xref: /freebsd/sys/dev/igc/igc_i225.c (revision e9e8876a4d6afc1ad5315faaa191b25121a813d7)
1 /*-
2  * Copyright 2021 Intel Corp
3  * Copyright 2021 Rubicon Communications, LLC (Netgate)
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <sys/cdefs.h>
8 __FBSDID("$FreeBSD$");
9 
10 #include "igc_api.h"
11 
12 static s32 igc_init_nvm_params_i225(struct igc_hw *hw);
13 static s32 igc_init_mac_params_i225(struct igc_hw *hw);
14 static s32 igc_init_phy_params_i225(struct igc_hw *hw);
15 static s32 igc_reset_hw_i225(struct igc_hw *hw);
16 static s32 igc_acquire_nvm_i225(struct igc_hw *hw);
17 static void igc_release_nvm_i225(struct igc_hw *hw);
18 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw);
19 static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
20 				  u16 *data);
21 static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw);
22 
23 /**
24  *  igc_init_nvm_params_i225 - Init NVM func ptrs.
25  *  @hw: pointer to the HW structure
26  **/
27 static s32 igc_init_nvm_params_i225(struct igc_hw *hw)
28 {
29 	struct igc_nvm_info *nvm = &hw->nvm;
30 	u32 eecd = IGC_READ_REG(hw, IGC_EECD);
31 	u16 size;
32 
33 	DEBUGFUNC("igc_init_nvm_params_i225");
34 
35 	size = (u16)((eecd & IGC_EECD_SIZE_EX_MASK) >>
36 		     IGC_EECD_SIZE_EX_SHIFT);
37 	/*
38 	 * Added to a constant, "size" becomes the left-shift value
39 	 * for setting word_size.
40 	 */
41 	size += NVM_WORD_SIZE_BASE_SHIFT;
42 
43 	/* Just in case size is out of range, cap it to the largest
44 	 * EEPROM size supported
45 	 */
46 	if (size > 15)
47 		size = 15;
48 
49 	nvm->word_size = 1 << size;
50 	nvm->opcode_bits = 8;
51 	nvm->delay_usec = 1;
52 	nvm->type = igc_nvm_eeprom_spi;
53 
54 
55 	nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8;
56 	nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ?
57 			    16 : 8;
58 
59 	if (nvm->word_size == (1 << 15))
60 		nvm->page_size = 128;
61 
62 	nvm->ops.acquire = igc_acquire_nvm_i225;
63 	nvm->ops.release = igc_release_nvm_i225;
64 	if (igc_get_flash_presence_i225(hw)) {
65 		hw->nvm.type = igc_nvm_flash_hw;
66 		nvm->ops.read    = igc_read_nvm_srrd_i225;
67 		nvm->ops.write   = igc_write_nvm_srwr_i225;
68 		nvm->ops.validate = igc_validate_nvm_checksum_i225;
69 		nvm->ops.update   = igc_update_nvm_checksum_i225;
70 	} else {
71 		hw->nvm.type = igc_nvm_invm;
72 		nvm->ops.write    = igc_null_write_nvm;
73 		nvm->ops.validate = igc_null_ops_generic;
74 		nvm->ops.update   = igc_null_ops_generic;
75 	}
76 
77 	return IGC_SUCCESS;
78 }
79 
80 /**
81  *  igc_init_mac_params_i225 - Init MAC func ptrs.
82  *  @hw: pointer to the HW structure
83  **/
84 static s32 igc_init_mac_params_i225(struct igc_hw *hw)
85 {
86 	struct igc_mac_info *mac = &hw->mac;
87 	struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225;
88 
89 	DEBUGFUNC("igc_init_mac_params_i225");
90 
91 	/* Initialize function pointer */
92 	igc_init_mac_ops_generic(hw);
93 
94 	/* Set media type */
95 	hw->phy.media_type = igc_media_type_copper;
96 	/* Set mta register count */
97 	mac->mta_reg_count = 128;
98 	/* Set rar entry count */
99 	mac->rar_entry_count = IGC_RAR_ENTRIES_BASE;
100 
101 	/* reset */
102 	mac->ops.reset_hw = igc_reset_hw_i225;
103 	/* hw initialization */
104 	mac->ops.init_hw = igc_init_hw_i225;
105 	/* link setup */
106 	mac->ops.setup_link = igc_setup_link_generic;
107 	/* check for link */
108 	mac->ops.check_for_link = igc_check_for_link_i225;
109 	/* link info */
110 	mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic;
111 	/* acquire SW_FW sync */
112 	mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225;
113 	/* release SW_FW sync */
114 	mac->ops.release_swfw_sync = igc_release_swfw_sync_i225;
115 
116 	/* Allow a single clear of the SW semaphore on I225 */
117 	dev_spec->clear_semaphore_once = true;
118 	mac->ops.setup_physical_interface = igc_setup_copper_link_i225;
119 
120 	/* Set if part includes ASF firmware */
121 	mac->asf_firmware_present = true;
122 
123 	/* multicast address update */
124 	mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic;
125 
126 	mac->ops.write_vfta = igc_write_vfta_generic;
127 
128 	return IGC_SUCCESS;
129 }
130 
131 /**
132  *  igc_init_phy_params_i225 - Init PHY func ptrs.
