m0, struct ieee80211_frame *);
1341 	}
1342 
1343 	if (bpf_peers_present(sc->sc_drvbpf)) {
1344 		struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
1345 
1346 		tap->wt_flags = 0;
1347 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1348 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1349 
1350 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1351 	}
1352 
1353 	shdr = SLIST_FIRST(&sc->free_shdr);
1354 	sbuf = SLIST_FIRST(&sc->free_sbuf);
1355 	KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool"));
1356 
1357 	shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND);
1358 	shdr->hdr.subtype = 0;
1359 	shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
1360 	shdr->hdr.encrypt = 0;
1361 	shdr->hdr.keyidx = 0;
1362 	shdr->hdr.keysz = 0;
1363 	shdr->hdr.fragmentsz = 0;
1364 	IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2);
1365 	if (ic->ic_opmode == IEEE80211_M_STA)
1366 		IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3);
1367 	else
1368 		IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1);
1369 
1370 	/* trim IEEE802.11 header */
1371 	m_adj(m0, sizeof (struct ieee80211_frame));
1372 
1373 	error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs,
1374 	    &nsegs, 0);
1375 	if (error != 0 && error != EFBIG) {
1376 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1377 		    error);
1378 		m_freem(m0);
1379 		return error;
1380 	}
1381 	if (error != 0) {
1382 		mnew = m_defrag(m0, M_DONTWAIT);
1383 		if (mnew == NULL) {
1384 			device_printf(sc->sc_dev,
1385 			    "could not defragment mbuf\n");
1386 			m_freem(m0);
1387 			return ENOBUFS;
1388 		}
1389 		m0 = mnew;
1390 
1391 		error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0,
1392 		    segs, &nsegs, 0);
1393 		if (error != 0) {
1394 			device_printf(sc->sc_dev,
1395 			    "could not map mbuf (error %d)\n", error);
1396 			m_freem(m0);
1397 			return error;
1398 		}
1399 	}
1400 
1401 	error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr,
1402 	    sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0);
1403 	if (error != 0) {
1404 		device_printf(sc->sc_dev, "could not map header DMA memory\n");
1405 		bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
1406 		m_freem(m0);
1407 		return error;
1408 	}
1409 
1410 	SLIST_REMOVE_HEAD(&sc->free_sbuf, next);
1411 	SLIST_REMOVE_HEAD(&sc->free_shdr, next);
1412 
1413 	sbd = &sc->stbd_list[sc->txcur];
1414 	sbd->type = IPW_SBD_TYPE_HEADER;
1415 	sbd->priv = shdr;
1416 	sbd->bd->physaddr = htole32(physaddr);
1417 	sbd->bd->len = htole32(sizeof (struct ipw_hdr));
1418 	sbd->bd->nfrag = 1 + nsegs;
1419 	sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
1420 	    IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1421 
1422 	DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n",
1423 	    shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted,
1424 	    shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr,
1425 	    ":"));
1426 
1427 	sc->txfree--;
1428 	sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1429 
1430 	sbuf->m = m0;
1431 	sbuf->ni = ni;
1432 
1433 	for (i = 0; i < nsegs; i++) {
1434 		sbd = &sc->stbd_list[sc->txcur];
1435 
1436 		sbd->bd->physaddr = htole32(segs[i].ds_addr);
1437 		sbd->bd->len = htole32(segs[i].ds_len);
1438 		sbd->bd->nfrag = 0;
1439 		sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
1440 		if (i == nsegs - 1) {
1441 			sbd->type = IPW_SBD_TYPE_DATA;
1442 			sbd->priv = sbuf;
1443 			sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
1444 		} else {
1445 			sbd->type = IPW_SBD_TYPE_NOASSOC;
1446 			sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
1447 		}
1448 
1449 		DPRINTFN(5, ("sending fragment (%d, %d)\n", i, segs[i].ds_len));
1450 
1451 		sc->txfree--;
1452 		sc->txcur = (sc->txcur + 1) % IPW_NTBD;
1453 	}
1454 
1455 	bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE);
1456 	bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE);
1457 	bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
1458 
1459 	/* kick firmware */
1460 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
1461 
1462 	return 0;
1463 }
1464 
1465 static void
1466 ipw_start(struct ifnet *ifp)
1467 {
1468 	struct ipw_softc *sc = ifp->if_softc;
1469 	struct ieee80211com *ic = &sc->sc_ic;
1470 	struct mbuf *m0;
