1 /*- 2 * Copyright 2021 Intel Corp 3 * Copyright 2021 Rubicon Communications, LLC (Netgate) 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <sys/cdefs.h> 8 __FBSDID("$FreeBSD$"); 9 10 #include "igc_api.h" 11 12 static s32 igc_init_nvm_params_i225(struct igc_hw *hw); 13 static s32 igc_init_mac_params_i225(struct igc_hw *hw); 14 static s32 igc_init_phy_params_i225(struct igc_hw *hw); 15 static s32 igc_reset_hw_i225(struct igc_hw *hw); 16 static s32 igc_acquire_nvm_i225(struct igc_hw *hw); 17 static void igc_release_nvm_i225(struct igc_hw *hw); 18 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw); 19 static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words, 20 u16 *data); 21 static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw); 22 23 /** 24 * igc_init_nvm_params_i225 - Init NVM func ptrs. 25 * @hw: pointer to the HW structure 26 **/ 27 static s32 igc_init_nvm_params_i225(struct igc_hw *hw) 28 { 29 struct igc_nvm_info *nvm = &hw->nvm; 30 u32 eecd = IGC_READ_REG(hw, IGC_EECD); 31 u16 size; 32 33 DEBUGFUNC("igc_init_nvm_params_i225"); 34 35 size = (u16)((eecd & IGC_EECD_SIZE_EX_MASK) >> 36 IGC_EECD_SIZE_EX_SHIFT); 37 /* 38 * Added to a constant, "size" becomes the left-shift value 39 * for setting word_size. 40 */ 41 size += NVM_WORD_SIZE_BASE_SHIFT; 42 43 /* Just in case size is out of range, cap it to the largest 44 * EEPROM size supported 45 */ 46 if (size > 15) 47 size = 15; 48 49 nvm->word_size = 1 << size; 50 nvm->opcode_bits = 8; 51 nvm->delay_usec = 1; 52 nvm->type = igc_nvm_eeprom_spi; 53 54 55 nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8; 56 nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ? 57 16 : 8; 58 59 if (nvm->word_size == (1 << 15)) 60 nvm->page_size = 128; 61 62 nvm->ops.acquire = igc_acquire_nvm_i225; 63 nvm->ops.release = igc_release_nvm_i225; 64 if (igc_get_flash_presence_i225(hw)) { 65 hw->nvm.type = igc_nvm_flash_hw; 66 nvm->ops.read = igc_read_nvm_srrd_i225; 67 nvm->ops.write = igc_write_nvm_srwr_i225; 68 nvm->ops.validate = igc_validate_nvm_checksum_i225; 69 nvm->ops.update = igc_update_nvm_checksum_i225; 70 } else { 71 hw->nvm.type = igc_nvm_invm; 72 nvm->ops.write = igc_null_write_nvm; 73 nvm->ops.validate = igc_null_ops_generic; 74 nvm->ops.update = igc_null_ops_generic; 75 } 76 77 return IGC_SUCCESS; 78 } 79 80 /** 81 * igc_init_mac_params_i225 - Init MAC func ptrs. 82 * @hw: pointer to the HW structure 83 **/ 84 static s32 igc_init_mac_params_i225(struct igc_hw *hw) 85 { 86 struct igc_mac_info *mac = &hw->mac; 87 struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225; 88 89 DEBUGFUNC("igc_init_mac_params_i225"); 90 91 /* Initialize function pointer */ 92 igc_init_mac_ops_generic(hw); 93 94 /* Set media type */ 95 hw->phy.media_type = igc_media_type_copper; 96 /* Set mta register count */ 97 mac->mta_reg_count = 128; 98 /* Set rar entry count */ 99 mac->rar_entry_count = IGC_RAR_ENTRIES_BASE; 100 101 /* reset */ 102 mac->ops.reset_hw = igc_reset_hw_i225; 103 /* hw initialization */ 104 mac->ops.init_hw = igc_init_hw_i225; 105 /* link setup */ 106 mac->ops.setup_link = igc_setup_link_generic; 107 /* check for link */ 108 mac->ops.check_for_link = igc_check_for_link_i225; 109 /* link info */ 110 mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic; 111 /* acquire SW_FW sync */ 112 mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225; 113 /* release SW_FW sync */ 114 mac->ops.release_swfw_sync = igc_release_swfw_sync_i225; 115 116 /* Allow a single clear of the SW semaphore on I225 */ 117 dev_spec->clear_semaphore_once = true; 118 mac->ops.setup_physical_interface = igc_setup_copper_link_i225; 119 120 /* Set if part includes ASF firmware */ 121 mac->asf_firmware_present = true; 122 123 /* multicast address update */ 124 mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic; 125 126 mac->ops.write_vfta = igc_write_vfta_generic; 127 128 return IGC_SUCCESS; 129 } 130 131 /** 132 * igc_init_phy_params_i225 - Init PHY func ptrs. 133 * @hw: pointer to the HW structure 134 **/ 135 static s32 igc_init_phy_params_i225(struct igc_hw *hw) 136 { 137 struct igc_phy_info *phy = &hw->phy; 138 s32 ret_val = IGC_SUCCESS; 139 140 DEBUGFUNC("igc_init_phy_params_i225"); 141 142 143 if (hw->phy.media_type != igc_media_type_copper) { 144 phy->type = igc_phy_none; 145 goto out; 146 } 147 148 phy->ops.power_up = igc_power_up_phy_copper; 149 phy->ops.power_down = igc_power_down_phy_copper_base; 150 151 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500; 152 153 phy->reset_delay_us = 100; 154 155 phy->ops.acquire = igc_acquire_phy_base; 156 phy->ops.check_reset_block = igc_check_reset_block_generic; 157 phy->ops.release = igc_release_phy_base; 158 phy->ops.reset = igc_phy_hw_reset_generic; 159 phy->ops.read_reg = igc_read_phy_reg_gpy; 160 phy->ops.write_reg = igc_write_phy_reg_gpy; 161 162 /* Make sure the PHY is in a good state. Several people have reported 163 * firmware leaving the PHY's page select register set to something 164 * other than the default of zero, which causes the PHY ID read to 165 * access something other than the intended register. 