xref: /freebsd/sys/dev/igc/igc_txrx.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Matthew Macy <mmacy@mattmacy.io>
5  * All rights reserved.
6  * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include "if_igc.h"
32 
33 #ifdef RSS
34 #include <net/rss_config.h>
35 #include <netinet/in_rss.h>
36 #endif
37 
38 #ifdef VERBOSE_DEBUG
39 #define DPRINTF device_printf
40 #else
41 #define DPRINTF(...)
42 #endif
43 
44 /*********************************************************************
45  *  Local Function prototypes
46  *********************************************************************/
47 static int igc_isc_txd_encap(void *, if_pkt_info_t);
48 static void igc_isc_txd_flush(void *, uint16_t, qidx_t);
49 static int igc_isc_txd_credits_update(void *, uint16_t, bool);
50 
51 static void igc_isc_rxd_refill(void *, if_rxd_update_t);
52 
53 static void igc_isc_rxd_flush(void *, uint16_t, uint8_t, qidx_t);
54 static int igc_isc_rxd_available(void *, uint16_t, qidx_t, qidx_t);
55 
56 static int igc_isc_rxd_pkt_get(void *, if_rxd_info_t);
57 
58 static int igc_tx_ctx_setup(struct tx_ring *, if_pkt_info_t, uint32_t *,
59     uint32_t *);
60 static int igc_tso_setup(struct tx_ring *, if_pkt_info_t, uint32_t *,
61     uint32_t *);
62 
63 static void igc_rx_checksum(uint32_t, if_rxd_info_t, uint32_t);
64 static int igc_determine_rsstype(uint16_t);
65 
66 extern void igc_if_enable_intr(if_ctx_t);
67 extern int igc_intr(void *);
68 
69 struct if_txrx igc_txrx = {
70 	.ift_txd_encap = igc_isc_txd_encap,
71 	.ift_txd_flush = igc_isc_txd_flush,
72 	.ift_txd_credits_update = igc_isc_txd_credits_update,
73 	.ift_rxd_available = igc_isc_rxd_available,
74 	.ift_rxd_pkt_get = igc_isc_rxd_pkt_get,
75 	.ift_rxd_refill = igc_isc_rxd_refill,
76 	.ift_rxd_flush = igc_isc_rxd_flush,
77 	.ift_legacy_intr = igc_intr
78 };
79 
80 void
81 igc_dump_rs(struct igc_softc *sc)
82 {
83 	if_softc_ctx_t scctx = sc->shared;
84 	struct igc_tx_queue *que;
85 	struct tx_ring *txr;
86 	qidx_t i, ntxd, qid, cur;
87 	int16_t rs_cidx;
88 	uint8_t status;
89 
90 	printf("\n");
91 	ntxd = scctx->isc_ntxd[0];
92 	for (qid = 0; qid < sc->tx_num_queues; qid++) {
93 		que = &sc->tx_queues[qid];
94 		txr =  &que->txr;
95 		rs_cidx = txr->tx_rs_cidx;
96 		if (rs_cidx != txr->tx_rs_pidx) {
97 			cur = txr->tx_rsq[rs_cidx];
98 			status = txr->tx_base[cur].upper.fields.status;
99 			if (!(status & IGC_TXD_STAT_DD))
100 				printf("qid[%d]->tx_rsq[%d]: %d clear ",
101 				    qid, rs_cidx, cur);
102 		} else {
103 			rs_cidx = (rs_cidx-1)&(ntxd-1);
104 			cur = txr->tx_rsq[rs_cidx];
105 			printf("qid[%d]->tx_rsq[rs_cidx-1=%d]: %d  ",
106 			    qid, rs_cidx, cur);
107 		}
108 		printf("cidx_prev=%d rs_pidx=%d ",txr->tx_cidx_processed,
109 		    txr->tx_rs_pidx);
110 		for (i = 0; i < ntxd; i++) {
111 			if (txr->tx_base[i].upper.fields.status &
112 			    IGC_TXD_STAT_DD)
113 				printf("%d set ", i);
114 		}
115 		printf("\n");
116 	}
117 }
118 
119 /**********************************************************************
120  *
121  *  Setup work for hardware segmentation offload (TSO) on
122  *  adapters using advanced tx descriptors
123  *
124  **********************************************************************/