1471 	struct ether_header *eh;
1472 	struct ieee80211_node *ni;
1473 
1474 	mtx_lock(&sc->sc_mtx);
1475 
1476 	if (ic->ic_state != IEEE80211_S_RUN) {
1477 		mtx_unlock(&sc->sc_mtx);
1478 		return;
1479 	}
1480 
1481 	for (;;) {
1482 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1483 		if (m0 == NULL)
1484 			break;
1485 
1486 		if (sc->txfree < 1 + IPW_MAX_NSEG) {
1487 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1488 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1489 			break;
1490 		}
1491 
1492 		if (m0->m_len < sizeof (struct ether_header) &&
1493 		    (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL)
1494 			continue;
1495 
1496 		eh = mtod(m0, struct ether_header *);
1497 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1498 		if (ni == NULL) {
1499 			m_freem(m0);
1500 			continue;
1501 		}
1502 		BPF_MTAP(ifp, m0);
1503 
1504 		m0 = ieee80211_encap(ic, m0, ni);
1505 		if (m0 == NULL) {
1506 			ieee80211_free_node(ni);
1507 			continue;
1508 		}
1509 
1510 		if (bpf_peers_present(ic->ic_rawbpf))
1511 			bpf_mtap(ic->ic_rawbpf, m0);
1512 
1513 		if (ipw_tx_start(ifp, m0, ni) != 0) {
1514 			ieee80211_free_node(ni);
1515 			ifp->if_oerrors++;
1516 			break;
1517 		}
1518 
1519 		/* start watchdog timer */
1520 		sc->sc_tx_timer = 5;
1521 		ifp->if_timer = 1;
1522 	}
1523 
1524 	mtx_unlock(&sc->sc_mtx);
1525 }
1526 
1527 static void
1528 ipw_watchdog(struct ifnet *ifp)
1529 {
1530 	struct ipw_softc *sc = ifp->if_softc;
1531 
1532 	mtx_lock(&sc->sc_mtx);
1533 
1534 	ifp->if_timer = 0;
1535 
1536 	if (sc->sc_tx_timer > 0) {
1537 		if (--sc->sc_tx_timer == 0) {
1538 			if_printf(ifp, "device timeout\n");
1539 			ifp->if_oerrors++;
1540 			taskqueue_enqueue_fast(taskqueue_fast,
1541 			    &sc->sc_init_task);
1542 			mtx_unlock(&sc->sc_mtx);
1543 			return;
1544 		}
1545 		ifp->if_timer = 1;
1546 	}
1547 
1548 	mtx_unlock(&sc->sc_mtx);
1549 }
1550 
1551 static int
1552 ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1553 {
1554 	struct ipw_softc *sc = ifp->if_softc;
1555 	struct ieee80211com *ic = &sc->sc_ic;
1556 	int error = 0;
1557 
1558 	mtx_lock(&sc->sc_mtx);
1559 
1560 	switch (cmd) {
1561 	case SIOCSIFFLAGS:
1562 		if (ifp->if_flags & IFF_UP) {
1563 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1564 				ipw_init(sc);
1565 		} else {
1566 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1567 				ipw_stop(sc);
1568 		}
1569 		break;
1570 
1571 	default:
1572 		error = ieee80211_ioctl(ic, cmd, data);
1573 	}
1574 
1575 	if (error == ENETRESET) {
1576 		if ((ifp->if_flags & IFF_UP) &&
1577 		    (ifp->if_drv_flags & IFF_DRV_RUNNING))
1578 			ipw_init(sc);
1579 		error = 0;
1580 	}
1581 
1582 	mtx_unlock(&sc->sc_mtx);
1583 
1584 	return error;
1585 }
1586 
1587 static void
1588 ipw_stop_master(struct ipw_softc *sc)
1589 {
1590 	uint32_t tmp;
1591 	int ntries;
1592 
1593 	/* disable interrupts */
1594 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
1595 
1596 	CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
1597 	for (ntries = 0; ntries < 50; ntries++) {
1598 		if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
1599 			break;
1600 		DELAY(10);
1601 	}
1602 	if (ntries == 50)
1603 		device_printf(sc->sc_dev, "timeout waiting for master\n");
1604 
1605 	tmp = CSR_READ_4(sc, IPW_CSR_RST);
1606 	CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET);
1607 
1608 	sc->flags &= ~IPW_FLAG_FW_INITED;
1609 }
1610 
1611 static int
1612 ipw_reset(struct ipw_softc *sc)
1613 {
1614 	uint32_t tmp;
1615 	int ntries;
1616 
1617 	ipw_stop_master(sc);
1618 
1619 	/* move adapter to D0 state */
1620 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1621 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
1622 
1623 	/* wait for clock stabilization */
1624 	for (ntries = 0; ntries < 1000; ntries++) {
1625 		if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
1626 			break;
1627 		DELAY(200);
1628 	}
1629 	if (ntries == 1000)
1630 		return EIO;
1631 
1632 	tmp =  CSR_READ_4(sc, IPW_CSR_RST);
1633 	CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET);
1634 
1635 	DELAY(10);
1636 
1637 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1638 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
1639 
1640 	return 0;
1641 }
1642 
1643 /*
1644  * Upload the microcode to the device.