133  *  @hw: pointer to the HW structure
134  **/
135 static s32 igc_init_phy_params_i225(struct igc_hw *hw)
136 {
137 	struct igc_phy_info *phy = &hw->phy;
138 	s32 ret_val = IGC_SUCCESS;
139 
140 	DEBUGFUNC("igc_init_phy_params_i225");
141 
142 
143 	if (hw->phy.media_type != igc_media_type_copper) {
144 		phy->type = igc_phy_none;
145 		goto out;
146 	}
147 
148 	phy->ops.power_up   = igc_power_up_phy_copper;
149 	phy->ops.power_down = igc_power_down_phy_copper_base;
150 
151 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500;
152 
153 	phy->reset_delay_us	= 100;
154 
155 	phy->ops.acquire	= igc_acquire_phy_base;
156 	phy->ops.check_reset_block = igc_check_reset_block_generic;
157 	phy->ops.release	= igc_release_phy_base;
158 	phy->ops.reset		= igc_phy_hw_reset_generic;
159 	phy->ops.read_reg	= igc_read_phy_reg_gpy;
160 	phy->ops.write_reg	= igc_write_phy_reg_gpy;
161 
162 	/* Make sure the PHY is in a good state. Several people have reported
163 	 * firmware leaving the PHY's page select register set to something
164 	 * other than the default of zero, which causes the PHY ID read to
165 	 * access something other than the intended register.
166 	 */
167 	ret_val = hw->phy.ops.reset(hw);
168 	if (ret_val)
169 		goto out;
170 
171 	ret_val = igc_get_phy_id(hw);
172 	/* Verify phy id and set remaining function pointers */
173 	switch (phy->id) {
174 	case I225_I_PHY_ID:
175 		phy->type		= igc_phy_i225;
176 		phy->ops.set_d0_lplu_state = igc_set_d0_lplu_state_i225;
177 		phy->ops.set_d3_lplu_state = igc_set_d3_lplu_state_i225;
178 		/* TODO - complete with GPY PHY information */
179 		break;
180 	default:
181 		ret_val = -IGC_ERR_PHY;
182 		goto out;
183 	}
184 
185 out:
186 	return ret_val;
187 }
188 
189 /**
190  *  igc_reset_hw_i225 - Reset hardware
191  *  @hw: pointer to the HW structure
192  *
193  *  This resets the hardware into a known state.
194  **/
195 static s32 igc_reset_hw_i225(struct igc_hw *hw)
196 {
197 	u32 ctrl;
198 	s32 ret_val;
199 
200 	DEBUGFUNC("igc_reset_hw_i225");
201 
202 	/*
203 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
204 	 * on the last TLP read/write transaction when MAC is reset.
205 	 */
206 	ret_val = igc_disable_pcie_master_generic(hw);
207 	if (ret_val)
208 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
209 
210 	DEBUGOUT("Masking off all interrupts\n");
211 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
212 
213 	IGC_WRITE_REG(hw, IGC_RCTL, 0);
214 	IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP);
215 	IGC_WRITE_FLUSH(hw);
216 
217 	msec_delay(10);
218 
219 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
220 
221 	DEBUGOUT("Issuing a global reset to MAC\n");
222 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST);
223 
224 	ret_val = igc_get_auto_rd_done_generic(hw);
225 	if (ret_val) {
226 		/*
227 		 * When auto config read does not complete, do not
228 		 * return with an error. This can happen in situations
229 		 * where there is no eeprom and prevents getting link.
230 		 */
231 		DEBUGOUT("Auto Read Done did not complete\n");
232 	}
233 
234 	/* Clear any pending interrupt events. */
235 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
236 	IGC_READ_REG(hw, IGC_ICR);
237 
238 	/* Install any alternate MAC address into RAR0 */
239 	ret_val = igc_check_alt_mac_addr_generic(hw);
240 
241 	return ret_val;
242 }
243 
244 /* igc_acquire_nvm_i225 - Request for access to EEPROM
245  * @hw: pointer to the HW structure
246  *
247  * Acquire the necessary semaphores for exclusive access to the EEPROM.
248  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
249  * Return successful if access grant bit set, else clear the request for
250  * EEPROM access and return -IGC_ERR_NVM (-1).
251  */
252 static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
253 {
254 	s32 ret_val;
255 
256 	DEBUGFUNC("igc_acquire_nvm_i225");
257 
258 	ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
259 
260 	return ret_val;
261 }
262 
263 /* igc_release_nvm_i225 - Release exclusive access to EEPROM
264  * @hw: pointer to the HW structure
265  *
266  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
267  * then release the semaphores acquired.
268  */
269 static void igc_release_nvm_i225(struct igc_hw *hw)
270 {
271 	DEBUGFUNC("igc_release_nvm_i225");
272 
273 	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
274 }
275 
276 /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
277  * @hw: pointer to the HW structure
278  * @mask: specifies which semaphore to acquire
279  *
280  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
281  * will also specify which port we're acquiring the lock for.
