1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2004-2006 5 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 6 * Copyright (c) 2006 Sam Leffler, Errno Consulting 7 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /*- 36 * Intel(R) PRO/Wireless 2100 MiniPCI driver 37 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 38 */ 39 40 #include <sys/param.h> 41 #include <sys/sysctl.h> 42 #include <sys/sockio.h> 43 #include <sys/mbuf.h> 44 #include <sys/kernel.h> 45 #include <sys/socket.h> 46 #include <sys/systm.h> 47 #include <sys/malloc.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 #include <sys/module.h> 51 #include <sys/bus.h> 52 #include <sys/endian.h> 53 #include <sys/linker.h> 54 #include <sys/firmware.h> 55 56 #include <machine/bus.h> 57 #include <machine/resource.h> 58 #include <sys/rman.h> 59 60 #include <dev/pci/pcireg.h> 61 #include <dev/pci/pcivar.h> 62 63 #include <net/bpf.h> 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/if_arp.h> 67 #include <net/ethernet.h> 68 #include <net/if_dl.h> 69 #include <net/if_media.h> 70 #include <net/if_types.h> 71 72 #include <net80211/ieee80211_var.h> 73 #include <net80211/ieee80211_radiotap.h> 74 75 #include <netinet/in.h> 76 #include <netinet/in_systm.h> 77 #include <netinet/in_var.h> 78 #include <netinet/ip.h> 79 #include <netinet/if_ether.h> 80 81 #include <dev/ipw/if_ipwreg.h> 82 #include <dev/ipw/if_ipwvar.h> 83 84 #define IPW_DEBUG 85 #ifdef IPW_DEBUG 86 #define DPRINTF(x) do { if (ipw_debug > 0) printf x; } while (0) 87 #define DPRINTFN(n, x) do { if (ipw_debug >= (n)) printf x; } while (0) 88 int ipw_debug = 0; 89 SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level"); 90 #else 91 #define DPRINTF(x) 92 #define DPRINTFN(n, x) 93 #endif 94 95 MODULE_DEPEND(ipw, pci, 1, 1, 1); 96 MODULE_DEPEND(ipw, wlan, 1, 1, 1); 97 MODULE_DEPEND(ipw, firmware, 1, 1, 1); 98 99 struct ipw_ident { 100 uint16_t vendor; 101 uint16_t device; 102 const char *name; 103 }; 104 105 static const struct ipw_ident ipw_ident_table[] = { 106 { 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" }, 107 108 { 0, 0, NULL } 109 }; 110 111 static struct ieee80211vap *ipw_vap_create(struct ieee80211com *, 112 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 113 const uint8_t [IEEE80211_ADDR_LEN], 114 const uint8_t [IEEE80211_ADDR_LEN]); 115 static void ipw_vap_delete(struct ieee80211vap *); 116 static int ipw_dma_alloc(struct ipw_softc *); 117 static void ipw_release(struct ipw_softc *); 118 static void ipw_media_status(struct ifnet *, struct ifmediareq *); 119 static int ipw_newstate(struct ieee80211vap *, enum ieee80211_state, int); 120 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t); 121 static void ipw_rx_cmd_intr(struct ipw_softc *, struct ipw_soft_buf *); 122 static void ipw_rx_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *); 123 static void ipw_rx_data_intr(struct ipw_softc *, struct ipw_status *, 124 struct ipw_soft_bd *, struct ipw_soft_buf *); 125 static void ipw_rx_intr(struct ipw_softc *); 126 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *); 127 static void ipw_tx_intr(struct ipw_softc *); 128 static void ipw_intr(void *); 129 static void ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int); 130 static const char * ipw_cmdname(int); 131 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t); 132 static int ipw_tx_start(struct ifnet *, struct mbuf *, 133 struct ieee80211_node *); 134 static int ipw_raw_xmit(struct ieee80211_node *, struct mbuf *, 135 const struct ieee80211_bpf_params *); 136 static void ipw_start(struct ifnet *); 137 static void ipw_start_locked(struct ifnet *); 138 static void ipw_watchdog(void *); 139 static int ipw_ioctl(struct ifnet *, u_long, caddr_t); 140 static void ipw_stop_master(struct ipw_softc *); 141 static int ipw_enable(struct ipw_softc *); 142 static int ipw_disable(struct ipw_softc *); 143 static int ipw_reset(struct ipw_softc *); 144 static int ipw_load_ucode(struct ipw_softc *, const char *, int); 145 static int ipw_load_firmware(struct ipw_softc *, const char *, int); 146 static int ipw_config(struct ipw_softc *); 147 static void ipw_assoc(struct ieee80211com *, struct ieee80211vap *); 148 static void ipw_disassoc(struct ieee80211com *, struct ieee80211vap *); 149 static void ipw_init_task(void *, int); 150 static void ipw_init(void *); 151 static void ipw_init_locked(struct ipw_softc *); 152 static void ipw_stop(void *); 153 static void ipw_stop_locked(struct ipw_softc *); 154 static int ipw_sysctl_stats(SYSCTL_HANDLER_ARGS); 155 static int ipw_sysctl_radio(SYSCTL_HANDLER_ARGS); 156 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t); 157 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t); 158 #if 0 159 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, 160 uint32_t *); 161 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, 162 bus_size_t); 163 #endif 164 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, 165 const uint8_t *, bus_size_t); 166 static int ipw_scan(struct ipw_softc *); 167 static void ipw_scan_start(struct ieee80211com *); 168 static void ipw_scan_end(struct ieee80211com *); 169 static void ipw_set_channel(struct ieee80211com *); 170 static void ipw_scan_curchan(struct ieee80211_scan_state *, 171 unsigned long maxdwell); 172 static void ipw_scan_mindwell(struct ieee80211_scan_state *); 173 174 static int ipw_probe(device_t); 175 static int ipw_attach(device_t); 176 static int ipw_detach(device_t); 177 static int ipw_shutdown(device_t); 178 static int ipw_suspend(device_t); 179 static int ipw_resume(device_t); 180 181 static device_method_t ipw_methods[] = { 182 /* Device interface */ 183 DEVMETHOD(device_probe, ipw_probe), 184 DEVMETHOD(device_attach, ipw_attach), 185 DEVMETHOD(device_detach, ipw_detach), 186 DEVMETHOD(device_shutdown, ipw_shutdown), 187 DEVMETHOD(device_suspend, ipw_suspend), 188 DEVMETHOD(device_resume, ipw_resume), 189 190 { 0, 0 } 191 }; 192 193 static driver_t ipw_driver = { 194 "ipw", 195 ipw_methods, 196 sizeof (struct ipw_softc) 197 }; 198 199 static devclass_t ipw_devclass; 200 201 DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, 0, 0); 202 203 MODULE_VERSION(ipw, 1); 204 205 static int 206 ipw_probe(device_t dev) 207 { 208 const struct ipw_ident *ident; 209 210 for (ident = ipw_ident_table; ident->name != NULL; ident++) { 211 if (pci_get_vendor(dev) == ident->vendor && 212 pci_get_device(dev) == ident->device) { 213 device_set_desc(dev, ident->name); 214 return 0; 215 } 216 } 217 return ENXIO; 218 } 219 220 /* Base Address Register */ 221 #define IPW_PCI_BAR0 0x10 222 223 static int 224 ipw_attach(device_t dev) 225 { 226 struct ipw_softc *sc = device_get_softc(dev); 227 struct ifnet *ifp; 228 struct ieee80211com *ic; 229 struct ieee80211_channel *c; 230 uint16_t val; 231 int error, i; 232 uint8_t macaddr[IEEE80211_ADDR_LEN]; 233 234 sc->sc_dev = dev; 235 236 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 237 MTX_DEF | MTX_RECURSE); 238 239 TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc); 240 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 241 242 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 243 device_printf(dev, "chip is in D%d power mode " 244 "-- setting to D0\n", pci_get_powerstate(dev)); 245 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 246 } 247 248 pci_write_config(dev, 0x41, 0, 1); 249 250 /* enable bus-mastering */ 251 pci_enable_busmaster(dev); 252 253 sc->mem_rid = IPW_PCI_BAR0; 254 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 255 RF_ACTIVE); 256 if (sc->mem == NULL) { 257 device_printf(dev, "could not allocate memory resource\n"); 258 goto fail; 259 } 260 261 sc->sc_st = rman_get_bustag(sc->mem); 262 sc->sc_sh = rman_get_bushandle(sc->mem); 263 264 sc->irq_rid = 0; 265 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 266 RF_ACTIVE | RF_SHAREABLE); 267 if (sc->irq == NULL) { 268 device_printf(dev, "could not allocate interrupt resource\n"); 269 goto fail1; 270 } 271 272 if (ipw_reset(sc) != 0) { 273 device_printf(dev, "could not reset adapter\n"); 274 goto fail2; 275 } 276 277 if (ipw_dma_alloc(sc) != 0) { 278 device_printf(dev, "could not allocate DMA resources\n"); 279 goto fail2; 280 } 281 282 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 283 if (ifp == NULL) { 284 device_printf(dev, "can not if_alloc()\n"); 285 goto fail3; 286 } 287 ic = ifp->if_l2com; 288 289 ifp->if_softc = sc; 290 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 291 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 292 ifp->if_init = ipw_init; 293 ifp->if_ioctl = ipw_ioctl; 294 ifp->if_start = ipw_start; 295 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 296 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 297 IFQ_SET_READY(&ifp->if_snd); 298 299 ic->ic_ifp = ifp; 300 ic->ic_opmode = IEEE80211_M_STA; 301 ic->ic_phytype = IEEE80211_T_DS; 302 303 /* set device capabilities */ 304 ic->ic_caps = 305 IEEE80211_C_STA /* station mode supported */ 306 | IEEE80211_C_IBSS /* IBSS mode supported */ 307 | IEEE80211_C_MONITOR /* monitor mode supported */ 308 | IEEE80211_C_PMGT /* power save supported */ 309 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 310 | IEEE80211_C_WPA /* 802.11i supported */ 311 ; 312 313 /* read MAC address from EEPROM */ 314 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0); 315 macaddr[0] = val >> 8; 316 macaddr[1] = val & 0xff; 317 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1); 318 macaddr[2] = val >> 8; 319 macaddr[3] = val & 0xff; 320 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2); 321 macaddr[4] = val >> 8; 322 macaddr[5] = val & 0xff; 323 324 /* set supported .11b channels (read from EEPROM) */ 325 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0) 326 val = 0x7ff; /* default to channels 1-11 */ 327 val <<= 1; 328 for (i = 1; i < 16; i++) { 329 if (val & (1 << i)) { 330 c = &ic->ic_channels[ic->ic_nchans++]; 331 c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 332 c->ic_flags = IEEE80211_CHAN_B; 333 c->ic_ieee = i; 334 } 335 } 336 337 /* check support for radio transmitter switch in EEPROM */ 338 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8)) 339 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH; 340 341 ieee80211_ifattach(ic, macaddr); 342 ic->ic_scan_start = ipw_scan_start; 343 ic->ic_scan_end = ipw_scan_end; 344 ic->ic_set_channel = ipw_set_channel; 345 ic->ic_scan_curchan = ipw_scan_curchan; 346 ic->ic_scan_mindwell = ipw_scan_mindwell; 347 ic->ic_raw_xmit = ipw_raw_xmit; 348 349 ic->ic_vap_create = ipw_vap_create; 350 ic->ic_vap_delete = ipw_vap_delete; 351 352 ieee80211_radiotap_attach(ic, 353 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 354 IPW_TX_RADIOTAP_PRESENT, 355 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 356 IPW_RX_RADIOTAP_PRESENT); 357 358 /* 359 * Add a few sysctl knobs. 