xref: /freebsd/sys/dev/igc/igc_txrx.c (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Matthew Macy <mmacy@mattmacy.io>
5  * All rights reserved.
6  * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include "if_igc.h"
32 
33 #ifdef RSS
34 #include <net/rss_config.h>
35 #include <netinet/in_rss.h>
36 #endif
37 
38 #ifdef VERBOSE_DEBUG
39 #define DPRINTF device_printf
40 #else
41 #define DPRINTF(...)
42 #endif
43 
44 /*********************************************************************
45  *  Local Function prototypes
46  *********************************************************************/
47 static int igc_isc_txd_encap(void *arg, if_pkt_info_t pi);
48 static void igc_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx);
49 static int igc_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear);
50 
51 static void igc_isc_rxd_refill(void *arg, if_rxd_update_t iru);
52 
53 static void igc_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused,
54     qidx_t pidx);
55 static int igc_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx,
56     qidx_t budget);
57 
58 static int igc_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
59 
60 static int igc_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi,
61     uint32_t *cmd_type_len, uint32_t *olinfo_status);
62 static int igc_tso_setup(struct tx_ring *txr, if_pkt_info_t pi,
63     uint32_t *cmd_type_len, uint32_t *olinfo_status);
64 
65 static void igc_rx_checksum(uint32_t staterr, if_rxd_info_t ri, uint32_t ptype);
66 static int igc_determine_rsstype(uint16_t pkt_info);
67 
68 extern void igc_if_enable_intr(if_ctx_t ctx);
69 extern int igc_intr(void *arg);
70 
71 struct if_txrx igc_txrx = {
72 	.ift_txd_encap = igc_isc_txd_encap,
73 	.ift_txd_flush = igc_isc_txd_flush,
74 	.ift_txd_credits_update = igc_isc_txd_credits_update,
75 	.ift_rxd_available = igc_isc_rxd_available,
76 	.ift_rxd_pkt_get = igc_isc_rxd_pkt_get,
77 	.ift_rxd_refill = igc_isc_rxd_refill,
78 	.ift_rxd_flush = igc_isc_rxd_flush,
79 	.ift_legacy_intr = igc_intr
80 };
81 
82 void
83 igc_dump_rs(struct igc_adapter *adapter)
84 {
85 	if_softc_ctx_t scctx = adapter->shared;
86 	struct igc_tx_queue *que;
87 	struct tx_ring *txr;
88 	qidx_t i, ntxd, qid, cur;
89 	int16_t rs_cidx;
90 	uint8_t status;
91 
92 	printf("\n");
93 	ntxd = scctx->isc_ntxd[0];
94 	for (qid = 0; qid < adapter->tx_num_queues; qid++) {
95 		que = &adapter->tx_queues[qid];
96 		txr =  &que->txr;
97 		rs_cidx = txr->tx_rs_cidx;
98 		if (rs_cidx != txr->tx_rs_pidx) {
99 			cur = txr->tx_rsq[rs_cidx];
100 			status = txr->tx_base[cur].upper.fields.status;
101 			if (!(status & IGC_TXD_STAT_DD))
102 				printf("qid[%d]->tx_rsq[%d]: %d clear ", qid, rs_cidx, cur);
103 		} else {
104 			rs_cidx = (rs_cidx-1)&(ntxd-1);
105 			cur = txr->tx_rsq[rs_cidx];
106 			printf("qid[%d]->tx_rsq[rs_cidx-1=%d]: %d  ", qid, rs_cidx, cur);
107 		}
108 		printf("cidx_prev=%d rs_pidx=%d ",txr->tx_cidx_processed, txr->tx_rs_pidx);
109 		for (i = 0; i < ntxd; i++) {
110 			if (txr->tx_base[i].upper.fields.status & IGC_TXD_STAT_DD)
111 				printf("%d set ", i);
112 		}
113 		printf("\n");
114 	}
115 }
116 
117 /**********************************************************************
118  *
119  *  Setup work for hardware segmentation offload (TSO) on
120  *  adapters using advanced tx descriptors
121  *
122  **********************************************************************/
123 static int
124 igc_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, uint32_t *cmd_type_len,
125     uint32_t *olinfo_status)
126 {
127 	struct igc_adv_tx_context_desc *TXD;
128 	uint32_t type_tucmd_mlhl = 0, vlan_macip_lens = 0;
129 	uint32_t mss_l4len_idx = 0;