282  */
283 s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
284 {
285 	u32 swfw_sync;
286 	u32 swmask = mask;
287 	u32 fwmask = mask << 16;
288 	s32 ret_val = IGC_SUCCESS;
289 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
290 
291 	DEBUGFUNC("igc_acquire_swfw_sync_i225");
292 
293 	while (i < timeout) {
294 		if (igc_get_hw_semaphore_i225(hw)) {
295 			ret_val = -IGC_ERR_SWFW_SYNC;
296 			goto out;
297 		}
298 
299 		swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
300 		if (!(swfw_sync & (fwmask | swmask)))
301 			break;
302 
303 		/* Firmware currently using resource (fwmask)
304 		 * or other software thread using resource (swmask)
305 		 */
306 		igc_put_hw_semaphore_generic(hw);
307 		msec_delay_irq(5);
308 		i++;
309 	}
310 
311 	if (i == timeout) {
312 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
313 		ret_val = -IGC_ERR_SWFW_SYNC;
314 		goto out;
315 	}
316 
317 	swfw_sync |= swmask;
318 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
319 
320 	igc_put_hw_semaphore_generic(hw);
321 
322 out:
323 	return ret_val;
324 }
325 
326 /* igc_release_swfw_sync_i225 - Release SW/FW semaphore
327  * @hw: pointer to the HW structure
328  * @mask: specifies which semaphore to acquire
329  *
330  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
331  * will also specify which port we're releasing the lock for.
332  */
333 void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
334 {
335 	u32 swfw_sync;
336 
337 	DEBUGFUNC("igc_release_swfw_sync_i225");
338 
339 	while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS)
340 		; /* Empty */
341 
342 	swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
343 	swfw_sync &= ~mask;
344 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
345 
346 	igc_put_hw_semaphore_generic(hw);
347 }
348 
349 /*
350  * igc_setup_copper_link_i225 - Configure copper link settings
351  * @hw: pointer to the HW structure
352  *
353  * Configures the link for auto-neg or forced speed and duplex.  Then we check
354  * for link, once link is established calls to configure collision distance
355  * and flow control are called.
356  */
357 s32 igc_setup_copper_link_i225(struct igc_hw *hw)
358 {
359 	u32 phpm_reg;
360 	s32 ret_val;
361 	u32 ctrl;
362 
363 	DEBUGFUNC("igc_setup_copper_link_i225");
364 
365 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
366 	ctrl |= IGC_CTRL_SLU;
367 	ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
368 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
369 
370 	phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM);
371 	phpm_reg &= ~IGC_I225_PHPM_GO_LINKD;
372 	IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg);
373 
374 	ret_val = igc_setup_copper_link_generic(hw);
375 
376 	return ret_val;
377 }
378 
379 /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
380  * @hw: pointer to the HW structure
381  *
382  * Acquire the HW semaphore to access the PHY or NVM
383  */
384 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
385 {
386 	u32 swsm;
387 	s32 timeout = hw->nvm.word_size + 1;
388 	s32 i = 0;
389 
390 	DEBUGFUNC("igc_get_hw_semaphore_i225");
391 
392 	/* Get the SW semaphore */
393 	while (i < timeout) {
394 		swsm = IGC_READ_REG(hw, IGC_SWSM);
395 		if (!(swsm & IGC_SWSM_SMBI))
396 			break;
397 
398 		usec_delay(50);
399 		i++;
400 	}
401 
402 	if (i == timeout) {
403 		/* In rare circumstances, the SW semaphore may already be held
404 		 * unintentionally. Clear the semaphore once before giving up.
405 		 */
406 		if (hw->dev_spec._i225.clear_semaphore_once) {
407 			hw->dev_spec._i225.clear_semaphore_once = false;
408 			igc_put_hw_semaphore_generic(hw);
409 			for (i = 0; i < timeout; i++) {
410 				swsm = IGC_READ_REG(hw, IGC_SWSM);
411 				if (!(swsm & IGC_SWSM_SMBI))
412 					break;
413 
414 				usec_delay(50);
415 			}
416 		}
417 
418 		/* If we do not have the semaphore here, we have to give up. */
419 		if (i == timeout) {
420 			DEBUGOUT("Driver can't access device -\n");
421 			DEBUGOUT("SMBI bit is set.\n");
422 			return -IGC_ERR_NVM;
423 		}
424 	}
425 
426 	/* Get the FW semaphore. */
427 	for (i = 0; i < timeout; i++) {
428 		swsm = IGC_READ_REG(hw, IGC_SWSM);
429 		IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
430 
431 		/* Semaphore acquired if bit latched */
432 		if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
433 			break;
434 
435 		usec_delay(50);
436 	}
437 
438 	if (i == timeout) {
439 		/* Release semaphores */
440 		igc_put_hw_semaphore_generic(hw);
441 		DEBUGOUT("Driver can't access the NVM\n");
442 		return -IGC_ERR_NVM;
443 	}
444 
445 	return IGC_SUCCESS;
446 }
447 
448 /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
449  * @hw: pointer to the HW structure
450  * @offset: offset of word in the Shadow Ram to read
451  * @words: number of words to read
452  * @data: word read from the Shadow Ram
453  *
454  * Reads a 16 bit word from the Shadow Ram using the EERD register.
455  * Uses necessary synchronization semaphores.