166 */ 167 ret_val = hw->phy.ops.reset(hw); 168 if (ret_val) 169 goto out; 170 171 ret_val = igc_get_phy_id(hw); 172 phy->type = igc_phy_i225; 173 174 out: 175 return ret_val; 176 } 177 178 /** 179 * igc_reset_hw_i225 - Reset hardware 180 * @hw: pointer to the HW structure 181 * 182 * This resets the hardware into a known state. 183 **/ 184 static s32 igc_reset_hw_i225(struct igc_hw *hw) 185 { 186 u32 ctrl; 187 s32 ret_val; 188 189 DEBUGFUNC("igc_reset_hw_i225"); 190 191 /* 192 * Prevent the PCI-E bus from sticking if there is no TLP connection 193 * on the last TLP read/write transaction when MAC is reset. 194 */ 195 ret_val = igc_disable_pcie_master_generic(hw); 196 if (ret_val) 197 DEBUGOUT("PCI-E Master disable polling has failed.\n"); 198 199 DEBUGOUT("Masking off all interrupts\n"); 200 IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff); 201 202 IGC_WRITE_REG(hw, IGC_RCTL, 0); 203 IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP); 204 IGC_WRITE_FLUSH(hw); 205 206 msec_delay(10); 207 208 ctrl = IGC_READ_REG(hw, IGC_CTRL); 209 210 DEBUGOUT("Issuing a global reset to MAC\n"); 211 IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST); 212 213 ret_val = igc_get_auto_rd_done_generic(hw); 214 if (ret_val) { 215 /* 216 * When auto config read does not complete, do not 217 * return with an error. This can happen in situations 218 * where there is no eeprom and prevents getting link. 219 */ 220 DEBUGOUT("Auto Read Done did not complete\n"); 221 } 222 223 /* Clear any pending interrupt events. */ 224 IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff); 225 IGC_READ_REG(hw, IGC_ICR); 226 227 /* Install any alternate MAC address into RAR0 */ 228 ret_val = igc_check_alt_mac_addr_generic(hw); 229 230 return ret_val; 231 } 232 233 /* igc_acquire_nvm_i225 - Request for access to EEPROM 234 * @hw: pointer to the HW structure 235 * 236 * Acquire the necessary semaphores for exclusive access to the EEPROM. 237 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 238 * Return successful if access grant bit set, else clear the request for 239 * EEPROM access and return -IGC_ERR_NVM (-1). 240 */ 241 static s32 igc_acquire_nvm_i225(struct igc_hw *hw) 242 { 243 s32 ret_val; 244 245 DEBUGFUNC("igc_acquire_nvm_i225"); 246 247 ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); 248 249 return ret_val; 250 } 251 252 /* igc_release_nvm_i225 - Release exclusive access to EEPROM 253 * @hw: pointer to the HW structure 254 * 255 * Stop any current commands to the EEPROM and clear the EEPROM request bit, 256 * then release the semaphores acquired. 257 */ 258 static void igc_release_nvm_i225(struct igc_hw *hw) 259 { 260 DEBUGFUNC("igc_release_nvm_i225"); 261 262 igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); 263 } 264 265 /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore 266 * @hw: pointer to the HW structure 267 * @mask: specifies which semaphore to acquire 268 * 269 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask 270 * will also specify which port we're acquiring the lock for. 271 */ 272 s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask) 273 { 274 u32 swfw_sync; 275 u32 swmask = mask; 276 u32 fwmask = mask << 16; 277 s32 ret_val = IGC_SUCCESS; 278 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ 279 280 DEBUGFUNC("igc_acquire_swfw_sync_i225"); 281 282 while (i < timeout) { 283 if (igc_get_hw_semaphore_i225(hw)) { 284 ret_val = -IGC_ERR_SWFW_SYNC; 285 goto out; 286 } 287 288 swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC); 289 if (!