xref: /freebsd/sys/dev/igc/igc_txrx.c (revision 5eb61f6c6549f134a4f3bed4c164345d4f616bad)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Matthew Macy <mmacy@mattmacy.io>
5  * All rights reserved.
6  * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "if_igc.h"
34 
35 #ifdef RSS
36 #include <net/rss_config.h>
37 #include <netinet/in_rss.h>
38 #endif
39 
40 #ifdef VERBOSE_DEBUG
41 #define DPRINTF device_printf
42 #else
43 #define DPRINTF(...)
44 #endif
45 
46 /*********************************************************************
47  *  Local Function prototypes
48  *********************************************************************/
49 static int igc_isc_txd_encap(void *arg, if_pkt_info_t pi);
50 static void igc_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx);
51 static int igc_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear);
52 
53 static void igc_isc_rxd_refill(void *arg, if_rxd_update_t iru);
54 
55 static void igc_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx);
56 static int igc_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget);
57 
58 static int igc_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
59 
60 static int igc_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status);
61 static int igc_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status);
62 
63 static void igc_rx_checksum(u32 staterr, if_rxd_info_t ri, u32 ptype);
64 static int igc_determine_rsstype(u16 pkt_info);
65 
66 extern void igc_if_enable_intr(if_ctx_t ctx);
67 extern int igc_intr(void *arg);
68 
69 struct if_txrx igc_txrx = {
70 	.ift_txd_encap = igc_isc_txd_encap,
71 	.ift_txd_flush = igc_isc_txd_flush,
72 	.ift_txd_credits_update = igc_isc_txd_credits_update,
73 	.ift_rxd_available = igc_isc_rxd_available,
74 	.ift_rxd_pkt_get = igc_isc_rxd_pkt_get,
75 	.ift_rxd_refill = igc_isc_rxd_refill,
76 	.ift_rxd_flush = igc_isc_rxd_flush,
77 	.ift_legacy_intr = igc_intr
78 };
79 
80 void
81 igc_dump_rs(struct igc_adapter *adapter)
82 {
83 	if_softc_ctx_t scctx = adapter->shared;
84 	struct igc_tx_queue *que;
85 	struct tx_ring *txr;
86 	qidx_t i, ntxd, qid, cur;
87 	int16_t rs_cidx;
88 	uint8_t status;
89 
90 	printf("\n");
91 	ntxd = scctx->isc_ntxd[0];
92 	for (qid = 0; qid < adapter->tx_num_queues; qid++) {
93 		que = &adapter->tx_queues[qid];
94 		txr =  &que->txr;
95 		rs_cidx = txr->tx_rs_cidx;
96 		if (rs_cidx != txr->tx_rs_pidx) {
97 			cur = txr->tx_rsq[rs_cidx];
98 			status = txr->tx_base[cur].upper.fields.status;
99 			if (!(status & IGC_TXD_STAT_DD))
100 				printf("qid[%d]->tx_rsq[%d]: %d clear ", qid, rs_cidx, cur);
101 		} else {
102 			rs_cidx = (rs_cidx-1)&(ntxd-1);
103 			cur = txr->tx_rsq[rs_cidx];
104 			printf("qid[%d]->tx_rsq[rs_cidx-1=%d]: %d  ", qid, rs_cidx, cur);
105 		}
106 		printf("cidx_prev=%d rs_pidx=%d ",txr->tx_cidx_processed, txr->tx_rs_pidx);
107 		for (i = 0; i < ntxd; i++) {
108 			if (txr->tx_base[i].upper.fields.status & IGC_TXD_STAT_DD)
109 				printf("%d set ", i);
110 		}
111 		printf("\n");
112 	}
113 }
114 
115 /**********************************************************************
116  *
117  *  Setup work for hardware segmentation offload (TSO) on
118  *  adapters using advanced tx descriptors
119  *
120  **********************************************************************/
121 static int
122 igc_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status)
123 {
124 	struct igc_adv_tx_context_desc *TXD;