456  */
457 s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
458 			     u16 *data)
459 {
460 	s32 status = IGC_SUCCESS;
461 	u16 i, count;
462 
463 	DEBUGFUNC("igc_read_nvm_srrd_i225");
464 
465 	/* We cannot hold synchronization semaphores for too long,
466 	 * because of forceful takeover procedure. However it is more efficient
467 	 * to read in bursts than synchronizing access for each word.
468 	 */
469 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
470 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
471 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
472 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
473 			status = igc_read_nvm_eerd(hw, offset, count,
474 						     data + i);
475 			hw->nvm.ops.release(hw);
476 		} else {
477 			status = IGC_ERR_SWFW_SYNC;
478 		}
479 
480 		if (status != IGC_SUCCESS)
481 			break;
482 	}
483 
484 	return status;
485 }
486 
487 /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
488  * @hw: pointer to the HW structure
489  * @offset: offset within the Shadow RAM to be written to
490  * @words: number of words to write
491  * @data: 16 bit word(s) to be written to the Shadow RAM
492  *
493  * Writes data to Shadow RAM at offset using EEWR register.
494  *
495  * If igc_update_nvm_checksum is not called after this function , the
496  * data will not be committed to FLASH and also Shadow RAM will most likely
497  * contain an invalid checksum.
498  *
499  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
500  * partially written.
501  */
502 s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
503 			      u16 *data)
504 {
505 	s32 status = IGC_SUCCESS;
506 	u16 i, count;
507 
508 	DEBUGFUNC("igc_write_nvm_srwr_i225");
509 
510 	/* We cannot hold synchronization semaphores for too long,
511 	 * because of forceful takeover procedure. However it is more efficient
512 	 * to write in bursts than synchronizing access for each word.
513 	 */
514 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
515 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
516 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
517 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
518 			status = __igc_write_nvm_srwr(hw, offset, count,
519 							data + i);
520 			hw->nvm.ops.release(hw);
521 		} else {
522 			status = IGC_ERR_SWFW_SYNC;
523 		}
524 
525 		if (status != IGC_SUCCESS)
526 			break;
527 	}
528 
529 	return status;
530 }
531 
532 /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR
533  * @hw: pointer to the HW structure
534  * @offset: offset within the Shadow Ram to be written to
535  * @words: number of words to write
536  * @data: 16 bit word(s) to be written to the Shadow Ram
537  *
538  * Writes data to Shadow Ram at offset using EEWR register.
539  *
540  * If igc_update_nvm_checksum is not called after this function , the
541  * Shadow Ram will most likely contain an invalid checksum.
542  */
543 static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
544 				  u16 *data)
545 {
546 	struct igc_nvm_info *nvm = &hw->nvm;
547 	u32 i, k, eewr = 0;
548 	u32 attempts = 100000;
549 	s32 ret_val = IGC_SUCCESS;
550 
551 	DEBUGFUNC("__igc_write_nvm_srwr");
552 
553 	/* A check for invalid values:  offset too large, too many words,
554 	 * too many words for the offset, and not enough words.
555 	 */
556 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
557 	    (words == 0)) {
558 		DEBUGOUT("nvm parameter(s) out of bounds\n");
559 		ret_val = -IGC_ERR_NVM;
560 		goto out;
561 	}
562 
563 	for (i = 0; i < words; i++) {
564 		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
565 			(data[i] << IGC_NVM_RW_REG_DATA) |
566 			IGC_NVM_RW_REG_START;
567 
568 		IGC_WRITE_REG(hw, IGC_SRWR, eewr);
569 
570 		for (k = 0; k < attempts; k++) {
571 			if (IGC_NVM_RW_REG_DONE &
572 			    IGC_READ_REG(hw, IGC_SRWR)) {
573 				ret_val = IGC_SUCCESS;
574 				break;
575 			}
576 			usec_delay(5);
577 		}
578 
579 		if (ret_val != IGC_SUCCESS) {
580 			DEBUGOUT("Shadow RAM write EEWR timed out\n");
581 			break;
582 		}
583 	}
584 
585 out:
586 	return ret_val;
587 }
588 
589 /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
590  * @hw: pointer to the HW structure
591  *
592  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
593  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
594  */
595 s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
596 {
597 	s32 status = IGC_SUCCESS;
598 	s32 (*read_op_ptr)(struct igc_hw *, u16, u16, u16 *);
599 
600 	DEBUGFUNC("igc_validate_nvm_checksum_i225");
601 
602 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
603 		/* Replace the read function with semaphore grabbing with
604 		 * the one that skips this for a while.
605 		 * We have semaphore taken already here.
606 		 */
607 		read_op_ptr = hw->nvm.ops.read;
608 		hw->nvm.ops.read = igc_read_nvm_eerd;
609 
610 		status = igc_validate_nvm_checksum_generic(hw);
611 
612 		/* Revert original read operation. */
613 		hw->nvm.ops.read = read_op_ptr;
614 
615 		hw->nvm.ops.release(hw);
616 	} else {
617 		status = IGC_ERR_SWFW_SYNC;
618 	}
619 
620 	return status;
621 }
622 
623 /* igc_update_nvm_checksum_i225 - Update EEPROM checksum
624  * @hw: pointer to the HW structure
625  *
626  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
627  * up to the checksum.  Then calculates the EEPROM checksum and writes the
628  * value to the EEPROM. Next commit EEPROM data onto the Flash.