(swfw_sync & (fwmask | swmask))) 290 break; 291 292 /* Firmware currently using resource (fwmask) 293 * or other software thread using resource (swmask) 294 */ 295 igc_put_hw_semaphore_generic(hw); 296 msec_delay_irq(5); 297 i++; 298 } 299 300 if (i == timeout) { 301 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); 302 ret_val = -IGC_ERR_SWFW_SYNC; 303 goto out; 304 } 305 306 swfw_sync |= swmask; 307 IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync); 308 309 igc_put_hw_semaphore_generic(hw); 310 311 out: 312 return ret_val; 313 } 314 315 /* igc_release_swfw_sync_i225 - Release SW/FW semaphore 316 * @hw: pointer to the HW structure 317 * @mask: specifies which semaphore to acquire 318 * 319 * Release the SW/FW semaphore used to access the PHY or NVM. The mask 320 * will also specify which port we're releasing the lock for. 321 */ 322 void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask) 323 { 324 u32 swfw_sync; 325 326 DEBUGFUNC("igc_release_swfw_sync_i225"); 327 328 while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS) 329 ; /* Empty */ 330 331 swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC); 332 swfw_sync &= ~mask; 333 IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync); 334 335 igc_put_hw_semaphore_generic(hw); 336 } 337 338 /* 339 * igc_setup_copper_link_i225 - Configure copper link settings 340 * @hw: pointer to the HW structure 341 * 342 * Configures the link for auto-neg or forced speed and duplex. Then we check 343 * for link, once link is established calls to configure collision distance 344 * and flow control are called. 345 */ 346 s32 igc_setup_copper_link_i225(struct igc_hw *hw) 347 { 348 u32 phpm_reg; 349 s32 ret_val; 350 u32 ctrl; 351 352 DEBUGFUNC("igc_setup_copper_link_i225"); 353 354 ctrl = IGC_READ_REG(hw, IGC_CTRL); 355 ctrl |= IGC_CTRL_SLU; 356 ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX); 357 IGC_WRITE_REG(hw, IGC_CTRL, ctrl); 358 359 phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM); 360 phpm_reg &= ~IGC_I225_PHPM_GO_LINKD; 361 IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg); 362 363 ret_val = igc_setup_copper_link_generic(hw); 364 365 return ret_val; 366 } 367 368 /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore 369 * @hw: pointer to the HW structure 370 * 371 * Acquire the HW semaphore to access the PHY or NVM 372 */ 373 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw) 374 { 375 u32 swsm; 376 s32 timeout = hw->nvm.word_size + 1; 377 s32 i = 0; 378 379 DEBUGFUNC("igc_get_hw_semaphore_i225"); 380 381 /* Get the SW semaphore */ 382 while (i < timeout) { 383 swsm = IGC_READ_REG(hw, IGC_SWSM); 384 if (!(swsm & IGC_SWSM_SMBI)) 385 break; 386 387 usec_delay(50); 388 i++; 389 } 390 391 if (i == timeout) { 392 /* In rare circumstances, the SW semaphore may already be held 393 * unintentionally. Clear the semaphore once before giving up. 394 */ 395 if (hw->dev_spec._i225.clear_semaphore_once) { 396 hw->dev_spec._i225.clear_semaphore_once = false; 397 igc_put_hw_semaphore_generic(hw); 398 for (i = 0; i < timeout; i++) { 399 swsm = IGC_READ_REG(hw, IGC_SWSM); 400 if (!(swsm & IGC_SWSM_SMBI)) 401 break; 402 403 usec_delay(50); 404 } 405 } 406 407 /* If we do not have the semaphore here, we have to give up. */ 408 if (i == timeout) { 409 DEBUGOUT("Driver can't access device -\n"); 410 DEBUGOUT("SMBI bit is set.\n"); 411 return -IGC_ERR_NVM; 412 } 413 } 414 415 /* Get the FW semaphore. */ 416 for (i = 0; i < timeout; i++) { 417 swsm = IGC_READ_REG(hw, IGC_SWSM); 418 IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI); 419 420 /* Semaphore acquired if bit latched */ 421 if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI) 422 break; 423 424 usec_delay(50); 425 } 426 427 if (i == timeout) { 428 /* Release semaphores */ 429 igc_put_hw_semaphore_generic(hw); 430 DEBUGOUT("Driver can't access the NVM\n"); 431 return -IGC_ERR_NVM; 432 } 433 434 return IGC_SUCCESS; 435 } 436 437 /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register 438 * @hw: pointer to the HW structure 439 * @offset: offset of word in the Shadow Ram to read 440 * @words: number of words to read 441 * @data: word read from the Shadow Ram 442 * 443 * Reads a 16 bit word from the Shadow Ram using the EERD register. 444 * Uses necessary synchronization semaphores. 445 */ 446 s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words, 447 u16 *data) 448 { 449 s32 status = IGC_SUCCESS; 450 u16 i, count; 451 452 DEBUGFUNC("igc_read_nvm_srrd_i225"); 453 454 /* We cannot hold synchronization semaphores for too long, 455 * because of forceful takeover procedure. However it is more efficient 456 * to read in bursts than synchronizing access for each word. 457 */ 458 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { 459 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? 