125 static int
126 igc_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, uint32_t *cmd_type_len,
127     uint32_t *olinfo_status)
128 {
129 	struct igc_adv_tx_context_desc *TXD;
130 	uint32_t type_tucmd_mlhl = 0, vlan_macip_lens = 0;
131 	uint32_t mss_l4len_idx = 0;
132 	uint32_t paylen;
133 
134 	switch(pi->ipi_etype) {
135 	case ETHERTYPE_IPV6:
136 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
137 		break;
138 	case ETHERTYPE_IP:
139 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
140 		/* Tell transmit desc to also do IPv4 checksum. */
141 		*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
142 		break;
143 	default:
144 		panic("%s: CSUM_TSO but no supported IP version (0x%04x)",
145 		    __func__, ntohs(pi->ipi_etype));
146 		break;
147 	}
148 
149 	TXD = (struct igc_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
150 
151 	/* This is used in the transmit desc in encap */
152 	paylen = pi->ipi_len - pi->ipi_ehdrlen - pi->ipi_ip_hlen -
153 	    pi->ipi_tcp_hlen;
154 
155 	/* VLAN MACLEN IPLEN */
156 	if (pi->ipi_mflags & M_VLANTAG) {
157 		vlan_macip_lens |= (pi->ipi_vtag << IGC_ADVTXD_VLAN_SHIFT);
158 	}
159 
160 	vlan_macip_lens |= pi->ipi_ehdrlen << IGC_ADVTXD_MACLEN_SHIFT;
161 	vlan_macip_lens |= pi->ipi_ip_hlen;
162 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
163 
164 	/* ADV DTYPE TUCMD */
165 	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
166 	type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
167 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
168 
169 	/* MSS L4LEN IDX */
170 	mss_l4len_idx |= (pi->ipi_tso_segsz << IGC_ADVTXD_MSS_SHIFT);
171 	mss_l4len_idx |= (pi->ipi_tcp_hlen << IGC_ADVTXD_L4LEN_SHIFT);
172 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
173 
174 	TXD->seqnum_seed = htole32(0);
175 	*cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
176 	*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
177 	*olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
178 
179 	return (1);
180 }
181 
182 /*********************************************************************
183  *
184  *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
185  *
186  **********************************************************************/
187 static int
188 igc_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi,
189     uint32_t *cmd_type_len, uint32_t *olinfo_status)
190 {
191 	struct igc_adv_tx_context_desc *TXD;
192 	uint32_t vlan_macip_lens, type_tucmd_mlhl;
193 	uint32_t mss_l4len_idx;
194 	mss_l4len_idx = vlan_macip_lens = type_tucmd_mlhl = 0;
195 
196 	/* First check if TSO is to be used */
197 	if (pi->ipi_csum_flags & CSUM_TSO)
198 		return (igc_tso_setup(txr, pi, cmd_type_len, olinfo_status));
199 
200 	/* Indicate the whole packet as payload when not doing TSO */
201 	*olinfo_status |= pi->ipi_len << IGC_ADVTXD_PAYLEN_SHIFT;
202 
203 	/* Now ready a context descriptor */
204 	TXD = (struct igc_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
205 
206 	/*
207 	** In advanced descriptors the vlan tag must
208 	** be placed into the context descriptor. Hence
209 	** we need to make one even if not doing offloads.