125 	u32 type_tucmd_mlhl = 0, vlan_macip_lens = 0;
126 	u32 mss_l4len_idx = 0;
127 	u32 paylen;
128 
129 	switch(pi->ipi_etype) {
130 	case ETHERTYPE_IPV6:
131 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
132 		break;
133 	case ETHERTYPE_IP:
134 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
135 		/* Tell transmit desc to also do IPv4 checksum. */
136 		*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
137 		break;
138 	default:
139 		panic("%s: CSUM_TSO but no supported IP version (0x%04x)",
140 		      __func__, ntohs(pi->ipi_etype));
141 		break;
142 	}
143 
144 	TXD = (struct igc_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
145 
146 	/* This is used in the transmit desc in encap */
147 	paylen = pi->ipi_len - pi->ipi_ehdrlen - pi->ipi_ip_hlen - pi->ipi_tcp_hlen;
148 
149 	/* VLAN MACLEN IPLEN */
150 	if (pi->ipi_mflags & M_VLANTAG) {
151 		vlan_macip_lens |= (pi->ipi_vtag << IGC_ADVTXD_VLAN_SHIFT);
152 	}
153 
154 	vlan_macip_lens |= pi->ipi_ehdrlen << IGC_ADVTXD_MACLEN_SHIFT;
155 	vlan_macip_lens |= pi->ipi_ip_hlen;
156 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
157 
158 	/* ADV DTYPE TUCMD */
159 	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
160 	type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
161 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
162 
163 	/* MSS L4LEN IDX */
164 	mss_l4len_idx |= (pi->ipi_tso_segsz << IGC_ADVTXD_MSS_SHIFT);
165 	mss_l4len_idx |= (pi->ipi_tcp_hlen << IGC_ADVTXD_L4LEN_SHIFT);
166 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
167 
168 	TXD->seqnum_seed = htole32(0);
169 	*cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
170 	*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
171 	*olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
172 
173 	return (1);
174 }
175 
176 /*********************************************************************
177  *
178  *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
179  *
180  **********************************************************************/
181 static int
182 igc_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status)
183 {
184 	struct igc_adv_tx_context_desc *TXD;
185 	u32 vlan_macip_lens, type_tucmd_mlhl;
186 	u32 mss_l4len_idx;
187 	mss_l4len_idx = vlan_macip_lens = type_tucmd_mlhl = 0;
188 
189 	/* First check if TSO is to be used */
190 	if (pi->ipi_csum_flags & CSUM_TSO)
191 		return (igc_tso_setup(txr, pi, cmd_type_len, olinfo_status));
192 
193 	/* Indicate the whole packet as payload when not doing TSO */
194 	*olinfo_status |= pi->ipi_len << IGC_ADVTXD_PAYLEN_SHIFT;
195 
196 	/* Now ready a context descriptor */
197 	TXD = (struct igc_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
198 
199 	/*
200 	** In advanced descriptors the vlan tag must
201 	** be placed into the context descriptor. Hence
202 	** we need to make one even if not doing offloads.
203 	*/
204 	if (pi->ipi_mflags & M_VLANTAG) {
205 		vlan_macip_lens |= (pi->ipi_vtag << IGC_ADVTXD_VLAN_SHIFT);
206 	} else if ((pi->ipi_csum_flags & IGC_CSUM_OFFLOAD) == 0) {
207 		return (0);
208 	}
209 
210 	/* Set the ether header length */
211 	vlan_macip_lens |= pi->ipi_ehdrlen << IGC_ADVTXD_MACLEN_SHIFT;
212 
213 	switch(pi->ipi_etype) {
214 	case ETHERTYPE_IP:
215 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
216 		break;
217 	case ETHERTYPE_IPV6:
218 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
