1 /*- 2 * Copyright 2021 Intel Corp 3 * Copyright 2021 Rubicon Communications, LLC (Netgate) 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <sys/cdefs.h> 8 __FBSDID("$FreeBSD$"); 9 10 #include "igc_api.h" 11 12 static s32 igc_wait_autoneg(struct igc_hw *hw); 13 14 /** 15 * igc_init_phy_ops_generic - Initialize PHY function pointers 16 * @hw: pointer to the HW structure 17 * 18 * Setups up the function pointers to no-op functions 19 **/ 20 void igc_init_phy_ops_generic(struct igc_hw *hw) 21 { 22 struct igc_phy_info *phy = &hw->phy; 23 DEBUGFUNC("igc_init_phy_ops_generic"); 24 25 /* Initialize function pointers */ 26 phy->ops.init_params = igc_null_ops_generic; 27 phy->ops.acquire = igc_null_ops_generic; 28 phy->ops.check_reset_block = igc_null_ops_generic; 29 phy->ops.force_speed_duplex = igc_null_ops_generic; 30 phy->ops.get_info = igc_null_ops_generic; 31 phy->ops.set_page = igc_null_set_page; 32 phy->ops.read_reg = igc_null_read_reg; 33 phy->ops.read_reg_locked = igc_null_read_reg; 34 phy->ops.read_reg_page = igc_null_read_reg; 35 phy->ops.release = igc_null_phy_generic; 36 phy->ops.reset = igc_null_ops_generic; 37 phy->ops.set_d0_lplu_state = igc_null_lplu_state; 38 phy->ops.set_d3_lplu_state = igc_null_lplu_state; 39 phy->ops.write_reg = igc_null_write_reg; 40 phy->ops.write_reg_locked = igc_null_write_reg; 41 phy->ops.write_reg_page = igc_null_write_reg; 42 phy->ops.power_up = igc_null_phy_generic; 43 phy->ops.power_down = igc_null_phy_generic; 44 } 45 46 /** 47 * igc_null_set_page - No-op function, return 0 48 * @hw: pointer to the HW structure 49 * @data: dummy variable 50 **/ 51 s32 igc_null_set_page(struct igc_hw IGC_UNUSEDARG *hw, 52 u16 IGC_UNUSEDARG data) 53 { 54 DEBUGFUNC("igc_null_set_page"); 55 return IGC_SUCCESS; 56 } 57 58 /** 59 * igc_null_read_reg - No-op function, return 0 60 * @hw: pointer to the HW structure 61 * @offset: dummy variable 62 * @data: dummy variable 63 **/ 64 s32 igc_null_read_reg(struct igc_hw IGC_UNUSEDARG *hw, 65 u32 IGC_UNUSEDARG offset, u16 IGC_UNUSEDARG *data) 66 { 67 DEBUGFUNC("igc_null_read_reg"); 68 return IGC_SUCCESS; 69 } 70 71 /** 72 * igc_null_phy_generic - No-op function, return void 73 * @hw: pointer to the HW structure 74 **/ 75 void igc_null_phy_generic(struct igc_hw IGC_UNUSEDARG *hw) 76 { 77 DEBUGFUNC("igc_null_phy_generic"); 78 return; 79 } 80 81 /** 82 * igc_null_lplu_state - No-op function, return 0 83 * @hw: pointer to the HW structure 84 * @active: dummy variable 85 **/ 86 s32 igc_null_lplu_state(struct igc_hw IGC_UNUSEDARG *hw, 87 bool IGC_UNUSEDARG active) 88 { 89 DEBUGFUNC("igc_null_lplu_state"); 90 return IGC_SUCCESS; 91 } 92 93 /** 94 * igc_null_write_reg - No-op function, return 0 95 * @hw: pointer to the HW structure 96 * @offset: dummy variable 97 * @data: dummy variable 98 **/ 99 s32 igc_null_write_reg(struct igc_hw IGC_UNUSEDARG *hw, 100 u32 IGC_UNUSEDARG offset, u16 IGC_UNUSEDARG data) 101 { 102 DEBUGFUNC("igc_null_write_reg"); 103 return IGC_SUCCESS; 104 } 105 106 /** 107 * igc_check_reset_block_generic - Check if PHY reset is blocked 108 * @hw: pointer to the HW structure 109 * 110 * Read the PHY management control register and check whether a PHY reset 111 * is blocked. If a reset is not blocked return IGC_SUCCESS, otherwise 112 * return IGC_BLK_PHY_RESET (12). 113 **/ 114 s32 igc_check_reset_block_generic(struct igc_hw *hw) 115 { 116 u32 manc; 117 118 DEBUGFUNC("igc_check_reset_block"); 119 120 manc = IGC_READ_REG(hw, IGC_MANC); 121 122 return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ? 123 IGC_BLK_PHY_RESET : IGC_SUCCESS; 124 } 125 126 /** 127 * igc_get_phy_id - Retrieve the PHY ID and revision 128 * @hw: pointer to the HW structure 129 * 130 * Reads the PHY registers and stores the PHY ID and possibly the PHY 131 * revision in the hardware structure. 