130 	uint32_t paylen;
131 
132 	switch(pi->ipi_etype) {
133 	case ETHERTYPE_IPV6:
134 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
135 		break;
136 	case ETHERTYPE_IP:
137 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
138 		/* Tell transmit desc to also do IPv4 checksum. */
139 		*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
140 		break;
141 	default:
142 		panic("%s: CSUM_TSO but no supported IP version (0x%04x)",
143 		      __func__, ntohs(pi->ipi_etype));
144 		break;
145 	}
146 
147 	TXD = (struct igc_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
148 
149 	/* This is used in the transmit desc in encap */
150 	paylen = pi->ipi_len - pi->ipi_ehdrlen - pi->ipi_ip_hlen - pi->ipi_tcp_hlen;
151 
152 	/* VLAN MACLEN IPLEN */
153 	if (pi->ipi_mflags & M_VLANTAG) {
154 		vlan_macip_lens |= (pi->ipi_vtag << IGC_ADVTXD_VLAN_SHIFT);
155 	}
156 
157 	vlan_macip_lens |= pi->ipi_ehdrlen << IGC_ADVTXD_MACLEN_SHIFT;
158 	vlan_macip_lens |= pi->ipi_ip_hlen;
159 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
160 
161 	/* ADV DTYPE TUCMD */
162 	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
163 	type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
164 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
165 
166 	/* MSS L4LEN IDX */
167 	mss_l4len_idx |= (pi->ipi_tso_segsz << IGC_ADVTXD_MSS_SHIFT);
168 	mss_l4len_idx |= (pi->ipi_tcp_hlen << IGC_ADVTXD_L4LEN_SHIFT);
169 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
170 
171 	TXD->seqnum_seed = htole32(0);
172 	*cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
173 	*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
174 	*olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
175 
176 	return (1);
177 }
178 
179 /*********************************************************************
180  *
181  *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
182  *
183  **********************************************************************/
184 static int
185 igc_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, uint32_t *cmd_type_len,
186     uint32_t *olinfo_status)
187 {
188 	struct igc_adv_tx_context_desc *TXD;
189 	uint32_t vlan_macip_lens, type_tucmd_mlhl;
190 	uint32_t mss_l4len_idx;
191 	mss_l4len_idx = vlan_macip_lens = type_tucmd_mlhl = 0;
192 
193 	/* First check if TSO is to be used */
194 	if (pi->ipi_csum_flags & CSUM_TSO)
195 		return (igc_tso_setup(txr, pi, cmd_type_len, olinfo_status));
196 
197 	/* Indicate the whole packet as payload when not doing TSO */
198 	*olinfo_status |= pi->ipi_len << IGC_ADVTXD_PAYLEN_SHIFT;
199 
200 	/* Now ready a context descriptor */
201 	TXD = (struct igc_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
202 
203 	/*
204 	** In advanced descriptors the vlan tag must
205 	** be placed into the context descriptor. Hence
206 	** we need to make one even if not doing offloads.
207 	*/
208 	if (pi->ipi_mflags & M_VLANTAG) {
209 		vlan_macip_lens |= (pi->ipi_vtag << IGC_ADVTXD_VLAN_SHIFT);
210 	} else if ((pi->ipi_csum_flags & IGC_CSUM_OFFLOAD) == 0) {
211 		return (0);
212 	}
213 
214 	/* Set the ether header length */
215 	vlan_macip_lens |= pi->ipi_ehdrlen << IGC_ADVTXD_MACLEN_SHIFT;
216 
217 	switch(pi->ipi_etype) {
218 	case ETHERTYPE_IP:
219 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
220 		break;
221 	case ETHERTYPE_IPV6:
222 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
223 		break;
224 	default:
225 		break;
226 	}
227 
228 	vlan_macip_lens |= pi->ipi_ip_hlen;
229 	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
230 
231 	switch (pi->ipi_ipproto) {
232 	case IPPROTO_TCP:
233 		if (pi->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) {