629  */
630 s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
631 {
632 	s32 ret_val;
633 	u16 checksum = 0;
634 	u16 i, nvm_data;
635 
636 	DEBUGFUNC("igc_update_nvm_checksum_i225");
637 
638 	/* Read the first word from the EEPROM. If this times out or fails, do
639 	 * not continue or we could be in for a very long wait while every
640 	 * EEPROM read fails
641 	 */
642 	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
643 	if (ret_val != IGC_SUCCESS) {
644 		DEBUGOUT("EEPROM read failed\n");
645 		goto out;
646 	}
647 
648 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
649 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
650 		 * because we do not want to take the synchronization
651 		 * semaphores twice here.
652 		 */
653 
654 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
655 			ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
656 			if (ret_val) {
657 				hw->nvm.ops.release(hw);
658 				DEBUGOUT("NVM Read Error while updating\n");
659 				DEBUGOUT("checksum.\n");
660 				goto out;
661 			}
662 			checksum += nvm_data;
663 		}
664 		checksum = (u16)NVM_SUM - checksum;
665 		ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
666 						 &checksum);
667 		if (ret_val != IGC_SUCCESS) {
668 			hw->nvm.ops.release(hw);
669 			DEBUGOUT("NVM Write Error while updating checksum.\n");
670 			goto out;
671 		}
672 
673 		hw->nvm.ops.release(hw);
674 
675 		ret_val = igc_update_flash_i225(hw);
676 	} else {
677 		ret_val = IGC_ERR_SWFW_SYNC;
678 	}
679 out:
680 	return ret_val;
681 }
682 
683 /* igc_get_flash_presence_i225 - Check if flash device is detected.
684  * @hw: pointer to the HW structure
685  */
686 bool igc_get_flash_presence_i225(struct igc_hw *hw)
687 {
688 	u32 eec = 0;
689 	bool ret_val = false;
690 
691 	DEBUGFUNC("igc_get_flash_presence_i225");
692 
693 	eec = IGC_READ_REG(hw, IGC_EECD);
694 
695 	if (eec & IGC_EECD_FLASH_DETECTED_I225)
696 		ret_val = true;
697 
698 	return ret_val;
699 }
700 
701 /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst
702  * Counter in FLSWCNT register.
703  *
704  * @hw: pointer to the HW structure
705  * @burst_counter: size in bytes of the Flash burst to read or write
706  */
707 s32 igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw,
708 					    u32 burst_counter)
709 {
710 	s32 ret_val = IGC_SUCCESS;
711 
712 	DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225");
713 
714 	/* Validate input data */
715 	if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) {
716 		/* Write FLSWCNT - burst counter */
717 		IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter);
718 	} else {
719 		ret_val = IGC_ERR_INVALID_ARGUMENT;
720 	}
721 
722 	return ret_val;
723 }
724 
725 /* igc_write_erase_flash_command_i225 - write/erase to a sector
726  * region on a given address.
727  *
728  * @hw: pointer to the HW structure
729  * @opcode: opcode to be used for the write command
730  * @address: the offset to write into the FLASH image
731  */
732 s32 igc_write_erase_flash_command_i225(struct igc_hw *hw, u32 opcode,
733 					 u32 address)
734 {
735 	u32 flswctl = 0;
736 	s32 timeout = IGC_NVM_GRANT_ATTEMPTS;
737 	s32 ret_val = IGC_SUCCESS;
738 
739 	DEBUGFUNC("igc_write_erase_flash_command_i225");
740 
741 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
742 	/* Polling done bit on FLSWCTL register */
743 	while (timeout) {
744 		if (flswctl & IGC_FLSWCTL_DONE)
745 			break;
746 		usec_delay(5);
747 		flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
748 		timeout--;
749 	}
750 
751 	if (!timeout) {
752 		DEBUGOUT("Flash transaction was not done\n");
753 		return -IGC_ERR_NVM;
754 	}
755 
756 	/* Build and issue command on FLSWCTL register */
757 	flswctl = address | opcode;
758 	IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl);
759 
760 	/* Check if issued command is valid on FLSWCTL register */
761 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
762 	if (!(flswctl & IGC_FLSWCTL_CMDV)) {
763 		DEBUGOUT("Write flash command failed\n");
764 		ret_val = IGC_ERR_INVALID_ARGUMENT;
765 	}
766 
767 	return ret_val;
768 }
769 
770 /* igc_update_flash_i225 - Commit EEPROM to the flash
771  * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC
772  * register makes the FW load the internal shadow RAM into the flash.
773  * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0
774  * then FW is not active so the SW is responsible shadow RAM dump.