132 **/ 133 s32 igc_get_phy_id(struct igc_hw *hw) 134 { 135 struct igc_phy_info *phy = &hw->phy; 136 s32 ret_val = IGC_SUCCESS; 137 u16 phy_id; 138 139 DEBUGFUNC("igc_get_phy_id"); 140 141 if (!phy->ops.read_reg) 142 return IGC_SUCCESS; 143 144 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); 145 if (ret_val) 146 return ret_val; 147 148 phy->id = (u32)(phy_id << 16); 149 usec_delay(200); 150 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); 151 if (ret_val) 152 return ret_val; 153 154 phy->id |= (u32)(phy_id & PHY_REVISION_MASK); 155 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 156 157 return IGC_SUCCESS; 158 } 159 160 /** 161 * igc_read_phy_reg_mdic - Read MDI control register 162 * @hw: pointer to the HW structure 163 * @offset: register offset to be read 164 * @data: pointer to the read data 165 * 166 * Reads the MDI control register in the PHY at offset and stores the 167 * information read to data. 168 **/ 169 s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data) 170 { 171 struct igc_phy_info *phy = &hw->phy; 172 u32 i, mdic = 0; 173 174 DEBUGFUNC("igc_read_phy_reg_mdic"); 175 176 if (offset > MAX_PHY_REG_ADDRESS) { 177 DEBUGOUT1("PHY Address %d is out of range\n", offset); 178 return -IGC_ERR_PARAM; 179 } 180 181 /* Set up Op-code, Phy Address, and register offset in the MDI 182 * Control register. The MAC will take care of interfacing with the 183 * PHY to retrieve the desired data. 184 */ 185 mdic = ((offset << IGC_MDIC_REG_SHIFT) | 186 (phy->addr << IGC_MDIC_PHY_SHIFT) | 187 (IGC_MDIC_OP_READ)); 188 189 IGC_WRITE_REG(hw, IGC_MDIC, mdic); 190 191 /* Poll the ready bit to see if the MDI read completed 192 * Increasing the time out as testing showed failures with 193 * the lower time out 194 */ 195 for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) { 196 usec_delay_irq(50); 197 mdic = IGC_READ_REG(hw, IGC_MDIC); 198 if (mdic & IGC_MDIC_READY) 199 break; 200 } 201 if (!(mdic & IGC_MDIC_READY)) { 202 DEBUGOUT("MDI Read did not complete\n"); 203 return -IGC_ERR_PHY; 204 } 205 if (mdic & IGC_MDIC_ERROR) { 206 DEBUGOUT("MDI Error\n"); 207 return -IGC_ERR_PHY; 208 } 209 if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset) { 210 DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n", 211 offset, 212 (mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT); 213 return -IGC_ERR_PHY; 214 } 215 *data = (u16) mdic; 216 217 return IGC_SUCCESS; 218 } 219 220 /** 221 * igc_write_phy_reg_mdic - Write MDI control register 222 * @hw: pointer to the HW structure 223 * @offset: register offset to write to 224 * @data: data to write to register at offset 225 * 226 * Writes data to MDI control register in the PHY at offset. 227 **/ 228 s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data) 229 { 230 struct igc_phy_info *phy = &hw->phy; 231 u32 i, mdic = 0; 232 233 DEBUGFUNC("igc_write_phy_reg_mdic"); 234 235 if (offset > MAX_PHY_REG_ADDRESS) { 236 DEBUGOUT1("PHY Address %d is out of range\n", offset); 237 return -IGC_ERR_PARAM; 238 } 239 240 /* Set up Op-code, Phy Address, and register offset in the MDI 241 * Control register. The MAC will take care of interfacing with the 242 * PHY to retrieve the desired data. 243 */ 244 mdic = (((u32)data) | 245 (offset << IGC_MDIC_REG_SHIFT) | 246 (phy->addr << IGC_MDIC_PHY_SHIFT) | 247 (IGC_MDIC_OP_WRITE)); 248 249 IGC_WRITE_REG(hw, IGC_MDIC, mdic); 250 251 /* Poll the ready bit to see if the MDI read completed 252 * Increasing the time out as testing showed failures with 253 * the lower time out 254 */ 255 for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) { 256 usec_delay_irq(50); 257 mdic = IGC_READ_REG(hw, IGC_MDIC); 258 if (mdic & IGC_MDIC_READY) 259 break; 260 } 261 if (!(mdic & IGC_MDIC_READY)) { 262 DEBUGOUT("MDI Write did not complete\n"); 263 return -IGC_ERR_PHY; 264 } 265 if (mdic & IGC_MDIC_ERROR) { 266 DEBUGOUT("MDI Error\n"); 267 return -IGC_ERR_PHY; 268 } 269 if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset) { 270 DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n", 271 offset, 272 (mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT); 273 return -IGC_ERR_PHY; 274 } 275 276 return IGC_SUCCESS; 277 } 278 279 /** 280 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation 281 * @hw: pointer to the HW structure 282 * 283 * Reads the MII auto-neg advertisement register and/or the 1000T control 284 * register and if the PHY is already setup for auto-negotiation, then 285 * return successful. Otherwise, setup advertisement and flow control to 286 * the appropriate values for the wanted auto-negotiation. 