234 			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
235 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
236 		}
237 		break;
238 	case IPPROTO_UDP:
239 		if (pi->ipi_csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP)) {
240 			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
241 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
242 		}
243 		break;
244 	case IPPROTO_SCTP:
245 		if (pi->ipi_csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP)) {
246 			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_SCTP;
247 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
248 		}
249 		break;
250 	default:
251 		break;
252 	}
253 
254 	/* Now copy bits into descriptor */
255 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
256 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
257 	TXD->seqnum_seed = htole32(0);
258 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
259 
260 	return (1);
261 }
262 
263 static int
264 igc_isc_txd_encap(void *arg, if_pkt_info_t pi)
265 {
266 	struct igc_adapter *sc = arg;
267 	if_softc_ctx_t scctx = sc->shared;
268 	struct igc_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
269 	struct tx_ring *txr = &que->txr;
270 	int nsegs = pi->ipi_nsegs;
271 	bus_dma_segment_t *segs = pi->ipi_segs;
272 	union igc_adv_tx_desc *txd = NULL;
273 	int i, j, pidx_last;
274 	uint32_t olinfo_status, cmd_type_len, txd_flags;
275 	qidx_t ntxd;
276 
277 	pidx_last = olinfo_status = 0;
278 	/* Basic descriptor defines */
279 	cmd_type_len = (IGC_ADVTXD_DTYP_DATA |
280 			IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DCMD_DEXT);
281 
282 	if (pi->ipi_mflags & M_VLANTAG)
283 		cmd_type_len |= IGC_ADVTXD_DCMD_VLE;
284 
285 	i = pi->ipi_pidx;
286 	ntxd = scctx->isc_ntxd[0];
287 	txd_flags = pi->ipi_flags & IPI_TX_INTR ? IGC_ADVTXD_DCMD_RS : 0;
288 	/* Consume the first descriptor */
289 	i += igc_tx_ctx_setup(txr, pi, &cmd_type_len, &olinfo_status);
290 	if (i == scctx->isc_ntxd[0])
291 		i = 0;
292 
293 	for (j = 0; j < nsegs; j++) {
294 		bus_size_t seglen;
295 		bus_addr_t segaddr;
296 
297 		txd = (union igc_adv_tx_desc *)&txr->tx_base[i];
298 		seglen = segs[j].ds_len;
299 		segaddr = htole64(segs[j].ds_addr);
300 
301 		txd->read.buffer_addr = segaddr;
302 		txd->read.cmd_type_len = htole32(IGC_ADVTXD_DCMD_IFCS |
303 		    cmd_type_len | seglen);
304 		txd->read.olinfo_status = htole32(olinfo_status);
305 		pidx_last = i;
306 		if (++i == scctx->isc_ntxd[0]) {
307 			i = 0;
308 		}
309 	}
310 	if (txd_flags) {
311 		txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
312 		txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
313 		MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
314 	}
315 
316 	txd->read.cmd_type_len |= htole32(IGC_ADVTXD_DCMD_EOP | txd_flags);
317 	pi->ipi_new_pidx = i;
318 
319 	return (0);
320 }
321 
322 static void
323 igc_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
324 {
325 	struct igc_adapter *adapter	= arg;
326 	struct igc_tx_queue *que	= &adapter->tx_queues[txqid];
327 	struct tx_ring *txr	= &que->txr;
328 
329 	IGC_WRITE_REG(&adapter->hw, IGC_TDT(txr->me), pidx);
330 }
331 
332 static int
333 igc_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
334 {
335 	struct igc_adapter *adapter = arg;
336 	if_softc_ctx_t scctx = adapter->shared;
337 	struct igc_tx_queue *que = &adapter->tx_queues[txqid];
338 	struct tx_ring *txr = &que->txr;
339 
340 	qidx_t processed = 0;
341 	int updated;
342 	qidx_t cur, prev, ntxd, rs_cidx;
343 	int32_t delta;
344 	uint8_t status;
345 
346 	rs_cidx = txr->tx_rs_cidx;
347 	if (rs_cidx == txr->tx_rs_pidx)
348 		return (0);
349 	cur = txr->tx_rsq[rs_cidx];