1645  */
1646 static int
1647 ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size)
1648 {
1649 	int ntries;
1650 
1651 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
1652 	CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1653 
1654 	MEM_WRITE_2(sc, 0x220000, 0x0703);
1655 	MEM_WRITE_2(sc, 0x220000, 0x0707);
1656 
1657 	MEM_WRITE_1(sc, 0x210014, 0x72);
1658 	MEM_WRITE_1(sc, 0x210014, 0x72);
1659 
1660 	MEM_WRITE_1(sc, 0x210000, 0x40);
1661 	MEM_WRITE_1(sc, 0x210000, 0x00);
1662 	MEM_WRITE_1(sc, 0x210000, 0x40);
1663 
1664 	MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
1665 
1666 	MEM_WRITE_1(sc, 0x210000, 0x00);
1667 	MEM_WRITE_1(sc, 0x210000, 0x00);
1668 	MEM_WRITE_1(sc, 0x210000, 0x80);
1669 
1670 	MEM_WRITE_2(sc, 0x220000, 0x0703);
1671 	MEM_WRITE_2(sc, 0x220000, 0x0707);
1672 
1673 	MEM_WRITE_1(sc, 0x210014, 0x72);
1674 	MEM_WRITE_1(sc, 0x210014, 0x72);
1675 
1676 	MEM_WRITE_1(sc, 0x210000, 0x00);
1677 	MEM_WRITE_1(sc, 0x210000, 0x80);
1678 
1679 	for (ntries = 0; ntries < 10; ntries++) {
1680 		if (MEM_READ_1(sc, 0x210000) & 1)
1681 			break;
1682 		DELAY(10);
1683 	}
1684 	if (ntries == 10) {
1685 		device_printf(sc->sc_dev,
1686 		    "timeout waiting for ucode to initialize\n");
1687 		return EIO;
1688 	}
1689 
1690 	MEM_WRITE_4(sc, 0x3000e0, 0);
1691 
1692 	return 0;
1693 }
1694 
1695 /* set of macros to handle unaligned little endian data in firmware image */
1696 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
1697 #define GETLE16(p) ((p)[0] | (p)[1] << 8)
1698 static int
1699 ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size)
1700 {
1701 	const uint8_t *p, *end;
1702 	uint32_t tmp, dst;
1703 	uint16_t len;
1704 	int error;
1705 
1706 	p = fw;
1707 	end = fw + size;
1708 	while (p < end) {
1709 		dst = GETLE32(p); p += 4;
1710 		len = GETLE16(p); p += 2;
1711 
1712 		ipw_write_mem_1(sc, dst, p, len);
1713 		p += len;
1714 	}
1715 
1716 	CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
1717 	    IPW_IO_LED_OFF);
1718 
1719 	/* enable interrupts */
1720 	CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
1721 
1722 	/* kick the firmware */
1723 	CSR_WRITE_4(sc, IPW_CSR_RST, 0);
1724 
1725 	tmp = CSR_READ_4(sc, IPW_CSR_CTL);
1726 	CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY);
1727 
1728 	/* wait at most one second for firmware initialization to complete */
1729 	if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) {
1730 		device_printf(sc->sc_dev, "timeout waiting for firmware "
1731 		    "initialization to complete\n");
1732 		return error;
1733 	}
1734 
1735 	tmp = CSR_READ_4(sc, IPW_CSR_IO);
1736 	CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK |
1737 	    IPW_IO_GPIO3_MASK);
1738 
1739 	return 0;
1740 }
1741 
1742 static int
1743 ipw_config(struct ipw_softc *sc)
1744 {
1745 	struct ieee80211com *ic = &sc->sc_ic;
1746 	struct ifnet *ifp = ic->ic_ifp;
1747 	struct ipw_security security;
1748 	struct ieee80211_key *k;
1749 	struct ipw_wep_key wepkey;
1750 	struct ipw_scan_options options;
1751 	struct ipw_configuration config;
1752 	uint32_t data;
1753 	int error, i;
1754 
1755 	switch (ic->ic_opmode) {
1756 	case IEEE80211_M_STA:
1757 	case IEEE80211_M_HOSTAP:
1758 	case IEEE80211_M_WDS:		/* XXX */
1759 		data = htole32(IPW_MODE_BSS);
1760 		break;
1761 	case IEEE80211_M_IBSS:
1762 	case IEEE80211_M_AHDEMO:
1763 		data = htole32(IPW_MODE_IBSS);
1764 		break;
1765 	case IEEE80211_M_MONITOR:
1766 		data = htole32(IPW_MODE_MONITOR);
1767 		break;
1768 	}
1769 	DPRINTF(("Setting mode to %u\n", le32toh(data)));
1770 	error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
1771 	if (error != 0)
1772 		return error;
1773 
1774 	if (ic->ic_opmode == IEEE80211_M_IBSS ||
1775 	    ic->ic_opmode == IEEE80211_M_MONITOR) {