287 **/ 288 static s32 igc_phy_setup_autoneg(struct igc_hw *hw) 289 { 290 struct igc_phy_info *phy = &hw->phy; 291 s32 ret_val; 292 u16 mii_autoneg_adv_reg; 293 u16 mii_1000t_ctrl_reg = 0; 294 u16 aneg_multigbt_an_ctrl = 0; 295 296 DEBUGFUNC("igc_phy_setup_autoneg"); 297 298 phy->autoneg_advertised &= phy->autoneg_mask; 299 300 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 301 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); 302 if (ret_val) 303 return ret_val; 304 305 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 306 /* Read the MII 1000Base-T Control Register (Address 9). */ 307 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, 308 &mii_1000t_ctrl_reg); 309 if (ret_val) 310 return ret_val; 311 } 312 313 if (phy->autoneg_mask & ADVERTISE_2500_FULL) { 314 /* Read the MULTI GBT AN Control Register - reg 7.32 */ 315 ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK << 316 MMD_DEVADDR_SHIFT) | 317 ANEG_MULTIGBT_AN_CTRL, 318 &aneg_multigbt_an_ctrl); 319 320 if (ret_val) 321 return ret_val; 322 } 323 324 /* Need to parse both autoneg_advertised and fc and set up 325 * the appropriate PHY registers. First we will parse for 326 * autoneg_advertised software override. Since we can advertise 327 * a plethora of combinations, we need to check each bit 328 * individually. 329 */ 330 331 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 332 * Advertisement Register (Address 4) and the 1000 mb speed bits in 333 * the 1000Base-T Control Register (Address 9). 334 */ 335 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | 336 NWAY_AR_100TX_HD_CAPS | 337 NWAY_AR_10T_FD_CAPS | 338 NWAY_AR_10T_HD_CAPS); 339 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); 340 341 DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); 342 343 /* Do we want to advertise 10 Mb Half Duplex? */ 344 if (phy->autoneg_advertised & ADVERTISE_10_HALF) { 345 DEBUGOUT("Advertise 10mb Half duplex\n"); 346 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; 347 } 348 349 /* Do we want to advertise 10 Mb Full Duplex? */ 350 if (phy->autoneg_advertised & ADVERTISE_10_FULL) { 351 DEBUGOUT("Advertise 10mb Full duplex\n"); 352 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; 353 } 354 355 /* Do we want to advertise 100 Mb Half Duplex? */ 356 if (phy->autoneg_advertised & ADVERTISE_100_HALF) { 357 DEBUGOUT("Advertise 100mb Half duplex\n"); 358 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; 359 } 360 361 /* Do we want to advertise 100 Mb Full Duplex? */ 362 if (phy->autoneg_advertised & ADVERTISE_100_FULL) { 363 DEBUGOUT("Advertise 100mb Full duplex\n"); 364 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; 365 } 366 367 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 368 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) 369 DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); 370 371 /* Do we want to advertise 1000 Mb Full Duplex? */ 372 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { 373 DEBUGOUT("Advertise 1000mb Full duplex\n"); 374 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; 375 } 376 377 /* We do not allow the Phy to advertise 2500 Mb Half Duplex */ 378 if (phy->autoneg_advertised & ADVERTISE_2500_HALF) 379 DEBUGOUT("Advertise 2500mb Half duplex request denied!\n"); 380 381 /* Do we want to advertise 2500 Mb Full Duplex? */ 382 if (phy->autoneg_advertised & ADVERTISE_2500_FULL) { 383 DEBUGOUT("Advertise 2500mb Full duplex\n"); 384 aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS; 385 } else { 386 aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS; 387 } 388 389 /* Check for a software override of the flow control settings, and 390 * setup the PHY advertisement registers accordingly. If 391 * auto-negotiation is enabled, then software will have to set the 392 * "PAUSE" bits to the correct value in the Auto-Negotiation 393 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- 394 * negotiation. 