350 	status = ((union igc_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
351 	updated = !!(status & IGC_TXD_STAT_DD);
352 
353 	if (!updated)
354 		return (0);
355 
356 	/* If clear is false just let caller know that there
357 	 * are descriptors to reclaim */
358 	if (!clear)
359 		return (1);
360 
361 	prev = txr->tx_cidx_processed;
362 	ntxd = scctx->isc_ntxd[0];
363 	do {
364 		MPASS(prev != cur);
365 		delta = (int32_t)cur - (int32_t)prev;
366 		if (delta < 0)
367 			delta += ntxd;
368 		MPASS(delta > 0);
369 
370 		processed += delta;
371 		prev  = cur;
372 		rs_cidx = (rs_cidx + 1) & (ntxd-1);
373 		if (rs_cidx  == txr->tx_rs_pidx)
374 			break;
375 		cur = txr->tx_rsq[rs_cidx];
376 		status = ((union igc_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
377 	} while ((status & IGC_TXD_STAT_DD));
378 
379 	txr->tx_rs_cidx = rs_cidx;
380 	txr->tx_cidx_processed = prev;
381 	return (processed);
382 }
383 
384 static void
385 igc_isc_rxd_refill(void *arg, if_rxd_update_t iru)
386 {
387 	struct igc_adapter *sc = arg;
388 	if_softc_ctx_t scctx = sc->shared;
389 	uint16_t rxqid = iru->iru_qsidx;
390 	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
391 	union igc_adv_rx_desc *rxd;
392 	struct rx_ring *rxr = &que->rxr;
393 	uint64_t *paddrs;
394 	uint32_t next_pidx, pidx;
395 	uint16_t count;
396 	int i;
397 
398 	paddrs = iru->iru_paddrs;
399 	pidx = iru->iru_pidx;
400 	count = iru->iru_count;
401 
402 	for (i = 0, next_pidx = pidx; i < count; i++) {
403 		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[next_pidx];
404 
405 		rxd->read.pkt_addr = htole64(paddrs[i]);
406 		if (++next_pidx == scctx->isc_nrxd[0])
407 			next_pidx = 0;
408 	}
409 }
410 
411 static void
412 igc_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx)
413 {
414 	struct igc_adapter *sc = arg;
415 	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
416 	struct rx_ring *rxr = &que->rxr;
417 
418 	IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), pidx);
419 }
420 
421 static int
422 igc_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
423 {
424 	struct igc_adapter *sc = arg;
425 	if_softc_ctx_t scctx = sc->shared;
426 	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
427 	struct rx_ring *rxr = &que->rxr;
428 	union igc_adv_rx_desc *rxd;
429 	uint32_t staterr = 0;
430 	int cnt, i;
431 
432 	for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
433 		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[i];
434 		staterr = le32toh(rxd->wb.upper.status_error);
435 
436 		if ((staterr & IGC_RXD_STAT_DD) == 0)
437 			break;
438 		if (++i == scctx->isc_nrxd[0])
439 			i = 0;
440 		if (staterr & IGC_RXD_STAT_EOP)
441 			cnt++;
442 	}
443 	return (cnt);
444 }
445 
446 /****************************************************************
447  * Routine sends data which has been dma'ed into host memory
448  * to upper layer. Initialize ri structure.
449  *
450  * Returns 0 upon success, errno on failure
451  ***************************************************************/
452 
453 static int
454 igc_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
455 {
456 	struct igc_adapter *adapter = arg;
457 	if_softc_ctx_t scctx = adapter->shared;
458 	struct igc_rx_queue *que = &adapter->rx_queues[ri->iri_qsidx];
459 	struct rx_ring *rxr = &que->rxr;
460 	union igc_adv_rx_desc *rxd;
461 
462 	uint16_t pkt_info, len;
463 	uint32_t ptype, staterr;
464 	int i, cidx;
465 	bool eop;
466 
467 	staterr = i = 0;
468 	cidx = ri->iri_cidx;
469 
470 	do {
471 		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[cidx];
472 		staterr = le32toh(rxd->wb.upper.status_error);
473 		pkt_info = le16toh(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