360 */ 361 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 362 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio", 363 CTLTYPE_INT | CTLFLAG_RD, sc, 0, ipw_sysctl_radio, "I", 364 "radio transmitter switch state (0=off, 1=on)"); 365 366 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 367 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", 368 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, ipw_sysctl_stats, "S", 369 "statistics"); 370 371 /* 372 * Hook our interrupt after all initialization is complete. 373 */ 374 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 375 NULL, ipw_intr, sc, &sc->sc_ih); 376 if (error != 0) { 377 device_printf(dev, "could not set up interrupt\n"); 378 goto fail4; 379 } 380 381 if (bootverbose) 382 ieee80211_announce(ic); 383 384 return 0; 385 fail4: 386 if_free(ifp); 387 fail3: 388 ipw_release(sc); 389 fail2: 390 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 391 fail1: 392 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 393 fail: 394 mtx_destroy(&sc->sc_mtx); 395 return ENXIO; 396 } 397 398 static int 399 ipw_detach(device_t dev) 400 { 401 struct ipw_softc *sc = device_get_softc(dev); 402 struct ifnet *ifp = sc->sc_ifp; 403 struct ieee80211com *ic = ifp->if_l2com; 404 405 ieee80211_draintask(ic, &sc->sc_init_task); 406 ipw_stop(sc); 407 408 ieee80211_ifdetach(ic); 409 410 callout_drain(&sc->sc_wdtimer); 411 412 ipw_release(sc); 413 414 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 415 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 416 417 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 418 419 if_free(ifp); 420 421 if (sc->sc_firmware != NULL) { 422 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 423 sc->sc_firmware = NULL; 424 } 425 426 mtx_destroy(&sc->sc_mtx); 427 428 return 0; 429 } 430 431 static struct ieee80211vap * 432 ipw_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 433 enum ieee80211_opmode opmode, int flags, 434 const uint8_t bssid[IEEE80211_ADDR_LEN], 435 const uint8_t mac[IEEE80211_ADDR_LEN]) 436 { 437 struct ifnet *ifp = ic->ic_ifp; 438 struct ipw_softc *sc = ifp->if_softc; 439 struct ipw_vap *ivp; 440 struct ieee80211vap *vap; 441 const struct firmware *fp; 442 const struct ipw_firmware_hdr *hdr; 443 const char *imagename; 444 445 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 446 return NULL; 447 448 switch (opmode) { 449 case IEEE80211_M_STA: 450 imagename = "ipw_bss"; 451 break; 452 case IEEE80211_M_IBSS: 453 imagename = "ipw_ibss"; 454 break; 455 case IEEE80211_M_MONITOR: 456 imagename = "ipw_monitor"; 457 break; 458 default: 459 return NULL; 460 } 461 462 /* 463 * Load firmware image using the firmware(9) subsystem. Doing 464 * this unlocked is ok since we're single-threaded by the 465 * 802.11 layer. 466 */ 467 if (sc->sc_firmware == NULL || 468 strcmp(sc->sc_firmware->name, imagename) != 0) { 469 if (sc->sc_firmware != NULL) 470 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 471 sc->sc_firmware = firmware_get(imagename); 472 } 473 if (sc->sc_firmware == NULL) { 474 device_printf(sc->sc_dev, 475 "could not load firmware image '%s'\n", imagename); 476 return NULL; 477 } 478 fp = sc->sc_firmware; 479 if (fp->datasize < sizeof *hdr) { 480 device_printf(sc->sc_dev, 481 "firmware image too short %zu\n", fp->datasize); 482 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 483 sc->sc_firmware = NULL; 484 return NULL; 485 } 486 hdr = (const struct ipw_firmware_hdr *)fp->data; 487 if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) + 488 le32toh(hdr->ucodesz)) { 489 device_printf(sc->sc_dev, 490 "firmware image too short %zu\n", fp->datasize); 491 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 492 sc->sc_firmware = NULL; 493 return NULL; 494 } 495 496 ivp = (struct ipw_vap *) malloc(sizeof(struct ipw_vap), 497 M_80211_VAP, M_NOWAIT | M_ZERO); 498 if (ivp == NULL) 499 return NULL; 500 vap = &ivp->vap; 501 502 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 503 /* override with driver methods */ 504 ivp->newstate = vap->iv_newstate; 505 vap->iv_newstate = ipw_newstate; 506 507 /* complete setup */ 508 ieee80211_vap_attach(vap, ieee80211_media_change, ipw_media_status); 509 ic->ic_opmode = opmode; 510 return vap; 511 } 512 513 static void 514 ipw_vap_delete(struct ieee80211vap *vap) 515 { 516 struct ipw_vap *ivp = IPW_VAP(vap); 517 518 ieee80211_vap_detach(vap); 519 free(ivp, M_80211_VAP); 520 } 521 522 static int 523 ipw_dma_alloc(struct ipw_softc *sc) 524 { 525 struct ipw_soft_bd *sbd; 526 struct ipw_soft_hdr *shdr; 527 struct ipw_soft_buf *sbuf; 528 bus_addr_t physaddr; 529 int error, i; 530 531 /* 532 * Allocate parent DMA tag for subsequent allocations. 533 */ 534 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 535 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 536 BUS_SPACE_MAXSIZE_32BIT, BUS_SPACE_UNRESTRICTED, 537 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->parent_dmat); 538 if (error != 0) { 539 device_printf(sc->sc_dev, "could not create parent DMA tag\n"); 540 goto fail; 541 } 542 543 /* 544 * Allocate and map tx ring. 545 */ 546 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 547 BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL, 548 NULL, &sc->tbd_dmat); 549 if (error != 0) { 550 device_printf(sc->sc_dev, "could not create tx ring DMA tag\n"); 551 goto fail; 552 } 553 554 error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list, 555 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map); 556 if (error != 0) { 557 device_printf(sc->sc_dev, 558 "could not allocate tx ring DMA memory\n"); 559 goto fail; 560 } 561 562 error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list, 563 IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0); 564 if (error != 0) { 565 device_printf(sc->sc_dev, "could not map tx ring DMA memory\n"); 566 goto fail; 567 } 568 569 /* 570 * Allocate and map rx ring. 571 */ 572 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 573 BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL, 574 NULL, &sc->rbd_dmat); 575 if (error != 0) { 576 device_printf(sc->sc_dev, "could not create rx ring DMA tag\n"); 577 goto fail; 578 } 579 580 error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list, 581 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map); 582 if (error != 0) { 583 device_printf(sc->sc_dev, 584 "could not allocate rx ring DMA memory\n"); 585 goto fail; 586 } 587 588 error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list, 589 IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0); 590 if (error != 0) { 591 device_printf(sc->sc_dev, "could not map rx ring DMA memory\n"); 592 goto fail; 593 } 594 595 /* 596 * Allocate and map status ring. 597 */ 598 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 599 BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0, 600 NULL, NULL, &sc->status_dmat); 601 if (error != 0) { 602 device_printf(sc->sc_dev, 603 "could not create status ring DMA tag\n"); 604 goto fail; 605 } 606 607 error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list, 608 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map); 609 if (error != 0) { 610 device_printf(sc->sc_dev, 611 "could not allocate status ring DMA memory\n"); 612 goto fail; 613 } 614 615 error = bus_dmamap_load(sc->status_dmat, sc->status_map, 616 sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys, 617 0); 618 if (error != 0) { 619 device_printf(sc->sc_dev, 620 "could not map status ring DMA memory\n"); 621 goto fail; 622 } 623 624 /* 625 * Allocate command DMA map. 626 */ 627 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 628 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1, 629 sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat); 630 if (error != 0) { 631 device_printf(sc->sc_dev, "could not create command DMA tag\n"); 632 goto fail; 633 } 634 635 error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map); 636 if (error != 0) { 637 device_printf(sc->sc_dev, 638 "could not create command DMA map\n"); 639 goto fail; 640 } 641 642 /* 643 * Allocate headers DMA maps. 644 */ 645 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 646 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1, 647 sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat); 648 if (error != 0) { 649 device_printf(sc->sc_dev, "could not create header DMA tag\n"); 650 goto fail; 651 } 652 653 SLIST_INIT(&sc->free_shdr); 654 for (i = 0; i < IPW_NDATA; i++) { 655 shdr = &sc->shdr_list[i]; 656 error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map); 657 if (error != 0) { 658 device_printf(sc->sc_dev, 659 "could not create header DMA map\n"); 660 goto fail; 661 } 662 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 663 } 664 665 /* 666 * Allocate tx buffers