210 	*/
211 	if (pi->ipi_mflags & M_VLANTAG) {
212 		vlan_macip_lens |= (pi->ipi_vtag << IGC_ADVTXD_VLAN_SHIFT);
213 	} else if ((pi->ipi_csum_flags & IGC_CSUM_OFFLOAD) == 0) {
214 		return (0);
215 	}
216 
217 	/* Set the ether header length */
218 	vlan_macip_lens |= pi->ipi_ehdrlen << IGC_ADVTXD_MACLEN_SHIFT;
219 
220 	switch(pi->ipi_etype) {
221 	case ETHERTYPE_IP:
222 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
223 		break;
224 	case ETHERTYPE_IPV6:
225 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
226 		break;
227 	default:
228 		break;
229 	}
230 
231 	vlan_macip_lens |= pi->ipi_ip_hlen;
232 	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
233 
234 	switch (pi->ipi_ipproto) {
235 	case IPPROTO_TCP:
236 		if (pi->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) {
237 			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
238 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
239 		}
240 		break;
241 	case IPPROTO_UDP:
242 		if (pi->ipi_csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP)) {
243 			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
244 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
245 		}
246 		break;
247 	case IPPROTO_SCTP:
248 		if (pi->ipi_csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP)) {
249 			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_SCTP;
250 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
251 		}
252 		break;
253 	default:
254 		break;
255 	}
256 
257 	/* Now copy bits into descriptor */
258 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
259 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
260 	TXD->seqnum_seed = htole32(0);
261 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
262 
263 	return (1);
264 }
265 
266 static int
267 igc_isc_txd_encap(void *arg, if_pkt_info_t pi)
268 {
269 	struct igc_softc *sc = arg;
270 	if_softc_ctx_t scctx = sc->shared;
271 	struct igc_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
272 	struct tx_ring *txr = &que->txr;
273 	int nsegs = pi->ipi_nsegs;
274 	bus_dma_segment_t *segs = pi->ipi_segs;
275 	union igc_adv_tx_desc *txd = NULL;
276 	int i, j, pidx_last;
277 	uint32_t olinfo_status, cmd_type_len, txd_flags;
278 	qidx_t ntxd;
279 
280 	pidx_last = olinfo_status = 0;
281 	/* Basic descriptor defines */
282 	cmd_type_len = (IGC_ADVTXD_DTYP_DATA |
283 	    IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DCMD_DEXT);
284 
285 	if (pi->ipi_mflags & M_VLANTAG)
286 		cmd_type_len |= IGC_ADVTXD_DCMD_VLE;
287 
288 	i = pi->ipi_pidx;
289 	ntxd = scctx->isc_ntxd[0];
290 	txd_flags = pi->ipi_flags & IPI_TX_INTR ? IGC_ADVTXD_DCMD_RS : 0;
291 	/* Consume the first descriptor */
292 	i += igc_tx_ctx_setup(txr, pi, &cmd_type_len, &olinfo_status);
293 	if (i == scctx->isc_ntxd[0])
294 		i = 0;
295 
296 	for (j = 0; j < nsegs; j++) {
297 		bus_size_t seglen;
298 		bus_addr_t segaddr;
299 
300 		txd = (union igc_adv_tx_desc *)&txr->tx_base[i];
301 		seglen = segs[j].ds_len;
302 		segaddr = htole64(segs[j].ds_addr);
303 
304 		txd->read.buffer_addr = segaddr;
305 		txd->read.cmd_type_len = htole32(IGC_ADVTXD_DCMD_IFCS |
306 		    cmd_type_len | seglen);
307 		txd->read.olinfo_status = htole32(olinfo_status);
308 		pidx_last = i;
309 		if (++i == scctx->isc_ntxd[0]) {
310 			i = 0;
311 		}
312 	}
313 	if (txd_flags) {
314 		txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
315 		txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
316 		MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
317 	}
318 
319 	txd->read.cmd_type_len |= htole32(IGC_ADVTXD_DCMD_EOP | txd_flags);
320 	pi->ipi_new_pidx = i;
321 
322 	/* Sent data accounting for AIM */
323 	txr->tx_bytes += pi->ipi_len;
324 	++txr->tx_packets;
325 
326 	return (0);
327 }
328 
329 static void
330 igc_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
331 {
332 	struct igc_softc *sc = arg;
333 	struct igc_tx_queue *que = &sc->tx_queues[txqid];
334 	struct tx_ring *txr = &que->txr;
335 