219 		break;
220 	default:
221 		break;
222 	}
223 
224 	vlan_macip_lens |= pi->ipi_ip_hlen;
225 	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
226 
227 	switch (pi->ipi_ipproto) {
228 	case IPPROTO_TCP:
229 		if (pi->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) {
230 			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
231 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
232 		}
233 		break;
234 	case IPPROTO_UDP:
235 		if (pi->ipi_csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP)) {
236 			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
237 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
238 		}
239 		break;
240 	case IPPROTO_SCTP:
241 		if (pi->ipi_csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP)) {
242 			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_SCTP;
243 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
244 		}
245                break;
246 	default:
247 		break;
248 	}
249 
250 	/* Now copy bits into descriptor */
251 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
252 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
253 	TXD->seqnum_seed = htole32(0);
254 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
255 
256 	return (1);
257 }
258 
259 static int
260 igc_isc_txd_encap(void *arg, if_pkt_info_t pi)
261 {
262 	struct igc_adapter *sc = arg;
263 	if_softc_ctx_t scctx = sc->shared;
264 	struct igc_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
265 	struct tx_ring *txr = &que->txr;
266 	int nsegs = pi->ipi_nsegs;
267 	bus_dma_segment_t *segs = pi->ipi_segs;
268 	union igc_adv_tx_desc *txd = NULL;
269 	int i, j, pidx_last;
270 	u32 olinfo_status, cmd_type_len, txd_flags;
271 	qidx_t ntxd;
272 
273 	pidx_last = olinfo_status = 0;
274 	/* Basic descriptor defines */
275 	cmd_type_len = (IGC_ADVTXD_DTYP_DATA |
276 			IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DCMD_DEXT);
277 
278 	if (pi->ipi_mflags & M_VLANTAG)
279 		cmd_type_len |= IGC_ADVTXD_DCMD_VLE;
280 
281 	i = pi->ipi_pidx;
282 	ntxd = scctx->isc_ntxd[0];
283 	txd_flags = pi->ipi_flags & IPI_TX_INTR ? IGC_ADVTXD_DCMD_RS : 0;
284 	/* Consume the first descriptor */
285 	i += igc_tx_ctx_setup(txr, pi, &cmd_type_len, &olinfo_status);
286 	if (i == scctx->isc_ntxd[0])
287 		i = 0;
288 
289 	for (j = 0; j < nsegs; j++) {
290 		bus_size_t seglen;
291 		bus_addr_t segaddr;
292 
293 		txd = (union igc_adv_tx_desc *)&txr->tx_base[i];
294 		seglen = segs[j].ds_len;
295 		segaddr = htole64(segs[j].ds_addr);
296 
297 		txd->read.buffer_addr = segaddr;
298 		txd->read.cmd_type_len = htole32(IGC_ADVTXD_DCMD_IFCS |
299 		    cmd_type_len | seglen);
300 		txd->read.olinfo_status = htole32(olinfo_status);
301 		pidx_last = i;
302 		if (++i == scctx->isc_ntxd[0]) {
303 			i = 0;
304 		}
305 	}
306 	if (txd_flags) {
307 		txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
308 		txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
309 		MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
310 	}
311 
312 	txd->read.cmd_type_len |= htole32(IGC_ADVTXD_DCMD_EOP | txd_flags);
313 	pi->ipi_new_pidx = i;
314 
315 	return (0);
316 }
317 
318 static void
319 igc_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
320 {
321 	struct igc_adapter *adapter	= arg;
322 	struct igc_tx_queue *que	= &adapter->tx_queues[txqid];
323 	struct tx_ring *txr	= &que->txr;
324 
325 	IGC_WRITE_REG(&adapter->hw, IGC_TDT(txr->me), pidx);
326 }