DMA maps. 667 */ 668 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 669 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0, 670 NULL, NULL, &sc->txbuf_dmat); 671 if (error != 0) { 672 device_printf(sc->sc_dev, "could not create tx DMA tag\n"); 673 goto fail; 674 } 675 676 SLIST_INIT(&sc->free_sbuf); 677 for (i = 0; i < IPW_NDATA; i++) { 678 sbuf = &sc->tx_sbuf_list[i]; 679 error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map); 680 if (error != 0) { 681 device_printf(sc->sc_dev, 682 "could not create tx DMA map\n"); 683 goto fail; 684 } 685 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 686 } 687 688 /* 689 * Initialize tx ring. 690 */ 691 for (i = 0; i < IPW_NTBD; i++) { 692 sbd = &sc->stbd_list[i]; 693 sbd->bd = &sc->tbd_list[i]; 694 sbd->type = IPW_SBD_TYPE_NOASSOC; 695 } 696 697 /* 698 * Pre-allocate rx buffers and DMA maps. 699 */ 700 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 701 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, 702 NULL, &sc->rxbuf_dmat); 703 if (error != 0) { 704 device_printf(sc->sc_dev, "could not create rx DMA tag\n"); 705 goto fail; 706 } 707 708 for (i = 0; i < IPW_NRBD; i++) { 709 sbd = &sc->srbd_list[i]; 710 sbuf = &sc->rx_sbuf_list[i]; 711 sbd->bd = &sc->rbd_list[i]; 712 713 sbuf->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 714 if (sbuf->m == NULL) { 715 device_printf(sc->sc_dev, 716 "could not allocate rx mbuf\n"); 717 error = ENOMEM; 718 goto fail; 719 } 720 721 error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map); 722 if (error != 0) { 723 device_printf(sc->sc_dev, 724 "could not create rx DMA map\n"); 725 goto fail; 726 } 727 728 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 729 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 730 &physaddr, 0); 731 if (error != 0) { 732 device_printf(sc->sc_dev, 733 "could not map rx DMA memory\n"); 734 goto fail; 735 } 736 737 sbd->type = IPW_SBD_TYPE_DATA; 738 sbd->priv = sbuf; 739 sbd->bd->physaddr = htole32(physaddr); 740 sbd->bd->len = htole32(MCLBYTES); 741 } 742 743 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 744 745 return 0; 746 747 fail: ipw_release(sc); 748 return error; 749 } 750 751 static void 752 ipw_release(struct ipw_softc *sc) 753 { 754 struct ipw_soft_buf *sbuf; 755 int i; 756 757 if (sc->parent_dmat != NULL) { 758 bus_dma_tag_destroy(sc->parent_dmat); 759 } 760 761 if (sc->tbd_dmat != NULL) { 762 if (sc->stbd_list != NULL) { 763 bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map); 764 bus_dmamem_free(sc->tbd_dmat, sc->tbd_list, 765 sc->tbd_map); 766 } 767 bus_dma_tag_destroy(sc->tbd_dmat); 768 } 769 770 if (sc->rbd_dmat != NULL) { 771 if (sc->rbd_list != NULL) { 772 bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map); 773 bus_dmamem_free(sc->rbd_dmat, sc->rbd_list, 774 sc->rbd_map); 775 } 776 bus_dma_tag_destroy(sc->rbd_dmat); 777 } 778 779 if (sc->status_dmat != NULL) { 780 if (sc->status_list != NULL) { 781 bus_dmamap_unload(sc->status_dmat, sc->status_map); 782 bus_dmamem_free(sc->status_dmat, sc->status_list, 783 sc->status_map); 784 } 785 bus_dma_tag_destroy(sc->status_dmat); 786 } 787 788 for (i = 0; i < IPW_NTBD; i++) 789 ipw_release_sbd(sc, &sc->stbd_list[i]); 790 791 if (sc->cmd_dmat != NULL) { 792 bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map); 793 bus_dma_tag_destroy(sc->cmd_dmat); 794 } 795 796 if (sc->hdr_dmat != NULL) { 797 for (i = 0; i < IPW_NDATA; i++) 798 bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map); 799 bus_dma_tag_destroy(sc->hdr_dmat); 800 } 801 802 if (sc->txbuf_dmat != NULL) { 803 for (i = 0; i < IPW_NDATA; i++) { 804 bus_dmamap_destroy(sc->txbuf_dmat, 805 sc->tx_sbuf_list[i].map); 806 } 807 bus_dma_tag_destroy(sc->txbuf_dmat); 808 } 809 810 if (sc->rxbuf_dmat != NULL) { 811 for (i = 0; i < IPW_NRBD; i++) { 812 sbuf = &sc->rx_sbuf_list[i]; 813 if (sbuf->m != NULL) { 814 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, 815 BUS_DMASYNC_POSTREAD); 816 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 817 m_freem(sbuf->m); 818 } 819 bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map); 820 } 821 bus_dma_tag_destroy(sc->rxbuf_dmat); 822 } 823 } 824 825 static int 826 ipw_shutdown(device_t dev) 827 { 828 struct ipw_softc *sc = device_get_softc(dev); 829 830 ipw_stop(sc); 831 832 return 0; 833 } 834 835 static int 836 ipw_suspend(device_t dev) 837 { 838 struct ipw_softc *sc = device_get_softc(dev); 839 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 840 841 ieee80211_suspend_all(ic); 842 return 0; 843 } 844 845 static int 846 ipw_resume(device_t dev) 847 { 848 struct ipw_softc *sc = device_get_softc(dev); 849 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 850 851 pci_write_config(dev, 0x41, 0, 1); 852 853 ieee80211_resume_all(ic); 854 return 0; 855 } 856 857 static int 858 ipw_cvtrate(int ipwrate) 859 { 860 switch (ipwrate) { 861 case IPW_RATE_DS1: return 2; 862 case IPW_RATE_DS2: return 4; 863 case IPW_RATE_DS5: return 11; 864 case IPW_RATE_DS11: return 22; 865 } 866 return 0; 867 } 868 869 /* 870 * The firmware automatically adapts the transmit speed. We report its current 871 * value here. 872 */ 873 static void 874 ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr) 875 { 876 struct ieee80211vap *vap = ifp->if_softc; 877 struct ieee80211com *ic = vap->iv_ic; 878 struct ipw_softc *sc = ic->ic_ifp->if_softc; 879 880 /* read current transmission rate from adapter */ 881 vap->iv_bss->ni_txrate = ipw_cvtrate( 882 ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf); 883 ieee80211_media_status(ifp, imr); 884 } 885 886 static int 887 ipw_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 888 { 889 struct ipw_vap *ivp = IPW_VAP(vap); 890 struct ieee80211com *ic = vap->iv_ic; 891 struct ifnet *ifp = ic->ic_ifp; 892 struct ipw_softc *sc = ifp->if_softc; 893 enum ieee80211_state ostate; 894 895 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 896 ieee80211_state_name[vap->iv_state], 897 ieee80211_state_name[nstate], sc->flags)); 898 899 ostate = vap->iv_state; 900 IEEE80211_UNLOCK(ic); 901 902 switch (nstate) { 903 case IEEE80211_S_RUN: 904 if (ic->ic_opmode == IEEE80211_M_IBSS) { 905 /* 906 * XXX when joining an ibss network we are called 907 * with a SCAN -> RUN transition on scan complete. 908 * Use that to call ipw_assoc. On completing the 909 * join we are then called again with an AUTH -> RUN 910 * transition and we want to do nothing. This is 911 * all totally bogus and needs to be redone. 912 */ 913 if (ostate == IEEE80211_S_SCAN) 914 ipw_assoc(ic, vap); 915 } 916 break; 917 918 case IEEE80211_S_INIT: 919 if (sc->flags & IPW_FLAG_ASSOCIATED) 920 ipw_disassoc(ic, vap); 921 break; 922 923 case IEEE80211_S_AUTH: 924 /* 925 * Move to ASSOC state after the ipw_assoc() call. Firmware 926 * takes care of authentication, after the call we'll receive 927 * only an assoc response which would otherwise be discared 928 * if we are still in AUTH state. 929 */ 930 nstate = IEEE80211_S_ASSOC; 931 ipw_assoc(ic, vap); 932 break; 933 934 case IEEE80211_S_ASSOC: 935 /* 936 * If we are not transitioning from AUTH then resend the 937 * association request. 938 */ 939 if (ostate != IEEE80211_S_AUTH) 940 ipw_assoc(ic, vap); 941 break; 942 943 default: 944 break; 945 } 946 IEEE80211_LOCK(ic); 947 return ivp->newstate(vap, nstate, arg); 948 } 949 950 /* 951 * Read 16 bits at address 'addr' from the serial EEPROM. 952 */ 953 static uint16_t 954 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr) 955 { 956 uint32_t tmp; 957 uint16_t val; 958 int n; 959 960 /* clock C once before the first command */ 961 IPW_EEPROM_CTL(sc, 0); 962 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 963 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 964 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 965 966 /* write start bit (1) */ 967 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 968 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 969 970 /* write READ opcode (10) */ 971 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 972 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 973 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 974 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 975 976 /* write address A7-A0 */ 977 for (n = 7; n >= 0; n--) { 978 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 979 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D)); 980 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 981 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C); 982 } 983 984 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 985 986 /* read data Q15-Q0 */ 987 val = 0; 988 for (n = 15; n >= 0; n--) { 989 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 990 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 991 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL); 992 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n; 993 } 994 995 IPW_EEPROM_CTL(sc, 0); 996 997 /* clear Chip Select and clock C */ 998 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 999 IPW_EEPROM_CTL(sc, 0); 1000 IPW_EEPROM_CTL(sc, IPW_EEPROM_C); 1001 1002 return le16toh(val); 1003 } 1004 1005 static void 1006 ipw_rx_cmd_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 1007 { 1008 struct ipw_cmd *cmd; 1009 1010 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1011 1012 cmd = mtod(sbuf->m, struct ipw_cmd *); 1013 1014 DPRINTFN(9, ("cmd ack'ed %s(%u, %u, %u, %u, %u)\n", 1015 ipw_cmdname(le32toh(cmd->type)), le32toh(cmd->type), 1016 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len), 1017 le32toh(cmd->status))); 1018 1019 sc->flags &= ~IPW_FLAG_BUSY; 1020 wakeup(sc); 1021 } 1022 1023 static void 1024 ipw_rx_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 1025 { 1026 #define IEEESTATE(vap) ieee80211_state_name[vap->iv_state] 1027 struct ifnet *ifp = sc->sc_ifp; 1028 struct ieee80211com *ic = ifp->if_l2com; 1029 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1030 uint32_t state; 1031 1032 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1033 1034 state = le32toh(*mtod(sbuf->m, uint32_t *)); 1035 1036 switch (state) { 1037 case IPW_STATE_ASSOCIATED: 1038 DPRINTFN(2, ("Association succeeded (%s flags 0x%x)\n", 1039 IEEESTATE(vap), sc->flags)); 1040 /* XXX suppress state change in case the fw auto-associates */ 1041 if ((sc->flags & IPW_FLAG_ASSOCIATING) == 0) { 1042 DPRINTF(("Unexpected association (%s, flags 0x%x)\n", 1043 IEEESTATE(vap), sc->flags)); 1044 break; 1045 } 1046 sc->flags &= ~IPW_FLAG_ASSOCIATING; 1047 sc->flags |= IPW_FLAG_ASSOCIATED; 1048 break; 1049 1050 case IPW_STATE_SCANNING: 1051 DPRINTFN(3, ("Scanning (%s flags 0x%x)\n", 1052 IEEESTATE(vap), sc->flags)); 1053 /* 1054 * NB: Check driver state for association on assoc 1055 * loss as the firmware will immediately start to 1056 * scan and we would treat it as a beacon miss if 1057 * we checked the 802.11 layer state. 