775  *
776  * @hw: pointer to the HW structure
777  */
778 s32 igc_update_flash_i225(struct igc_hw *hw)
779 {
780 	u16 current_offset_data = 0;
781 	u32 block_sw_protect = 1;
782 	u16 base_address = 0x0;
783 	u32 i, fw_valid_bit;
784 	u16 current_offset;
785 	s32 ret_val = 0;
786 	u32 flup;
787 
788 	DEBUGFUNC("igc_update_flash_i225");
789 
790 	block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) &
791 					  IGC_FLSECU_BLK_SW_ACCESS_I225;
792 	fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) &
793 				      IGC_FWSM_FW_VALID_I225;
794 	if (fw_valid_bit) {
795 		ret_val = igc_pool_flash_update_done_i225(hw);
796 		if (ret_val == -IGC_ERR_NVM) {
797 			DEBUGOUT("Flash update time out\n");
798 			goto out;
799 		}
800 
801 		flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225;
802 		IGC_WRITE_REG(hw, IGC_EECD, flup);
803 
804 		ret_val = igc_pool_flash_update_done_i225(hw);
805 		if (ret_val == IGC_SUCCESS)
806 			DEBUGOUT("Flash update complete\n");
807 		else
808 			DEBUGOUT("Flash update time out\n");
809 	} else if (!block_sw_protect) {
810 		/* FW is not active and security protection is disabled.
811 		 * therefore, SW is in charge of shadow RAM dump.
812 		 * Check which sector is valid. if sector 0 is valid,
813 		 * base address remains 0x0. otherwise, sector 1 is
814 		 * valid and it's base address is 0x1000
815 		 */
816 		if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225)
817 			base_address = 0x1000;
818 
819 		/* Valid sector erase */
820 		ret_val = igc_write_erase_flash_command_i225(hw,
821 						  IGC_I225_ERASE_CMD_OPCODE,
822 						  base_address);
823 		if (!ret_val) {
824 			DEBUGOUT("Sector erase failed\n");
825 			goto out;
826 		}
827 
828 		current_offset = base_address;
829 
830 		/* Write */
831 		for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) {
832 			/* Set burst write length */
833 			ret_val = igc_set_flsw_flash_burst_counter_i225(hw,
834 									  0x2);
835 			if (ret_val != IGC_SUCCESS)
836 				break;
837 
838 			/* Set address and opcode */
839 			ret_val = igc_write_erase_flash_command_i225(hw,
840 						IGC_I225_WRITE_CMD_OPCODE,
841 						2 * current_offset);
842 			if (ret_val != IGC_SUCCESS)
843 				break;
844 
845 			ret_val = igc_read_nvm_eerd(hw, current_offset,
846 						      1, &current_offset_data);
847 			if (ret_val) {
848 				DEBUGOUT("Failed to read from EEPROM\n");
849 				goto out;
850 			}
851 
852 			/* Write CurrentOffseData to FLSWDATA register */
853 			IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,
854 					current_offset_data);
855 			current_offset++;
856 
857 			/* Wait till operation has finished */
858 			ret_val = igc_poll_eerd_eewr_done(hw,
859 						IGC_NVM_POLL_READ);
860 			if (ret_val)
861 				break;
862 
863 			usec_delay(1000);
864 		}
865 	}
866 out:
867 	return ret_val;
868 }
869 
870 /* igc_pool_flash_update_done_i225 - Pool FLUDONE status.
871  * @hw: pointer to the HW structure
872  */
873 s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
874 {
875 	s32 ret_val = -IGC_ERR_NVM;
876 	u32 i, reg;
877 
878 	DEBUGFUNC("igc_pool_flash_update_done_i225");
879 
880 	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
881 		reg = IGC_READ_REG(hw, IGC_EECD);
882 		if (reg & IGC_EECD_FLUDONE_I225) {
883 			ret_val = IGC_SUCCESS;
884 			break;
885 		}
886 		usec_delay(5);
887 	}
888 
889 	return ret_val;
890 }
891 
892 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds.
893  * @hw: pointer to the HW structure
894  * @link: bool indicating link status
895  *
896  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
897  * settings, otherwise specify that there is no LTR requirement.
898  */
899 static s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
900 {
901 	u16 speed, duplex;
902 	u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
903 	s32 size;
904 
905 	DEBUGFUNC("igc_set_ltr_i225");
906 
907 	/* If we do not have link, LTR thresholds are zero. */
908 	if (link) {
909 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
910 
911 		/* Check if using copper interface with EEE enabled or if the
912 		 * link speed is 10 Mbps.
913 		 */
914 		if ((hw->phy.media_type == igc_media_type_copper) &&
915 		    !(hw->dev_spec._i225.eee_disable) &&
916 		     (speed != SPEED_10)) {
917 			/* EEE enabled, so send LTRMAX threshold. */
918 			ltrc = IGC_READ_REG(hw, IGC_LTRC) |
919 				IGC_LTRC_EEEMS_EN;
920 			IGC_WRITE_REG(hw, IGC_LTRC, ltrc);
921 
922 			/* Calculate tw_system (nsec). */
923 			if (speed == SPEED_100) {
924 				tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) &
925 					     IGC_TW_SYSTEM_100_MASK) >>
926 					     IGC_TW_SYSTEM_100_SHIFT) * 500;
927 			} else {
928 				tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) &
929 					     IGC_TW_SYSTEM_1000_MASK) * 500;
930 				}
931 		} else {
932 			tw_system = 0;
933 			}
934 
935 		/* Get the Rx packet buffer size. */
936 		size = IGC_READ_REG(hw, IGC_RXPBS) &
937 			IGC_RXPBS_SIZE_I225_MASK;
938 
939 		/* Calculations vary based on DMAC settings. */
940 		if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) {
941 			size -= (IGC_READ_REG(hw, IGC_DMACR) &
942 				 IGC_DMACR_DMACTHR_MASK) >>
943 				 IGC_DMACR_DMACTHR_SHIFT;
944 			/* Convert size to bits. */
945 			size *= 1024 * 8;
946 		} else {
947 			/* Convert size to bytes, subtract the MTU, and then
948 			 * convert the size to bits.