395 * 396 * The possible values of the "fc" parameter are: 397 * 0: Flow control is completely disabled 398 * 1: Rx flow control is enabled (we can receive pause frames 399 * but not send pause frames). 400 * 2: Tx flow control is enabled (we can send pause frames 401 * but we do not support receiving pause frames). 402 * 3: Both Rx and Tx flow control (symmetric) are enabled. 403 * other: No software override. The flow control configuration 404 * in the EEPROM is used. 405 */ 406 switch (hw->fc.current_mode) { 407 case igc_fc_none: 408 /* Flow control (Rx & Tx) is completely disabled by a 409 * software over-ride. 410 */ 411 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 412 break; 413 case igc_fc_rx_pause: 414 /* Rx Flow control is enabled, and Tx Flow control is 415 * disabled, by a software over-ride. 416 * 417 * Since there really isn't a way to advertise that we are 418 * capable of Rx Pause ONLY, we will advertise that we 419 * support both symmetric and asymmetric Rx PAUSE. Later 420 * (in igc_config_fc_after_link_up) we will disable the 421 * hw's ability to send PAUSE frames. 422 */ 423 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 424 break; 425 case igc_fc_tx_pause: 426 /* Tx Flow control is enabled, and Rx Flow control is 427 * disabled, by a software over-ride. 428 */ 429 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; 430 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; 431 break; 432 case igc_fc_full: 433 /* Flow control (both Rx and Tx) is enabled by a software 434 * over-ride. 435 */ 436 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 437 break; 438 default: 439 DEBUGOUT("Flow control param set incorrectly\n"); 440 return -IGC_ERR_CONFIG; 441 } 442 443 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); 444 if (ret_val) 445 return ret_val; 446 447 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 448 449 if (phy->autoneg_mask & ADVERTISE_1000_FULL) 450 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, 451 mii_1000t_ctrl_reg); 452 453 if (phy->autoneg_mask & ADVERTISE_2500_FULL) 454 ret_val = phy->ops.write_reg(hw, 455 (STANDARD_AN_REG_MASK << 456 MMD_DEVADDR_SHIFT) | 457 ANEG_MULTIGBT_AN_CTRL, 458 aneg_multigbt_an_ctrl); 459 460 return ret_val; 461 } 462 463 /** 464 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link 465 * @hw: pointer to the HW structure 466 * 467 * Performs initial bounds checking on autoneg advertisement parameter, then 468 * configure to advertise the full capability. Setup the PHY to autoneg 469 * and restart the negotiation process between the link partner. If 470 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. 471 **/ 472 static s32 igc_copper_link_autoneg(struct igc_hw *hw) 473 { 474 struct igc_phy_info *phy = &hw->phy; 475 s32 ret_val; 476 u16 phy_ctrl; 477 478 DEBUGFUNC("igc_copper_link_autoneg"); 479 480 /* Perform some bounds checking on the autoneg advertisement 481 * parameter. 482 */ 483 phy->autoneg_advertised &= phy->autoneg_mask; 484 485 /* If autoneg_advertised is zero, we assume it was not defaulted 486 * by the calling code so we set to advertise full capability. 487 */ 488 if (!phy->autoneg_advertised) 489 phy->autoneg_advertised = phy->autoneg_mask; 490 491 DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); 492 ret_val = igc_phy_setup_autoneg(hw); 493 if (ret_val) { 494 DEBUGOUT("Error Setting up Auto-Negotiation\n"); 495 return ret_val; 496 } 497 DEBUGOUT("Restarting Auto-Neg\n"); 498 499 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 500 * the Auto Neg Restart bit in the PHY control register. 501 */ 502 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 503 if (ret_val) 504 return ret_val; 505 506 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); 507 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 508 if (ret_val) 509 return ret_val; 510 511 /* Does the user want to wait for Auto-Neg to complete here, or 512 * check at a later time (for example, callback routine). 