336 	IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), pidx);
337 }
338 
339 static int
340 igc_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
341 {
342 	struct igc_softc *sc = arg;
343 	if_softc_ctx_t scctx = sc->shared;
344 	struct igc_tx_queue *que = &sc->tx_queues[txqid];
345 	struct tx_ring *txr = &que->txr;
346 
347 	qidx_t processed = 0;
348 	int updated;
349 	qidx_t cur, prev, ntxd, rs_cidx;
350 	int32_t delta;
351 	uint8_t status;
352 
353 	rs_cidx = txr->tx_rs_cidx;
354 	if (rs_cidx == txr->tx_rs_pidx)
355 		return (0);
356 	cur = txr->tx_rsq[rs_cidx];
357 	status = ((union igc_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
358 	updated = !!(status & IGC_TXD_STAT_DD);
359 
360 	if (!updated)
361 		return (0);
362 
363 	/* If clear is false just let caller know that there
364 	 * are descriptors to reclaim */
365 	if (!clear)
366 		return (1);
367 
368 	prev = txr->tx_cidx_processed;
369 	ntxd = scctx->isc_ntxd[0];
370 	do {
371 		MPASS(prev != cur);
372 		delta = (int32_t)cur - (int32_t)prev;
373 		if (delta < 0)
374 			delta += ntxd;
375 		MPASS(delta > 0);
376 
377 		processed += delta;
378 		prev = cur;
379 		rs_cidx = (rs_cidx + 1) & (ntxd-1);
380 		if (rs_cidx == txr->tx_rs_pidx)
381 			break;
382 		cur = txr->tx_rsq[rs_cidx];
383 		status =
384 		    ((union igc_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
385 	} while ((status & IGC_TXD_STAT_DD));
386 
387 	txr->tx_rs_cidx = rs_cidx;
388 	txr->tx_cidx_processed = prev;
389 	return (processed);
390 }
391 
392 static void
393 igc_isc_rxd_refill(void *arg, if_rxd_update_t iru)
394 {
395 	struct igc_softc *sc = arg;
396 	if_softc_ctx_t scctx = sc->shared;
397 	uint16_t rxqid = iru->iru_qsidx;
398 	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
399 	union igc_adv_rx_desc *rxd;
400 	struct rx_ring *rxr = &que->rxr;
401 	uint64_t *paddrs;
402 	uint32_t next_pidx, pidx;
403 	uint16_t count;
404 	int i;
405 
406 	paddrs = iru->iru_paddrs;
407 	pidx = iru->iru_pidx;
408 	count = iru->iru_count;
409 
410 	for (i = 0, next_pidx = pidx; i < count; i++) {
411 		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[next_pidx];
412 
413 		rxd->read.pkt_addr = htole64(paddrs[i]);
414 		if (++next_pidx == scctx->isc_nrxd[0])
415 			next_pidx = 0;
416 	}
417 }
418 
419 static void
420 igc_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused,
421     qidx_t pidx)
422 {
423 	struct igc_softc *sc = arg;
424 	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
425 	struct rx_ring *rxr = &que->rxr;
426 
427 	IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), pidx);
428 }
429 
430 static int
431 igc_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
432 {
433 	struct igc_softc *sc = arg;
434 	if_softc_ctx_t scctx = sc->shared;
435 	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
436 	struct rx_ring *rxr = &que->rxr;
437 	union igc_adv_rx_desc *rxd;
438 	uint32_t staterr = 0;
439 	int cnt, i;
440 
441 	for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
442 		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[i];
443 		staterr = le32toh(rxd->wb.upper.status_error);
444 
445 		if ((staterr & IGC_RXD_STAT_DD) == 0)
446 			break;
447 		if (++i == scctx->isc_nrxd[0])
448 			i = 0;
449 		if (staterr & IGC_RXD_STAT_EOP)
450 			cnt++;
451 	}
452 	return (cnt);
453 }
454 
455 /****************************************************************
456  * Routine sends data which has been dma'ed into host memory
457  * to upper layer. Initialize ri structure.
458  *
459  * Returns 0 upon success, errno on failure
460  ***************************************************************/
461 
462 static int
463 igc_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
464 {
465 	struct igc_softc *sc = arg;
466 	if_softc_ctx_t scctx = sc->shared;
467 	struct igc_rx_queue *que = &sc->rx_queues[ri->iri_qsidx];
468 	struct rx_ring *rxr = &que->rxr;
469 	union igc_adv_rx_desc *rxd;
470 
471 	uint16_t pkt_info, len;
472 	uint32_t ptype, staterr;
