1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2004-2006 5 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 6 * Copyright (c) 2006 Sam Leffler, Errno Consulting 7 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 /*- 34 * Intel(R) PRO/Wireless 2100 MiniPCI driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/linker.h> 52 #include <sys/firmware.h> 53 54 #include <machine/bus.h> 55 #include <machine/resource.h> 56 #include <sys/rman.h> 57 58 #include <dev/pci/pcireg.h> 59 #include <dev/pci/pcivar.h> 60 61 #include <net/bpf.h> 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_arp.h> 65 #include <net/ethernet.h> 66 #include <net/if_dl.h> 67 #include <net/if_media.h> 68 #include <net/if_types.h> 69 70 #include <net80211/ieee80211_var.h> 71 #include <net80211/ieee80211_radiotap.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/if_ether.h> 78 79 #include <dev/ipw/if_ipwreg.h> 80 #include <dev/ipw/if_ipwvar.h> 81 82 #define IPW_DEBUG 83 #ifdef IPW_DEBUG 84 #define DPRINTF(x) do { if (ipw_debug > 0) printf x; } while (0) 85 #define DPRINTFN(n, x) do { if (ipw_debug >= (n)) printf x; } while (0) 86 int ipw_debug = 0; 87 SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level"); 88 #else 89 #define DPRINTF(x) 90 #define DPRINTFN(n, x) 91 #endif 92 93 MODULE_DEPEND(ipw, pci, 1, 1, 1); 94 MODULE_DEPEND(ipw, wlan, 1, 1, 1); 95 MODULE_DEPEND(ipw, firmware, 1, 1, 1); 96 97 struct ipw_ident { 98 uint16_t vendor; 99 uint16_t device; 100 const char *name; 101 }; 102 103 static const struct ipw_ident ipw_ident_table[] = { 104 { 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" }, 105 106 { 0, 0, NULL } 107 }; 108 109 static struct ieee80211vap *ipw_vap_create(struct ieee80211com *, 110 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 111 const uint8_t [IEEE80211_ADDR_LEN], 112 const uint8_t [IEEE80211_ADDR_LEN]); 113 static void ipw_vap_delete(struct ieee80211vap *); 114 static int ipw_dma_alloc(struct ipw_softc *); 115 static void ipw_release(struct ipw_softc *); 116 static void ipw_media_status(if_t, struct ifmediareq *); 117 static int ipw_newstate(struct ieee80211vap *, enum ieee80211_state, int); 118 static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t); 119 static uint16_t ipw_read_chanmask(struct ipw_softc *); 120 static void ipw_rx_cmd_intr(struct ipw_softc *, struct ipw_soft_buf *); 121 static void ipw_rx_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *); 122 static void ipw_rx_data_intr(struct ipw_softc *, struct ipw_status *, 123 struct ipw_soft_bd *, struct ipw_soft_buf *); 124 static void ipw_rx_intr(struct ipw_softc *); 125 static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *); 126 static void ipw_tx_intr(struct ipw_softc *); 127 static void ipw_intr(void *); 128 static void ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int); 129 static const char * ipw_cmdname(int); 130 static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t); 131 static int ipw_tx_start(struct ipw_softc *, struct mbuf *, 132 struct ieee80211_node *); 133 static int ipw_raw_xmit(struct ieee80211_node *, struct mbuf *, 134 const struct ieee80211_bpf_params *); 135 static int ipw_transmit(struct ieee80211com *, struct mbuf *); 136 static void ipw_start(struct ipw_softc *); 137 static void ipw_watchdog(void *); 138 static void ipw_parent(struct ieee80211com *); 139 static void ipw_stop_master(struct ipw_softc *); 140 static int ipw_enable(struct ipw_softc *); 141 static int ipw_disable(struct ipw_softc *); 142 static int ipw_reset(struct ipw_softc *); 143 static int ipw_load_ucode(struct ipw_softc *, const char *, int); 144 static int ipw_load_firmware(struct ipw_softc *, const char *, int); 145 static int ipw_config(struct ipw_softc *); 146 static void ipw_assoc(struct ieee80211com *, struct ieee80211vap *); 147 static void ipw_disassoc(struct ieee80211com *, struct ieee80211vap *); 148 static void ipw_init_task(void *, int); 149 static void ipw_init(void *); 150 static void ipw_init_locked(struct ipw_softc *); 151 static void ipw_stop(void *); 152 static void ipw_stop_locked(struct ipw_softc *); 153 static int ipw_sysctl_stats(SYSCTL_HANDLER_ARGS); 154 static int ipw_sysctl_radio(SYSCTL_HANDLER_ARGS); 155 static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t); 156 static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t); 157 #if 0 158 static int ipw_read_table2(struct ipw_softc *, uint32_t, void *, 159 uint32_t *); 160 static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, 161 bus_size_t); 162 #endif 163 static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, 164 const uint8_t *, bus_size_t); 165 static int ipw_scan(struct ipw_softc *); 166 static void ipw_scan_start(struct ieee80211com *); 167 static void ipw_scan_end(struct ieee80211com *); 168 static void ipw_getradiocaps(struct ieee80211com *, int, int *, 169 struct ieee80211_channel[]); 170 static void ipw_set_channel(struct ieee80211com *); 171 static void ipw_scan_curchan(struct ieee80211_scan_state *, 172 unsigned long maxdwell); 173 static void ipw_scan_mindwell(struct ieee80211_scan_state *); 174 175 static int ipw_probe(device_t); 176 static int ipw_attach(device_t); 177 static int ipw_detach(device_t); 178 static int ipw_shutdown(device_t); 179 static int ipw_suspend(device_t); 180 static int ipw_resume(device_t); 181 182 static device_method_t ipw_methods[] = { 183 /* Device interface */ 184 DEVMETHOD(device_probe, ipw_probe), 185 DEVMETHOD(device_attach, ipw_attach), 186 DEVMETHOD(device_detach, ipw_detach), 187 DEVMETHOD(device_shutdown, ipw_shutdown), 188 DEVMETHOD(device_suspend, ipw_suspend), 189 DEVMETHOD(device_resume, ipw_resume), 190 191 DEVMETHOD_END 192 }; 193 194 static driver_t ipw_driver = { 195 "ipw", 196 ipw_methods, 197 sizeof (struct ipw_softc) 198 }; 199 200 DRIVER_MODULE(ipw, pci, ipw_driver, NULL, NULL); 201 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ipw, ipw_ident_table, 202 nitems(ipw_ident_table) - 1); 203 204 MODULE_VERSION(ipw, 1); 205 206 static int 207 ipw_probe(device_t dev) 208 { 209 const struct ipw_ident *ident; 210 211 for (ident = ipw_ident_table; ident->name != NULL; ident++) { 212 if (pci_get_vendor(dev) == ident->vendor && 213 pci_get_device(dev) == ident->device) { 214 device_set_desc(dev, ident->name); 215 return (BUS_PROBE_DEFAULT); 216 } 217 } 218 return ENXIO; 219 } 220 221 /* Base Address Register */ 222 static int 223 ipw_attach(device_t dev) 224 { 225 struct ipw_softc *sc = device_get_softc(dev); 226 struct ieee80211com *ic = &sc->sc_ic; 227 uint16_t val; 228 int error, i; 229 230 sc->sc_dev = dev; 231 232 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 233 MTX_DEF | MTX_RECURSE); 234 mbufq_init(&sc->sc_snd, ifqmaxlen); 235 TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc); 236 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 237 238 pci_write_config(dev, 0x41, 0, 1); 239 240 /* enable bus-mastering */ 241 pci_enable_busmaster(dev); 242 243 i = PCIR_BAR(0); 244 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 245 if (sc->mem == NULL) { 246 device_printf(dev, "could not allocate memory resource\n"); 247 goto fail; 248 } 249 250 sc->sc_st = rman_get_bustag(sc->mem); 251 sc->sc_sh = rman_get_bushandle(sc->mem); 252 253 i = 0; 254 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 255 RF_ACTIVE | RF_SHAREABLE); 256 if (sc->irq == NULL) { 257 device_printf(dev, "could not allocate interrupt resource\n"); 258 goto fail1; 259 } 260 261 if (ipw_reset(sc) != 0) { 262 device_printf(dev, "could not reset adapter\n"); 263 goto fail2; 264 } 265 266 if (ipw_dma_alloc(sc) != 0) { 267 device_printf(dev, "could not allocate DMA resources\n"); 268 goto fail2; 269 } 270 271 ic->ic_softc = sc; 272 ic->ic_name = device_get_nameunit(dev); 273 ic->ic_opmode = IEEE80211_M_STA; 274 ic->ic_phytype = IEEE80211_T_DS; 275 276 /* set device capabilities */ 277 ic->ic_caps = 278 IEEE80211_C_STA /* station mode supported */ 279 | IEEE80211_C_IBSS /* IBSS mode supported */ 280 | IEEE80211_C_MONITOR /* monitor mode supported */ 281 | IEEE80211_C_PMGT /* power save supported */ 282 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 283 | IEEE80211_C_WPA /* 802.11i supported */ 284 ; 285 286 ic->ic_flags_ext |= IEEE80211_FEXT_SEQNO_OFFLOAD; 287 288 /* read MAC address from EEPROM */ 289 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0); 290 ic->ic_macaddr[0] = val >> 8; 291 ic->ic_macaddr[1] = val & 0xff; 292 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1); 293 ic->ic_macaddr[2] = val >> 8; 294 ic->ic_macaddr[3] = val & 0xff; 295 val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2); 296 ic->ic_macaddr[4] = val >> 8; 297 ic->ic_macaddr[5] = val & 0xff; 298 299 sc->chanmask = ipw_read_chanmask(sc); 300 ipw_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 301 ic->ic_channels); 302 303 /* check support for radio transmitter switch in EEPROM */ 304 if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8)) 305 sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH; 306 307 ieee80211_ifattach(ic); 308 ic->ic_scan_start = ipw_scan_start; 309 ic->ic_scan_end = ipw_scan_end; 310 ic->ic_getradiocaps = ipw_getradiocaps; 311 ic->ic_set_channel = ipw_set_channel; 312 ic->ic_scan_curchan = ipw_scan_curchan; 313 ic->ic_scan_mindwell = ipw_scan_mindwell; 314 ic->ic_raw_xmit = ipw_raw_xmit; 315 ic->ic_vap_create = ipw_vap_create; 316 ic->ic_vap_delete = ipw_vap_delete; 317 ic->ic_transmit = ipw_transmit; 318 ic->ic_parent = ipw_parent; 319 320 ieee80211_radiotap_attach(ic, 321 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 322 IPW_TX_RADIOTAP_PRESENT, 323 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 324 IPW_RX_RADIOTAP_PRESENT); 325 326 /* 327 * Add a few sysctl knobs. 