513 */ 514 if (phy->autoneg_wait_to_complete) { 515 ret_val = igc_wait_autoneg(hw); 516 if (ret_val) { 517 DEBUGOUT("Error while waiting for autoneg to complete\n"); 518 return ret_val; 519 } 520 } 521 522 hw->mac.get_link_status = true; 523 524 return ret_val; 525 } 526 527 /** 528 * igc_setup_copper_link_generic - Configure copper link settings 529 * @hw: pointer to the HW structure 530 * 531 * Calls the appropriate function to configure the link for auto-neg or forced 532 * speed and duplex. Then we check for link, once link is established calls 533 * to configure collision distance and flow control are called. If link is 534 * not established, we return -IGC_ERR_PHY (-2). 535 **/ 536 s32 igc_setup_copper_link_generic(struct igc_hw *hw) 537 { 538 s32 ret_val; 539 bool link; 540 541 DEBUGFUNC("igc_setup_copper_link_generic"); 542 543 if (hw->mac.autoneg) { 544 /* Setup autoneg and flow control advertisement and perform 545 * autonegotiation. 546 */ 547 ret_val = igc_copper_link_autoneg(hw); 548 if (ret_val) 549 return ret_val; 550 } else { 551 /* PHY will be set to 10H, 10F, 100H or 100F 552 * depending on user settings. 553 */ 554 DEBUGOUT("Forcing Speed and Duplex\n"); 555 ret_val = hw->phy.ops.force_speed_duplex(hw); 556 if (ret_val) { 557 DEBUGOUT("Error Forcing Speed and Duplex\n"); 558 return ret_val; 559 } 560 } 561 562 /* Check link status. Wait up to 100 microseconds for link to become 563 * valid. 564 */ 565 ret_val = igc_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, 566 &link); 567 if (ret_val) 568 return ret_val; 569 570 if (link) { 571 DEBUGOUT("Valid link established!!!\n"); 572 hw->mac.ops.config_collision_dist(hw); 573 ret_val = igc_config_fc_after_link_up_generic(hw); 574 } else { 575 DEBUGOUT("Unable to establish link!!!\n"); 576 } 577 578 return ret_val; 579 } 580 581 /** 582 * igc_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex 583 * @hw: pointer to the HW structure 584 * @phy_ctrl: pointer to current value of PHY_CONTROL 585 * 586 * Forces speed and duplex on the PHY by doing the following: disable flow 587 * control, force speed/duplex on the MAC, disable auto speed detection, 588 * disable auto-negotiation, configure duplex, configure speed, configure 589 * the collision distance, write configuration to CTRL register. The 590 * caller must write to the PHY_CONTROL register for these settings to 591 * take effect. 592 **/ 593 void igc_phy_force_speed_duplex_setup(struct igc_hw *hw, u16 *phy_ctrl) 594 { 595 struct igc_mac_info *mac = &hw->mac; 596 u32 ctrl; 597 598 DEBUGFUNC("igc_phy_force_speed_duplex_setup"); 599 600 /* Turn off flow control when forcing speed/duplex */ 601 hw->fc.current_mode = igc_fc_none; 602 603 /* Force speed/duplex on the mac */ 604 ctrl = IGC_READ_REG(hw, IGC_CTRL); 605 ctrl |= (IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX); 606 ctrl &= ~IGC_CTRL_SPD_SEL; 607 608 /* Disable Auto Speed Detection */ 609 ctrl &= ~IGC_CTRL_ASDE; 610 611 /* Disable autoneg on the phy */ 612 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; 613 614 /* Forcing Full or Half Duplex? */ 615 if (mac->forced_speed_duplex & IGC_ALL_HALF_DUPLEX) { 616 ctrl &= ~IGC_CTRL_FD; 617 *phy_ctrl &= ~MII_CR_FULL_DUPLEX; 618 DEBUGOUT("Half Duplex\n"); 619 } else { 620 ctrl |= IGC_CTRL_FD; 621 *phy_ctrl |= MII_CR_FULL_DUPLEX; 622 DEBUGOUT("Full Duplex\n"); 623 } 624 625 /* Forcing 10mb or 100mb? */ 626 if (mac->forced_speed_duplex & IGC_ALL_100_SPEED) { 627 ctrl |= IGC_CTRL_SPD_100; 628 *phy_ctrl |= MII_CR_SPEED_100; 629 *phy_ctrl &= ~MII_CR_SPEED_1000; 630 DEBUGOUT("Forcing 100mb\n"); 631 } else { 632 ctrl &= ~(IGC_CTRL_SPD_1000 | IGC_CTRL_SPD_100); 633 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); 634 DEBUGOUT("Forcing 10mb\n"); 635 } 636 637 hw->mac.ops.config_collision_dist(hw); 638 639 IGC_WRITE_REG(hw, IGC_CTRL, ctrl); 640 } 641 642 /** 643 * igc_set_d3_lplu_state_generic - Sets low power link up state for D3 644 * @hw: pointer to the HW structure 645 * @active: boolean used to enable/disable lplu 646 * 647 * Success returns 0, Failure returns 1 648 * 649 * The low power link up (lplu) state is set to the power management level D3 650 * and SmartSpeed is disabled when active is true, else clear lplu for D3 651 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 652 * is used during Dx states where the power conservation is most important. 