473 	int i, cidx;
474 	bool eop;
475 
476 	staterr = i = 0;
477 	cidx = ri->iri_cidx;
478 
479 	do {
480 		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[cidx];
481 		staterr = le32toh(rxd->wb.upper.status_error);
482 		pkt_info = le16toh(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
483 
484 		MPASS ((staterr & IGC_RXD_STAT_DD) != 0);
485 
486 		len = le16toh(rxd->wb.upper.length);
487 		ptype =
488 		    le32toh(rxd->wb.lower.lo_dword.data) & IGC_PKTTYPE_MASK;
489 
490 		ri->iri_len += len;
491 		rxr->rx_bytes += ri->iri_len;
492 
493 		rxd->wb.upper.status_error = 0;
494 		eop = ((staterr & IGC_RXD_STAT_EOP) == IGC_RXD_STAT_EOP);
495 
496 		/* Make sure bad packets are discarded */
497 		if (eop && ((staterr & IGC_RXDEXT_STATERR_RXE) != 0)) {
498 			sc->dropped_pkts++;
499 			++rxr->rx_discarded;
500 			return (EBADMSG);
501 		}
502 		ri->iri_frags[i].irf_flid = 0;
503 		ri->iri_frags[i].irf_idx = cidx;
504 		ri->iri_frags[i].irf_len = len;
505 
506 		if (++cidx == scctx->isc_nrxd[0])
507 			cidx = 0;
508 #ifdef notyet
509 		if (rxr->hdr_split == true) {
510 			ri->iri_frags[i].irf_flid = 1;
511 			ri->iri_frags[i].irf_idx = cidx;
512 			if (++cidx == scctx->isc_nrxd[0])
513 				cidx = 0;
514 		}
515 #endif
516 		i++;
517 	} while (!eop);
518 
519 	rxr->rx_packets++;
520 
521 	if ((scctx->isc_capenable & IFCAP_RXCSUM) != 0)
522 		igc_rx_checksum(staterr, ri, ptype);
523 
524 	if (staterr & IGC_RXD_STAT_VP) {
525 		ri->iri_vtag = le16toh(rxd->wb.upper.vlan);
526 		ri->iri_flags |= M_VLANTAG;
527 	}
528 
529 	ri->iri_flowid =
530 		le32toh(rxd->wb.lower.hi_dword.rss);
531 	ri->iri_rsstype = igc_determine_rsstype(pkt_info);
532 	ri->iri_nfrags = i;
533 
534 	return (0);
535 }
536 
537 /*********************************************************************
538  *
539  *  Verify that the hardware indicated that the checksum is valid.
540  *  Inform the stack about the status of checksum so that stack
541  *  doesn't spend time verifying the checksum.
542  *
543  *********************************************************************/
544 static void
545 igc_rx_checksum(uint32_t staterr, if_rxd_info_t ri, uint32_t ptype)
546 {
547 	uint16_t status = (uint16_t)staterr;
548 	uint8_t errors = (uint8_t)(staterr >> 24);
549 
550 	if (__predict_false(status & IGC_RXD_STAT_IXSM))
551 		return;
552 
553 	/* If there is a layer 3 or 4 error we are done */
554 	if (__predict_false(errors & (IGC_RXD_ERR_IPE | IGC_RXD_ERR_TCPE)))
555 		return;
556 
557 	/* IP Checksum Good */
558 	if (status & IGC_RXD_STAT_IPCS)
559 		ri->iri_csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID);
560 
561 	/* Valid L4E checksum */
562 	if (__predict_true(status &
563 	    (IGC_RXD_STAT_TCPCS | IGC_RXD_STAT_UDPCS))) {
564 		/* SCTP header present */
565 		if (__predict_false((ptype & IGC_RXDADV_PKTTYPE_ETQF) == 0 &&
566 		    (ptype & IGC_RXDADV_PKTTYPE_SCTP) != 0)) {
567 			ri->iri_csum_flags |= CSUM_SCTP_VALID;
568 		} else {
569 			ri->iri_csum_flags |=
570 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
571 			ri->iri_csum_data = htons(0xffff);
572 		}
573 	}
574 }
575 
576 /********************************************************************
577  *
578  *  Parse the packet type to determine the appropriate hash
579  *
580  ******************************************************************/
581 static int
582 igc_determine_rsstype(uint16_t pkt_info)
583 {
584 	switch (pkt_info & IGC_RXDADV_RSSTYPE_MASK) {
585 	case IGC_RXDADV_RSSTYPE_IPV4_TCP:
586 		return M_HASHTYPE_RSS_TCP_IPV4;
587 	case IGC_RXDADV_RSSTYPE_IPV4:
588 		return M_HASHTYPE_RSS_IPV4;
589 	case IGC_RXDADV_RSSTYPE_IPV6_TCP:
590 		return M_HASHTYPE_RSS_TCP_IPV6;
591 	case IGC_RXDADV_RSSTYPE_IPV6_EX:
592 		return M_HASHTYPE_RSS_IPV6_EX;
593 	case IGC_RXDADV_RSSTYPE_IPV6:
594 		return M_HASHTYPE_RSS_IPV6;
595 	case IGC_RXDADV_RSSTYPE_IPV6_TCP_EX:
596 		return M_HASHTYPE_RSS_TCP_IPV6_EX;
597 	default:
598 		return M_HASHTYPE_OPAQUE;
599 	}
600 }
601