328 */ 329 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 330 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio", 331 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 332 ipw_sysctl_radio, "I", 333 "radio transmitter switch state (0=off, 1=on)"); 334 335 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 336 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", 337 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 338 ipw_sysctl_stats, "S", "statistics"); 339 340 /* 341 * Hook our interrupt after all initialization is complete. 342 */ 343 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 344 NULL, ipw_intr, sc, &sc->sc_ih); 345 if (error != 0) { 346 device_printf(dev, "could not set up interrupt\n"); 347 goto fail3; 348 } 349 350 if (bootverbose) 351 ieee80211_announce(ic); 352 353 return 0; 354 fail3: 355 ipw_release(sc); 356 fail2: 357 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 358 fail1: 359 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 360 sc->mem); 361 fail: 362 mtx_destroy(&sc->sc_mtx); 363 return ENXIO; 364 } 365 366 static int 367 ipw_detach(device_t dev) 368 { 369 struct ipw_softc *sc = device_get_softc(dev); 370 struct ieee80211com *ic = &sc->sc_ic; 371 372 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 373 374 ieee80211_draintask(ic, &sc->sc_init_task); 375 ipw_stop(sc); 376 377 ieee80211_ifdetach(ic); 378 379 callout_drain(&sc->sc_wdtimer); 380 mbufq_drain(&sc->sc_snd); 381 382 ipw_release(sc); 383 384 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 385 386 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 387 sc->mem); 388 389 if (sc->sc_firmware != NULL) { 390 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 391 sc->sc_firmware = NULL; 392 } 393 394 mtx_destroy(&sc->sc_mtx); 395 396 return 0; 397 } 398 399 static struct ieee80211vap * 400 ipw_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 401 enum ieee80211_opmode opmode, int flags, 402 const uint8_t bssid[IEEE80211_ADDR_LEN], 403 const uint8_t mac[IEEE80211_ADDR_LEN]) 404 { 405 struct ipw_softc *sc = ic->ic_softc; 406 struct ipw_vap *ivp; 407 struct ieee80211vap *vap; 408 const struct firmware *fp; 409 const struct ipw_firmware_hdr *hdr; 410 const char *imagename; 411 412 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 413 return NULL; 414 415 switch (opmode) { 416 case IEEE80211_M_STA: 417 imagename = "ipw_bss"; 418 break; 419 case IEEE80211_M_IBSS: 420 imagename = "ipw_ibss"; 421 break; 422 case IEEE80211_M_MONITOR: 423 imagename = "ipw_monitor"; 424 break; 425 default: 426 return NULL; 427 } 428 429 /* 430 * Load firmware image using the firmware(9) subsystem. Doing 431 * this unlocked is ok since we're single-threaded by the 432 * 802.11 layer. 433 */ 434 if (sc->sc_firmware == NULL || 435 strcmp(sc->sc_firmware->name, imagename) != 0) { 436 if (sc->sc_firmware != NULL) 437 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 438 sc->sc_firmware = firmware_get(imagename); 439 } 440 if (sc->sc_firmware == NULL) { 441 device_printf(sc->sc_dev, 442 "could not load firmware image '%s'\n", imagename); 443 return NULL; 444 } 445 fp = sc->sc_firmware; 446 if (fp->datasize < sizeof *hdr) { 447 device_printf(sc->sc_dev, 448 "firmware image too short %zu\n", fp->datasize); 449 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 450 sc->sc_firmware = NULL; 451 return NULL; 452 } 453 hdr = (const struct ipw_firmware_hdr *)fp->data; 454 if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) + 455 le32toh(hdr->ucodesz)) { 456 device_printf(sc->sc_dev, 457 "firmware image too short %zu\n", fp->datasize); 458 firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD); 459 sc->sc_firmware = NULL; 460 return NULL; 461 } 462 463 ivp = malloc(sizeof(struct ipw_vap), M_80211_VAP, M_WAITOK | M_ZERO); 464 vap = &ivp->vap; 465 466 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 467 /* override with driver methods */ 468 ivp->newstate = vap->iv_newstate; 469 vap->iv_newstate = ipw_newstate; 470 471 /* complete setup */ 472 ieee80211_vap_attach(vap, ieee80211_media_change, ipw_media_status, 473 mac); 474 ic->ic_opmode = opmode; 475 return vap; 476 } 477 478 static void 479 ipw_vap_delete(struct ieee80211vap *vap) 480 { 481 struct ipw_vap *ivp = IPW_VAP(vap); 482 483 ieee80211_vap_detach(vap); 484 free(ivp, M_80211_VAP); 485 } 486 487 static int 488 ipw_dma_alloc(struct ipw_softc *sc) 489 { 490 struct ipw_soft_bd *sbd; 491 struct ipw_soft_hdr *shdr; 492 struct ipw_soft_buf *sbuf; 493 bus_addr_t physaddr; 494 int error, i; 495 496 /* 497 * Allocate parent DMA tag for subsequent allocations. 498 */ 499 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 500 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 501 BUS_SPACE_MAXSIZE_32BIT, BUS_SPACE_UNRESTRICTED, 502 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->parent_dmat); 503 if (error != 0) { 504 device_printf(sc->sc_dev, "could not create parent DMA tag\n"); 505 goto fail; 506 } 507 508 /* 509 * Allocate and map tx ring. 510 */ 511 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 512 BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL, 513 NULL, &sc->tbd_dmat); 514 if (error != 0) { 515 device_printf(sc->sc_dev, "could not create tx ring DMA tag\n"); 516 goto fail; 517 } 518 519 error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list, 520 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map); 521 if (error != 0) { 522 device_printf(sc->sc_dev, 523 "could not allocate tx ring DMA memory\n"); 524 goto fail; 525 } 526 527 error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list, 528 IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0); 529 if (error != 0) { 530 device_printf(sc->sc_dev, "could not map tx ring DMA memory\n"); 531 goto fail; 532 } 533 534 /* 535 * Allocate and map rx ring. 536 */ 537 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 538 BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL, 539 NULL, &sc->rbd_dmat); 540 if (error != 0) { 541 device_printf(sc->sc_dev, "could not create rx ring DMA tag\n"); 542 goto fail; 543 } 544 545 error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list, 546 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map); 547 if (error != 0) { 548 device_printf(sc->sc_dev, 549 "could not allocate rx ring DMA memory\n"); 550 goto fail; 551 } 552 553 error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list, 554 IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0); 555 if (error != 0) { 556 device_printf(sc->sc_dev, "could not map rx ring DMA memory\n"); 557 goto fail; 558 } 559 560 /* 561 * Allocate and map status ring. 562 */ 563 error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT, 564 BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0, 565 NULL, NULL, &sc->status_dmat); 566 if (error != 0) { 567 device_printf(sc->sc_dev, 568 "could not create status ring DMA tag\n"); 569 goto fail; 570 } 571 572 error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list, 573 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map); 574 if (error != 0) { 575 device_printf(sc->sc_dev, 576 "could not allocate status ring DMA memory\n"); 577 goto fail; 578 } 579 580 error = bus_dmamap_load(sc->status_dmat, sc->status_map, 581 sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys, 582 0); 583 if (error != 0) { 584 device_printf(sc->sc_dev, 585 "could not map status ring DMA memory\n"); 586 goto fail; 587 } 588 589 /* 590 * Allocate command DMA map. 591 */ 592 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 593 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1, 594 sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat); 595 if (error != 0) { 596 device_printf(sc->sc_dev, "could not create command DMA tag\n"); 597 goto fail; 598 } 599 600 error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map); 601 if (error != 0) { 602 device_printf(sc->sc_dev, 603 "could not create command DMA map\n"); 604 goto fail; 605 } 606 607 /* 608 * Allocate headers DMA maps. 609 */ 610 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 611 BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1, 612 sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat); 613 if (error != 0) { 614 device_printf(sc->sc_dev, "could not create header DMA tag\n"); 615 goto fail; 616 } 617 618 SLIST_INIT(&sc->free_shdr); 619 for (i = 0; i < IPW_NDATA; i++) { 620 shdr = &sc->shdr_list[i]; 621 error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map); 622 if (error != 0) { 623 device_printf(sc->sc_dev, 624 "could not create header DMA map\n"); 625 goto fail; 626 } 627 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 628 } 629 630 /* 631 * Allocate tx buffers DMA maps. 632 */ 633 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 634 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0, 635 NULL, NULL, &sc->txbuf_dmat); 636 if (error != 0) { 637 device_printf(sc->sc_dev, "could not create tx DMA tag\n"); 638 goto fail; 639 } 640 641 SLIST_INIT(&sc->free_sbuf); 642 for (i = 0; i < IPW_NDATA; i++) { 643 sbuf = &sc->tx_sbuf_list[i]; 644 error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map); 645 if (error != 0) { 646 device_printf(sc->sc_dev, 647 "could not create tx DMA map\n"); 648 goto fail; 649 } 650 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 651 } 652 653 /* 654 * Initialize tx ring. 655 */ 656 for (i = 0; i < IPW_NTBD; i++) { 657 sbd = &sc->stbd_list[i]; 658 sbd->bd = &sc->tbd_list[i]; 659 sbd->type = IPW_SBD_TYPE_NOASSOC; 660 } 661 662 /* 663 * Pre-allocate rx buffers and DMA maps. 664 */ 665 error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, 666 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, 667 NULL, &sc->rxbuf_dmat); 668 if (error != 0) { 669 device_printf(sc->sc_dev, "could not create rx DMA tag\n"); 670 goto fail; 671 } 672 673 for (i = 0; i < IPW_NRBD; i++) { 674 sbd = &sc->srbd_list[i]; 675 sbuf = &sc->rx_sbuf_list[i]; 676 sbd->bd = &sc->rbd_list[i]; 677 678 sbuf->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 679 if (sbuf->m == NULL) { 680 device_printf(sc->sc_dev, 681 "could not allocate rx mbuf\n"); 682 error = ENOMEM; 683 goto fail; 684 } 685 686 error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map); 687 if (error != 0) { 688 device_printf(sc->sc_dev, 689 "could not create rx DMA map\n"); 690 goto fail; 691 } 692 693 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 694 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 695 &physaddr, 0); 696 if (error != 0) { 697 device_printf(sc->sc_dev, 698 "could not map rx DMA memory\n"); 699 goto fail; 700 } 701 702 sbd->type = IPW_SBD_TYPE_DATA; 703 sbd->priv = sbuf; 704 sbd->bd->physaddr = htole32(physaddr); 705 sbd->bd->len = htole32(MCLBYTES); 706 } 707 708 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 709 710 return 0; 711 712 fail: ipw_release(sc); 713 return error; 714 } 715 716 static void 717 ipw_release(struct ipw_softc *sc) 718 { 719 struct ipw_soft_buf *sbuf; 720 int i; 721 722 if (sc->parent_dmat != NULL) { 723 bus_dma_tag_destroy(sc->parent_dmat); 724 } 725 726 if (sc->tbd_dmat != NULL) { 727 bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map); 728 bus_dmamem_free(sc->tbd_dmat, sc->tbd_list, sc->tbd_map); 729 bus_dma_tag_destroy(sc->tbd_dmat); 730 } 731 732 if (sc->rbd_dmat != NULL) { 733 if (sc->rbd_list != NULL) { 734 bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map); 735 bus_dmamem_free(sc->rbd_dmat, sc->rbd_list, 736 sc->rbd_map); 737 } 738 bus_dma_tag_destroy(sc->rbd_dmat); 739 } 740 741 if (sc->status_dmat != NULL) { 742 if (sc->status_list != NULL) { 743 bus_dmamap_unload(sc->status_dmat, sc->status_map); 744 bus_dmamem_free(sc->status_dmat, sc->status_list, 745 sc->status_map); 746 } 747 bus_dma_tag_destroy(sc->status_dmat); 748 } 749 750 for (i = 0; i < IPW_NTBD; i++) 751 ipw_release_sbd(sc, &sc->stbd_list[i]); 752 753 if (sc->cmd_dmat != NULL) { 754 bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map); 755 bus_dma_tag_destroy(sc->cmd_dmat); 756 } 757 758 if (sc->hdr_dmat != NULL) { 759 for (i = 0; i < IPW_NDATA; i++) 760 bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map); 761 bus_dma_tag_destroy(sc->hdr_dmat); 762 } 763 764 if (sc->txbuf_dmat != NULL) { 765 for (i = 0; i < IPW_NDATA; i++) { 766 bus_dmamap_destroy(sc->txbuf_dmat, 767 sc->tx_sbuf_list[i].map); 768 } 769 bus_dma_tag_destroy(sc->txbuf_dmat); 770 } 771 772 if (sc->rxbuf_dmat != NULL) { 773 for (i = 0; i < IPW_NRBD; i++) { 774 sbuf = &sc->rx_sbuf_list[i]; 775 if (sbuf->m != NULL) { 776 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, 777 BUS_DMASYNC_POSTREAD); 778 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 779 m_freem(sbuf->m); 780 } 781 bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map); 782 } 783 bus_dma_tag_destroy(sc->rxbuf_dmat); 784 } 785 } 786 787 static int 788 ipw_shutdown(device_t dev) 789 { 790 struct ipw_softc *sc = device_get_softc(dev); 791 792 ipw_stop(sc); 793 794 return 0; 795 } 796 797 static int 798 ipw_suspend(device_t dev) 799 { 800 struct ipw_softc *sc = device_get_softc(dev); 801 struct ieee80211com *ic = &sc->sc_ic; 802 803 ieee80211_suspend_all(ic); 804 return 0; 805 } 806 807 static int 808 ipw_resume(device_t dev) 809 { 810 struct ipw_softc *sc = device_get_softc(dev); 811 struct ieee80211com *ic = &sc->sc_ic; 812 813 pci_write_config(dev, 0x41, 0, 1); 814 815 ieee80211_resume_all(ic); 816 return 0; 817 } 818 819 static int 820 ipw_cvtrate(int ipwrate) 821 { 822 switch (ipwrate) { 823 case IPW_RATE_DS1: return 2; 824 case IPW_RATE_DS2: return 4; 825 case IPW_RATE_DS5: return 11; 826 case IPW_RATE_DS11: return 22; 827 } 828 return 0; 829 } 830 831 /* 832 * The firmware automatically adapts the transmit speed. We report its current 833 * value here. 834 */ 835 static void 836 ipw_media_status(if_t ifp, struct ifmediareq *imr) 837 { 838 struct ieee80211vap *vap = if_getsoftc(ifp); 839 struct ieee80211com *ic = vap->iv_ic; 840 struct ipw_softc *sc = ic->ic_softc; 841 842 /* read current transmission rate from adapter */ 843 ieee80211_node_set_txrate_dot11rate(vap->iv_bss, 844 ipw_cvtrate(ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf)); 845 ieee80211_media_status(ifp, imr); 846 } 847 848 static int 849 ipw_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 850 { 851 struct ipw_vap *ivp = IPW_VAP(vap); 852 struct ieee80211com *ic = vap->iv_ic; 853 struct ipw_softc *sc = ic->ic_softc; 854 enum ieee80211_state ostate; 855 856 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 857 ieee80211_state_name[vap->iv_state], 858 ieee80211_state_name[nstate], sc->flags)); 859 860 ostate = vap->iv_state; 861 IEEE80211_UNLOCK(ic); 862 863 switch (nstate) { 864 case IEEE80211_S_RUN: 865 if (ic->ic_opmode == IEEE80211_M_IBSS) { 866 /* 867 * XXX when joining an ibss network we are called 868 * with a SCAN -> RUN transition on scan complete. 869 * Use that to call ipw_assoc. On completing the 870 * join we are then called again with an AUTH -> RUN 871 * transition and we want to do nothing. This is 872 * all totally bogus and needs to be redone. 873 */ 874 if (ostate == IEEE80211_S_SCAN) 875 ipw_assoc(ic, vap); 876 } 877 break; 878 879 case IEEE80211_S_INIT: 880 if (sc->flags & IPW_FLAG_ASSOCIATED) 881 ipw_disassoc(ic, vap); 882 break; 883 884 case IEEE80211_S_AUTH: 885 /* 886 * Move to ASSOC state after the ipw_assoc() call. Firmware 887 * takes care of authentication, after the call we'll receive 888 * only an assoc response which would otherwise be discared 889 * if we are still in AUTH state. 890 */ 891 nstate = IEEE80211_S_ASSOC; 892 ipw_assoc(ic, vap); 893 break; 894 895 case IEEE80211_S_ASSOC: 896 /* 897 * If we are not transitioning from AUTH then resend the 898 * association request. 899 */ 900 if (ostate != IEEE80211_S_AUTH) 901 ipw_assoc(ic, vap); 902 break; 903 904 default: 905 break; 906 } 907 IEEE80211_LOCK(ic); 908 return ivp->newstate(vap, nstate, arg); 909 } 910 911 /* 912 * Read 16 bits at address 'addr' from the serial EEPROM. 913 */ 914 static uint16_t 915 ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr) 916 { 917 uint32_t tmp; 918 uint16_t val; 919 int n; 920 921 /* clock C once before the first command */ 922 IPW_EEPROM_CTL(sc, 0); 923 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 924 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 925 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 926 927 /* write start bit (1) */ 928 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 929 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 930 931 /* write READ opcode (10) */ 932 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); 933 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); 934 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 935 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 936 937 /* write address A7-A0 */ 938 for (n = 7; n >= 0; n--) { 939 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 940 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D)); 941 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | 942 (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C); 943 } 944 945 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 946 947 /* read data Q15-Q0 */ 948 val = 0; 949 for (n = 15; n >= 0; n--) { 950 IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); 951 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 952 tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL); 953 val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n; 954 } 955 956 IPW_EEPROM_CTL(sc, 0); 957 958 /* clear Chip Select and clock C */ 959 IPW_EEPROM_CTL(sc, IPW_EEPROM_S); 960 IPW_EEPROM_CTL(sc, 0); 961 IPW_EEPROM_CTL(sc, IPW_EEPROM_C); 962 963 return le16toh(val); 964 } 965 966 static uint16_t 967 ipw_read_chanmask(struct ipw_softc *sc) 968 { 969 uint16_t val; 970 971 /* set supported .11b channels (read from EEPROM) */ 972 if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0) 973 val = 0x7ff; /* default to channels 1-11 */ 974 val <<= 1; 975 976 return (val); 977 } 978 979 static void 980 ipw_rx_cmd_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 981 { 982 struct ipw_cmd *cmd; 983 984 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 985 986 cmd = mtod(sbuf->m, struct ipw_cmd *); 987 988 DPRINTFN(9, ("cmd ack'ed %s(%u, %u, %u, %u, %u)\n", 989 ipw_cmdname(le32toh(cmd->type)), le32toh(cmd->type), 990 le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len), 991 le32toh(cmd->status))); 992 993 sc->flags &= ~IPW_FLAG_BUSY; 994 wakeup(sc); 995 } 996 997 static void 998 ipw_rx_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) 999 { 1000 #define IEEESTATE(vap) ieee80211_state_name[vap->iv_state] 1001 struct ieee80211com *ic = &sc->sc_ic; 1002 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1003 uint32_t state; 1004 1005 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1006 1007 state = le32toh(*mtod(sbuf->m, uint32_t *)); 1008 1009 switch (state) { 1010 case IPW_STATE_ASSOCIATED: 1011 DPRINTFN(2, ("Association succeeded (%s flags 0x%x)\n", 1012 IEEESTATE(vap), sc->flags)); 1013 /* XXX suppress state change in case the fw auto-associates */ 1014 if ((sc->flags & IPW_FLAG_ASSOCIATING) == 0) { 1015 DPRINTF(("Unexpected association (%s, flags 0x%x)\n", 1016 IEEESTATE(vap), sc->flags)); 1017 break; 1018 } 1019 sc->flags &= ~IPW_FLAG_ASSOCIATING; 1020 sc->flags |= IPW_FLAG_ASSOCIATED; 1021 break; 1022 1023 case IPW_STATE_SCANNING: 1024 DPRINTFN(3, ("Scanning (%s flags 0x%x)\n", 1025 IEEESTATE(vap), sc->flags)); 1026 /* 1027 * NB: Check driver state for association on assoc 1028 * loss as the firmware will immediately start to 1029 * scan and we would treat it as a beacon miss if 1030 * we checked the 802.11 layer state. 