653 * During driver activity, SmartSpeed should be enabled so performance is 654 * maintained. 655 **/ 656 s32 igc_set_d3_lplu_state_generic(struct igc_hw *hw, bool active) 657 { 658 struct igc_phy_info *phy = &hw->phy; 659 s32 ret_val; 660 u16 data; 661 662 DEBUGFUNC("igc_set_d3_lplu_state_generic"); 663 664 if (!hw->phy.ops.read_reg) 665 return IGC_SUCCESS; 666 667 ret_val = phy->ops.read_reg(hw, IGP02IGC_PHY_POWER_MGMT, &data); 668 if (ret_val) 669 return ret_val; 670 671 if (!active) { 672 data &= ~IGP02IGC_PM_D3_LPLU; 673 ret_val = phy->ops.write_reg(hw, IGP02IGC_PHY_POWER_MGMT, 674 data); 675 if (ret_val) 676 return ret_val; 677 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 678 * during Dx states where the power conservation is most 679 * important. During driver activity we should enable 680 * SmartSpeed, so performance is maintained. 681 */ 682 if (phy->smart_speed == igc_smart_speed_on) { 683 ret_val = phy->ops.read_reg(hw, 684 IGP01IGC_PHY_PORT_CONFIG, 685 &data); 686 if (ret_val) 687 return ret_val; 688 689 data |= IGP01IGC_PSCFR_SMART_SPEED; 690 ret_val = phy->ops.write_reg(hw, 691 IGP01IGC_PHY_PORT_CONFIG, 692 data); 693 if (ret_val) 694 return ret_val; 695 } else if (phy->smart_speed == igc_smart_speed_off) { 696 ret_val = phy->ops.read_reg(hw, 697 IGP01IGC_PHY_PORT_CONFIG, 698 &data); 699 if (ret_val) 700 return ret_val; 701 702 data &= ~IGP01IGC_PSCFR_SMART_SPEED; 703 ret_val = phy->ops.write_reg(hw, 704 IGP01IGC_PHY_PORT_CONFIG, 705 data); 706 if (ret_val) 707 return ret_val; 708 } 709 } else if ((phy->autoneg_advertised == IGC_ALL_SPEED_DUPLEX) || 710 (phy->autoneg_advertised == IGC_ALL_NOT_GIG) || 711 (phy->autoneg_advertised == IGC_ALL_10_SPEED)) { 712 data |= IGP02IGC_PM_D3_LPLU; 713 ret_val = phy->ops.write_reg(hw, IGP02IGC_PHY_POWER_MGMT, 714 data); 715 if (ret_val) 716 return ret_val; 717 718 /* When LPLU is enabled, we should disable SmartSpeed */ 719 ret_val = phy->ops.read_reg(hw, IGP01IGC_PHY_PORT_CONFIG, 720 &data); 721 if (ret_val) 722 return ret_val; 723 724 data &= ~IGP01IGC_PSCFR_SMART_SPEED; 725 ret_val = phy->ops.write_reg(hw, IGP01IGC_PHY_PORT_CONFIG, 726 data); 727 } 728 729 return ret_val; 730 } 731 732 /** 733 * igc_check_downshift_generic - Checks whether a downshift in speed occurred 734 * @hw: pointer to the HW structure 735 * 736 * Success returns 0, Failure returns 1 737 * 738 * A downshift is detected by querying the PHY link health. 739 **/ 740 s32 igc_check_downshift_generic(struct igc_hw *hw) 741 { 742 struct igc_phy_info *phy = &hw->phy; 743 s32 ret_val; 744 745 DEBUGFUNC("igc_check_downshift_generic"); 746 747 switch (phy->type) { 748 case igc_phy_i225: 749 default: 750 /* speed downshift not supported */ 751 phy->speed_downgraded = false; 752 return IGC_SUCCESS; 753 } 754 755 return ret_val; 756 } 757 758 /** 759 * igc_wait_autoneg - Wait for auto-neg completion 760 * @hw: pointer to the HW structure 761 * 762 * Waits for auto-negotiation to complete or for the auto-negotiation time 763 * limit to expire, which ever happens first. 764 **/ 765 static s32 igc_wait_autoneg(struct igc_hw *hw) 766 { 767 s32 ret_val = IGC_SUCCESS; 768 u16 i, phy_status; 769 770 DEBUGFUNC("igc_wait_autoneg"); 771 772 if (!hw->phy.ops.read_reg) 773 return IGC_SUCCESS; 774 775 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ 776 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { 777 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 778 if (ret_val) 779 break; 780 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 781 if (ret_val) 782 break; 783 if (phy_status & MII_SR_AUTONEG_COMPLETE) 784 break; 785 msec_delay(100); 786 } 787 788 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation 789 * has completed. 