949 			 */
950 			size *= 1024;
951 			size -= hw->dev_spec._i225.mtu;
952 			size *= 8;
953 		}
954 
955 		if (size < 0) {
956 			DEBUGOUT1("Invalid effective Rx buffer size %d\n",
957 				  size);
958 			return -IGC_ERR_CONFIG;
959 		}
960 
961 		/* Calculate the thresholds. Since speed is in Mbps, simplify
962 		 * the calculation by multiplying size/speed by 1000 for result
963 		 * to be in nsec before dividing by the scale in nsec. Set the
964 		 * scale such that the LTR threshold fits in the register.
965 		 */
966 		ltr_min = (1000 * size) / speed;
967 		ltr_max = ltr_min + tw_system;
968 		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
969 			    IGC_LTRMINV_SCALE_32768;
970 		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
971 			    IGC_LTRMAXV_SCALE_32768;
972 		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
973 		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
974 
975 		/* Only write the LTR thresholds if they differ from before. */
976 		ltrv = IGC_READ_REG(hw, IGC_LTRMINV);
977 		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
978 			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
979 			      (scale_min << IGC_LTRMINV_SCALE_SHIFT);
980 			IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv);
981 		}
982 
983 		ltrv = IGC_READ_REG(hw, IGC_LTRMAXV);
984 		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
985 			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
986 			      (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
987 			IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv);
988 		}
989 	}
990 
991 	return IGC_SUCCESS;
992 }
993 
994 /* igc_check_for_link_i225 - Check for link
995  * @hw: pointer to the HW structure
996  *
997  * Checks to see of the link status of the hardware has changed.  If a
998  * change in link status has been detected, then we read the PHY registers
999  * to get the current speed/duplex if link exists.
1000  */
1001 s32 igc_check_for_link_i225(struct igc_hw *hw)
1002 {
1003 	struct igc_mac_info *mac = &hw->mac;
1004 	s32 ret_val;
1005 	bool link = false;
1006 
1007 	DEBUGFUNC("igc_check_for_link_i225");
1008 
1009 	/* We only want to go out to the PHY registers to see if
1010 	 * Auto-Neg has completed and/or if our link status has
1011 	 * changed.  The get_link_status flag is set upon receiving
1012 	 * a Link Status Change or Rx Sequence Error interrupt.
1013 	 */
1014 	if (!mac->get_link_status) {
1015 		ret_val = IGC_SUCCESS;
1016 		goto out;
1017 	}
1018 
1019 	/* First we want to see if the MII Status Register reports
1020 	 * link.  If so, then we want to get the current speed/duplex
1021 	 * of the PHY.
1022 	 */
1023 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1024 	if (ret_val)
1025 		goto out;
1026 
1027 	if (!link)
1028 		goto out; /* No link detected */
1029 
1030 	/* First we want to see if the MII Status Register reports
1031 	 * link.  If so, then we want to get the current speed/duplex
1032 	 * of the PHY.
1033 	 */
1034 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1035 	if (ret_val)
1036 		goto out;
1037 
1038 	if (!link)
1039 		goto out; /* No link detected */
1040 
1041 	mac->get_link_status = false;
1042 
1043 	/* Check if there was DownShift, must be checked
1044 	 * immediately after link-up
1045 	 */
1046 	igc_check_downshift_generic(hw);
1047 
1048 	/* If we are forcing speed/duplex, then we simply return since
1049 	 * we have already determined whether we have link or not.
1050 	 */
1051 	if (!mac->autoneg)
1052 		goto out;
1053 
1054 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1055 	 * of MAC speed/duplex configuration.  So we only need to
1056 	 * configure Collision Distance in the MAC.
1057 	 */
1058 	mac->ops.config_collision_dist(hw);
1059 
1060 	/* Configure Flow Control now that Auto-Neg has completed.
1061 	 * First, we need to restore the desired flow control
1062 	 * settings because we may have had to re-autoneg with a
1063 	 * different link partner.
1064 	 */
1065 	ret_val = igc_config_fc_after_link_up_generic(hw);
1066 	if (ret_val)
1067 		DEBUGOUT("Error configuring flow control\n");
1068 out:
1069 	/* Now that we are aware of our link settings, we can set the LTR
1070 	 * thresholds.
1071 	 */
1072 	ret_val = igc_set_ltr_i225(hw, link);
1073 
1074 	return ret_val;
1075 }
1076 
1077 /* igc_init_function_pointers_i225 - Init func ptrs.
1078  * @hw: pointer to the HW structure
1079  *
1080  * Called to initialize all function pointers and parameters.