1031 */ 1032 if (sc->flags & IPW_FLAG_ASSOCIATED) { 1033 IPW_UNLOCK(sc); 1034 /* XXX probably need to issue disassoc to fw */ 1035 ieee80211_beacon_miss(ic); 1036 IPW_LOCK(sc); 1037 } 1038 break; 1039 1040 case IPW_STATE_SCAN_COMPLETE: 1041 /* 1042 * XXX For some reason scan requests generate scan 1043 * started + scan done events before any traffic is 1044 * received (e.g. probe response frames). We work 1045 * around this by marking the HACK flag and skipping 1046 * the first scan complete event. 1047 */ 1048 DPRINTFN(3, ("Scan complete (%s flags 0x%x)\n", 1049 IEEESTATE(vap), sc->flags)); 1050 if (sc->flags & IPW_FLAG_HACK) { 1051 sc->flags &= ~IPW_FLAG_HACK; 1052 break; 1053 } 1054 if (sc->flags & IPW_FLAG_SCANNING) { 1055 IPW_UNLOCK(sc); 1056 ieee80211_scan_done(vap); 1057 IPW_LOCK(sc); 1058 sc->flags &= ~IPW_FLAG_SCANNING; 1059 sc->sc_scan_timer = 0; 1060 } 1061 break; 1062 1063 case IPW_STATE_ASSOCIATION_LOST: 1064 DPRINTFN(2, ("Association lost (%s flags 0x%x)\n", 1065 IEEESTATE(vap), sc->flags)); 1066 sc->flags &= ~(IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1067 if (vap->iv_state == IEEE80211_S_RUN) { 1068 IPW_UNLOCK(sc); 1069 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1070 IPW_LOCK(sc); 1071 } 1072 break; 1073 1074 case IPW_STATE_DISABLED: 1075 /* XXX? is this right? */ 1076 sc->flags &= ~(IPW_FLAG_HACK | IPW_FLAG_SCANNING | 1077 IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED); 1078 DPRINTFN(2, ("Firmware disabled (%s flags 0x%x)\n", 1079 IEEESTATE(vap), sc->flags)); 1080 break; 1081 1082 case IPW_STATE_RADIO_DISABLED: 1083 device_printf(sc->sc_dev, "radio turned off\n"); 1084 ieee80211_notify_radio(ic, 0); 1085 ipw_stop_locked(sc); 1086 /* XXX start polling thread to detect radio on */ 1087 break; 1088 1089 default: 1090 DPRINTFN(2, ("%s: unhandled state %u %s flags 0x%x\n", 1091 __func__, state, IEEESTATE(vap), sc->flags)); 1092 break; 1093 } 1094 #undef IEEESTATE 1095 } 1096 1097 /* 1098 * Set driver state for current channel. 1099 */ 1100 static void 1101 ipw_setcurchan(struct ipw_softc *sc, struct ieee80211_channel *chan) 1102 { 1103 struct ieee80211com *ic = &sc->sc_ic; 1104 1105 ic->ic_curchan = chan; 1106 ieee80211_radiotap_chan_change(ic); 1107 } 1108 1109 /* 1110 * XXX: Hack to set the current channel to the value advertised in beacons or 1111 * probe responses. Only used during AP detection. 1112 */ 1113 static void 1114 ipw_fix_channel(struct ipw_softc *sc, struct mbuf *m) 1115 { 1116 struct ieee80211com *ic = &sc->sc_ic; 1117 struct ieee80211_channel *c; 1118 struct ieee80211_frame *wh; 1119 uint8_t subtype; 1120 uint8_t *frm, *efrm; 1121 1122 wh = mtod(m, struct ieee80211_frame *); 1123 1124 if (!IEEE80211_IS_MGMT(wh)) 1125 return; 1126 1127 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1128 1129 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 1130 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1131 return; 1132 1133 /* XXX use ieee80211_parse_beacon */ 1134 frm = (uint8_t *)(wh + 1); 1135 efrm = mtod(m, uint8_t *) + m->m_len; 1136 1137 frm += 12; /* skip tstamp, bintval and capinfo fields */ 1138 while (frm < efrm) { 1139 if (*frm == IEEE80211_ELEMID_DSPARMS) 1140 #if IEEE80211_CHAN_MAX < 255 1141 if (frm[2] <= IEEE80211_CHAN_MAX) 1142 #endif 1143 { 1144 DPRINTF(("Fixing channel to %d\n", frm[2])); 1145 c = ieee80211_find_channel(ic, 1146 ieee80211_ieee2mhz(frm[2], 0), 1147 IEEE80211_CHAN_B); 1148 if (c == NULL) 1149 c = &ic->ic_channels[0]; 1150 ipw_setcurchan(sc, c); 1151 } 1152 1153 frm += frm[1] + 2; 1154 } 1155 } 1156 1157 static void 1158 ipw_rx_data_intr(struct ipw_softc *sc, struct ipw_status *status, 1159 struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf) 1160 { 1161 struct ieee80211com *ic = &sc->sc_ic; 1162 struct mbuf *mnew, *m; 1163 struct ieee80211_node *ni; 1164 bus_addr_t physaddr; 1165 int error; 1166 int8_t rssi, nf; 1167 1168 DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len), 1169 status->rssi)); 1170 1171 if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) || 1172 le32toh(status->len) > MCLBYTES) 1173 return; 1174 1175 /* 1176 * Try to allocate a new mbuf for this ring element and load it before 1177 * processing the current mbuf. If the ring element cannot be loaded, 1178 * drop the received packet and reuse the old mbuf. In the unlikely 1179 * case that the old mbuf can't be reloaded either, explicitly panic. 1180 */ 1181 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1182 if (mnew == NULL) { 1183 counter_u64_add(ic->ic_ierrors, 1); 1184 return; 1185 } 1186 1187 bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD); 1188 bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map); 1189 1190 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *), 1191 MCLBYTES, ipw_dma_map_addr, &physaddr, 0); 1192 if (error != 0) { 1193 m_freem(mnew); 1194 1195 /* try to reload the old mbuf */ 1196 error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, 1197 mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr, 1198 &physaddr, 0); 1199 if (error != 0) { 1200 /* very unlikely that it will fail... */ 1201 panic("%s: could not load old rx mbuf", 1202 device_get_name(sc->sc_dev)); 1203 } 1204 counter_u64_add(ic->ic_ierrors, 1); 1205 return; 1206 } 1207 1208 /* 1209 * New mbuf successfully loaded, update Rx ring and continue 1210 * processing. 1211 */ 1212 m = sbuf->m; 1213 sbuf->m = mnew; 1214 sbd->bd->physaddr = htole32(physaddr); 1215 m->m_pkthdr.len = m->m_len = le32toh(status->len); 1216 1217 rssi = status->rssi + IPW_RSSI_TO_DBM; 1218 nf = -95; 1219 if (ieee80211_radiotap_active(ic)) { 1220 struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap; 1221 1222 tap->wr_flags = 0; 1223 tap->wr_antsignal = rssi; 1224 tap->wr_antnoise = nf; 1225 } 1226 1227 if (sc->flags & IPW_FLAG_SCANNING) 1228 ipw_fix_channel(sc, m); 1229 1230 IPW_UNLOCK(sc); 1231 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1232 if (ni != NULL) { 1233 (void) ieee80211_input(ni, m, rssi - nf, nf); 1234 ieee80211_free_node(ni); 1235 } else 1236 (void) ieee80211_input_all(ic, m, rssi - nf, nf); 1237 IPW_LOCK(sc); 1238 1239 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1240 } 1241 1242 static void 1243 ipw_rx_intr(struct ipw_softc *sc) 1244 { 1245 struct ipw_status *status; 1246 struct ipw_soft_bd *sbd; 1247 struct ipw_soft_buf *sbuf; 1248 uint32_t r, i; 1249 1250 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1251 return; 1252 1253 r = CSR_READ_4(sc, IPW_CSR_RX_READ); 1254 1255 bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD); 1256 1257 for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) { 1258 status = &sc->status_list[i]; 1259 sbd = &sc->srbd_list[i]; 1260 sbuf = sbd->priv; 1261 1262 switch (le16toh(status->code) & 0xf) { 1263 case IPW_STATUS_CODE_COMMAND: 1264 ipw_rx_cmd_intr(sc, sbuf); 1265 break; 1266 1267 case IPW_STATUS_CODE_NEWSTATE: 1268 ipw_rx_newstate_intr(sc, sbuf); 1269 break; 1270 1271 case IPW_STATUS_CODE_DATA_802_3: 1272 case IPW_STATUS_CODE_DATA_802_11: 1273 ipw_rx_data_intr(sc, status, sbd, sbuf); 1274 break; 1275 1276 case IPW_STATUS_CODE_NOTIFICATION: 1277 DPRINTFN(2, ("notification status, len %u flags 0x%x\n", 1278 le32toh(status->len), status->flags)); 1279 /* XXX maybe drive state machine AUTH->ASSOC? */ 1280 break; 1281 1282 default: 1283 device_printf(sc->sc_dev, "unexpected status code %u\n", 1284 le16toh(status->code)); 1285 } 1286 1287 /* firmware was killed, stop processing received frames */ 1288 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1289 return; 1290 1291 sbd->bd->flags = 0; 1292 } 1293 1294 bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE); 1295 1296 /* kick the firmware */ 1297 sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1; 1298 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 1299 } 1300 1301 static void 1302 ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd) 1303 { 1304 struct ipw_soft_hdr *shdr; 1305 struct ipw_soft_buf *sbuf; 1306 1307 switch (sbd->type) { 1308 case IPW_SBD_TYPE_COMMAND: 1309 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, 1310 BUS_DMASYNC_POSTWRITE); 1311 bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map); 1312 break; 1313 1314 case IPW_SBD_TYPE_HEADER: 1315 shdr = sbd->priv; 1316 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE); 1317 bus_dmamap_unload(sc->hdr_dmat, shdr->map); 1318 SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); 1319 break; 1320 1321 case IPW_SBD_TYPE_DATA: 1322 sbuf = sbd->priv; 1323 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, 1324 BUS_DMASYNC_POSTWRITE); 1325 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1326 SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); 1327 1328 ieee80211_tx_complete(sbuf->ni, sbuf->m, 0/*XXX*/); 1329 1330 sc->sc_tx_timer = 0; 1331 break; 1332 } 1333 1334 sbd->type = IPW_SBD_TYPE_NOASSOC; 1335 } 1336 1337 static void 1338 ipw_tx_intr(struct ipw_softc *sc) 1339 { 1340 struct ipw_soft_bd *sbd; 1341 uint32_t r, i; 1342 1343 if (!