1058 */ 1059 if (sc->flags & IPW_FLAG_ASSOCIATED) { 1060 IPW_UNLOCK(sc); 1061 /* XXX probably need to issue disassoc to fw */ 1062 ieee80211_beacon_miss(ic); 1063 IPW_LOCK(sc); 1064 } 1065 break; 1066 1067 case IPW_STATE_SCAN_COMPLETE: 1068 /* 1069 * XXX For some reason scan requests generate scan 1070 * started + scan done events before any traffic is 1071 * received (e.g. probe response frames). We work 1072 * around this by marking the HACK flag and skipping 1073 * the first scan complete event. 1074 */ 1075 DPRINTFN(3, ("Scan complete (%s flags 0x%x)\n", 1076 IEEESTATE(vap), sc->flags)); 1077 if (sc->flags & IPW_FLAG_HACK) { 1078 sc->flags &= ~IPW_FLAG_HACK; 1079 break; 1080 } 1081 if (sc->flags & IPW_FLAG_SCANNING) { 1082 IPW_UNLOCK(sc); 1083 ieee80211_scan_done(vap); 1084 IPW_LOCK(sc); 1085 sc->flags &= ~IPW_FLAG_SCANNING; 1086 sc->sc_scan_timer = 0; 1087 } 1088 break; 1089 1090 case IPW_STATE_ASSOCIATION_LOST: 1091 DPRINTFN(2, ("Association lost (%s flags 0x%x)\n", 1092 IEEESTATE(vap), sc->flags)); 1093 sc->flags &= ~(IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1094 if (vap->iv_state == IEEE80211_S_RUN) { 1095 IPW_UNLOCK(sc); 1096 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1097 IPW_LOCK(sc); 1098 } 1099 break; 1100 1101 case IPW_STATE_DISABLED: 1102 /* XXX? is this right? */ 1103 sc->flags &= ~(IPW_FLAG_HACK | IPW_FLAG_SCANNING | 1104 IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1105 DPRINTFN(2, ("Firmware disabled (%s flags 0x%x)\n", 1106 IEEESTATE(vap), sc->flags)); 1107 break; 1108 1109 case IPW_STATE_RADIO_DISABLED: 1110 device_printf(sc->sc_dev, "radio turned off\n"); 1111 ieee80211_notify_radio(ic, 0); 1112 ipw_stop_locked(sc); 1113 /* XXX start polling thread to detect radio on */ 1114 break; 1115 1116 default: 1117 DPRINTFN(2, ("%s: unhandled state %u %s flags 0x%x\n", 1118 __func__, state, IEEESTATE(vap), sc->flags)); 1119 break; 1120 } 1121 #undef IEEESTATE 1122 } 1123 1124 /* 1125 * Set driver state for current channel. 1126 */ 1127 static void 1128 ipw_setcurchan(struct ipw_softc *sc, struct ieee80211_channel *chan) 1129 { 1130 struct ifnet *ifp = sc->sc_ifp; 1131 struct ieee80211com *ic = ifp->if_l2com; 1132 1133 ic->ic_curchan = chan; 1134 ieee80211_radiotap_chan_change(ic); 1135 } 1136 1137 /* 1138 * XXX: Hack to set the current channel to the value advertised in beacons or 1139 * probe responses. Only used during AP detection. 1140 */ 1141 static void 1142 ipw_fix_channel(struct ipw_softc *sc, struct mbuf *m) 1143 { 1144 struct ifnet *ifp = sc->sc_ifp; 1145 struct ieee80211com *ic = ifp->if_l2com; 1146 struct ieee80211_channel *c; 1147 struct ieee80211_frame *wh; 1148 uint8_t subtype; 1149 uint8_t *frm, *efrm; 1150 1151 wh = mtod(m, struct ieee80211_frame *); 1152 1153 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 1154 return; 1155 1156 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1157 1158 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 1159 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1160 return; 1161 1162 /* XXX use ieee80211_parse_beacon */ 1163 frm = (uint8_t *)(wh + 1); 1164 efrm = mtod(m, uint8_t *) + m->m_len; 1165 1166 frm += 12; /* skip tstamp, bintval and capinfo fields */ 1167 while (frm < efrm) { 1168 if (*frm == IEEE80211_ELEMID_DSPARMS) 1169 #if IEEE80211_CHAN_MAX < 255 1170 if (frm[2] <= IEEE80211_CHAN_MAX) 1171 #endif 1172 { 1173 DPRINTF(("Fixing channel to %d\n", frm[2])); 1174 c = ieee80211_find_channel(ic, 1175 ieee80211_ieee2mhz(frm[2], 0), 1176 IEEE80211_CHAN_B); 1177 if (c == NULL) 1178 c = &ic->ic_channels[0]; 1179 ipw_setcurchan(sc, c); 1180 } 1181 1182 frm += frm[1] + 2; 1183 } 1184 } 1185 1186 static void 1187 ipw_rx_data_intr(struct ipw_softc *sc, struct ipw_status *status, 1188 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf) 1189 { 1190 struct ifnet *ifp = sc->sc_ifp; 1191 struct ieee80211com *ic = ifp->if_l2com; 1192 struct mbuf *mnew, *m; 1193 struct ieee80211_node *ni; 1194 bus_addr_t physaddr; 1195 int error; 1196 int8_t rssi, nf; 1197 1198 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len), 1199 status->rssi)); 1200 1201 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) || 1202 le32toh(status->len) > MCLBYTES) 1203 return; 1204 1205 /* 1206 * Try to allocate a new mbuf for this ring element and load it before 1207 * processing the current mbuf. If the ring element cannot be loaded, 1208 * drop the received packet and reuse the old mbuf. In the unlikely 1209 * case that the old mbuf can't be reloaded either, explicitly panic. 1210 */ 1211 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1212 if (mnew == NULL) { 1213 ifp->if_ierrors++; 1214 return; 1215 } 1216 1217 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1218 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 1219 1220 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *), 1221 MCLBYTES, ipw_dma_map_addr, &physaddr, 0); 1222 if (error != 0) { 1223 m_freem(mnew); 1224 1225 /* try to reload the old mbuf */ 1226 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 1227 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 1228 &physaddr, 0); 1229 if (error != 0) { 1230 /* very unlikely that it will fail... */ 1231 panic("%s: could not load old rx mbuf", 1232 device_get_name(sc->sc_dev)); 1233 } 1234 ifp->if_ierrors++; 1235 return; 1236 } 1237 1238 /* 1239 * New mbuf successfully loaded, update Rx ring and continue 1240 * processing. 1241 */ 1242 m = sbuf->m; 1243 sbuf->m = mnew; 1244 sbd->bd->physaddr = htole32(physaddr); 1245 1246 /* finalize mbuf */ 1247 m->m_pkthdr.rcvif = ifp; 1248 m->m_pkthdr.len = m->m_len = le32toh(status->len); 1249 1250 rssi = status->rssi + IPW_RSSI_TO_DBM; 1251 nf = -95; 1252 if (ieee80211_radiotap_active(ic)) { 1253 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap; 1254 1255 tap->wr_flags = 0; 1256 tap->wr_antsignal = rssi; 1257 tap->wr_antnoise = nf; 1258 } 1259 1260 if (sc->flags & IPW_FLAG_SCANNING) 1261 ipw_fix_channel(sc, m); 1262 1263 IPW_UNLOCK(sc); 1264 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1265 if (ni != NULL) { 1266 (void) ieee80211_input(ni, m, rssi - nf, nf); 1267 ieee80211_free_node(ni); 1268 } else 1269 (void) ieee80211_input_all(ic, m, rssi - nf, nf); 1270 IPW_LOCK(sc); 1271 1272 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1273 } 1274 1275 static void 1276 ipw_rx_intr(struct ipw_softc *sc) 1277 { 1278 struct ipw_status *status; 1279 struct ipw_soft_bd *sbd; 1280 struct ipw_soft_buf *sbuf; 1281 uint32_t r, i; 1282 1283 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1284 return; 1285 1286 r = CSR_READ_4(sc, IPW_CSR_RX_READ); 1287 1288 bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD); 1289 1290 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) { 1291 status = &sc->status_list[i]; 1292 sbd = &sc->srbd_list[i]; 1293 sbuf = sbd->priv; 1294 1295 switch (le16toh(status->code) & 0xf) { 1296 case IPW_STATUS_CODE_COMMAND: 1297 ipw_rx_cmd_intr(sc, sbuf); 1298 break; 1299 1300 case IPW_STATUS_CODE_NEWSTATE: 1301 ipw_rx_newstate_intr(sc, sbuf); 1302 break; 1303 1304 case IPW_STATUS_CODE_DATA_802_3: 1305 case IPW_STATUS_CODE_DATA_802_11: 1306 ipw_rx_data_intr(sc, status, sbd, sbuf); 1307 break; 1308 1309 case IPW_STATUS_CODE_NOTIFICATION: 1310 DPRINTFN(2, ("notification status, len %u flags 0x%x\n", 1311 le32toh(status->len), status->flags)); 1312 /* XXX maybe drive state machine AUTH->ASSOC? */ 1313 break; 1314 1315 default: 1316 device_printf(sc->sc_dev, "unexpected status code %u\n", 1317 le16toh(status->code)); 1318 } 1319 1320 /* firmware was killed, stop processing received frames */ 1321 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1322 return; 1323 1324 sbd->bd->flags = 0; 1325 } 1326 1327 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1328 1329 /* kick the firmware */ 1330 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1; 1331 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 1332 } 1333 1334 static void 1335 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd) 1336 { 1337 struct ipw_soft_hdr *shdr; 1338 struct ipw_soft_buf *sbuf; 1339 1340 switch (sbd->type) { 1341 case IPW_SBD_TYPE_COMMAND: 1342 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, 1343 BUS_DMASYNC_POSTWRITE); 1344 bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map); 1345 break; 1346 1347 case IPW_SBD_TYPE_HEADER: 1348 shdr = sbd->priv; 1349 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE); 1350 bus_dmamap_unload(sc->hdr_dmat, shdr->map); 1351 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 1352 break; 1353 1354 case IPW_SBD_TYPE_DATA: 1355 sbuf = sbd->priv; 1356 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, 1357 BUS_DMASYNC_POSTWRITE); 1358 