327 
328 static int
329 igc_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
330 {
331 	struct igc_adapter *adapter = arg;
332 	if_softc_ctx_t scctx = adapter->shared;
333 	struct igc_tx_queue *que = &adapter->tx_queues[txqid];
334 	struct tx_ring *txr = &que->txr;
335 
336 	qidx_t processed = 0;
337 	int updated;
338 	qidx_t cur, prev, ntxd, rs_cidx;
339 	int32_t delta;
340 	uint8_t status;
341 
342 	rs_cidx = txr->tx_rs_cidx;
343 	if (rs_cidx == txr->tx_rs_pidx)
344 		return (0);
345 	cur = txr->tx_rsq[rs_cidx];
346 	status = ((union igc_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
347 	updated = !!(status & IGC_TXD_STAT_DD);
348 
349 	if (!updated)
350 		return (0);
351 
352 	/* If clear is false just let caller know that there
353 	 * are descriptors to reclaim */
354 	if (!clear)
355 		return (1);
356 
357 	prev = txr->tx_cidx_processed;
358 	ntxd = scctx->isc_ntxd[0];
359 	do {
360 		MPASS(prev != cur);
361 		delta = (int32_t)cur - (int32_t)prev;
362 		if (delta < 0)
363 			delta += ntxd;
364 		MPASS(delta > 0);
365 
366 		processed += delta;
367 		prev  = cur;
368 		rs_cidx = (rs_cidx + 1) & (ntxd-1);
369 		if (rs_cidx  == txr->tx_rs_pidx)
370 			break;
371 		cur = txr->tx_rsq[rs_cidx];
372 		status = ((union igc_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
373 	} while ((status & IGC_TXD_STAT_DD));
374 
375 	txr->tx_rs_cidx = rs_cidx;
376 	txr->tx_cidx_processed = prev;
377 	return (processed);
378 }
379 
380 static void
381 igc_isc_rxd_refill(void *arg, if_rxd_update_t iru)
382 {
383 	struct igc_adapter *sc = arg;
384 	if_softc_ctx_t scctx = sc->shared;
385 	uint16_t rxqid = iru->iru_qsidx;
386 	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
387 	union igc_adv_rx_desc *rxd;
388 	struct rx_ring *rxr = &que->rxr;
389 	uint64_t *paddrs;
390 	uint32_t next_pidx, pidx;
391 	uint16_t count;
392 	int i;
393 
394 	paddrs = iru->iru_paddrs;
395 	pidx = iru->iru_pidx;
396 	count = iru->iru_count;
397 
398 	for (i = 0, next_pidx = pidx; i < count; i++) {
399 		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[next_pidx];
400 
401 		rxd->read.pkt_addr = htole64(paddrs[i]);
402 		if (++next_pidx == scctx->isc_nrxd[0])
403 			next_pidx = 0;
404 	}
405 }
406 
407 static void
408 igc_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx)
409 {
410 	struct igc_adapter *sc = arg;
411 	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
412 	struct rx_ring *rxr = &que->rxr;
413 
414 	IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), pidx);
415 }
416 
417 static int
418 igc_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
419 {
420 	struct igc_adapter *sc = arg;
421 	if_softc_ctx_t scctx = sc->shared;
422 	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
423 	struct rx_ring *rxr = &que->rxr;
424 	union igc_adv_rx_desc *rxd;
425 	u32 staterr = 0;
426 	int cnt, i;
427 
428 	for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
429 		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[i];
430 		staterr = le32toh(rxd->wb.upper.status_error);
431 
432 		if ((staterr & IGC_RXD_STAT_DD) == 0)
433 			break;
434 		if (++i == scctx->isc_nrxd[0])
435 			i = 0;
436 		if (staterr & IGC_RXD_STAT_EOP)
437 			cnt++;
438 	}
439 	return (cnt);
440 }
441 
442 /****************************************************************
443  * Routine sends data which has been dma'ed into host memory
444  * to upper layer. Initialize ri structure.