460 IGC_EERD_EEWR_MAX_COUNT : (words - i); 461 if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { 462 status = igc_read_nvm_eerd(hw, offset, count, 463 data + i); 464 hw->nvm.ops.release(hw); 465 } else { 466 status = IGC_ERR_SWFW_SYNC; 467 } 468 469 if (status != IGC_SUCCESS) 470 break; 471 } 472 473 return status; 474 } 475 476 /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR 477 * @hw: pointer to the HW structure 478 * @offset: offset within the Shadow RAM to be written to 479 * @words: number of words to write 480 * @data: 16 bit word(s) to be written to the Shadow RAM 481 * 482 * Writes data to Shadow RAM at offset using EEWR register. 483 * 484 * If igc_update_nvm_checksum is not called after this function , the 485 * data will not be committed to FLASH and also Shadow RAM will most likely 486 * contain an invalid checksum. 487 * 488 * If error code is returned, data and Shadow RAM may be inconsistent - buffer 489 * partially written. 490 */ 491 s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words, 492 u16 *data) 493 { 494 s32 status = IGC_SUCCESS; 495 u16 i, count; 496 497 DEBUGFUNC("igc_write_nvm_srwr_i225"); 498 499 /* We cannot hold synchronization semaphores for too long, 500 * because of forceful takeover procedure. However it is more efficient 501 * to write in bursts than synchronizing access for each word. 502 */ 503 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { 504 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? 505 IGC_EERD_EEWR_MAX_COUNT : (words - i); 506 if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { 507 status = __igc_write_nvm_srwr(hw, offset, count, 508 data + i); 509 hw->nvm.ops.release(hw); 510 } else { 511 status = IGC_ERR_SWFW_SYNC; 512 } 513 514 if (status != IGC_SUCCESS) 515 break; 516 } 517 518 return status; 519 } 520 521 /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR 522 * @hw: pointer to the HW structure 523 * @offset: offset within the Shadow Ram to be written to 524 * @words: number of words to write 525 * @data: 16 bit word(s) to be written to the Shadow Ram 526 * 527 * Writes data to Shadow Ram at offset using EEWR register. 528 * 529 * If igc_update_nvm_checksum is not called after this function , the 530 * Shadow Ram will most likely contain an invalid checksum. 531 */ 532 static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words, 533 u16 *data) 534 { 535 struct igc_nvm_info *nvm = &hw->nvm; 536 u32 i, k, eewr = 0; 537 u32 attempts = 100000; 538 s32 ret_val = IGC_SUCCESS; 539 540 DEBUGFUNC("__igc_write_nvm_srwr"); 541 542 /* A check for invalid values: offset too large, too many words, 543 * too many words for the offset, and not enough words. 544 */ 545 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 546 (words == 0)) { 547 DEBUGOUT("nvm parameter(s) out of bounds\n"); 548 ret_val = -IGC_ERR_NVM; 549 goto out; 550 } 551 552 for (i = 0; i < words; i++) { 553 eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) | 554 (data[i] << IGC_NVM_RW_REG_DATA) | 555 IGC_NVM_RW_REG_START; 556 557 IGC_WRITE_REG(hw, IGC_SRWR, eewr); 558 559 for (k = 0; k < attempts; k++) { 560 if (IGC_NVM_RW_REG_DONE & 561 IGC_READ_REG(hw, IGC_SRWR)) { 562 ret_val = IGC_SUCCESS; 563 break; 564 } 565 usec_delay(5); 566 } 567 568 if (ret_val != IGC_SUCCESS) { 569 DEBUGOUT("Shadow RAM write EEWR timed out\n"); 570 break; 571 } 572 } 573 574 out: 575 return ret_val; 576 } 577 578 /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum 579 * @hw: pointer to the HW structure 580 * 581 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 582 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 583 */ 584 s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw) 585 { 586 s32 status = IGC_SUCCESS; 587 s32 (*read_op_ptr)(struct igc_hw *, u16, u16, u16 *); 588 589 DEBUGFUNC("igc_validate_nvm_checksum_i225"); 590 591 if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { 592 /* Replace the read function with semaphore grabbing with 593 * the one that skips this for a while. 594 * We have semaphore taken already here. 595 */ 596 read_op_ptr = hw->nvm.ops.read; 597 hw->nvm.ops.read = igc_read_nvm_eerd; 598 599 status = igc_validate_nvm_checksum_generic(hw); 600 601 /* Revert original read operation. */ 602 hw->nvm.ops.read = read_op_ptr; 603 604 hw->nvm.ops.release(hw); 605 } else { 606 status = IGC_ERR_SWFW_SYNC; 607 } 608 609 return status; 610 } 611 612 /* igc_update_nvm_checksum_i225 - Update EEPROM checksum 613 * @hw: pointer to the HW structure 614 * 615 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 616 * up to the checksum. Then calculates the EEPROM checksum and writes the 617 * value to the EEPROM. Next commit EEPROM data onto the Flash. 