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1359 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 1360 1361 if (sbuf->m->m_flags & M_TXCB) 1362 ieee80211_process_callback(sbuf->ni, sbuf->m, 0/*XXX*/); 1363 m_freem(sbuf->m); 1364 ieee80211_free_node(sbuf->ni); 1365 1366 sc->sc_tx_timer = 0; 1367 break; 1368 } 1369 1370 sbd->type = IPW_SBD_TYPE_NOASSOC; 1371 } 1372 1373 static void 1374 ipw_tx_intr(struct ipw_softc *sc) 1375 { 1376 struct ifnet *ifp = sc->sc_ifp; 1377 struct ipw_soft_bd *sbd; 1378 uint32_t r, i; 1379 1380 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1381 return; 1382 1383 r = CSR_READ_4(sc, IPW_CSR_TX_READ); 1384 1385 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) { 1386 sbd = &sc->stbd_list[i]; 1387 1388 if (sbd->type == IPW_SBD_TYPE_DATA) 1389 ifp->if_opackets++; 1390 1391 ipw_release_sbd(sc, sbd); 1392 sc->txfree++; 1393 } 1394 1395 /* remember what the firmware has processed */ 1396 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1; 1397 1398 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1399 ipw_start_locked(ifp); 1400 } 1401 1402 static void 1403 ipw_fatal_error_intr(struct ipw_softc *sc) 1404 { 1405 struct ifnet *ifp = sc->sc_ifp; 1406 struct ieee80211com *ic = ifp->if_l2com; 1407 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1408 1409 device_printf(sc->sc_dev, "firmware error\n"); 1410 if (vap != NULL) { 1411 IPW_UNLOCK(sc); 1412 ieee80211_cancel_scan(vap); 1413 IPW_LOCK(sc); 1414 } 1415 ieee80211_runtask(ic, &sc->sc_init_task); 1416 } 1417 1418 static void 1419 ipw_intr(void *arg) 1420 { 1421 struct ipw_softc *sc = arg; 1422 uint32_t r; 1423 1424 IPW_LOCK(sc); 1425 1426 r = CSR_READ_4(sc, IPW_CSR_INTR); 1427 if (r == 0 || r == 0xffffffff) 1428 goto done; 1429 1430 /* disable interrupts */ 1431 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1432 1433 /* acknowledge all interrupts */ 1434 CSR_WRITE_4(sc, IPW_CSR_INTR, r); 1435 1436 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) { 1437 ipw_fatal_error_intr(sc); 1438 goto done; 1439 } 1440 1441 if (r & IPW_INTR_FW_INIT_DONE) 1442 wakeup(sc); 1443 1444 if (r & IPW_INTR_RX_TRANSFER) 1445 ipw_rx_intr(sc); 1446 1447 if (r & IPW_INTR_TX_TRANSFER) 1448 ipw_tx_intr(sc); 1449 1450 /* re-enable interrupts */ 1451 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1452 done: 1453 IPW_UNLOCK(sc); 1454 } 1455 1456 static void 1457 ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1458 { 1459 if (error != 0) 1460 return; 1461 1462 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 1463 1464 *(bus_addr_t *)arg = segs[0].ds_addr; 1465 } 1466 1467 static const char * 1468 ipw_cmdname(int cmd) 1469 { 1470 #define N(a) (sizeof(a) / sizeof(a[0])) 1471 static const struct { 1472 int cmd; 1473 const char *name; 1474 } cmds[] = { 1475 { IPW_CMD_ADD_MULTICAST, "ADD_MULTICAST" }, 1476 { IPW_CMD_BROADCAST_SCAN, "BROADCAST_SCAN" }, 1477 { IPW_CMD_DISABLE, "DISABLE" }, 1478 { IPW_CMD_DISABLE_PHY, "DISABLE_PHY" }, 1479 { IPW_CMD_ENABLE, "ENABLE" }, 1480 { IPW_CMD_PREPARE_POWER_DOWN, "PREPARE_POWER_DOWN" }, 1481 { IPW_CMD_SET_BASIC_TX_RATES, "SET_BASIC_TX_RATES" }, 1482 { IPW_CMD_SET_BEACON_INTERVAL, "SET_BEACON_INTERVAL" }, 1483 { IPW_CMD_SET_CHANNEL, "SET_CHANNEL" }, 1484 { IPW_CMD_SET_CONFIGURATION, "SET_CONFIGURATION" }, 1485 { IPW_CMD_SET_DESIRED_BSSID, "SET_DESIRED_BSSID" }, 1486 { IPW_CMD_SET_ESSID, "SET_ESSID" }, 1487 { IPW_CMD_SET_FRAG_THRESHOLD, "SET_FRAG_THRESHOLD" }, 1488 { IPW_CMD_SET_MAC_ADDRESS, "SET_MAC_ADDRESS" }, 1489 { IPW_CMD_SET_MANDATORY_BSSID, "SET_MANDATORY_BSSID" }, 1490 { IPW_CMD_SET_MODE, "SET_MODE" }, 1491 { IPW_CMD_SET_MSDU_TX_RATES, "SET_MSDU_TX_RATES" }, 1492 { IPW_CMD_SET_POWER_MODE, "SET_POWER_MODE" }, 1493 { IPW_CMD_SET_RTS_THRESHOLD, "SET_RTS_THRESHOLD" }, 1494 { IPW_CMD_SET_SCAN_OPTIONS, "SET_SCAN_OPTIONS" }, 1495 { IPW_CMD_SET_SECURITY_INFO, "SET_SECURITY_INFO" }, 1496 { IPW_CMD_SET_TX_POWER_INDEX, "SET_TX_POWER_INDEX" }, 1497 { IPW_CMD_SET_TX_RATES, "SET_TX_RATES" }, 1498 { IPW_CMD_SET_WEP_FLAGS, "SET_WEP_FLAGS" }, 1499 { IPW_CMD_SET_WEP_KEY, "SET_WEP_KEY" }, 1500 { IPW_CMD_SET_WEP_KEY_INDEX, "SET_WEP_KEY_INDEX" }, 1501 { IPW_CMD_SET_WPA_IE, "SET_WPA_IE" }, 1502 1503 }; 1504 static char buf[12]; 1505 int i; 1506 1507 for (i = 0; i < N(cmds); i++) 1508 if (cmds[i].cmd == cmd) 1509 return cmds[i].name; 1510 snprintf(buf, sizeof(buf), "%u", cmd); 1511 return buf; 1512 #undef N 1513 } 1514 1515 /* 1516 * Send a command to the firmware and wait for the acknowledgement. 1517 */ 1518 static int 1519 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len) 1520 { 1521 struct ipw_soft_bd *sbd; 1522 bus_addr_t physaddr; 1523 int error; 1524 1525 IPW_LOCK_ASSERT(sc); 1526 1527 if (sc->flags & IPW_FLAG_BUSY) { 1528 device_printf(sc->sc_dev, "%s: %s not sent, busy\n", 1529 __func__, ipw_cmdname(type)); 1530 return EAGAIN; 1531 } 1532 sc->flags |= IPW_FLAG_BUSY; 1533 1534 sbd = &sc->stbd_list[sc->txcur]; 1535 1536 error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd, 1537 sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0); 1538 if (error != 0) { 1539 device_printf(sc->sc_dev, "could not map command DMA memory\n"); 1540 sc->flags &= ~IPW_FLAG_BUSY; 1541 return error; 1542 } 1543 1544 sc->cmd.type = htole32(type); 1545 sc->cmd.subtype = 0; 1546 sc->cmd.len = htole32(len); 1547 sc->cmd.seq = 0; 1548 memcpy(sc->cmd.data, data, len); 1549 1550 sbd->type = IPW_SBD_TYPE_COMMAND; 1551 sbd->bd->physaddr = htole32(physaddr); 1552 sbd->bd->len = htole32(sizeof (struct ipw_cmd)); 1553 sbd->bd->nfrag = 1; 1554 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND | 1555 IPW_BD_FLAG_TX_LAST_FRAGMENT; 1556 1557 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE); 1558 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1559 1560 #ifdef IPW_DEBUG 1561 if (ipw_debug >= 4) { 1562 printf("sending %s(%u, %u, %u, %u)", ipw_cmdname(type), type, 1563 0, 0, len); 1564 /* Print the data buffer in the higher debug level */ 1565 if (ipw_debug >= 9 && len > 0) { 1566 printf(" data: 0x"); 1567 for (int i = 1; i <= len; i++) 1568 printf("%1D", (u_char *)data + len - i, ""); 1569 } 1570 printf("\n"); 1571 } 1572 #endif 1573 1574 /* kick firmware */ 1575 sc->txfree--; 1576 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1577 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1578 1579 /* wait at most one second for command to complete */ 1580 error = msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz); 1581 if (error != 0) { 1582 device_printf(sc->sc_dev, "%s: %s failed, timeout (error %u)\n", 1583 __func__, ipw_cmdname(type), error); 1584 sc->flags &= ~IPW_FLAG_BUSY; 1585 return (error); 1586 } 1587 return (0); 1588 } 1589 1590 static int 1591 ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni) 1592 { 1593 struct ipw_softc *sc = ifp->if_softc; 1594 struct ieee80211com *ic = ifp->if_l2com; 1595 struct ieee80211vap *vap = ni->ni_vap; 1596 struct ieee80211_frame *wh; 1597 struct ipw_soft_bd *sbd; 1598 struct ipw_soft_hdr *shdr; 1599 struct ipw_soft_buf *sbuf; 1600 struct ieee80211_key *k; 1601 struct mbuf *mnew; 1602 bus_dma_segment_t segs[IPW_MAX_NSEG]; 1603 bus_addr_t physaddr; 1604 int nsegs, error, i; 1605 1606 wh = mtod(m0, struct ieee80211_frame *); 1607 1608 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1609 k = ieee80211_crypto_encap(ni, m0); 1610 if (k == NULL) { 1611 m_freem(m0); 1612 return ENOBUFS; 1613 } 1614 /* packet header may have moved, reset our local pointer */ 1615 wh = mtod(m0, struct ieee80211_frame *); 1616 } 1617 1618 if (ieee80211_radiotap_active_vap(vap)) { 1619 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap; 1620 1621 tap->wt_flags = 0; 1622 1623 ieee80211_radiotap_tx(vap, m0); 1624 } 1625 1626 shdr = SLIST_FIRST(&sc->free_shdr); 1627 sbuf = SLIST_FIRST(&sc->free_sbuf); 1628 KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool")); 1629 1630 shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND); 1631 shdr->hdr.subtype = 0; 1632 shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0; 1633 shdr->hdr.encrypt = 0; 1634 shdr->hdr.keyidx = 0; 1635 shdr->hdr.keysz = 0; 1636 shdr->hdr.fragmentsz = 0; 1637 IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2); 1638 if (ic->ic_opmode == IEEE80211_M_STA) 1639 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3); 1640 else 1641 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1); 1642 1643 /* trim IEEE802.11 header */ 1644 m_adj(m0, sizeof (struct ieee80211_frame)); 1645 1646 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs, 1647 &nsegs, 0); 1648 if (error != 0 && error != EFBIG) { 1649 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1650 error); 1651 m_freem(m0); 1652 return error; 1653 } 1654 if (error != 0) { 1655 mnew = m_defrag(m0, M_NOWAIT); 1656 if (mnew == NULL) { 1657 device_printf(sc->sc_dev, 1658 "could not defragment mbuf\n"); 1659 m_freem(m0); 1660 return ENOBUFS; 1661 } 1662 m0 = mnew; 1663 1664 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, 1665 segs, &nsegs, 0); 1666 if (error != 0) { 1667 device_printf(sc->sc_dev, 1668 "could not map mbuf (error %d)\n", error); 1669 m_freem(m0); 1670 return error; 1671 } 1672 } 1673 1674 error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr, 1675 sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0); 1676 if (error != 0) { 1677 device_printf(sc->sc_dev, "could not map header DMA memory\n"); 1678 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1679 m_freem(m0); 1680 return error; 1681 } 1682 1683 SLIST_REMOVE_HEAD(&sc->free_sbuf, next); 1684 SLIST_REMOVE_HEAD(&sc->free_shdr, next); 1685 1686 sbd = &sc->stbd_list[sc->txcur]; 1687 sbd->type = IPW_SBD_TYPE_HEADER; 1688 sbd->priv = shdr; 1689 sbd->bd->physaddr = htole32(physaddr); 1690 sbd->bd->len = htole32(sizeof (struct ipw_hdr)); 1691 sbd->bd->nfrag = 1 + nsegs; 1692 