445  *
446  * Returns 0 upon success, errno on failure
447  ***************************************************************/
448 
449 static int
450 igc_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
451 {
452 	struct igc_adapter *adapter = arg;
453 	if_softc_ctx_t scctx = adapter->shared;
454 	struct igc_rx_queue *que = &adapter->rx_queues[ri->iri_qsidx];
455 	struct rx_ring *rxr = &que->rxr;
456 	struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
457 	union igc_adv_rx_desc *rxd;
458 
459 	u16 pkt_info, len;
460 	u16 vtag = 0;
461 	u32 ptype;
462 	u32 staterr = 0;
463 	bool eop;
464 	int i = 0;
465 	int cidx = ri->iri_cidx;
466 
467 	do {
468 		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[cidx];
469 		staterr = le32toh(rxd->wb.upper.status_error);
470 		pkt_info = le16toh(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
471 
472 		MPASS ((staterr & IGC_RXD_STAT_DD) != 0);
473 
474 		len = le16toh(rxd->wb.upper.length);
475 		ptype = le32toh(rxd->wb.lower.lo_dword.data) &  IGC_PKTTYPE_MASK;
476 
477 		ri->iri_len += len;
478 		rxr->rx_bytes += ri->iri_len;
479 
480 		rxd->wb.upper.status_error = 0;
481 		eop = ((staterr & IGC_RXD_STAT_EOP) == IGC_RXD_STAT_EOP);
482 
483 		vtag = le16toh(rxd->wb.upper.vlan);
484 
485 		/* Make sure bad packets are discarded */
486 		if (eop && ((staterr & IGC_RXDEXT_STATERR_RXE) != 0)) {
487 			adapter->dropped_pkts++;
488 			++rxr->rx_discarded;
489 			return (EBADMSG);
490 		}
491 		ri->iri_frags[i].irf_flid = 0;
492 		ri->iri_frags[i].irf_idx = cidx;
493 		ri->iri_frags[i].irf_len = len;
494 
495 		if (++cidx == scctx->isc_nrxd[0])
496 			cidx = 0;
497 #ifdef notyet
498 		if (rxr->hdr_split == true) {
499 			ri->iri_frags[i].irf_flid = 1;
500 			ri->iri_frags[i].irf_idx = cidx;
501 			if (++cidx == scctx->isc_nrxd[0])
502 				cidx = 0;
503 		}
504 #endif
505 		i++;
506 	} while (!eop);
507 
508 	rxr->rx_packets++;
509 
510 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
511 		igc_rx_checksum(staterr, ri, ptype);
512 
513 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
514 	    (staterr & IGC_RXD_STAT_VP) != 0) {
515 		ri->iri_vtag = vtag;
516 		ri->iri_flags |= M_VLANTAG;
517 	}
518 	ri->iri_flowid =
519 		le32toh(rxd->wb.lower.hi_dword.rss);
520 	ri->iri_rsstype = igc_determine_rsstype(pkt_info);
521 	ri->iri_nfrags = i;
522 
523 	return (0);
524 }
525 
526 /*********************************************************************
527  *
528  *  Verify that the hardware indicated that the checksum is valid.
529  *  Inform the stack about the status of checksum so that stack
530  *  doesn't spend time verifying the checksum.
531  *
532  *********************************************************************/
533 static void
534 igc_rx_checksum(u32 staterr, if_rxd_info_t ri, u32 ptype)
535 {
536 	u16 status = (u16)staterr;
537 	u8 errors = (u8) (staterr >> 24);
538 
539 	/* Ignore Checksum bit is set */
540 	if (status & IGC_RXD_STAT_IXSM) {
541 		ri->iri_csum_flags = 0;
542 		return;
543 	}
544 
545 	if (status & (IGC_RXD_STAT_TCPCS | IGC_RXD_STAT_UDPCS)) {
546 		u64 type = (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
547 		/* Did it pass? */
548 		if (!(errors & IGC_RXD_ERR_TCPE)) {
549 			ri->iri_csum_flags |= type;
550 			ri->iri_csum_data = htons(0xffff);
551 		}
552 	}
553 	return;
554 }
555 
556 /********************************************************************
557  *
558  *  Parse the packet type to determine the appropriate hash
559  *
560  ******************************************************************/
561 static int
562 igc_determine_rsstype(u16 pkt_info)
563 {
564 	switch (pkt_info & IGC_RXDADV_RSSTYPE_MASK) {
565 	case IGC_RXDADV_RSSTYPE_IPV4_TCP:
566 		return M_HASHTYPE_RSS_TCP_IPV4;
567 	case IGC_RXDADV_RSSTYPE_IPV4:
568 		return M_HASHTYPE_RSS_IPV4;
569 	case IGC_RXDADV_RSSTYPE_IPV6_TCP:
570 		return M_HASHTYPE_RSS_TCP_IPV6;
571 	case IGC_RXDADV_RSSTYPE_IPV6_EX:
572 		return M_HASHTYPE_RSS_IPV6_EX;
573 	case IGC_RXDADV_RSSTYPE_IPV6:
574 		return M_HASHTYPE_RSS_IPV6;
575 	case IGC_RXDADV_RSSTYPE_IPV6_TCP_EX:
576 		return M_HASHTYPE_RSS_TCP_IPV6_EX;
577 	default:
578 		return M_HASHTYPE_OPAQUE;
579 	}
580 }
581