618 */ 619 s32 igc_update_nvm_checksum_i225(struct igc_hw *hw) 620 { 621 s32 ret_val; 622 u16 checksum = 0; 623 u16 i, nvm_data; 624 625 DEBUGFUNC("igc_update_nvm_checksum_i225"); 626 627 /* Read the first word from the EEPROM. If this times out or fails, do 628 * not continue or we could be in for a very long wait while every 629 * EEPROM read fails 630 */ 631 ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data); 632 if (ret_val != IGC_SUCCESS) { 633 DEBUGOUT("EEPROM read failed\n"); 634 goto out; 635 } 636 637 if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { 638 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read 639 * because we do not want to take the synchronization 640 * semaphores twice here. 641 */ 642 643 for (i = 0; i < NVM_CHECKSUM_REG; i++) { 644 ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data); 645 if (ret_val) { 646 hw->nvm.ops.release(hw); 647 DEBUGOUT("NVM Read Error while updating\n"); 648 DEBUGOUT("checksum.\n"); 649 goto out; 650 } 651 checksum += nvm_data; 652 } 653 checksum = (u16)NVM_SUM - checksum; 654 ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, 655 &checksum); 656 if (ret_val != IGC_SUCCESS) { 657 hw->nvm.ops.release(hw); 658 DEBUGOUT("NVM Write Error while updating checksum.\n"); 659 goto out; 660 } 661 662 hw->nvm.ops.release(hw); 663 664 ret_val = igc_update_flash_i225(hw); 665 } else { 666 ret_val = IGC_ERR_SWFW_SYNC; 667 } 668 out: 669 return ret_val; 670 } 671 672 /* igc_get_flash_presence_i225 - Check if flash device is detected. 673 * @hw: pointer to the HW structure 674 */ 675 bool igc_get_flash_presence_i225(struct igc_hw *hw) 676 { 677 u32 eec = 0; 678 bool ret_val = false; 679 680 DEBUGFUNC("igc_get_flash_presence_i225"); 681 682 eec = IGC_READ_REG(hw, IGC_EECD); 683 684 if (eec & IGC_EECD_FLASH_DETECTED_I225) 685 ret_val = true; 686 687 return ret_val; 688 } 689 690 /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst 691 * Counter in FLSWCNT register. 692 * 693 * @hw: pointer to the HW structure 694 * @burst_counter: size in bytes of the Flash burst to read or write 695 */ 696 s32 igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw, 697 u32 burst_counter) 698 { 699 s32 ret_val = IGC_SUCCESS; 700 701 DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225"); 702 703 /* Validate input data */ 704 if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) { 705 /* Write FLSWCNT - burst counter */ 706 IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter); 707 } else { 708 ret_val = IGC_ERR_INVALID_ARGUMENT; 709 } 710 711 return ret_val; 712 } 713 714 /* igc_write_erase_flash_command_i225 - write/erase to a sector 715 * region on a given address. 716 * 717 * @hw: pointer to the HW structure 718 * @opcode: opcode to be used for the write command 719 * @address: the offset to write into the FLASH image 720 */ 721 s32 igc_write_erase_flash_command_i225(struct igc_hw *hw, u32 opcode, 722 u32 address) 723 { 724 u32 flswctl = 0; 725 s32 timeout = IGC_NVM_GRANT_ATTEMPTS; 726 s32 ret_val = IGC_SUCCESS; 727 728 DEBUGFUNC("igc_write_erase_flash_command_i225"); 729 730 flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL); 731 /* Polling done bit on FLSWCTL register */ 732 while (timeout) { 733 if (flswctl & IGC_FLSWCTL_DONE) 734 break; 735 usec_delay(5); 736 flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL); 737 timeout--; 738 } 739 740 if (!timeout) { 741 DEBUGOUT("Flash transaction was not done\n"); 742 return -IGC_ERR_NVM; 743 } 744 745 /* Build and issue command on FLSWCTL register */ 746 flswctl = address | opcode; 747 IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl); 748 749 /* Check if issued command is valid on FLSWCTL register */ 750 flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL); 751 if (!(flswctl & IGC_FLSWCTL_CMDV)) { 752 DEBUGOUT("Write flash command failed\n"); 753 ret_val = IGC_ERR_INVALID_ARGUMENT; 754 } 755 756 return ret_val; 757 } 758 759 /* igc_update_flash_i225 - Commit EEPROM to the flash 760 * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC 761 * register makes the FW load the internal shadow RAM into the flash. 