790 */ 791 return ret_val; 792 } 793 794 /** 795 * igc_phy_has_link_generic - Polls PHY for link 796 * @hw: pointer to the HW structure 797 * @iterations: number of times to poll for link 798 * @usec_interval: delay between polling attempts 799 * @success: pointer to whether polling was successful or not 800 * 801 * Polls the PHY status register for link, 'iterations' number of times. 802 **/ 803 s32 igc_phy_has_link_generic(struct igc_hw *hw, u32 iterations, 804 u32 usec_interval, bool *success) 805 { 806 s32 ret_val = IGC_SUCCESS; 807 u16 i, phy_status; 808 809 DEBUGFUNC("igc_phy_has_link_generic"); 810 811 if (!hw->phy.ops.read_reg) 812 return IGC_SUCCESS; 813 814 for (i = 0; i < iterations; i++) { 815 /* Some PHYs require the PHY_STATUS register to be read 816 * twice due to the link bit being sticky. No harm doing 817 * it across the board. 818 */ 819 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 820 if (ret_val) { 821 /* If the first read fails, another entity may have 822 * ownership of the resources, wait and try again to 823 * see if they have relinquished the resources yet. 824 */ 825 if (usec_interval >= 1000) 826 msec_delay(usec_interval/1000); 827 else 828 usec_delay(usec_interval); 829 } 830 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 831 if (ret_val) 832 break; 833 if (phy_status & MII_SR_LINK_STATUS) 834 break; 835 if (usec_interval >= 1000) 836 msec_delay(usec_interval/1000); 837 else 838 usec_delay(usec_interval); 839 } 840 841 *success = (i < iterations); 842 843 return ret_val; 844 } 845 846 /** 847 * igc_phy_hw_reset_generic - PHY hardware reset 848 * @hw: pointer to the HW structure 849 * 850 * Verify the reset block is not blocking us from resetting. Acquire 851 * semaphore (if necessary) and read/set/write the device control reset 852 * bit in the PHY. Wait the appropriate delay time for the device to 853 * reset and release the semaphore (if necessary). 854 **/ 855 s32 igc_phy_hw_reset_generic(struct igc_hw *hw) 856 { 857 struct igc_phy_info *phy = &hw->phy; 858 s32 ret_val; 859 u32 ctrl, timeout = 10000, phpm = 0; 860 861 DEBUGFUNC("igc_phy_hw_reset_generic"); 862 863 if (phy->ops.check_reset_block) { 864 ret_val = phy->ops.check_reset_block(hw); 865 if (ret_val) 866 return IGC_SUCCESS; 867 } 868 869 ret_val = phy->ops.acquire(hw); 870 if (ret_val) 871 return ret_val; 872 873 phpm = IGC_READ_REG(hw, IGC_I225_PHPM); 874 875 ctrl = IGC_READ_REG(hw, IGC_CTRL); 876 IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_PHY_RST); 877 IGC_WRITE_FLUSH(hw); 878 879 usec_delay(phy->reset_delay_us); 880 881 IGC_WRITE_REG(hw, IGC_CTRL, ctrl); 882 IGC_WRITE_FLUSH(hw); 883 884 usec_delay(150); 885 886 do { 887 phpm = IGC_READ_REG(hw, IGC_I225_PHPM); 888 timeout--; 889 usec_delay(1); 890 } while (!(phpm & IGC_I225_PHPM_RST_COMPL) && timeout); 891 892 if (!timeout) 893 DEBUGOUT("Timeout expired after a phy reset\n"); 894 895 phy->ops.release(hw); 896 897 return ret_val; 898 } 899 900 /** 901 * igc_power_up_phy_copper - Restore copper link in case of PHY power down 902 * @hw: pointer to the HW structure 903 * 904 * In the case of a PHY power down to save power, or to turn off link during a 905 * driver unload, or wake on lan is not enabled, restore the link to previous 906 * settings. 907 **/ 908 void igc_power_up_phy_copper(struct igc_hw *hw) 909 { 910 u16 mii_reg = 0; 911 912 /* The PHY will retain its settings across a power down/up cycle */ 913 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 914 mii_reg &= ~MII_CR_POWER_DOWN; 915 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 916 usec_delay(300); 917 } 918 919 /** 920 * igc_power_down_phy_copper - Restore copper link in case of PHY power down 921 * @hw: pointer to the HW structure 922 * 923 * In the case of a PHY power down to save power, or to turn off link during a 924 * driver unload, or wake on lan is not enabled, restore the link to previous 925 * settings. 