1776 		data = htole32(ieee80211_chan2ieee(ic, ic->ic_curchan));
1777 		DPRINTF(("Setting channel to %u\n", le32toh(data)));
1778 		error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
1779 		if (error != 0)
1780 			return error;
1781 	}
1782 
1783 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1784 		DPRINTF(("Enabling adapter\n"));
1785 		return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1786 	}
1787 
1788 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1789 	DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":"));
1790 	error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
1791 	    IEEE80211_ADDR_LEN);
1792 	if (error != 0)
1793 		return error;
1794 
1795 	config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
1796 	    IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
1797 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1798 		config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
1799 	if (ifp->if_flags & IFF_PROMISC)
1800 		config.flags |= htole32(IPW_CFG_PROMISCUOUS);
1801 	config.bss_chan = htole32(0x3fff); /* channels 1-14 */
1802 	config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
1803 	DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags)));
1804 	error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
1805 	if (error != 0)
1806 		return error;
1807 
1808 	data = htole32(0x3); /* 1, 2 */
1809 	DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
1810 	error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
1811 	if (error != 0)
1812 		return error;
1813 
1814 	data = htole32(0xf); /* 1, 2, 5.5, 11 */
1815 	DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
1816 	error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
1817 	if (error != 0)
1818 		return error;
1819 
1820 	data = htole32(IPW_POWER_MODE_CAM);
1821 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
1822 	error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
1823 	if (error != 0)
1824 		return error;
1825 
1826 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1827 		data = htole32(32); /* default value */
1828 		DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
1829 		error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
1830 		    sizeof data);
1831 		if (error != 0)
1832 			return error;
1833 	}
1834 
1835 	data = htole32(ic->ic_rtsthreshold);
1836 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
1837 	error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
1838 	if (error != 0)
1839 		return error;
1840 
1841 	data = htole32(ic->ic_fragthreshold);
1842 	DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
1843 	error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
1844 	if (error != 0)
1845 		return error;
1846 
1847 #ifdef IPW_DEBUG
1848 	if (ipw_debug > 0) {
1849 		printf("Setting ESSID to ");
1850 		ieee80211_print_essid(ic->ic_des_ssid[0].ssid,
1851 		    ic->ic_des_ssid[0].len);
1852 		printf("\n");
1853 	}
1854 #endif
1855 	error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_ssid[0].ssid,
1856 	    ic->ic_des_ssid[0].len);
1857 	if (error != 0)
1858 		return error;
1859 
1860 	/* no mandatory BSSID */
1861 	DPRINTF(("Setting mandatory BSSID to null\n"));
1862 	error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
1863 	if (error != 0)
1864 		return error;
1865 
1866 	if (ic->ic_flags & IEEE80211_F_DESBSSID) {
1867 		DPRINTF(("Setting desired BSSID to %6D\n", ic->ic_des_bssid,
1868 		    ":"));
1869 		error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
1870 		    ic->ic_des_bssid, IEEE80211_ADDR_LEN);
1871 		if (error != 0)
1872 			return error;
1873 	}
1874 
1875 	memset(&security, 0, sizeof security);
1876 	security.authmode = (ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED) ?