1081  */
1082 void igc_init_function_pointers_i225(struct igc_hw *hw)
1083 {
1084 	igc_init_mac_ops_generic(hw);
1085 	igc_init_phy_ops_generic(hw);
1086 	igc_init_nvm_ops_generic(hw);
1087 	hw->mac.ops.init_params = igc_init_mac_params_i225;
1088 	hw->nvm.ops.init_params = igc_init_nvm_params_i225;
1089 	hw->phy.ops.init_params = igc_init_phy_params_i225;
1090 }
1091 
1092 /* igc_init_hw_i225 - Init hw for I225
1093  * @hw: pointer to the HW structure
1094  *
1095  * Called to initialize hw for i225 hw family.
1096  */
1097 s32 igc_init_hw_i225(struct igc_hw *hw)
1098 {
1099 	s32 ret_val;
1100 
1101 	DEBUGFUNC("igc_init_hw_i225");
1102 
1103 	ret_val = igc_init_hw_base(hw);
1104 	return ret_val;
1105 }
1106 
1107 /*
1108  * igc_set_d0_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D0 state
1109  * @hw: pointer to the HW structure
1110  * @active: true to enable LPLU, false to disable
1111  *
1112  * Note: since I225 does not actually support LPLU, this function
1113  * simply enables/disables 1G and 2.5G speeds in D0.
1114  */
1115 s32 igc_set_d0_lplu_state_i225(struct igc_hw *hw, bool active)
1116 {
1117 	u32 data;
1118 
1119 	DEBUGFUNC("igc_set_d0_lplu_state_i225");
1120 
1121 	data = IGC_READ_REG(hw, IGC_I225_PHPM);
1122 
1123 	if (active) {
1124 		data |= IGC_I225_PHPM_DIS_1000;
1125 		data |= IGC_I225_PHPM_DIS_2500;
1126 	} else {
1127 		data &= ~IGC_I225_PHPM_DIS_1000;
1128 		data &= ~IGC_I225_PHPM_DIS_2500;
1129 	}
1130 
1131 	IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
1132 	return IGC_SUCCESS;
1133 }
1134 
1135 /*
1136  * igc_set_d3_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D3 state
1137  * @hw: pointer to the HW structure
1138  * @active: true to enable LPLU, false to disable
1139  *
1140  * Note: since I225 does not actually support LPLU, this function
1141  * simply enables/disables 100M, 1G and 2.5G speeds in D3.
1142  */
1143 s32 igc_set_d3_lplu_state_i225(struct igc_hw *hw, bool active)
1144 {
1145 	u32 data;
1146 
1147 	DEBUGFUNC("igc_set_d3_lplu_state_i225");
1148 
1149 	data = IGC_READ_REG(hw, IGC_I225_PHPM);
1150 
1151 	if (active) {
1152 		data |= IGC_I225_PHPM_DIS_100_D3;
1153 		data |= IGC_I225_PHPM_DIS_1000_D3;
1154 		data |= IGC_I225_PHPM_DIS_2500_D3;
1155 	} else {
1156 		data &= ~IGC_I225_PHPM_DIS_100_D3;
1157 		data &= ~IGC_I225_PHPM_DIS_1000_D3;
1158 		data &= ~IGC_I225_PHPM_DIS_2500_D3;
1159 	}
1160 
1161 	IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
1162 	return IGC_SUCCESS;
1163 }
1164 
1165 /**
1166  *  igc_set_eee_i225 - Enable/disable EEE support
1167  *  @hw: pointer to the HW structure
1168  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
1169  *  @adv1G: boolean flag enabling 1G EEE advertisement
1170  *  @adv100M: boolean flag enabling 100M EEE advertisement
1171  *
1172  *  Enable/disable EEE based on setting in dev_spec structure.
1173  *
1174  **/
1175 s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
1176 		       bool adv100M)
1177 {
1178 	u32 ipcnfg, eeer;
1179 
1180 	DEBUGFUNC("igc_set_eee_i225");
1181 
1182 	if (hw->mac.type != igc_i225 ||
1183 	    hw->phy.media_type != igc_media_type_copper)
1184 		goto out;
1185 	ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG);
1186 	eeer = IGC_READ_REG(hw, IGC_EEER);
1187 
1188 	/* enable or disable per user setting */
1189 	if (!(hw->dev_spec._i225.eee_disable)) {
1190 		u32 eee_su = IGC_READ_REG(hw, IGC_EEE_SU);
1191 
1192 		if (adv100M)
1193 			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
1194 		else
1195 			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
1196 
1197 		if (adv1G)
1198 			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
1199 		else
1200 			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
1201 
1202 		if (adv2p5G)
1203 			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
1204 		else
1205 			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
1206 
1207 		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1208 			IGC_EEER_LPI_FC);
1209 
1210 		/* This bit should not be set in normal operation. */
1211 		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
1212 			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
1213 	} else {
1214 		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
1215 			IGC_IPCNFG_EEE_100M_AN);
1216 		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1217 			IGC_EEER_LPI_FC);
1218 	}
1219 	IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg);
1220 	IGC_WRITE_REG(hw, IGC_EEER, eeer);
1221 	IGC_READ_REG(hw, IGC_IPCNFG);
1222 	IGC_READ_REG(hw, IGC_EEER);
1223 out:
1224 
1225 	return IGC_SUCCESS;
1226 }
1227 
1228