xref: /freebsd/sys/dev/igc/igc_i225.c (revision 02e9120893770924227138ba49df1edb3896112a)
1 /*-
2  * Copyright 2021 Intel Corp
3  * Copyright 2021 Rubicon Communications, LLC (Netgate)
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <sys/cdefs.h>
8 #include "igc_api.h"
9 
10 static s32 igc_init_nvm_params_i225(struct igc_hw *hw);
11 static s32 igc_init_mac_params_i225(struct igc_hw *hw);
12 static s32 igc_init_phy_params_i225(struct igc_hw *hw);
13 static s32 igc_reset_hw_i225(struct igc_hw *hw);
14 static s32 igc_acquire_nvm_i225(struct igc_hw *hw);
15 static void igc_release_nvm_i225(struct igc_hw *hw);
16 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw);
17 static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
18 				  u16 *data);
19 static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw);
20 
21 /**
22  *  igc_init_nvm_params_i225 - Init NVM func ptrs.
23  *  @hw: pointer to the HW structure
24  **/
25 static s32 igc_init_nvm_params_i225(struct igc_hw *hw)
26 {
27 	struct igc_nvm_info *nvm = &hw->nvm;
28 	u32 eecd = IGC_READ_REG(hw, IGC_EECD);
29 	u16 size;
30 
31 	DEBUGFUNC("igc_init_nvm_params_i225");
32 
33 	size = (u16)((eecd & IGC_EECD_SIZE_EX_MASK) >>
34 		     IGC_EECD_SIZE_EX_SHIFT);
35 	/*
36 	 * Added to a constant, "size" becomes the left-shift value
37 	 * for setting word_size.
38 	 */
39 	size += NVM_WORD_SIZE_BASE_SHIFT;
40 
41 	/* Just in case size is out of range, cap it to the largest
42 	 * EEPROM size supported
43 	 */
44 	if (size > 15)
45 		size = 15;
46 
47 	nvm->word_size = 1 << size;
48 	nvm->opcode_bits = 8;
49 	nvm->delay_usec = 1;
50 	nvm->type = igc_nvm_eeprom_spi;
51 
52 
53 	nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8;
54 	nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ?
55 			    16 : 8;
56 
57 	if (nvm->word_size == (1 << 15))
58 		nvm->page_size = 128;
59 
60 	nvm->ops.acquire = igc_acquire_nvm_i225;
61 	nvm->ops.release = igc_release_nvm_i225;
62 	if (igc_get_flash_presence_i225(hw)) {
63 		hw->nvm.type = igc_nvm_flash_hw;
64 		nvm->ops.read    = igc_read_nvm_srrd_i225;
65 		nvm->ops.write   = igc_write_nvm_srwr_i225;
66 		nvm->ops.validate = igc_validate_nvm_checksum_i225;
67 		nvm->ops.update   = igc_update_nvm_checksum_i225;
68 	} else {
69 		hw->nvm.type = igc_nvm_invm;
70 		nvm->ops.write    = igc_null_write_nvm;
71 		nvm->ops.validate = igc_null_ops_generic;
72 		nvm->ops.update   = igc_null_ops_generic;
73 	}
74 
75 	return IGC_SUCCESS;
76 }
77 
78 /**
79  *  igc_init_mac_params_i225 - Init MAC func ptrs.
80  *  @hw: pointer to the HW structure
81  **/
82 static s32 igc_init_mac_params_i225(struct igc_hw *hw)
83 {
84 	struct igc_mac_info *mac = &hw->mac;
85 	struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225;
86 
87 	DEBUGFUNC("igc_init_mac_params_i225");
88 
89 	/* Initialize function pointer */
90 	igc_init_mac_ops_generic(hw);
91 
92 	/* Set media type */
93 	hw->phy.media_type = igc_media_type_copper;
94 	/* Set mta register count */
95 	mac->mta_reg_count = 128;
96 	/* Set rar entry count */
97 	mac->rar_entry_count = IGC_RAR_ENTRIES_BASE;
98 
99 	/* reset */
100 	mac->ops.reset_hw = igc_reset_hw_i225;
101 	/* hw initialization */
102 	mac->ops.init_hw = igc_init_hw_i225;
103 	/* link setup */
104 	mac->ops.setup_link = igc_setup_link_generic;
105 	/* check for link */
106 	mac->ops.check_for_link = igc_check_for_link_i225;
107 	/* link info */
108 	mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic;
109 	/* acquire SW_FW sync */
110 	mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225;
111 	/* release SW_FW sync */
112 	mac->ops.release_swfw_sync = igc_release_swfw_sync_i225;
113 
114 	/* Allow a single clear of the SW semaphore on I225 */
115 	dev_spec->clear_semaphore_once = true;
116 	mac->ops.setup_physical_interface = igc_setup_copper_link_i225;
117 
118 	/* Set if part includes ASF firmware */
119 	mac->asf_firmware_present = true;
120 
121 	/* multicast address update */
122 	mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic;
123 
124 	mac->ops.write_vfta = igc_write_vfta_generic;
125 
126 	return IGC_SUCCESS;
127 }
128 
129 /**
130  *  igc_init_phy_params_i225 - Init PHY func ptrs.