(sc->flags & IPW_FLAG_FW_INITED)) 1344 return; 1345 1346 r = CSR_READ_4(sc, IPW_CSR_TX_READ); 1347 1348 for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) { 1349 sbd = &sc->stbd_list[i]; 1350 ipw_release_sbd(sc, sbd); 1351 sc->txfree++; 1352 } 1353 1354 /* remember what the firmware has processed */ 1355 sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1; 1356 1357 ipw_start(sc); 1358 } 1359 1360 static void 1361 ipw_fatal_error_intr(struct ipw_softc *sc) 1362 { 1363 struct ieee80211com *ic = &sc->sc_ic; 1364 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1365 1366 device_printf(sc->sc_dev, "firmware error\n"); 1367 if (vap != NULL) { 1368 IPW_UNLOCK(sc); 1369 ieee80211_cancel_scan(vap); 1370 IPW_LOCK(sc); 1371 } 1372 ieee80211_runtask(ic, &sc->sc_init_task); 1373 } 1374 1375 static void 1376 ipw_intr(void *arg) 1377 { 1378 struct ipw_softc *sc = arg; 1379 uint32_t r; 1380 1381 IPW_LOCK(sc); 1382 1383 r = CSR_READ_4(sc, IPW_CSR_INTR); 1384 if (r == 0 || r == 0xffffffff) 1385 goto done; 1386 1387 /* disable interrupts */ 1388 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1389 1390 /* acknowledge all interrupts */ 1391 CSR_WRITE_4(sc, IPW_CSR_INTR, r); 1392 1393 if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) { 1394 ipw_fatal_error_intr(sc); 1395 goto done; 1396 } 1397 1398 if (r & IPW_INTR_FW_INIT_DONE) 1399 wakeup(sc); 1400 1401 if (r & IPW_INTR_RX_TRANSFER) 1402 ipw_rx_intr(sc); 1403 1404 if (r & IPW_INTR_TX_TRANSFER) 1405 ipw_tx_intr(sc); 1406 1407 /* re-enable interrupts */ 1408 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1409 done: 1410 IPW_UNLOCK(sc); 1411 } 1412 1413 static void 1414 ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1415 { 1416 if (error != 0) 1417 return; 1418 1419 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 1420 1421 *(bus_addr_t *)arg = segs[0].ds_addr; 1422 } 1423 1424 static const char * 1425 ipw_cmdname(int cmd) 1426 { 1427 static const struct { 1428 int cmd; 1429 const char *name; 1430 } cmds[] = { 1431 { IPW_CMD_ADD_MULTICAST, "ADD_MULTICAST" }, 1432 { IPW_CMD_BROADCAST_SCAN, "BROADCAST_SCAN" }, 1433 { IPW_CMD_DISABLE, "DISABLE" }, 1434 { IPW_CMD_DISABLE_PHY, "DISABLE_PHY" }, 1435 { IPW_CMD_ENABLE, "ENABLE" }, 1436 { IPW_CMD_PREPARE_POWER_DOWN, "PREPARE_POWER_DOWN" }, 1437 { IPW_CMD_SET_BASIC_TX_RATES, "SET_BASIC_TX_RATES" }, 1438 { IPW_CMD_SET_BEACON_INTERVAL, "SET_BEACON_INTERVAL" }, 1439 { IPW_CMD_SET_CHANNEL, "SET_CHANNEL" }, 1440 { IPW_CMD_SET_CONFIGURATION, "SET_CONFIGURATION" }, 1441 { IPW_CMD_SET_DESIRED_BSSID, "SET_DESIRED_BSSID" }, 1442 { IPW_CMD_SET_ESSID, "SET_ESSID" }, 1443 { IPW_CMD_SET_FRAG_THRESHOLD, "SET_FRAG_THRESHOLD" }, 1444 { IPW_CMD_SET_MAC_ADDRESS, "SET_MAC_ADDRESS" }, 1445 { IPW_CMD_SET_MANDATORY_BSSID, "SET_MANDATORY_BSSID" }, 1446 { IPW_CMD_SET_MODE, "SET_MODE" }, 1447 { IPW_CMD_SET_MSDU_TX_RATES, "SET_MSDU_TX_RATES" }, 1448 { IPW_CMD_SET_POWER_MODE, "SET_POWER_MODE" }, 1449 { IPW_CMD_SET_RTS_THRESHOLD, "SET_RTS_THRESHOLD" }, 1450 { IPW_CMD_SET_SCAN_OPTIONS, "SET_SCAN_OPTIONS" }, 1451 { IPW_CMD_SET_SECURITY_INFO, "SET_SECURITY_INFO" }, 1452 { IPW_CMD_SET_TX_POWER_INDEX, "SET_TX_POWER_INDEX" }, 1453 { IPW_CMD_SET_TX_RATES, "SET_TX_RATES" }, 1454 { IPW_CMD_SET_WEP_FLAGS, "SET_WEP_FLAGS" }, 1455 { IPW_CMD_SET_WEP_KEY, "SET_WEP_KEY" }, 1456 { IPW_CMD_SET_WEP_KEY_INDEX, "SET_WEP_KEY_INDEX" }, 1457 { IPW_CMD_SET_WPA_IE, "SET_WPA_IE" }, 1458 1459 }; 1460 static char buf[12]; 1461 int i; 1462 1463 for (i = 0; i < nitems(cmds); i++) 1464 if (cmds[i].cmd == cmd) 1465 return cmds[i].name; 1466 snprintf(buf, sizeof(buf), "%u", cmd); 1467 return buf; 1468 } 1469 1470 /* 1471 * Send a command to the firmware and wait for the acknowledgement. 1472 */ 1473 static int 1474 ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len) 1475 { 1476 struct ipw_soft_bd *sbd; 1477 bus_addr_t physaddr; 1478 int error; 1479 1480 IPW_LOCK_ASSERT(sc); 1481 1482 if (sc->flags & IPW_FLAG_BUSY) { 1483 device_printf(sc->sc_dev, "%s: %s not sent, busy\n", 1484 __func__, ipw_cmdname(type)); 1485 return EAGAIN; 1486 } 1487 sc->flags |= IPW_FLAG_BUSY; 1488 1489 sbd = &sc->stbd_list[sc->txcur]; 1490 1491 error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd, 1492 sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0); 1493 if (error != 0) { 1494 device_printf(sc->sc_dev, "could not map command DMA memory\n"); 1495 sc->flags &= ~IPW_FLAG_BUSY; 1496 return error; 1497 } 1498 1499 sc->cmd.type = htole32(type); 1500 sc->cmd.subtype = 0; 1501 sc->cmd.len = htole32(len); 1502 sc->cmd.seq = 0; 1503 memcpy(sc->cmd.data, data, len); 1504 1505 sbd->type = IPW_SBD_TYPE_COMMAND; 1506 sbd->bd->physaddr = htole32(physaddr); 1507 sbd->bd->len = htole32(sizeof (struct ipw_cmd)); 1508 sbd->bd->nfrag = 1; 1509 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND | 1510 IPW_BD_FLAG_TX_LAST_FRAGMENT; 1511 1512 bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE); 1513 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1514 1515 #ifdef IPW_DEBUG 1516 if (ipw_debug >= 4) { 1517 printf("sending %s(%u, %u, %u, %u)", ipw_cmdname(type), type, 1518 0, 0, len); 1519 /* Print the data buffer in the higher debug level */ 1520 if (ipw_debug >= 9 && len > 0) { 1521 printf(" data: 0x"); 1522 for (int i = 1; i <= len; i++) 1523 printf("%1D", (u_char *)data + len - i, ""); 1524 } 1525 printf("\n"); 1526 } 1527 #endif 1528 1529 /* kick firmware */ 1530 sc->txfree--; 1531 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1532 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1533 1534 /* wait at most one second for command to complete */ 1535 error = msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz); 1536 if (error != 0) { 1537 device_printf(sc->sc_dev, "%s: %s failed, timeout (error %u)\n", 1538 __func__, ipw_cmdname(type), error); 1539 sc->flags &= ~IPW_FLAG_BUSY; 1540 return (error); 1541 } 1542 return (0); 1543 } 1544 1545 static int 1546 ipw_tx_start(struct ipw_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1547 { 1548 struct ieee80211com *ic = &sc->sc_ic; 1549 struct ieee80211vap *vap = ni->ni_vap; 1550 struct ieee80211_frame *wh; 1551 struct ipw_soft_bd *sbd; 1552 struct ipw_soft_hdr *shdr; 1553 struct ipw_soft_buf *sbuf; 1554 struct ieee80211_key *k; 1555 struct mbuf *mnew; 1556 bus_dma_segment_t segs[IPW_MAX_NSEG]; 1557 bus_addr_t physaddr; 1558 int nsegs, error, i; 1559 1560 wh = mtod(m0, struct ieee80211_frame *); 1561 1562 ieee80211_output_seqno_assign(ni, -1, m0); 1563 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1564 k = ieee80211_crypto_encap(ni, m0); 1565 if (k == NULL) { 1566 m_freem(m0); 1567 return ENOBUFS; 1568 } 1569 /* packet header may have moved, reset our local pointer */ 1570 wh = mtod(m0, struct ieee80211_frame *); 1571 } 1572 1573 if (ieee80211_radiotap_active_vap(vap)) { 1574 struct ipw_tx_radiotap_header *tap = &sc->sc_txtap; 1575 1576 tap->wt_flags = 0; 1577 1578 ieee80211_radiotap_tx(vap, m0); 1579 } 1580 1581 shdr = SLIST_FIRST(&sc->free_shdr); 1582 sbuf = SLIST_FIRST(&sc->free_sbuf); 1583 KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool")); 1584 1585 shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND); 1586 shdr->hdr.subtype = 0; 1587 shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) ? 1 : 0; 1588 shdr->hdr.encrypt = 0; 1589 shdr->hdr.keyidx = 0; 1590 shdr->hdr.keysz = 0; 1591 shdr->hdr.fragmentsz = 0; 1592 IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2); 1593 if (ic->ic_opmode == IEEE80211_M_STA) 1594 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3); 1595 else 1596 IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1); 1597 1598 /* trim IEEE802.11 header */ 1599 m_adj(m0, sizeof (struct ieee80211_frame)); 1600 1601 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs, 1602 &nsegs, 0); 1603 if (error != 0 && error != EFBIG) { 1604 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1605 error); 1606 m_freem(m0); 1607 return error; 1608 } 1609 if (error != 0) { 1610 mnew = m_defrag(m0, M_NOWAIT); 1611 if (mnew == NULL) { 1612 device_printf(sc->sc_dev, 1613 "could not defragment mbuf\n"); 1614 m_freem(m0); 1615 return ENOBUFS; 1616 } 1617 m0 = mnew; 1618 1619 error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, 1620 segs, &nsegs, 0); 1621 if (error != 0) { 1622 device_printf(sc->sc_dev, 1623 "could not map mbuf (error %d)\n", error); 1624 m_freem(m0); 1625 return error; 1626 } 1627 } 1628 1629 error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr, 1630 sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0); 1631 if (error != 0) { 1632 device_printf(sc->sc_dev, "could not map header DMA memory\n"); 1633 bus_dmamap_unload(sc->txbuf_dmat, sbuf->map); 1634 m_freem(m0); 1635 return error; 1636 } 1637 1638 SLIST_REMOVE_HEAD(&sc->free_sbuf, next); 1639 SLIST_REMOVE_HEAD(&sc->free_shdr, next); 1640 1641 sbd = &sc->stbd_list[sc->txcur]; 1642 sbd->type = IPW_SBD_TYPE_HEADER; 1643 sbd->priv = shdr; 1644 sbd->bd->physaddr = htole32(physaddr); 1645 sbd->bd->len = htole32(sizeof (struct ipw_hdr)); 1646 sbd->bd->nfrag = 1 + nsegs; 1647 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 | 1648 IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1649 1650 DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n", 1651 shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted, 1652 shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr, 1653 ":")); 1654 1655 sc->txfree--; 1656 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1657 1658 sbuf->m = m0; 1659 sbuf->ni = ni; 1660 1661 for (i = 0; i < nsegs; i++) { 1662 sbd = &sc->stbd_list[sc->txcur]; 1663 1664 sbd->bd->physaddr = htole32(segs[i].ds_addr); 1665 sbd->bd->len = htole32(segs[i].ds_len); 1666 sbd->bd->nfrag = 0; 1667 sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3; 1668 if (i == nsegs - 1) { 1669 sbd->type = IPW_SBD_TYPE_DATA; 1670 sbd->priv = sbuf; 1671 sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT; 1672 } else { 1673 sbd->type = IPW_SBD_TYPE_NOASSOC; 1674 sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; 1675 } 1676 1677 DPRINTFN(5, ("sending fragment (%d)\n", i)); 1678 1679 sc->txfree--; 1680 sc->txcur = (sc->txcur + 1) % IPW_NTBD; 1681 } 1682 1683 bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE); 1684 bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE); 1685 bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE); 1686 1687 /* kick firmware */ 1688 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 1689 1690 return 0; 1691 } 1692 1693 static int 1694 ipw_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1695 const struct ieee80211_bpf_params *params) 1696 { 1697 /* no support; just discard */ 1698 m_freem(m); 1699 ieee80211_free_node(ni); 1700 return 0; 1701 } 1702 1703 static int 1704 ipw_transmit(struct ieee80211com *ic, struct mbuf *m) 1705 { 1706 struct ipw_softc *sc = ic->ic_softc; 1707 int error; 1708 1709 IPW_LOCK(sc); 1710 if ((sc->flags & IPW_FLAG_RUNNING) == 0) { 1711 IPW_UNLOCK(sc); 1712 return (ENXIO); 1713 } 1714 error = mbufq_enqueue(&sc->sc_snd, m); 1715 if (error) { 1716 IPW_UNLOCK(sc); 1717 return (error); 1718 } 1719 ipw_start(sc); 1720 IPW_UNLOCK(sc); 1721 return (0); 1722 } 1723 1724 static void 1725 ipw_start(struct ipw_softc *sc) 1726 { 1727 struct ieee80211_node *ni; 1728 struct mbuf *m; 1729 1730 IPW_LOCK_ASSERT(sc); 1731 1732 while (sc->txfree >= 1 + IPW_MAX_NSEG && 1733 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1734 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1735 if (ipw_tx_start(sc, m, ni) != 0) { 1736 if_inc_counter(ni->ni_vap->iv_ifp, 1737 IFCOUNTER_OERRORS, 1); 1738 ieee80211_free_node(ni); 1739 break; 1740 } 1741 /* start watchdog timer */ 1742 sc->sc_tx_timer = 5; 1743 } 1744 } 1745 1746 static void 1747 ipw_watchdog(void *arg) 1748 { 1749 struct ipw_softc *sc = arg; 1750 struct ieee80211com *ic = &sc->sc_ic; 1751 1752 IPW_LOCK_ASSERT(sc); 1753 1754 if (sc->sc_tx_timer > 0) { 1755 if (--sc->sc_tx_timer == 0) { 1756 device_printf(sc->sc_dev, "device timeout\n"); 1757 counter_u64_add(ic->ic_oerrors, 1); 1758 taskqueue_enqueue(taskqueue_swi, &sc->sc_init_task); 1759 } 1760 } 1761 if (sc->sc_scan_timer > 0) { 1762 if (--sc->sc_scan_timer == 0) { 1763 DPRINTFN(3, ("Scan timeout\n")); 1764 /* End the scan */ 1765 if (sc->flags & IPW_FLAG_SCANNING) { 1766 IPW_UNLOCK(sc); 1767 ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); 1768 IPW_LOCK(sc); 1769 sc->flags &= ~IPW_FLAG_SCANNING; 1770 } 1771 } 1772 } 1773 if (sc->flags & IPW_FLAG_RUNNING) 1774 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 1775 } 1776 1777 static void 1778 ipw_parent(struct ieee80211com *ic) 1779 { 1780 struct ipw_softc *sc = ic->ic_softc; 1781 int startall = 0; 1782 1783 IPW_LOCK(sc); 1784 if (ic->ic_nrunning > 0) { 1785 if (!(sc->flags & IPW_FLAG_RUNNING)) { 1786 ipw_init_locked(sc); 1787 startall = 1; 1788 } 1789 } else if (sc->flags & IPW_FLAG_RUNNING) 1790 ipw_stop_locked(sc); 1791 IPW_UNLOCK(sc); 1792 if (startall) 1793 ieee80211_start_all(ic); 1794 } 1795 1796 static void 1797 ipw_stop_master(struct ipw_softc *sc) 1798 { 1799 uint32_t tmp; 1800 int ntries; 1801 1802 /* disable interrupts */ 1803 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); 1804 1805 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER); 1806 for (ntries = 0; ntries < 50; ntries++) { 1807 if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED) 1808 break; 1809 DELAY(10); 1810 } 1811 if (ntries == 50) 1812 device_printf(sc->sc_dev, "timeout waiting for master\n"); 1813 1814 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1815 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET); 1816 1817 /* Clear all flags except the following */ 1818 sc->flags &= IPW_FLAG_HAS_RADIO_SWITCH; 1819 } 1820 1821 static int 1822 ipw_reset(struct ipw_softc *sc) 1823 { 1824 uint32_t tmp; 1825 int ntries; 1826 1827 ipw_stop_master(sc); 1828 1829 /* move adapter to D0 state */ 1830 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1831 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1832 1833 /* wait for clock stabilization */ 1834 for (ntries = 0; ntries < 1000; ntries++) { 1835 if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY) 1836 break; 1837 DELAY(200); 1838 } 1839 if (ntries == 1000) 1840 return EIO; 1841 1842 tmp = CSR_READ_4(sc, IPW_CSR_RST); 1843 CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET); 1844 1845 DELAY(10); 1846 1847 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1848 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT); 1849 1850 return 0; 1851 } 1852 1853 static int 1854 ipw_waitfordisable(struct ipw_softc *sc, int waitfor) 1855 { 1856 int ms = hz < 1000 ? 1 : hz/10; 1857 int i, error; 1858 1859 for (i = 0; i < 100; i++) { 1860 if (ipw_read_table1(sc, IPW_INFO_CARD_DISABLED) == waitfor) 1861 return 0; 1862 error = msleep(sc, &sc->sc_mtx, PCATCH, __func__, ms); 1863 if (error == 0 || error != EWOULDBLOCK) 1864 return 0; 1865 } 1866 DPRINTF(("%s: timeout waiting for %s\n", 1867 __func__, waitfor ? "disable" : "enable")); 1868 return ETIMEDOUT; 1869 } 1870 1871 static int 1872 ipw_enable(struct ipw_softc *sc) 1873 { 1874 int error; 1875 1876 if ((sc->flags & IPW_FLAG_ENABLED) == 0) { 1877 DPRINTF(("Enable adapter\n")); 1878 error = ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); 1879 if (error != 0) 1880 return error; 1881 error = ipw_waitfordisable(sc, 0); 1882 if (error != 0) 1883 return error; 1884 sc->flags |= IPW_FLAG_ENABLED; 1885 } 1886 return 0; 1887 } 1888 1889 static int 1890 ipw_disable(struct ipw_softc *sc) 1891 { 1892 int error; 1893 1894 if (sc->flags & IPW_FLAG_ENABLED) { 1895 DPRINTF(("Disable adapter\n")); 1896 error = ipw_cmd(sc, IPW_CMD_DISABLE, NULL, 0); 1897 if (error != 0) 1898 return error; 1899 error = ipw_waitfordisable(sc, 1); 1900 if (error != 0) 1901 return error; 1902 sc->flags &= ~IPW_FLAG_ENABLED; 1903 } 1904 return 0; 1905 } 1906 1907 /* 1908 * Upload the microcode to the device. 1909 */ 1910 static int 1911 ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size) 1912 { 1913 int ntries; 1914 1915 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 1916 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1917 1918 MEM_WRITE_2(sc, 0x220000, 0x0703); 1919 MEM_WRITE_2(sc, 0x220000, 0x0707); 1920 1921 MEM_WRITE_1(sc, 0x210014, 0x72); 1922 MEM_WRITE_1(sc, 0x210014, 0x72); 1923 1924 MEM_WRITE_1(sc, 0x210000, 0x40); 1925 MEM_WRITE_1(sc, 0x210000, 0x00); 1926 MEM_WRITE_1(sc, 0x210000, 0x40); 1927 1928 MEM_WRITE_MULTI_1(sc, 0x210010, uc, size); 1929 1930 MEM_WRITE_1(sc, 0x210000, 0x00); 1931 MEM_WRITE_1(sc, 0x210000, 0x00); 1932 MEM_WRITE_1(sc, 0x210000, 0x80); 1933 1934 MEM_WRITE_2(sc, 0x220000, 0x0703); 1935 MEM_WRITE_2(sc, 0x220000, 0x0707); 1936 1937 MEM_WRITE_1(sc, 0x210014, 0x72); 1938 MEM_WRITE_1(sc, 0x210014, 0x72); 1939 1940 MEM_WRITE_1(sc, 0x210000, 0x00); 1941 MEM_WRITE_1(sc, 0x210000, 0x80); 1942 1943 for (ntries = 0; ntries < 10; ntries++) { 1944 if (MEM_READ_1(sc, 0x210000) & 1) 1945 break; 1946 DELAY(10); 1947 } 1948 if (ntries == 10) { 1949 device_printf(sc->sc_dev, 1950 "timeout waiting for ucode to initialize\n"); 1951 return EIO; 1952 } 1953 1954 MEM_WRITE_4(sc, 0x3000e0, 0); 1955 1956 return 0; 1957 } 1958 1959 /* set of macros to handle unaligned little endian data in firmware image */ 1960 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 1961 #define GETLE16(p) ((p)[0] | (p)[1] << 8) 1962 static int 1963 ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size) 1964 { 1965 const uint8_t *p, *end; 1966 uint32_t tmp, dst; 1967 uint16_t len; 1968 int error; 1969 1970 p = fw; 1971 end = fw + size; 1972 while (p < end) { 1973 dst = GETLE32(p); p += 4; 1974 len = GETLE16(p); p += 2; 1975 1976 ipw_write_mem_1(sc, dst, p, len); 1977 p += len; 1978 } 1979 1980 CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK | 1981 IPW_IO_LED_OFF); 1982 1983 /* enable interrupts */ 1984 CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); 1985 1986 /* kick the firmware */ 1987 CSR_WRITE_4(sc, IPW_CSR_RST, 0); 1988 1989 tmp = CSR_READ_4(sc, IPW_CSR_CTL); 1990 CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY); 1991 1992 /* wait at most one second for firmware initialization to complete */ 1993 if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) { 1994 device_printf(sc->sc_dev, "timeout waiting for firmware " 1995 "initialization to complete\n"); 1996 return error; 1997 } 1998 1999 tmp = CSR_READ_4(sc, IPW_CSR_IO); 2000 CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK | 2001 IPW_IO_GPIO3_MASK); 2002 2003 return 0; 2004 } 2005 2006 static int 2007 ipw_setwepkeys(struct ipw_softc *sc) 2008 { 2009 struct ieee80211com *ic = &sc->sc_ic; 2010 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2011 struct ipw_wep_key wepkey; 2012 struct ieee80211_key *wk; 2013 int error, i; 2014 2015 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2016 wk = &vap->iv_nw_keys[i]; 2017 2018 if (wk->wk_cipher == NULL || 2019 wk->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP) 2020 continue; 2021 2022 wepkey.idx = i; 2023 wepkey.len = wk->wk_keylen; 2024 memset(wepkey.key, 0, sizeof wepkey.key); 2025 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2026 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2027 wepkey.len)); 2028 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey, 2029 sizeof wepkey); 2030 if (error != 0) 2031 return error; 2032 } 2033 return 0; 2034 } 2035 2036 static int 2037 ipw_setwpaie(struct ipw_softc *sc, const void *ie, int ielen) 2038 { 2039 struct ipw_wpa_ie wpaie; 2040 2041 memset(&wpaie, 0, sizeof(wpaie)); 2042 wpaie.len = htole32(ielen); 2043 /* XXX verify length */ 2044 memcpy(&wpaie.ie, ie, ielen); 2045 DPRINTF(("Setting WPA IE\n")); 2046 return ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &wpaie, sizeof(wpaie)); 2047 } 2048 2049 static int 2050 ipw_setbssid(struct ipw_softc *sc, uint8_t *bssid) 2051 { 2052 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 2053 2054 if (bssid == NULL || bcmp(bssid, zerobssid, IEEE80211_ADDR_LEN) == 0) { 2055 DPRINTF(("Setting mandatory BSSID to null\n")); 2056 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0); 2057 } else { 2058 DPRINTF(("Setting mandatory BSSID to %6D\n", bssid, ":")); 2059 return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, 2060 bssid, IEEE80211_ADDR_LEN); 2061 } 2062 } 2063 2064 static int 2065 ipw_setssid(struct ipw_softc *sc, void *ssid, size_t ssidlen) 2066 { 2067 if (ssidlen == 0) { 2068 /* 2069 * A bug in the firmware breaks the ``don't associate'' 2070 * bit in the scan options command. To compensate for 2071 * this install a bogus ssid when no ssid is specified 2072 * so the firmware won't try to associate. 2073 */ 2074 DPRINTF(("Setting bogus ESSID to WAR firmware bug\n")); 2075 return ipw_cmd(sc, IPW_CMD_SET_ESSID, 2076 "\x18\x19\x20\x21\x22\x23\x24\x25\x26\x27" 2077 "\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31" 2078 "\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b" 2079 "\x3c\x3d", IEEE80211_NWID_LEN); 2080 } else { 2081 #ifdef IPW_DEBUG 2082 if (ipw_debug > 0) { 2083 printf("Setting ESSID to "); 2084 ieee80211_print_essid(ssid, ssidlen); 2085 printf("\n"); 2086 } 2087 #endif 2088 return ipw_cmd(sc, IPW_CMD_SET_ESSID, ssid, ssidlen); 2089 } 2090 } 2091 2092 static int 2093 ipw_setscanopts(struct ipw_softc *sc, uint32_t chanmask, uint32_t flags) 2094 { 2095 struct ipw_scan_options opts; 2096 2097 DPRINTF(("Scan options: mask 0x%x flags 0x%x\n", chanmask, flags)); 2098 opts.channels = htole32(chanmask); 2099 opts.flags = htole32(flags); 2100 return ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &opts, sizeof(opts)); 2101 } 2102 2103 static int 2104 ipw_scan(struct ipw_softc *sc) 2105 { 2106 uint32_t params; 2107 int error; 2108 2109 DPRINTF(("%s: flags 0x%x\n", __func__, sc->flags)); 2110 2111 if (sc->flags & IPW_FLAG_SCANNING) 2112 return (EBUSY); 2113 sc->flags |= IPW_FLAG_SCANNING | IPW_FLAG_HACK; 2114 2115 /* NB: IPW_SCAN_DO_NOT_ASSOCIATE does not work (we set it anyway) */ 2116 error = ipw_setscanopts(sc, 0x3fff, IPW_SCAN_DO_NOT_ASSOCIATE); 2117 if (error != 0) 2118 goto done; 2119 2120 /* 2121 * Setup null/bogus ssid so firmware doesn't use any previous 2122 * ssid to try and associate. This is because the ``don't 2123 * associate'' option bit is broken (sigh). 2124 */ 2125 error = ipw_setssid(sc, NULL, 0); 2126 if (error != 0) 2127 goto done; 2128 2129 /* 2130 * NB: the adapter may be disabled on association lost; 2131 * if so just re-enable it to kick off scanning. 2132 */ 2133 DPRINTF(("Starting scan\n")); 2134 sc->sc_scan_timer = 3; 2135 if (sc->flags & IPW_FLAG_ENABLED) { 2136 params = 0; /* XXX? */ 2137 error = ipw_cmd(sc, IPW_CMD_BROADCAST_SCAN, 2138 ¶ms, sizeof(params)); 2139 } else 2140 error = ipw_enable(sc); 2141 done: 2142 if (error != 0) { 2143 DPRINTF(("Scan failed\n")); 2144 sc->flags &= ~(IPW_FLAG_SCANNING | IPW_FLAG_HACK); 2145 } 2146 return (error); 2147 } 2148 2149 static int 2150 ipw_setchannel(struct ipw_softc *sc, struct ieee80211_channel *chan) 2151 { 2152 struct ieee80211com *ic = &sc->sc_ic; 2153 uint32_t data; 2154 int error; 2155 2156 data = htole32(ieee80211_chan2ieee(ic, chan)); 2157 DPRINTF(("Setting channel to %u\n", le32toh(data))); 2158 error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data); 2159 if (error == 0) 2160 ipw_setcurchan(sc, chan); 2161 return error; 2162 } 2163 2164 static void 2165 ipw_assoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2166 { 2167 struct ipw_softc *sc = ic->ic_softc; 2168 struct ieee80211_node *ni = vap->iv_bss; 2169 struct ipw_security security; 2170 uint32_t data; 2171 int error; 2172 2173 IPW_LOCK(sc); 2174 error = ipw_disable(sc); 2175 if (error != 0) 2176 goto done; 2177 2178 memset(&security, 0, sizeof security); 2179 security.authmode = (ni->ni_authmode == IEEE80211_AUTH_SHARED) ? 2180 IPW_AUTH_SHARED : IPW_AUTH_OPEN; 2181 security.ciphers = htole32(IPW_CIPHER_NONE); 2182 DPRINTF(("Setting authmode to %u\n", security.authmode)); 2183 error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFO, &security, 2184 sizeof security); 2185 if (error != 0) 2186 goto done; 2187 2188 data = htole32(vap->iv_rtsthreshold); 2189 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2190 error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2191 if (error != 0) 2192 goto done; 2193 2194 data = htole32(vap->iv_fragthreshold); 2195 DPRINTF(("Setting frag threshold to %u\n", le32toh(data))); 2196 error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2197 if (error != 0) 2198 goto done; 2199 2200 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 2201 error = ipw_setwepkeys(sc); 2202 if (error != 0) 2203 goto done; 2204 2205 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { 2206 data = htole32(vap->iv_def_txkey); 2207 DPRINTF(("Setting wep tx key index to %u\n", 2208 le32toh(data))); 2209 error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data, 2210 sizeof data); 2211 if (error != 0) 2212 goto done; 2213 } 2214 } 2215 2216 data = htole32((vap->iv_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0); 2217 DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data))); 2218 error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data); 2219 if (error != 0) 2220 goto done; 2221 2222 error = ipw_setssid(sc, ni->ni_essid, ni->ni_esslen); 2223 if (error != 0) 2224 goto done; 2225 2226 error = ipw_setbssid(sc, ni->ni_bssid); 2227 if (error != 0) 2228 goto done; 2229 2230 if (vap->iv_appie_wpa != NULL) { 2231 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2232 error = ipw_setwpaie(sc, ie->ie_data, ie->ie_len); 2233 if (error != 0) 2234 goto done; 2235 } 2236 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2237 error = ipw_setchannel(sc, ni->ni_chan); 2238 if (error != 0) 2239 goto done; 2240 } 2241 2242 /* lock scan to ap's channel and enable associate */ 2243 error = ipw_setscanopts(sc, 2244 1<<(ieee80211_chan2ieee(ic, ni->ni_chan)-1), 0); 2245 if (error != 0) 2246 goto done; 2247 2248 error = ipw_enable(sc); /* finally, enable adapter */ 2249 if (error == 0) 2250 sc->flags |= IPW_FLAG_ASSOCIATING; 2251 done: 2252 IPW_UNLOCK(sc); 2253 } 2254 2255 static void 2256 ipw_disassoc(struct ieee80211com *ic, struct ieee80211vap *vap) 2257 { 2258 struct ieee80211_node *ni = vap->iv_bss; 2259 struct ipw_softc *sc = ic->ic_softc; 2260 2261 IPW_LOCK(sc); 2262 DPRINTF(("Disassociate from %6D\n", ni->ni_bssid, ":")); 2263 /* 2264 * NB: don't try to do this if ipw_stop_master has 2265 * shutdown the firmware and disabled interrupts. 2266 */ 2267 if (sc->flags & IPW_FLAG_FW_INITED) { 2268 sc->flags &= ~IPW_FLAG_ASSOCIATED; 2269 /* 2270 * NB: firmware currently ignores bssid parameter, but 2271 * supply it in case this changes (follow linux driver). 2272 */ 2273 (void) ipw_cmd(sc, IPW_CMD_DISASSOCIATE, 2274 ni->ni_bssid, IEEE80211_ADDR_LEN); 2275 } 2276 IPW_UNLOCK(sc); 2277 } 2278 2279 /* 2280 * Handler for sc_init_task. This is a simple wrapper around ipw_init(). 2281 * It is called on firmware panics or on watchdog timeouts. 2282 */ 2283 static void 2284 ipw_init_task(void *context, int pending) 2285 { 2286 ipw_init(context); 2287 } 2288 2289 static void 2290 ipw_init(void *priv) 2291 { 2292 struct ipw_softc *sc = priv; 2293 struct ieee80211com *ic = &sc->sc_ic; 2294 2295 IPW_LOCK(sc); 2296 ipw_init_locked(sc); 2297 IPW_UNLOCK(sc); 2298 2299 if (sc->flags & IPW_FLAG_RUNNING) 2300 ieee80211_start_all(ic); /* start all vap's */ 2301 } 2302 2303 static void 2304 ipw_init_locked(struct ipw_softc *sc) 2305 { 2306 struct ieee80211com *ic = &sc->sc_ic; 2307 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2308 const struct firmware *fp; 2309 const struct ipw_firmware_hdr *hdr; 2310 const char *fw; 2311 2312 IPW_LOCK_ASSERT(sc); 2313 2314 DPRINTF(("%s: state %s flags 0x%x\n", __func__, 2315 ieee80211_state_name[vap->iv_state], sc->flags)); 2316 2317 /* 2318 * Avoid re-entrant calls. We need to release the mutex in ipw_init() 2319 * when loading the firmware and we don't want to be called during this 2320 * operation. 