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 | 1693 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1694 1695 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n", 1696 shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted, 1697 shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr, 1698 ":")); 1699 1700 sc->txfree--; 1701 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1702 1703 sbuf->m = m0; 1704 sbuf->ni = ni; 1705 1706 for (i = 0; i < nsegs; i++) { 1707 sbd = &sc->stbd_list[sc->txcur]; 1708 1709 sbd->bd->physaddr = htole32(segs[i].ds_addr); 1710 sbd->bd->len = htole32(segs[i].ds_len); 1711 sbd->bd->nfrag = 0; 1712 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3; 1713 if (i == nsegs - 1) { 1714 sbd->type = IPW_SBD_TYPE_DATA; 1715 sbd->priv = sbuf; 1716 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT; 1717 } else { 1718 sbd->type = IPW_SBD_TYPE_NOASSOC; 1719 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1720 } 1721 1722 DPRINTFN(5, ("sending fragment (%d)\n", i)); 1723 1724 sc->txfree--; 1725 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1726 } 1727 1728 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE); 1729 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE); 1730 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1731 1732 /* kick firmware */ 1733 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1734 1735 return 0; 1736 } 1737 1738 static int 1739 ipw_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1740 const struct ieee80211_bpf_params *params) 1741 { 1742 /* no support; just discard */ 1743 m_freem(m); 1744 ieee80211_free_node(ni); 1745 return 0; 1746 } 1747 1748 static void 1749 ipw_start(struct ifnet *ifp) 1750 { 1751 struct ipw_softc *sc = ifp->if_softc; 1752 1753 IPW_LOCK(sc); 1754 ipw_start_locked(ifp); 1755 IPW_UNLOCK(sc); 1756 } 1757 1758 static void 1759 ipw_start_locked(struct ifnet *ifp) 1760 { 1761 struct ipw_softc *sc = ifp->if_softc; 1762 struct ieee80211_node *ni; 1763 struct mbuf *m; 1764 1765 IPW_LOCK_ASSERT(sc); 1766 1767 for (;;) { 1768 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1769 if (m == NULL) 1770 break; 1771 if (sc->txfree < 1 + IPW_MAX_NSEG) { 1772 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1773 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1774 break; 1775 } 1776 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1777 if (ipw_tx_start(ifp, m, ni) != 0) { 1778 ieee80211_free_node(ni); 1779 ifp->if_oerrors++; 1780 break; 1781 } 1782 /* start watchdog timer */ 1783 sc->sc_tx_timer = 5; 1784 } 1785 } 1786 1787 static void 1788 ipw_watchdog(void *arg) 1789 { 1790 struct ipw_softc *sc = arg; 1791 struct ifnet *ifp = sc->sc_ifp; 1792 struct ieee80211com *ic = ifp->if_l2com; 1793 1794 IPW_LOCK_ASSERT(sc); 1795 1796 if (sc->sc_tx_timer > 0) { 1797 if (--sc->sc_tx_timer == 0) { 1798 if_printf(ifp, "device timeout\n"); 1799 ifp->if_oerrors++; 1800 taskqueue_enqueue(taskqueue_swi, &sc->sc_init_task); 1801 } 1802 } 1803 if (sc->sc_scan_timer > 0) { 1804 if (--sc->sc_scan_timer == 0) { 1805 DPRINTFN(3, ("Scan timeout\n")); 1806 /* End the scan */ 1807 if (sc->flags & IPW_FLAG_SCANNING) { 1808 IPW_UNLOCK(sc); 1809 ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); 1810 IPW_LOCK(sc); 1811 sc->flags &= ~IPW_FLAG_SCANNING; 1812 } 1813 } 1814 } 1815 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1816 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 1817 } 1818 1819 static int 1820 ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1821 { 1822 struct ipw_softc *sc = ifp->if_softc; 1823 struct ieee80211com *ic = ifp->if_l2com; 1824 struct ifreq *ifr = (struct ifreq *) data; 1825 int error = 0, startall = 0; 1826 1827 switch (cmd) { 1828 case SIOCSIFFLAGS: 1829 IPW_LOCK(sc); 1830 if (ifp->if_flags & IFF_UP) { 1831 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1832 ipw_init_locked(sc); 1833 startall = 1; 1834 } 1835 } else { 1836 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1837 ipw_stop_locked(sc); 1838 } 1839 IPW_UNLOCK(sc); 1840 if (startall) 1841 ieee80211_start_all(ic); 1842 break; 1843 case SIOCGIFMEDIA: 1844 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1845 break; 1846 case SIOCGIFADDR: 1847 error = ether_ioctl(ifp, cmd, data); 1848 break; 1849 default: 1850 error = EINVAL; 1851 break; 1852 } 1853 return error; 1854 } 1855 1856 static void 1857 ipw_stop_master(struct ipw_softc *sc) 1858 { 1859 uint32_t tmp; 1860 int ntries; 1861 1862 /* disable interrupts */ 1863 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1864 1865 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER); 1866 for (ntries = 0; ntries < 50; ntries++) { 1867 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED) 1868 break; 1869 DELAY(10); 1870 } 1871 if (ntries == 50) 1872 device_printf(sc->sc_dev, "timeout waiting for master\n"); 1873 1874 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1875 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET); 1876 1877 /* Clear all flags except the following */ 1878 sc->flags &= IPW_FLAG_HAS_RADIO_SWITCH; 1879 } 1880 1881 static int 1882 ipw_reset(struct ipw_softc *sc) 1883 { 1884 uint32_t tmp; 1885 int ntries; 1886 1887 ipw_stop_master(sc); 1888 1889 /* move adapter to D0 state */ 1890 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1891 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1892 1893 /* wait for clock stabilization */ 1894 for (ntries = 0; ntries < 1000; ntries++) { 1895 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY) 1896 break; 1897 DELAY(200); 1898 } 1899 if (ntries == 1000) 1900 return EIO; 1901 1902 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1903 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET); 1904 1905 DELAY(10); 1906 1907 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1908 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1909 1910 return 0; 1911 } 1912 1913 static int 1914 ipw_waitfordisable(struct ipw_softc *sc, int waitfor) 1915 { 1916 int ms = hz < 1000 ? 1 : hz/10; 1917 int i, error; 1918 1919 for (i = 0; i < 100; i++) { 1920 if (ipw_read_table1(sc, IPW_INFO_CARD_DISABLED) == waitfor) 1921 return 0; 1922 error = msleep(sc, &sc->sc_mtx, PCATCH, __func__, ms); 1923 if (error == 0 || error != EWOULDBLOCK) 1924 return 0; 1925 } 1926 DPRINTF(("%s: timeout waiting for %s\n", 1927 __func__, waitfor ? "disable" : "enable")); 1928 return ETIMEDOUT; 1929 } 1930 1931 static int 1932 ipw_enable(struct ipw_softc *sc) 1933 { 1934 int error; 1935 1936 if ((sc->flags & IPW_FLAG_ENABLED) == 0) { 1937 DPRINTF(("Enable adapter\n")); 1938 error = ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); 1939 if (error != 0) 1940 return error; 1941 error = ipw_waitfordisable(sc, 0); 1942 if (error != 0) 1943 return error; 1944 sc->flags |= IPW_FLAG_ENABLED; 1945 } 1946 return 0; 1947 } 1948 1949 static int 1950 ipw_disable(struct ipw_softc *sc) 1951 { 1952 int error; 1953 1954 if (sc->flags & IPW_FLAG_ENABLED) { 1955 DPRINTF(("Disable adapter\n")); 1956 error = ipw_cmd(sc, IPW_CMD_DISABLE, NULL, 0); 1957 if (error != 0) 1958 return error; 1959 error = ipw_waitfordisable(sc, 1); 1960 if (error != 0) 1961 return error; 1962 sc->flags &= ~IPW_FLAG_ENABLED; 1963 } 1964 return 0; 1965 } 1966 1967 /* 1968 * Upload the microcode to the device. 1969 */ 1970 static int 1971 ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size) 1972 { 1973 int ntries; 1974 1975 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 1976 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1977 1978 MEM_WRITE_2(sc, 0x220000, 0x0703); 1979 MEM_WRITE_2(sc, 0x220000, 0x0707); 1980 1981 MEM_WRITE_1(sc, 0x210014, 0x72); 1982 MEM_WRITE_1(sc, 0x210014, 0x72); 1983 1984 MEM_WRITE_1(sc, 0x210000, 0x40); 1985 MEM_WRITE_1(sc, 0x210000, 0x00); 1986 MEM_WRITE_1(sc, 0x210000, 0x40); 1987 1988 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size); 1989 1990 MEM_WRITE_1(sc, 0x210000, 0x00); 1991 MEM_WRITE_1(sc, 0x210000, 0x00); 1992 MEM_WRITE_1(sc, 0x210000, 0x80); 1993 1994 MEM_WRITE_2(sc, 0x220000, 0x0703); 1995 MEM_WRITE_2(sc, 0x220000, 0x0707); 1996 1997 MEM_WRITE_1(sc, 0x210014, 0x72); 1998 MEM_WRITE_1(sc, 0x210014, 0x72); 1999 2000 MEM_WRITE_1(sc, 0x210000, 0x00); 2001 MEM_WRITE_1(sc, 0x210000, 0x80); 2002 2003 for (ntries = 0; ntries < 10; ntries++) { 2004 if (MEM_READ_1(sc, 0x210000) & 1) 2005 break; 2006 DELAY(10); 2007 } 2008 if (ntries == 10) { 2009 device_printf(sc->sc_dev, 2010 "timeout waiting for ucode to initialize\n"); 2011 return EIO; 2012 } 2013 2014 MEM_WRITE_4(sc, 0x3000e0, 0); 2015 2016 return 0; 2017 } 2018 2019 /* set of macros to handle unaligned little endian data in firmware image */ 2020 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2021 #define GETLE16(p) ((p)[0] | (p)[1] << 8) 2022 static int 2023 ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size) 2024 { 2025 const uint8_t *p, *end; 2026 uint32_t tmp, dst; 2027 uint16_t len; 2028 int error; 2029 2030 p = fw; 2031 end = fw + size; 2032 while (p < end) { 2033 dst = GETLE32(p); p += 4; 2034 len = GETLE16(p); p += 2; 2035 2036 ipw_write_mem_1(sc, dst, p, len); 2037 p += len; 2038 } 2039 2040 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK | 2041 IPW_IO_LED_OFF); 2042 2043 /* enable interrupts */ 2044 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 2045 2046 /* kick the firmware */ 2047 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 2048 2049 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 2050 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY); 2051 2052 /* wait at most one second for firmware initialization to complete */ 2053 if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) { 2054 device_printf(sc->sc_dev, "timeout waiting for firmware " 2055 "initialization to complete\n"); 2056 return error; 2057 } 