1877 	    IPW_AUTH_SHARED : IPW_AUTH_OPEN;
1878 	security.ciphers = htole32(IPW_CIPHER_NONE);
1879 	DPRINTF(("Setting authmode to %u\n", security.authmode));
1880 	error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
1881 	    sizeof security);
1882 	if (error != 0)
1883 		return error;
1884 
1885 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
1886 		k = ic->ic_crypto.cs_nw_keys;
1887 		for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
1888 			if (k->wk_keylen == 0)
1889 				continue;
1890 
1891 			wepkey.idx = i;
1892 			wepkey.len = k->wk_keylen;
1893 			memset(wepkey.key, 0, sizeof wepkey.key);
1894 			memcpy(wepkey.key, k->wk_key, k->wk_keylen);
1895 			DPRINTF(("Setting wep key index %u len %u\n",
1896 			    wepkey.idx, wepkey.len));
1897 			error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
1898 			    sizeof wepkey);
1899 			if (error != 0)
1900 				return error;
1901 		}
1902 
1903 		data = htole32(ic->ic_crypto.cs_def_txkey);
1904 		DPRINTF(("Setting wep tx key index to %u\n", le32toh(data)));
1905 		error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
1906 		    sizeof data);
1907 		if (error != 0)
1908 			return error;
1909 	}
1910 
1911 	data = htole32((ic->ic_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
1912 	DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
1913 	error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
1914 	if (error != 0)
1915 		return error;
1916 
1917 #if 0
1918 	struct ipw_wpa_ie ie;
1919 
1920 	memset(&ie, 0, sizeof ie);
1921 	ie.len = htole32(sizeof (struct ieee80211_ie_wpa));
1922 	DPRINTF(("Setting wpa ie\n"));
1923 	error = ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &ie, sizeof ie);
1924 	if (error != 0)
1925 		return error;
1926 #endif
1927 
1928 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1929 		data = htole32(ic->ic_bintval);
1930 		DPRINTF(("Setting beacon interval to %u\n", le32toh(data)));
1931 		error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
1932 		    sizeof data);
1933 		if (error != 0)
1934 			return error;
1935 	}
1936 
1937 	options.flags = 0;
1938 	options.channels = htole32(0x3fff); /* scan channels 1-14 */
1939 	DPRINTF(("Setting scan options to 0x%x\n", le32toh(options.flags)));
1940 	error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
1941 	if (error != 0)
1942 		return error;
1943 
1944 	/* finally, enable adapter (start scanning for an access point) */
1945 	DPRINTF(("Enabling adapter\n"));
1946 	return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
1947 }
1948 
1949 /*
1950  * Handler for sc_init_task.  This is a simple wrapper around ipw_init().
1951  * It is called on firmware panics or on watchdog timeouts.
1952  */
1953 static void
1954 ipw_init_task(void *context, int pending)
1955 {
1956 	ipw_init(context);
1957 }
1958 
1959 static void
1960 ipw_init(void *priv)
1961 {
1962 	struct ipw_softc *sc = priv;
1963 	struct ieee80211com *ic = &sc->sc_ic;
1964 	struct ifnet *ifp = ic->ic_ifp;
1965 	const struct firmware *fp;
1966 	const struct ipw_firmware_hdr *hdr;
1967 	const char *imagename, *fw;
1968 	int owned;
1969 
1970 	/*
1971 	 * ipw_init() is exposed through ifp->if_init so it might be called
1972 	 * without the driver's lock held.  Since msleep() doesn't like being
1973 	 * called on a recursed mutex, we acquire the driver's lock only if
1974 	 * we're not already holding it.