2321 */ 2322 if (sc->flags & IPW_FLAG_INIT_LOCKED) 2323 return; 2324 sc->flags |= IPW_FLAG_INIT_LOCKED; 2325 2326 ipw_stop_locked(sc); 2327 2328 if (ipw_reset(sc) != 0) { 2329 device_printf(sc->sc_dev, "could not reset adapter\n"); 2330 goto fail; 2331 } 2332 2333 if (sc->sc_firmware == NULL) { 2334 device_printf(sc->sc_dev, "no firmware\n"); 2335 goto fail; 2336 } 2337 /* NB: consistency already checked on load */ 2338 fp = sc->sc_firmware; 2339 hdr = (const struct ipw_firmware_hdr *)fp->data; 2340 2341 DPRINTF(("Loading firmware image '%s'\n", fp->name)); 2342 fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz); 2343 if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) { 2344 device_printf(sc->sc_dev, "could not load microcode\n"); 2345 goto fail; 2346 } 2347 2348 ipw_stop_master(sc); 2349 2350 /* 2351 * Setup tx, rx and status rings. 2352 */ 2353 sc->txold = IPW_NTBD - 1; 2354 sc->txcur = 0; 2355 sc->txfree = IPW_NTBD - 2; 2356 sc->rxcur = IPW_NRBD - 1; 2357 2358 CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_phys); 2359 CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD); 2360 CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0); 2361 CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur); 2362 2363 CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_phys); 2364 CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD); 2365 CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0); 2366 CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur); 2367 2368 CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys); 2369 2370 fw = (const char *)fp->data + sizeof *hdr; 2371 if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) { 2372 device_printf(sc->sc_dev, "could not load firmware\n"); 2373 goto fail; 2374 } 2375 2376 sc->flags |= IPW_FLAG_FW_INITED; 2377 2378 /* retrieve information tables base addresses */ 2379 sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE); 2380 sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE); 2381 2382 ipw_write_table1(sc, IPW_INFO_LOCK, 0); 2383 2384 if (ipw_config(sc) != 0) { 2385 device_printf(sc->sc_dev, "device configuration failed\n"); 2386 goto fail; 2387 } 2388 2389 callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc); 2390 sc->flags |= IPW_FLAG_RUNNING; 2391 sc->flags &= ~IPW_FLAG_INIT_LOCKED; 2392 return; 2393 2394 fail: 2395 ipw_stop_locked(sc); 2396 sc->flags &= ~IPW_FLAG_INIT_LOCKED; 2397 } 2398 2399 static int 2400 ipw_config(struct ipw_softc *sc) 2401 { 2402 struct ieee80211com *ic = &sc->sc_ic; 2403 struct ipw_configuration config; 2404 uint32_t data; 2405 int error; 2406 2407 error = ipw_disable(sc); 2408 if (error != 0) 2409 return error; 2410 2411 switch (ic->ic_opmode) { 2412 case IEEE80211_M_STA: 2413 case IEEE80211_M_HOSTAP: 2414 case IEEE80211_M_WDS: /* XXX */ 2415 data = htole32(IPW_MODE_BSS); 2416 break; 2417 case IEEE80211_M_IBSS: 2418 case IEEE80211_M_AHDEMO: 2419 data = htole32(IPW_MODE_IBSS); 2420 break; 2421 case IEEE80211_M_MONITOR: 2422 data = htole32(IPW_MODE_MONITOR); 2423 break; 2424 default: 2425 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2426 return EINVAL; 2427 } 2428 DPRINTF(("Setting mode to %u\n", le32toh(data))); 2429 error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data); 2430 if (error != 0) 2431 return error; 2432 2433 if (ic->ic_opmode == IEEE80211_M_IBSS || 2434 ic->ic_opmode == IEEE80211_M_MONITOR) { 2435 error = ipw_setchannel(sc, ic->ic_curchan); 2436 if (error != 0) 2437 return error; 2438 } 2439 2440 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2441 return ipw_enable(sc); 2442 2443 config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK | 2444 IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE); 2445 if (ic->ic_opmode == IEEE80211_M_IBSS) 2446 config.flags |= htole32(IPW_CFG_IBSS_AUTO_START); 2447 if (ic->ic_promisc > 0) 2448 config.flags |= htole32(IPW_CFG_PROMISCUOUS); 2449 config.bss_chan = htole32(0x3fff); /* channels 1-14 */ 2450 config.ibss_chan = htole32(0x7ff); /* channels 1-11 */ 2451 DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags))); 2452 error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config); 2453 if (error != 0) 2454 return error; 2455 2456 data = htole32(0xf); /* 1, 2, 5.5, 11 */ 2457 DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data))); 2458 error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data); 2459 if (error != 0) 2460 return error; 2461 2462 /* Use the same rate set */ 2463 DPRINTF(("Setting msdu tx rates to 0x%x\n", le32toh(data))); 2464 error = ipw_cmd(sc, IPW_CMD_SET_MSDU_TX_RATES, &data, sizeof data); 2465 if (error != 0) 2466 return error; 2467 2468 /* Use the same rate set */ 2469 DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data))); 2470 error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data); 2471 if (error != 0) 2472 return error; 2473 2474 data = htole32(IPW_POWER_MODE_CAM); 2475 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2476 error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data); 2477 if (error != 0) 2478 return error; 2479 2480 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2481 data = htole32(32); /* default value */ 2482 DPRINTF(("Setting tx power index to %u\n", le32toh(data))); 2483 error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data, 2484 sizeof data); 2485 if (error != 0) 2486 return error; 2487 } 2488 2489 return 0; 2490 } 2491 2492 static void 2493 ipw_stop(void *priv) 2494 { 2495 struct ipw_softc *sc = priv; 2496 2497 IPW_LOCK(sc); 2498 ipw_stop_locked(sc); 2499 IPW_UNLOCK(sc); 2500 } 2501 2502 static void 2503 ipw_stop_locked(struct ipw_softc *sc) 2504 { 2505 int i; 2506 2507 IPW_LOCK_ASSERT(sc); 2508 2509 callout_stop(&sc->sc_wdtimer); 2510 ipw_stop_master(sc); 2511 2512 CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET); 2513 2514 /* 2515 * Release tx buffers. 2516 */ 2517 for (i = 0; i < IPW_NTBD; i++) 2518 ipw_release_sbd(sc, &sc->stbd_list[i]); 2519 2520 sc->sc_tx_timer = 0; 2521 sc->flags &= ~IPW_FLAG_RUNNING; 2522 } 2523 2524 static int 2525 ipw_sysctl_stats(SYSCTL_HANDLER_ARGS) 2526 { 2527 struct ipw_softc *sc = arg1; 2528 uint32_t i, size, buf[256]; 2529 2530 memset(buf, 0, sizeof buf); 2531 2532 if (!(sc->flags & IPW_FLAG_FW_INITED)) 2533 return SYSCTL_OUT(req, buf, sizeof buf); 2534 2535 CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base); 2536 2537 size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256); 2538 for (i = 1; i < size; i++) 2539 buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA)); 2540 2541 return SYSCTL_OUT(req, buf, size); 2542 } 2543 2544 static int 2545 ipw_sysctl_radio(SYSCTL_HANDLER_ARGS) 2546 { 2547 struct ipw_softc *sc = arg1; 2548 int val; 2549 2550 val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) && 2551 (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)); 2552 2553 return SYSCTL_OUT(req, &val, sizeof val); 2554 } 2555 2556 static uint32_t 2557 ipw_read_table1(struct ipw_softc *sc, uint32_t off) 2558 { 2559 return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off)); 2560 } 2561 2562 static void 2563 ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info) 2564 { 2565 MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info); 2566 } 2567 2568 #if 0 2569 static int 2570 ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len) 2571 { 2572 uint32_t addr, info; 2573 uint16_t count, size; 2574 uint32_t total; 2575 2576 /* addr[4] + count[2] + size[2] */ 2577 addr = MEM_READ_4(sc, sc->table2_base + off); 2578 info = MEM_READ_4(sc, sc->table2_base + off + 4); 2579 2580 count = info >> 16; 2581 size = info & 0xffff; 2582 total = count * size; 2583 2584 if (total > *len) { 2585 *len = total; 2586 return EINVAL; 2587 } 2588 2589 *len = total; 2590 ipw_read_mem_1(sc, addr, buf, total); 2591 2592 return 0; 2593 } 2594 2595 static void 2596 ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, 2597 bus_size_t count) 2598 { 2599 for (; count > 0; offset++, datap++, count--) { 2600 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2601 *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3)); 2602 } 2603 } 2604 #endif 2605 2606 static void 2607 ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap, 2608 bus_size_t count) 2609 { 2610 for (; count > 0; offset++, datap++, count--) { 2611 CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); 2612 CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap); 2613 } 2614 } 2615 2616 static void 2617 ipw_scan_start(struct ieee80211com *ic) 2618 { 2619 struct ipw_softc *sc = ic->ic_softc; 2620 2621 IPW_LOCK(sc); 2622 ipw_scan(sc); 2623 IPW_UNLOCK(sc); 2624 } 2625 2626 static void 2627 ipw_getradiocaps(struct ieee80211com *ic, 2628 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2629 { 2630 struct ipw_softc *sc = ic->ic_softc; 2631 uint8_t bands[IEEE80211_MODE_BYTES]; 2632 int i; 2633 2634 memset(bands, 0, sizeof(bands)); 2635 setbit(bands, IEEE80211_MODE_11B); 2636 2637 for (i = 1; i < 16; i++) { 2638 if (sc->chanmask & (1 << i)) { 2639 ieee80211_add_channel(chans, maxchans, nchans, 2640 i, 0, 0, 0, bands); 2641 } 2642 } 2643 2644 } 2645 2646 static void 2647 ipw_set_channel(struct ieee80211com *ic) 2648 { 2649 struct ipw_softc *sc = ic->ic_softc; 2650 2651 IPW_LOCK(sc); 2652 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2653 ipw_disable(sc); 2654 ipw_setchannel(sc, ic->ic_curchan); 2655 ipw_enable(sc); 2656 } 2657 IPW_UNLOCK(sc); 2658 } 2659 2660 static void 2661 ipw_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 2662 { 2663 /* NB: all channels are scanned at once */ 2664 } 2665 2666 static void 2667 ipw_scan_mindwell(struct ieee80211_scan_state *ss) 2668 { 2669 /* NB: don't try to abort scan; wait for firmware to finish */ 2670 } 2671 2672 static void 2673 ipw_scan_end(struct ieee80211com *ic) 2674 { 2675 struct ipw_softc *sc = ic->ic_softc; 2676 2677 IPW_LOCK(sc); 2678 sc->flags &= ~IPW_FLAG_SCANNING; 2679 IPW_UNLOCK(sc); 2680 } 2681