762 * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0 763 * then FW is not active so the SW is responsible shadow RAM dump. 764 * 765 * @hw: pointer to the HW structure 766 */ 767 s32 igc_update_flash_i225(struct igc_hw *hw) 768 { 769 u16 current_offset_data = 0; 770 u32 block_sw_protect = 1; 771 u16 base_address = 0x0; 772 u32 i, fw_valid_bit; 773 u16 current_offset; 774 s32 ret_val = 0; 775 u32 flup; 776 777 DEBUGFUNC("igc_update_flash_i225"); 778 779 block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) & 780 IGC_FLSECU_BLK_SW_ACCESS_I225; 781 fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) & 782 IGC_FWSM_FW_VALID_I225; 783 if (fw_valid_bit) { 784 ret_val = igc_pool_flash_update_done_i225(hw); 785 if (ret_val == -IGC_ERR_NVM) { 786 DEBUGOUT("Flash update time out\n"); 787 goto out; 788 } 789 790 flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225; 791 IGC_WRITE_REG(hw, IGC_EECD, flup); 792 793 ret_val = igc_pool_flash_update_done_i225(hw); 794 if (ret_val == IGC_SUCCESS) 795 DEBUGOUT("Flash update complete\n"); 796 else 797 DEBUGOUT("Flash update time out\n"); 798 } else if (!block_sw_protect) { 799 /* FW is not active and security protection is disabled. 800 * therefore, SW is in charge of shadow RAM dump. 801 * Check which sector is valid. if sector 0 is valid, 802 * base address remains 0x0. otherwise, sector 1 is 803 * valid and it's base address is 0x1000 804 */ 805 if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225) 806 base_address = 0x1000; 807 808 /* Valid sector erase */ 809 ret_val = igc_write_erase_flash_command_i225(hw, 810 IGC_I225_ERASE_CMD_OPCODE, 811 base_address); 812 if (!ret_val) { 813 DEBUGOUT("Sector erase failed\n"); 814 goto out; 815 } 816 817 current_offset = base_address; 818 819 /* Write */ 820 for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) { 821 /* Set burst write length */ 822 ret_val = igc_set_flsw_flash_burst_counter_i225(hw, 823 0x2); 824 if (ret_val != IGC_SUCCESS) 825 break; 826 827 /* Set address and opcode */ 828 ret_val = igc_write_erase_flash_command_i225(hw, 829 IGC_I225_WRITE_CMD_OPCODE, 830 2 * current_offset); 831 if (ret_val != IGC_SUCCESS) 832 break; 833 834 ret_val = igc_read_nvm_eerd(hw, current_offset, 835 1, ¤t_offset_data); 836 if (ret_val) { 837 DEBUGOUT("Failed to read from EEPROM\n"); 838 goto out; 839 } 840 841 /* Write CurrentOffseData to FLSWDATA register */ 842 IGC_WRITE_REG(hw, IGC_I225_FLSWDATA, 843 current_offset_data); 844 current_offset++; 845 846 /* Wait till operation has finished */ 847 ret_val = igc_poll_eerd_eewr_done(hw, 848 IGC_NVM_POLL_READ); 849 if (ret_val) 850 break; 851 852 usec_delay(1000); 853 } 854 } 855 out: 856 return ret_val; 857 } 858 859 /* igc_pool_flash_update_done_i225 - Pool FLUDONE status. 860 * @hw: pointer to the HW structure 861 */ 862 s32 igc_pool_flash_update_done_i225(struct igc_hw *hw) 863 { 864 s32 ret_val = -IGC_ERR_NVM; 865 u32 i, reg; 866 867 DEBUGFUNC("igc_pool_flash_update_done_i225"); 868 869 for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) { 870 reg = IGC_READ_REG(hw, IGC_EECD); 871 if (reg & IGC_EECD_FLUDONE_I225) { 872 ret_val = IGC_SUCCESS; 873 break; 874 } 875 usec_delay(5); 876 } 877 878 return ret_val; 879 } 880 881 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds. 882 * @hw: pointer to the HW structure 883 * @link: bool indicating link status 884 * 885 * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC 886 * settings, otherwise specify that there is no LTR requirement. 887 */ 888 static s32 igc_set_ltr_i225(struct igc_hw *hw, bool link) 889 { 890 u16 speed, duplex; 891 u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max; 892 s32 size; 893 894 DEBUGFUNC("igc_set_ltr_i225"); 895 896 /* If we do not have link, LTR thresholds are zero. */ 897 if (link) { 898 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 899 900 /* Check if using copper interface with EEE enabled or if the 901 * link speed is 10 Mbps. 902 */ 903 if ((hw->phy.media_type == igc_media_type_copper) && 904 !(hw->dev_spec._i225.eee_disable) && 905 (speed != SPEED_10)) { 906 /* EEE enabled, so send LTRMAX threshold. */ 907 ltrc = IGC_READ_REG(hw, IGC_LTRC) | 908 IGC_LTRC_EEEMS_EN; 909 IGC_WRITE_REG(hw, IGC_LTRC, ltrc); 910 911 /* Calculate tw_system (nsec). */ 912 if (speed == SPEED_100) { 913 tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) & 914 IGC_TW_SYSTEM_100_MASK) >> 915 IGC_TW_SYSTEM_100_SHIFT) * 500; 916 } else { 917 tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) & 918 IGC_TW_SYSTEM_1000_MASK) * 500; 919 } 920 } else { 921 tw_system = 0; 922 } 923 924 /* Get the Rx packet buffer size. */ 925 size = IGC_READ_REG(hw, IGC_RXPBS) & 926 IGC_RXPBS_SIZE_I225_MASK; 927 928 /* Calculations vary based on DMAC settings. */ 929 if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) { 930 size -= (IGC_READ_REG(hw, IGC_DMACR) & 931 IGC_DMACR_DMACTHR_MASK) >> 932 IGC_DMACR_DMACTHR_SHIFT; 933 /* Convert size to bits. */ 934 size *= 1024 * 8; 935 } else { 936 /* Convert size to bytes, subtract the MTU, and then 937 * convert the size to bits. 938 */ 939 size *= 1024; 940 size -= hw->dev_spec._i225.mtu; 941 size *= 8; 942 } 943 944 if (size < 0) { 945 DEBUGOUT1("Invalid effective Rx buffer size %d\n", 946 size); 947 return -IGC_ERR_CONFIG; 948 } 949 950 /* Calculate the thresholds. Since speed is in Mbps, simplify 951 * the calculation by multiplying size/speed by 1000 for result 952 * to be in nsec before dividing by the scale in nsec. Set the 953 * scale such that the LTR threshold fits in the register. 954 */ 955 ltr_min = (1000 * size) / speed; 956 ltr_max = ltr_min + tw_system; 957 scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 : 958 IGC_LTRMINV_SCALE_32768; 959 scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 : 960 IGC_LTRMAXV_SCALE_32768; 961 ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768; 962 ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768; 963 964 /* Only write the LTR thresholds if they differ from before. */ 965 ltrv = IGC_READ_REG(hw, IGC_LTRMINV); 966 if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) { 967 ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min | 968 (scale_min << IGC_LTRMINV_SCALE_SHIFT); 969 IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv); 970 } 971 972 ltrv = IGC_READ_REG(hw, IGC_LTRMAXV); 973 if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) { 974 ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max | 975 (scale_min << IGC_LTRMAXV_SCALE_SHIFT); 976 IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv); 977 } 978 } 979 980 return IGC_SUCCESS; 981 } 982 983 /* igc_check_for_link_i225 - Check for link 984 * @hw: pointer to the HW structure 985 * 986 * Checks to see of the link status of the hardware has changed. If a 987 * change in link status has been detected, then we read the PHY registers 988 * to get the current speed/duplex if link exists. 989 */ 990 s32 igc_check_for_link_i225(struct igc_hw *hw) 991 { 992 struct igc_mac_info *mac = &hw->mac; 993 s32 ret_val; 994 bool link = false; 995 996 DEBUGFUNC("igc_check_for_link_i225"); 997 998 /* We only want to go out to the PHY registers to see if 999 * Auto-Neg has completed and/or if our link status has 1000 * changed. The get_link_status flag is set upon receiving 1001 * a Link Status Change or Rx Sequence Error interrupt. 1002 */ 1003 if (!mac->get_link_status) { 1004 ret_val = IGC_SUCCESS; 1005 goto out; 1006 } 1007 1008 /* First we want to see if the MII Status Register reports 1009 * link. If so, then we want to get the current speed/duplex 1010 * of the PHY. 1011 */ 1012 ret_val = igc_phy_has_link_generic(hw, 1, 0, &link); 1013 if (ret_val) 1014 goto out; 1015 1016 if (!link) 1017 goto out; /* No link detected */ 1018 1019 /* First we want to see if the MII Status Register reports 1020 * link. If so, then we want to get the current speed/duplex 1021 * of the PHY. 1022 */ 1023 ret_val = igc_phy_has_link_generic(hw, 1, 0, &link); 1024 if (ret_val) 1025 goto out; 1026 1027 if (!link) 1028 goto out; /* No link detected */ 1029 1030 mac->get_link_status = false; 1031 1032 /* Check if there was DownShift, must be checked 1033 * immediately after link-up 1034 */ 1035 igc_check_downshift_generic(hw); 1036 1037 /* If we are forcing speed/duplex, then we simply return since 1038 * we have already determined whether we have link or not. 1039 */ 1040 if (!mac->autoneg) 1041 goto out; 1042 1043 /* Auto-Neg is enabled. Auto Speed Detection takes care 1044 * of MAC speed/duplex configuration. So we only need to 1045 * configure Collision Distance in the MAC. 1046 */ 1047 mac->ops.config_collision_dist(hw); 1048 1049 /* Configure Flow Control now that Auto-Neg has completed. 1050 * First, we need to restore the desired flow control 1051 * settings because we may have had to re-autoneg with a 1052 * different link partner. 1053 */ 1054 ret_val = igc_config_fc_after_link_up_generic(hw); 1055 if (ret_val) 1056 DEBUGOUT("Error configuring flow control\n"); 1057 out: 1058 /* Now that we are aware of our link settings, we can set the LTR 1059 * thresholds. 