1975 	 */
1976 	if (!(owned = mtx_owned(&sc->sc_mtx)))
1977 		mtx_lock(&sc->sc_mtx);
1978 
1979 	/*
1980 	 * Avoid re-entrant calls.  We need to release the mutex in ipw_init()
1981 	 * when loading the firmware and we don't want to be called during this
1982 	 * operation.
1983 	 */
1984 	if (sc->flags & IPW_FLAG_INIT_LOCKED) {
1985 		if (!owned)
1986 			mtx_unlock(&sc->sc_mtx);
1987 		return;
1988 	}
1989 	sc->flags |= IPW_FLAG_INIT_LOCKED;
1990 
1991 	ipw_stop(sc);
1992 
1993 	if (ipw_reset(sc) != 0) {
1994 		device_printf(sc->sc_dev, "could not reset adapter\n");
1995 		goto fail1;
1996 	}
1997 
1998 	switch (ic->ic_opmode) {
1999 	case IEEE80211_M_STA:
2000 		imagename = "ipw_bss";
2001 		break;
2002 	case IEEE80211_M_IBSS:
2003 		imagename = "ipw_ibss";
2004 		break;
2005 	case IEEE80211_M_MONITOR:
2006 		imagename = "ipw_monitor";
2007 		break;
2008 	default:
2009 		imagename = NULL;	/* should not get there */
2010 	}
2011 
2012 	/*
2013 	 * Load firmware image using the firmware(9) subsystem.  We need to
2014 	 * release the driver's lock first.
2015 	 */
2016 	if (sc->sc_firmware == NULL || strcmp(sc->sc_firmware->name,
2017 	    imagename) != 0) {
2018 		mtx_unlock(&sc->sc_mtx);
2019 		if (sc->sc_firmware != NULL)
2020 			firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
2021 		sc->sc_firmware = firmware_get(imagename);
2022 		mtx_lock(&sc->sc_mtx);
2023 	}
2024 
2025 	if (sc->sc_firmware == NULL) {
2026 		device_printf(sc->sc_dev,
2027 		    "could not load firmware image '%s'\n", imagename);
2028 		goto fail1;
2029 	}
2030 
2031 	fp = sc->sc_firmware;
2032 	if (fp->datasize < sizeof *hdr) {
2033 		device_printf(sc->sc_dev,
2034 		    "firmware image too short %zu\n", fp->datasize);
2035 		goto fail2;
2036 	}
2037 
2038 	hdr = (const struct ipw_firmware_hdr *)fp->data;
2039 
2040 	if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) +
2041 	    le32toh(hdr->ucodesz)) {
2042 		device_printf(sc->sc_dev,
2043 		    "firmware image too short %zu\n", fp->datasize);
2044 		goto fail2;
2045 	}
2046 
2047 	fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz);
2048 	if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) {
2049 		device_printf(sc->sc_dev, "could not load microcode\n");
2050 		goto fail2;
2051 	}
2052 
2053 	ipw_stop_master(sc);
2054 
2055 	/*
2056 	 * Setup tx, rx and status rings.
2057 	 */
2058 	sc->txold = IPW_NTBD - 1;
2059 	sc->txcur = 0;
2060 	sc->txfree = IPW_NTBD - 2;
2061 	sc->rxcur = IPW_NRBD - 1;
2062 
2063 	CSR_WRITE_4(sc, IPW_CSR_TX_BASE,  sc->tbd_phys);
2064 	CSR_WRITE_4(sc, IPW_CSR_TX_SIZE,  IPW_NTBD);
2065 	CSR_WRITE_4(sc, IPW_CSR_TX_READ,  0);
2066 	CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
2067 
2068 	CSR_WRITE_4(sc, IPW_CSR_RX_BASE,  sc->rbd_phys);
2069 	CSR_WRITE_4(sc, IPW_CSR_RX_SIZE,  IPW_NRBD);
2070 	CSR_WRITE_4(sc, IPW_CSR_RX_READ,  0);
2071 	CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
2072 
2073 	CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys);
2074 
2075 	fw = (const char *)fp->data + sizeof *hdr;
2076 	if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) {
2077 		device_printf(sc->sc_dev, "could not load firmware\n");
2078 		goto fail2;
2079 	}
2080 
2081 	sc->flags |= IPW_FLAG_FW_INITED;
2082 
2083 	/* retrieve information tables base addresses */
2084 	sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
2085 	sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
2086 
2087 	ipw_write_table1(sc, IPW_INFO_LOCK, 0);
2088 
2089 	if (ipw_config(sc) != 0) {
2090 		device_printf(sc->sc_dev, "device configuration failed\n");
2091 		goto fail1;
2092 	}
2093 