926 **/ 927 void igc_power_down_phy_copper(struct igc_hw *hw) 928 { 929 u16 mii_reg = 0; 930 931 /* The PHY will retain its settings across a power down/up cycle */ 932 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 933 mii_reg |= MII_CR_POWER_DOWN; 934 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 935 msec_delay(1); 936 } 937 /** 938 * igc_write_phy_reg_gpy - Write GPY PHY register 939 * @hw: pointer to the HW structure 940 * @offset: register offset to write to 941 * @data: data to write at register offset 942 * 943 * Acquires semaphore, if necessary, then writes the data to PHY register 944 * at the offset. Release any acquired semaphores before exiting. 945 **/ 946 s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data) 947 { 948 s32 ret_val; 949 u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT; 950 951 DEBUGFUNC("igc_write_phy_reg_gpy"); 952 953 offset = offset & GPY_REG_MASK; 954 955 if (!dev_addr) { 956 ret_val = hw->phy.ops.acquire(hw); 957 if (ret_val) 958 return ret_val; 959 ret_val = igc_write_phy_reg_mdic(hw, offset, data); 960 if (ret_val) 961 return ret_val; 962 hw->phy.ops.release(hw); 963 } else { 964 ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr, 965 data); 966 } 967 return ret_val; 968 } 969 970 /** 971 * igc_read_phy_reg_gpy - Read GPY PHY register 972 * @hw: pointer to the HW structure 973 * @offset: lower half is register offset to read to 974 * upper half is MMD to use. 975 * @data: data to read at register offset 976 * 977 * Acquires semaphore, if necessary, then reads the data in the PHY register 978 * at the offset. Release any acquired semaphores before exiting. 979 **/ 980 s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data) 981 { 982 s32 ret_val; 983 u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT; 984 985 DEBUGFUNC("igc_read_phy_reg_gpy"); 986 987 offset = offset & GPY_REG_MASK; 988 989 if (!dev_addr) { 990 ret_val = hw->phy.ops.acquire(hw); 991 if (ret_val) 992 return ret_val; 993 ret_val = igc_read_phy_reg_mdic(hw, offset, data); 994 if (ret_val) 995 return ret_val; 996 hw->phy.ops.release(hw); 997 } else { 998 ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr, 999 data); 1000 } 1001 return ret_val; 1002 } 1003 1004 1005 /** 1006 * __igc_access_xmdio_reg - Read/write XMDIO register 1007 * @hw: pointer to the HW structure 1008 * @address: XMDIO address to program 1009 * @dev_addr: device address to program 1010 * @data: pointer to value to read/write from/to the XMDIO address 1011 * @read: boolean flag to indicate read or write 1012 **/ 1013 static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address, 1014 u8 dev_addr, u16 *data, bool read) 1015 { 1016 s32 ret_val; 1017 1018 DEBUGFUNC("__igc_access_xmdio_reg"); 1019 1020 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr); 1021 if (ret_val) 1022 return ret_val; 1023 1024 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address); 1025 if (ret_val) 1026 return ret_val; 1027 1028 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA | 1029 dev_addr); 1030 if (ret_val) 1031 return ret_val; 1032 1033 if (read) 1034 ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data); 1035 else 1036 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data); 1037 if (ret_val) 1038 return ret_val; 1039 1040 /* Recalibrate the device back to 0 */ 1041 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0); 1042 if (ret_val) 1043 return ret_val; 1044 1045 return ret_val; 1046 } 1047 1048 /** 1049 * igc_read_xmdio_reg - Read XMDIO register 1050 * @hw: pointer to the HW structure 1051 * @addr: XMDIO address to program 1052 * @dev_addr: device address to program 1053 * @data: value to be read from the EMI address 1054 **/ 1055 s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 *data) 1056 { 1057 DEBUGFUNC("igc_read_xmdio_reg"); 1058 1059 return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true); 1060 } 1061 1062 /** 1063 * igc_write_xmdio_reg - Write XMDIO register 1064 * @hw: pointer to the HW structure 1065 * @addr: XMDIO address to program 1066 * @dev_addr: device address to program 1067 * @data: value to be written to the XMDIO address 1068 **/ 1069 s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 data) 1070 { 1071 DEBUGFUNC("igc_write_xmdio_reg"); 1072 1073 return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false); 1074 } 1075