1060 */ 1061 ret_val = igc_set_ltr_i225(hw, link); 1062 1063 return ret_val; 1064 } 1065 1066 /* igc_init_function_pointers_i225 - Init func ptrs. 1067 * @hw: pointer to the HW structure 1068 * 1069 * Called to initialize all function pointers and parameters. 1070 */ 1071 void igc_init_function_pointers_i225(struct igc_hw *hw) 1072 { 1073 igc_init_mac_ops_generic(hw); 1074 igc_init_phy_ops_generic(hw); 1075 igc_init_nvm_ops_generic(hw); 1076 hw->mac.ops.init_params = igc_init_mac_params_i225; 1077 hw->nvm.ops.init_params = igc_init_nvm_params_i225; 1078 hw->phy.ops.init_params = igc_init_phy_params_i225; 1079 } 1080 1081 /* igc_init_hw_i225 - Init hw for I225 1082 * @hw: pointer to the HW structure 1083 * 1084 * Called to initialize hw for i225 hw family. 1085 */ 1086 s32 igc_init_hw_i225(struct igc_hw *hw) 1087 { 1088 s32 ret_val; 1089 1090 DEBUGFUNC("igc_init_hw_i225"); 1091 1092 ret_val = igc_init_hw_base(hw); 1093 return ret_val; 1094 } 1095 1096 /* 1097 * igc_set_d0_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D0 state 1098 * @hw: pointer to the HW structure 1099 * @active: true to enable LPLU, false to disable 1100 * 1101 * Note: since I225 does not actually support LPLU, this function 1102 * simply enables/disables 1G and 2.5G speeds in D0. 1103 */ 1104 s32 igc_set_d0_lplu_state_i225(struct igc_hw *hw, bool active) 1105 { 1106 u32 data; 1107 1108 DEBUGFUNC("igc_set_d0_lplu_state_i225"); 1109 1110 data = IGC_READ_REG(hw, IGC_I225_PHPM); 1111 1112 if (active) { 1113 data |= IGC_I225_PHPM_DIS_1000; 1114 data |= IGC_I225_PHPM_DIS_2500; 1115 } else { 1116 data &= ~IGC_I225_PHPM_DIS_1000; 1117 data &= ~IGC_I225_PHPM_DIS_2500; 1118 } 1119 1120 IGC_WRITE_REG(hw, IGC_I225_PHPM, data); 1121 return IGC_SUCCESS; 1122 } 1123 1124 /* 1125 * igc_set_d3_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D3 state 1126 * @hw: pointer to the HW structure 1127 * @active: true to enable LPLU, false to disable 1128 * 1129 * Note: since I225 does not actually support LPLU, this function 1130 * simply enables/disables 100M, 1G and 2.5G speeds in D3. 1131 */ 1132 s32 igc_set_d3_lplu_state_i225(struct igc_hw *hw, bool active) 1133 { 1134 u32 data; 1135 1136 DEBUGFUNC("igc_set_d3_lplu_state_i225"); 1137 1138 data = IGC_READ_REG(hw, IGC_I225_PHPM); 1139 1140 if (active) { 1141 data |= IGC_I225_PHPM_DIS_100_D3; 1142 data |= IGC_I225_PHPM_DIS_1000_D3; 1143 data |= IGC_I225_PHPM_DIS_2500_D3; 1144 } else { 1145 data &= ~IGC_I225_PHPM_DIS_100_D3; 1146 data &= ~IGC_I225_PHPM_DIS_1000_D3; 1147 data &= ~IGC_I225_PHPM_DIS_2500_D3; 1148 } 1149 1150 IGC_WRITE_REG(hw, IGC_I225_PHPM, data); 1151 return IGC_SUCCESS; 1152 } 1153 1154 /** 1155 * igc_set_eee_i225 - Enable/disable EEE support 1156 * @hw: pointer to the HW structure 1157 * @adv2p5G: boolean flag enabling 2.5G EEE advertisement 1158 * @adv1G: boolean flag enabling 1G EEE advertisement 1159 * @adv100M: boolean flag enabling 100M EEE advertisement 1160 * 1161 * Enable/disable EEE based on setting in dev_spec structure. 1162 * 1163 **/ 1164 s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G, 1165 bool adv100M) 1166 { 1167 u32 ipcnfg, eeer; 1168 1169 DEBUGFUNC("igc_set_eee_i225"); 1170 1171 if (hw->mac.type != igc_i225 || 1172 hw->phy.media_type != igc_media_type_copper) 1173 goto out; 1174 ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG); 1175 eeer = IGC_READ_REG(hw, IGC_EEER); 1176 1177 /* enable or disable per user setting */ 1178 if (!(hw->dev_spec._i225.eee_disable)) { 1179 u32 eee_su = IGC_READ_REG(hw, IGC_EEE_SU); 1180 1181 if (adv100M) 1182 ipcnfg |= IGC_IPCNFG_EEE_100M_AN; 1183 else 1184 ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN; 1185 1186 if (adv1G) 1187 ipcnfg |= IGC_IPCNFG_EEE_1G_AN; 1188 else 1189 ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN; 1190 1191 if (adv2p5G) 1192 ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN; 1193 else 1194 ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN; 1195 1196 eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | 1197 IGC_EEER_LPI_FC); 1198 1199 /* This bit should not be set in normal operation. */ 1200 if (eee_su & IGC_EEE_SU_LPI_CLK_STP) 1201 DEBUGOUT("LPI Clock Stop Bit should not be set!\n"); 1202 } else { 1203 ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN | 1204 IGC_IPCNFG_EEE_100M_AN); 1205 eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | 1206 IGC_EEER_LPI_FC); 1207 } 1208 IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg); 1209 IGC_WRITE_REG(hw, IGC_EEER, eeer); 1210 IGC_READ_REG(hw, IGC_IPCNFG); 1211 IGC_READ_REG(hw, IGC_EEER); 1212 out: 1213 1214 return IGC_SUCCESS; 1215 } 1216 1217