2094 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2095 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2096 
2097 	sc->flags &=~ IPW_FLAG_INIT_LOCKED;
2098 
2099 	if (!owned)
2100 		mtx_unlock(&sc->sc_mtx);
2101 
2102 	return;
2103 
2104 fail2:	firmware_put(fp, FIRMWARE_UNLOAD);
2105 	sc->sc_firmware = NULL;
2106 fail1:	ifp->if_flags &= ~IFF_UP;
2107 	ipw_stop(sc);
2108 	sc->flags &=~ IPW_FLAG_INIT_LOCKED;
2109 	if (!owned)
2110 		mtx_unlock(&sc->sc_mtx);
2111 }
2112 
2113 static void
2114 ipw_stop(void *priv)
2115 {
2116 	struct ipw_softc *sc = priv;
2117 	struct ieee80211com *ic = &sc->sc_ic;
2118 	struct ifnet *ifp = ic->ic_ifp;
2119 	int i;
2120 
2121 	mtx_lock(&sc->sc_mtx);
2122 
2123 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2124 
2125 	ipw_stop_master(sc);
2126 
2127 	CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
2128 
2129 	/*
2130 	 * Release tx buffers.
2131 	 */
2132 	for (i = 0; i < IPW_NTBD; i++)
2133 		ipw_release_sbd(sc, &sc->stbd_list[i]);
2134 
2135 	sc->sc_tx_timer = 0;
2136 	ifp->if_timer = 0;
2137 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2138 
2139 	mtx_unlock(&sc->sc_mtx);
2140 }
2141 
2142 static int
2143 ipw_sysctl_stats(SYSCTL_HANDLER_ARGS)
2144 {
2145 	struct ipw_softc *sc = arg1;
2146 	uint32_t i, size, buf[256];
2147 
2148 	if (!(sc->flags & IPW_FLAG_FW_INITED)) {
2149 		memset(buf, 0, sizeof buf);
2150 		return SYSCTL_OUT(req, buf, sizeof buf);
2151 	}
2152 
2153 	CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
2154 
2155 	size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256);
2156 	for (i = 1; i < size; i++)
2157 		buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA));
2158 
2159 	return SYSCTL_OUT(req, buf, sizeof buf);
2160 }
2161 
2162 static int
2163 ipw_sysctl_radio(SYSCTL_HANDLER_ARGS)
2164 {
2165 	struct ipw_softc *sc = arg1;
2166 	int val;
2167 
2168 	val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) &&
2169 	        (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED));
2170 
2171 	return SYSCTL_OUT(req, &val, sizeof val);
2172 }
2173 
2174 static uint32_t
2175 ipw_read_table1(struct ipw_softc *sc, uint32_t off)
2176 {
2177 	return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
2178 }
2179 
2180 static void
2181 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
2182 {
2183 	MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
2184 }
2185 
2186 static int
2187 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
2188 {
2189 	uint32_t addr, info;
2190 	uint16_t count, size;
2191 	uint32_t total;
2192 
2193 	/* addr[4] + count[2] + size[2] */
2194 	addr = MEM_READ_4(sc, sc->table2_base + off);
2195 	info = MEM_READ_4(sc, sc->table2_base + off + 4);
2196 
2197 	count = info >> 16;
2198 	size = info & 0xffff;
2199 	total = count * size;
2200 
2201 	if (total > *len) {
2202 		*len = total;
2203 		return EINVAL;
2204 	}
2205 
2206 	*len = total;
2207 	ipw_read_mem_1(sc, addr, buf, total);
2208 
2209 	return 0;
2210 }
2211 
2212 static void
2213 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
2214     bus_size_t count)
2215 {
2216 	for (; count > 0; offset++, datap++, count--) {
2217 		CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2218 		*datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
2219 	}
2220 }
2221 
2222 static void
2223 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap,
2224     bus_size_t count)
2225 {
2226 	for (; count > 0; offset++, datap++, count--) {
2227 		CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
2228 		CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
2229 	}
2230 }
2231