2058 2059 tmp = CSR_READ_4(sc, IPW_CSR_IO); 2060 CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK | 2061 IPW_IO_GPIO3_MASK); 2062 2063 return 0; 2064 } 2065 2066 static int 2067 ipw_setwepkeys(struct ipw_softc *sc) 2068 { 2069 struct ifnet *ifp = sc->sc_ifp; 2070 struct ieee80211com *ic = ifp->if_l2com; 2071 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2072 struct ipw_wep_key wepkey; 2073 struct ieee80211_key *wk; 2074 int error, i; 2075 2076 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2077 wk = &vap->iv_nw_keys[i]; 2078 2079 if (wk->wk_cipher == NULL || 2080 wk->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP) 2081 continue; 2082 2083 wepkey.idx = i; 2084 wepkey.len = wk->wk_keylen; 2085 memset(wepkey.key, 0, sizeof wepkey.key); 2086 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2087 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2088 wepkey.len)); 2089 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey, 2090 sizeof wepkey); 2091 if (error != 0) 2092 return error; 2093 } 2094 return 0; 2095 } 2096 2097 static int 2098 ipw_setwpaie(struct ipw_softc *sc, const void *ie, int ielen) 2099 { 2100 struct ipw_wpa_ie wpaie; 2101 2102 memset(&wpaie, 0, sizeof(wpaie)); 2103 wpaie.len = htole32(ielen); 2104 /* XXX verify length */ 2105 memcpy(&wpaie.ie, ie, ielen); 2106 DPRINTF(("Setting WPA IE\n")); 2107 return ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &wpaie, sizeof(wpaie)); 2108 } 2109 2110 static int 2111 ipw_setbssid(struct ipw_softc *sc, uint8_t *bssid) 2112 { 2113 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 2114 2115 if (bssid == NULL || bcmp(bssid, zerobssid, IEEE80211_ADDR_LEN) == 0) { 2116 DPRINTF(("Setting mandatory BSSID to null\n")); 2117 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0); 2118 } else { 2119 DPRINTF(("Setting mandatory BSSID to %6D\n", bssid, ":")); 2120 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, 2121 bssid, IEEE80211_ADDR_LEN); 2122 } 2123 } 2124 2125 static int 2126 ipw_setssid(struct ipw_softc *sc, void *ssid, size_t ssidlen) 2127 { 2128 if (ssidlen == 0) { 2129 /* 2130 * A bug in the firmware breaks the ``don't associate'' 2131 * bit in the scan options command. To compensate for 2132 * this install a bogus ssid when no ssid is specified 2133 * so the firmware won't try to associate. 2134 */ 2135 DPRINTF(("Setting bogus ESSID to WAR firmware bug\n")); 2136 return ipw_cmd(sc, IPW_CMD_SET_ESSID, 2137 "\x18\x19\x20\x21\x22\x23\x24\x25\x26\x27" 2138 "\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31" 2139 "\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b" 2140 "\x3c\x3d", IEEE80211_NWID_LEN); 2141 } else { 2142 #ifdef IPW_DEBUG 2143 if (ipw_debug > 0) { 2144 printf("Setting ESSID to "); 2145 ieee80211_print_essid(ssid, ssidlen); 2146 printf("\n"); 2147 } 2148 #endif 2149 return ipw_cmd(sc, IPW_CMD_SET_ESSID, ssid, ssidlen); 2150 } 2151 } 2152 2153 static int 2154 ipw_setscanopts(struct ipw_softc *sc, uint32_t chanmask, uint32_t flags) 2155 { 2156 struct ipw_scan_options opts; 2157 2158 DPRINTF(("Scan options: mask 0x%x flags 0x%x\n", chanmask, flags)); 2159 opts.channels = htole32(chanmask); 2160 opts.flags = htole32(flags); 2161 return ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &opts, sizeof(opts)); 2162 } 2163 2164 static int 2165 ipw_scan(struct ipw_softc *sc) 2166 { 2167 uint32_t params; 2168 int error; 2169 2170 DPRINTF(("%s: flags 0x%x\n", __func__, sc->flags)); 2171 2172 if (sc->flags & IPW_FLAG_SCANNING) 2173 return (EBUSY); 2174 sc->flags |= IPW_FLAG_SCANNING | IPW_FLAG_HACK; 2175 2176 /* NB: IPW_SCAN_DO_NOT_ASSOCIATE does not work (we set it anyway) */ 2177 error = ipw_setscanopts(sc, 0x3fff, IPW_SCAN_DO_NOT_ASSOCIATE); 2178 if (error != 0) 2179 goto done; 2180 2181 /* 2182 * Setup null/bogus ssid so firmware doesn't use any previous 2183 * ssid to try and associate. This is because the ``don't 2184 * associate'' option bit is broken (sigh). 2185 */ 2186 error = ipw_setssid(sc, NULL, 0); 2187 if (error != 0) 2188 goto done; 2189 2190 /* 2191 * NB: the adapter may be disabled on association lost; 2192 * if so just re-enable it to kick off scanning. 2193 */ 2194 DPRINTF(("Starting scan\n")); 2195 sc->sc_scan_timer = 3; 2196 if (sc->flags & IPW_FLAG_ENABLED) { 2197 params = 0; /* XXX? */ 2198 error = ipw_cmd(sc, IPW_CMD_BROADCAST_SCAN, 2199 ¶ms, sizeof(params)); 2200 } else 2201 error = ipw_enable(sc); 2202 done: 2203 if (error != 0) { 2204 DPRINTF(("Scan failed\n")); 2205 sc->flags &= ~(IPW_FLAG_SCANNING | IPW_FLAG_HACK); 2206 } 2207 return (error); 2208 } 2209 2210 static int 2211 ipw_setchannel(struct ipw_softc *sc, struct ieee80211_channel *chan) 2212 { 2213 struct ifnet *ifp = sc->sc_ifp; 2214 struct ieee80211com *ic = ifp->if_l2com; 2215 uint32_t data; 2216 int error; 2217 2218 data = htole32(ieee80211_chan2ieee(ic, chan)); 2219 DPRINTF(("Setting channel to %u\n", le32toh(data))); 2220 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data); 2221 if (error == 0) 2222 ipw_setcurchan(sc, chan); 2223 return error; 2224 } 2225 2226 static void 2227 ipw_assoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2228 { 2229 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2230 struct ipw_softc *sc = ifp->if_softc; 2231 struct ieee80211_node *ni = vap->iv_bss; 2232 struct ipw_security security; 2233 uint32_t data; 2234 int error; 2235 2236 IPW_LOCK(sc); 2237 error = ipw_disable(sc); 2238 if (error != 0) 2239 goto done; 2240 2241 memset(&security, 0, sizeof security); 2242 security.authmode = (ni->ni_authmode == IEEE80211_AUTH_SHARED) ? 2243 IPW_AUTH_SHARED : IPW_AUTH_OPEN; 2244 security.ciphers = htole32(IPW_CIPHER_NONE); 2245 DPRINTF(("Setting authmode to %u\n", security.authmode)); 2246 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFO, &security, 2247 sizeof security); 2248 if (error != 0) 2249 goto done; 2250 2251 data = htole32(vap->iv_rtsthreshold); 2252 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2253 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2254 if (error != 0) 2255 goto done; 2256 2257 data = htole32(vap->iv_fragthreshold); 2258 DPRINTF(("Setting frag threshold to %u\n", le32toh(data))); 2259 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2260 if (error != 0) 2261 goto done; 2262 2263 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 2264 error = ipw_setwepkeys(sc); 2265 if (error != 0) 2266 goto done; 2267 2268 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { 2269 data = htole32(vap->iv_def_txkey); 2270 DPRINTF(("Setting wep tx key index to %u\n", 2271 le32toh(data))); 2272 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data, 2273 sizeof data); 2274 if (error != 0) 2275 goto done; 2276 } 2277 } 2278 2279 data = htole32((vap->iv_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0); 2280 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data))); 2281 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data); 2282 if (error != 0) 2283 goto done; 2284 2285 error = ipw_setssid(sc, ni->ni_essid, ni->ni_esslen); 2286 if (error != 0) 2287 goto done; 2288 2289 error = ipw_setbssid(sc, ni->ni_bssid); 2290 if (error != 0) 2291 goto done; 2292 2293 if (vap->iv_appie_wpa != NULL) { 2294 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2295 error = ipw_setwpaie(sc, ie->ie_data, ie->ie_len); 2296 if (error != 0) 2297 goto done; 2298 } 2299 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2300 error = ipw_setchannel(sc, ni->ni_chan); 2301 if (error != 0) 2302 goto done; 2303 } 2304 2305 /* lock scan to ap's channel and enable associate */ 2306 error = ipw_setscanopts(sc, 2307 1<<(ieee80211_chan2ieee(ic, ni->ni_chan)-1), 0); 2308 if (error != 0) 2309 goto done; 2310 2311 error = ipw_enable(sc); /* finally, enable adapter */ 2312 if (error == 0) 2313 sc->flags |= IPW_FLAG_ASSOCIATING; 2314 done: 2315 IPW_UNLOCK(sc); 2316 } 2317 2318 static void 2319 ipw_disassoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2320 { 2321 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2322 struct ieee80211_node *ni = vap->iv_bss; 2323 struct ipw_softc *sc = ifp->if_softc; 2324 2325 IPW_LOCK(sc); 2326 DPRINTF(("Disassociate from %6D\n", ni->ni_bssid, ":")); 2327 /* 2328 * NB: don't try to do this if ipw_stop_master has 2329 * shutdown the firmware and disabled interrupts. 2330 */ 2331 if (sc->flags & IPW_FLAG_FW_INITED) { 2332 sc->flags &= ~IPW_FLAG_ASSOCIATED; 2333 /* 2334 * NB: firmware currently ignores bssid parameter, but 2335 * supply it in case this changes (follow linux driver). 2336 */ 2337 (void) ipw_cmd(sc, IPW_CMD_DISASSOCIATE, 2338 ni->ni_bssid, IEEE80211_ADDR_LEN); 2339 } 2340 IPW_UNLOCK(sc); 2341 } 2342 2343 /* 2344 * Handler for sc_init_task. This is a simple wrapper around ipw_init(). 2345 * It is called on firmware panics or on watchdog timeouts. 2346 */ 2347 static void 2348 ipw_init_task(void *context, int pending) 2349 { 2350 ipw_init(context); 2351 } 2352 2353 static void 2354 ipw_init(void *priv) 2355 { 2356 struct ipw_softc *sc = priv; 2357 struct ifnet *ifp = sc->sc_ifp; 2358 struct ieee80211com *ic = ifp->if_l2com; 2359 2360 IPW_LOCK(sc); 2361 ipw_init_locked(sc); 2362 IPW_UNLOCK(sc); 2363 2364 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2365 ieee80211_start_all(ic); /* start all vap's */ 2366 } 2367 2368 static void 2369 ipw_init_locked(struct ipw_softc *sc) 2370 { 2371 struct ifnet *ifp = sc->sc_ifp; 2372 struct ieee80211com *ic = ifp->if_l2com; 2373 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2374 const struct firmware *fp; 2375 const struct ipw_firmware_hdr *hdr; 2376 const char *fw; 2377 2378 IPW_LOCK_ASSERT(sc); 2379 2380 DPRINTF(("%s: state %s flags 0x%x\n", __func__, 2381 ieee80211_state_name[vap->iv_state], sc->flags)); 2382 2383 /* 2384 * Avoid re-entrant calls. We need to release the mutex in ipw_init() 2385 * when loading the firmware and we don't want to be called during this 2386 * operation. 