474 
475 		MPASS ((staterr & IGC_RXD_STAT_DD) != 0);
476 
477 		len = le16toh(rxd->wb.upper.length);
478 		ptype = le32toh(rxd->wb.lower.lo_dword.data) &  IGC_PKTTYPE_MASK;
479 
480 		ri->iri_len += len;
481 		rxr->rx_bytes += ri->iri_len;
482 
483 		rxd->wb.upper.status_error = 0;
484 		eop = ((staterr & IGC_RXD_STAT_EOP) == IGC_RXD_STAT_EOP);
485 
486 		/* Make sure bad packets are discarded */
487 		if (eop && ((staterr & IGC_RXDEXT_STATERR_RXE) != 0)) {
488 			adapter->dropped_pkts++;
489 			++rxr->rx_discarded;
490 			return (EBADMSG);
491 		}
492 		ri->iri_frags[i].irf_flid = 0;
493 		ri->iri_frags[i].irf_idx = cidx;
494 		ri->iri_frags[i].irf_len = len;
495 
496 		if (++cidx == scctx->isc_nrxd[0])
497 			cidx = 0;
498 #ifdef notyet
499 		if (rxr->hdr_split == true) {
500 			ri->iri_frags[i].irf_flid = 1;
501 			ri->iri_frags[i].irf_idx = cidx;
502 			if (++cidx == scctx->isc_nrxd[0])
503 				cidx = 0;
504 		}
505 #endif
506 		i++;
507 	} while (!eop);
508 
509 	rxr->rx_packets++;
510 
511 	if ((scctx->isc_capenable & IFCAP_RXCSUM) != 0)
512 		igc_rx_checksum(staterr, ri, ptype);
513 
514 	if (staterr & IGC_RXD_STAT_VP) {
515 		ri->iri_vtag = le16toh(rxd->wb.upper.vlan);
516 		ri->iri_flags |= M_VLANTAG;
517 	}
518 
519 	ri->iri_flowid =
520 		le32toh(rxd->wb.lower.hi_dword.rss);
521 	ri->iri_rsstype = igc_determine_rsstype(pkt_info);
522 	ri->iri_nfrags = i;
523 
524 	return (0);
525 }
526 
527 /*********************************************************************
528  *
529  *  Verify that the hardware indicated that the checksum is valid.
530  *  Inform the stack about the status of checksum so that stack
531  *  doesn't spend time verifying the checksum.
532  *
533  *********************************************************************/
534 static void
535 igc_rx_checksum(uint32_t staterr, if_rxd_info_t ri, uint32_t ptype)
536 {
537 	uint16_t status = (uint16_t)staterr;
538 	uint8_t errors = (uint8_t)(staterr >> 24);
539 
540 	if (__predict_false(status & IGC_RXD_STAT_IXSM))
541 		return;
542 
543 	/* If there is a layer 3 or 4 error we are done */
544 	if (__predict_false(errors & (IGC_RXD_ERR_IPE | IGC_RXD_ERR_TCPE)))
545 		return;
546 
547 	/* IP Checksum Good */
548 	if (status & IGC_RXD_STAT_IPCS)
549 		ri->iri_csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID);
550 
551 	/* Valid L4E checksum */
552 	if (__predict_true(status &
553 	    (IGC_RXD_STAT_TCPCS | IGC_RXD_STAT_UDPCS))) {
554 		/* SCTP header present */
555 		if (__predict_false((ptype & IGC_RXDADV_PKTTYPE_ETQF) == 0 &&
556 		    (ptype & IGC_RXDADV_PKTTYPE_SCTP) != 0)) {
557 			ri->iri_csum_flags |= CSUM_SCTP_VALID;
558 		} else {
559 			ri->iri_csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
560 			ri->iri_csum_data = htons(0xffff);
561 		}
562 	}
563 }
564 
565 /********************************************************************
566  *
567  *  Parse the packet type to determine the appropriate hash
568  *
569  ******************************************************************/
570 static int
571 igc_determine_rsstype(uint16_t pkt_info)
572 {
573 	switch (pkt_info & IGC_RXDADV_RSSTYPE_MASK) {
574 	case IGC_RXDADV_RSSTYPE_IPV4_TCP:
575 		return M_HASHTYPE_RSS_TCP_IPV4;
576 	case IGC_RXDADV_RSSTYPE_IPV4:
577 		return M_HASHTYPE_RSS_IPV4;
578 	case IGC_RXDADV_RSSTYPE_IPV6_TCP:
579 		return M_HASHTYPE_RSS_TCP_IPV6;
580 	case IGC_RXDADV_RSSTYPE_IPV6_EX:
581 		return M_HASHTYPE_RSS_IPV6_EX;
582 	case IGC_RXDADV_RSSTYPE_IPV6:
583 		return M_HASHTYPE_RSS_IPV6;
584 	case IGC_RXDADV_RSSTYPE_IPV6_TCP_EX:
585 		return M_HASHTYPE_RSS_TCP_IPV6_EX;
586 	default:
587 		return M_HASHTYPE_OPAQUE;
588 	}
589 }
590