2387 */ 2388 if (sc->flags & IPW_FLAG_INIT_LOCKED) 2389 return; 2390 sc->flags |= IPW_FLAG_INIT_LOCKED; 2391 2392 ipw_stop_locked(sc); 2393 2394 if (ipw_reset(sc) != 0) { 2395 device_printf(sc->sc_dev, "could not reset adapter\n"); 2396 goto fail; 2397 } 2398 2399 if (sc->sc_firmware == NULL) { 2400 device_printf(sc->sc_dev, "no firmware\n"); 2401 goto fail; 2402 } 2403 /* NB: consistency already checked on load */ 2404 fp = sc->sc_firmware; 2405 hdr = (const struct ipw_firmware_hdr *)fp->data; 2406 2407 DPRINTF(("Loading firmware image '%s'\n", fp->name)); 2408 fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz); 2409 if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) { 2410 device_printf(sc->sc_dev, "could not load microcode\n"); 2411 goto fail; 2412 } 2413 2414 ipw_stop_master(sc); 2415 2416 /* 2417 * Setup tx, rx and status rings. 2418 */ 2419 sc->txold = IPW_NTBD - 1; 2420 sc->txcur = 0; 2421 sc->txfree = IPW_NTBD - 2; 2422 sc->rxcur = IPW_NRBD - 1; 2423 2424 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_phys); 2425 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD); 2426 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0); 2427 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 2428 2429 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_phys); 2430 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD); 2431 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0); 2432 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 2433 2434 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys); 2435 2436 fw = (const char *)fp->data + sizeof *hdr; 2437 if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) { 2438 device_printf(sc->sc_dev, "could not load firmware\n"); 2439 goto fail; 2440 } 2441 2442 sc->flags |= IPW_FLAG_FW_INITED; 2443 2444 /* retrieve information tables base addresses */ 2445 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE); 2446 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE); 2447 2448 ipw_write_table1(sc, IPW_INFO_LOCK, 0); 2449 2450 if (ipw_config(sc) != 0) { 2451 device_printf(sc->sc_dev, "device configuration failed\n"); 2452 goto fail; 2453 } 2454 2455 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 2456 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2457 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2458 2459 sc->flags &=~ IPW_FLAG_INIT_LOCKED; 2460 return; 2461 2462 fail: 2463 ipw_stop_locked(sc); 2464 sc->flags &=~ IPW_FLAG_INIT_LOCKED; 2465 } 2466 2467 static int 2468 ipw_config(struct ipw_softc *sc) 2469 { 2470 struct ifnet *ifp = sc->sc_ifp; 2471 struct ieee80211com *ic = ifp->if_l2com; 2472 struct ipw_configuration config; 2473 uint32_t data; 2474 int error; 2475 2476 error = ipw_disable(sc); 2477 if (error != 0) 2478 return error; 2479 2480 switch (ic->ic_opmode) { 2481 case IEEE80211_M_STA: 2482 case IEEE80211_M_HOSTAP: 2483 case IEEE80211_M_WDS: /* XXX */ 2484 data = htole32(IPW_MODE_BSS); 2485 break; 2486 case IEEE80211_M_IBSS: 2487 case IEEE80211_M_AHDEMO: 2488 data = htole32(IPW_MODE_IBSS); 2489 break; 2490 case IEEE80211_M_MONITOR: 2491 data = htole32(IPW_MODE_MONITOR); 2492 break; 2493 default: 2494 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2495 return EINVAL; 2496 } 2497 DPRINTF(("Setting mode to %u\n", le32toh(data))); 2498 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data); 2499 if (error != 0) 2500 return error; 2501 2502 if (ic->ic_opmode == IEEE80211_M_IBSS || 2503 ic->ic_opmode == IEEE80211_M_MONITOR) { 2504 error = ipw_setchannel(sc, ic->ic_curchan); 2505 if (error != 0) 2506 return error; 2507 } 2508 2509 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2510 return ipw_enable(sc); 2511 2512 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK | 2513 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE); 2514 if (ic->ic_opmode == IEEE80211_M_IBSS) 2515 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START); 2516 if (ifp->if_flags & IFF_PROMISC) 2517 config.flags |= htole32(IPW_CFG_PROMISCUOUS); 2518 config.bss_chan = htole32(0x3fff); /* channels 1-14 */ 2519 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */ 2520 DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags))); 2521 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config); 2522 if (error != 0) 2523 return error; 2524 2525 data = htole32(0xf); /* 1, 2, 5.5, 11 */ 2526 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data))); 2527 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data); 2528 if (error != 0) 2529 return error; 2530 2531 /* Use the same rate set */ 2532 DPRINTF(("Setting msdu tx rates to 0x%x\n", le32toh(data))); 2533 error = ipw_cmd(sc, IPW_CMD_SET_MSDU_TX_RATES, &data, sizeof data); 2534 if (error != 0) 2535 return error; 2536 2537 /* Use the same rate set */ 2538 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data))); 2539 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data); 2540 if (error != 0) 2541 return error; 2542 2543 data = htole32(IPW_POWER_MODE_CAM); 2544 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2545 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data); 2546 if (error != 0) 2547 return error; 2548 2549 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2550 data = htole32(32); /* default value */ 2551 DPRINTF(("Setting tx power index to %u\n", le32toh(data))); 2552 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data, 2553 sizeof data); 2554 if (error != 0) 2555 return error; 2556 } 2557 2558 return 0; 2559 } 2560 2561 static void 2562 ipw_stop(void *priv) 2563 { 2564 struct ipw_softc *sc = priv; 2565 2566 IPW_LOCK(sc); 2567 ipw_stop_locked(sc); 2568 IPW_UNLOCK(sc); 2569 } 2570 2571 static void 2572 ipw_stop_locked(struct ipw_softc *sc) 2573 { 2574 struct ifnet *ifp = sc->sc_ifp; 2575 int i; 2576 2577 IPW_LOCK_ASSERT(sc); 2578 2579 callout_stop(&sc->sc_wdtimer); 2580 ipw_stop_master(sc); 2581 2582 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET); 2583 2584 /* 2585 * Release tx buffers. 2586 */ 2587 for (i = 0; i < IPW_NTBD; i++) 2588 ipw_release_sbd(sc, &sc->stbd_list[i]); 2589 2590 sc->sc_tx_timer = 0; 2591 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2592 } 2593 2594 static int 2595 ipw_sysctl_stats(SYSCTL_HANDLER_ARGS) 2596 { 2597 struct ipw_softc *sc = arg1; 2598 uint32_t i, size, buf[256]; 2599 2600 memset(buf, 0, sizeof buf); 2601 2602 if (!(sc->flags & IPW_FLAG_FW_INITED)) 2603 return SYSCTL_OUT(req, buf, sizeof buf); 2604 2605 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base); 2606 2607 size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256); 2608 for (i = 1; i < size; i++) 2609 buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA)); 2610 2611 return SYSCTL_OUT(req, buf, size); 2612 } 2613 2614 static int 2615 ipw_sysctl_radio(SYSCTL_HANDLER_ARGS) 2616 { 2617 struct ipw_softc *sc = arg1; 2618 int val; 2619 2620 val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) && 2621 (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)); 2622 2623 return SYSCTL_OUT(req, &val, sizeof val); 2624 } 2625 2626 static uint32_t 2627 ipw_read_table1(struct ipw_softc *sc, uint32_t off) 2628 { 2629 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off)); 2630 } 2631 2632 static void 2633 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info) 2634 { 2635 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info); 2636 } 2637 2638 #if 0 2639 static int 2640 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len) 2641 { 2642 uint32_t addr, info; 2643 uint16_t count, size; 2644 uint32_t total; 2645 2646 /* addr[4] + count[2] + size[2] */ 2647 addr = MEM_READ_4(sc, sc->table2_base + off); 2648 info = MEM_READ_4(sc, sc->table2_base + off + 4); 2649 2650 count = info >> 16; 2651 size = info & 0xffff; 2652 total = count * size; 2653 2654 if (total > *len) { 2655 *len = total; 2656 return EINVAL; 2657 } 2658 2659 *len = total; 2660 ipw_read_mem_1(sc, addr, buf, total); 2661 2662 return 0; 2663 } 2664 2665 static void 2666 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, 2667 bus_size_t count) 2668 { 2669 for (; count > 0; offset++, datap++, count--) { 2670 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2671 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3)); 2672 } 2673 } 2674 #endif 2675 2676 static void 2677 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap, 2678 bus_size_t count) 2679 { 2680 for (; count > 0; offset++, datap++, count--) { 2681 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2682 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap); 2683 } 2684 } 2685 2686 static void 2687 ipw_scan_start(struct ieee80211com *ic) 2688 { 2689 struct ifnet *ifp = ic->ic_ifp; 2690 struct ipw_softc *sc = ifp->if_softc; 2691 2692 IPW_LOCK(sc); 2693 ipw_scan(sc); 2694 IPW_UNLOCK(sc); 2695 } 2696 2697 static void 2698 ipw_set_channel(struct ieee80211com *ic) 2699 { 2700 struct ifnet *ifp = ic->ic_ifp; 2701 struct ipw_softc *sc = ifp->if_softc; 2702 2703 IPW_LOCK(sc); 2704 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2705 ipw_disable(sc); 2706 ipw_setchannel(sc, ic->ic_curchan); 2707 ipw_enable(sc); 2708 } 2709 IPW_UNLOCK(sc); 2710 } 2711 2712 static void 2713 ipw_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 2714 { 2715 /* NB: all channels are scanned at once */ 2716 } 2717 2718 static void 2719 ipw_scan_mindwell(struct ieee80211_scan_state *ss) 2720 { 2721 /* NB: don't try to abort scan; wait for firmware to finish */ 2722 } 2723 2724 static void 2725 ipw_scan_end(struct ieee80211com *ic) 2726 { 2727 struct ifnet *ifp = ic->ic_ifp; 2728 struct ipw_softc *sc = ifp->if_softc; 2729 2730 IPW_LOCK(sc); 2731 sc->flags &= ~IPW_FLAG_SCANNING; 2732 IPW_UNLOCK(sc); 2733 } 2734