131  *  @hw: pointer to the HW structure
132  **/
133 static s32 igc_init_phy_params_i225(struct igc_hw *hw)
134 {
135 	struct igc_phy_info *phy = &hw->phy;
136 	s32 ret_val = IGC_SUCCESS;
137 
138 	DEBUGFUNC("igc_init_phy_params_i225");
139 
140 
141 	if (hw->phy.media_type != igc_media_type_copper) {
142 		phy->type = igc_phy_none;
143 		goto out;
144 	}
145 
146 	phy->ops.power_up   = igc_power_up_phy_copper;
147 	phy->ops.power_down = igc_power_down_phy_copper_base;
148 
149 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500;
150 
151 	phy->reset_delay_us	= 100;
152 
153 	phy->ops.acquire	= igc_acquire_phy_base;
154 	phy->ops.check_reset_block = igc_check_reset_block_generic;
155 	phy->ops.release	= igc_release_phy_base;
156 	phy->ops.reset		= igc_phy_hw_reset_generic;
157 	phy->ops.read_reg	= igc_read_phy_reg_gpy;
158 	phy->ops.write_reg	= igc_write_phy_reg_gpy;
159 
160 	/* Make sure the PHY is in a good state. Several people have reported
161 	 * firmware leaving the PHY's page select register set to something
162 	 * other than the default of zero, which causes the PHY ID read to
163 	 * access something other than the intended register.
164 	 */
165 	ret_val = hw->phy.ops.reset(hw);
166 	if (ret_val)
167 		goto out;
168 
169 	ret_val = igc_get_phy_id(hw);
170 	phy->type = igc_phy_i225;
171 
172 out:
173 	return ret_val;
174 }
175 
176 /**
177  *  igc_reset_hw_i225 - Reset hardware
178  *  @hw: pointer to the HW structure
179  *
180  *  This resets the hardware into a known state.
181  **/
182 static s32 igc_reset_hw_i225(struct igc_hw *hw)
183 {
184 	u32 ctrl;
185 	s32 ret_val;
186 
187 	DEBUGFUNC("igc_reset_hw_i225");
188 
189 	/*
190 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
191 	 * on the last TLP read/write transaction when MAC is reset.
192 	 */
193 	ret_val = igc_disable_pcie_master_generic(hw);
194 	if (ret_val)
195 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
196 
197 	DEBUGOUT("Masking off all interrupts\n");
198 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
199 
200 	IGC_WRITE_REG(hw, IGC_RCTL, 0);
201 	IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP);
202 	IGC_WRITE_FLUSH(hw);
203 
204 	msec_delay(10);
205 
206 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
207 
208 	DEBUGOUT("Issuing a global reset to MAC\n");
209 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST);
210 
211 	ret_val = igc_get_auto_rd_done_generic(hw);
212 	if (ret_val) {
213 		/*
214 		 * When auto config read does not complete, do not
215 		 * return with an error. This can happen in situations
216 		 * where there is no eeprom and prevents getting link.
217 		 */
218 		DEBUGOUT("Auto Read Done did not complete\n");
219 	}
220 
221 	/* Clear any pending interrupt events. */
222 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
223 	IGC_READ_REG(hw, IGC_ICR);
224 
225 	/* Install any alternate MAC address into RAR0 */
226 	ret_val = igc_check_alt_mac_addr_generic(hw);
227 
228 	return ret_val;
229 }
230 
231 /* igc_acquire_nvm_i225 - Request for access to EEPROM
232  * @hw: pointer to the HW structure
233  *
234  * Acquire the necessary semaphores for exclusive access to the EEPROM.
235  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
236  * Return successful if access grant bit set, else clear the request for
237  * EEPROM access and return -IGC_ERR_NVM (-1).
238  */
239 static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
240 {
241 	s32 ret_val;
242 
243 	DEBUGFUNC("igc_acquire_nvm_i225");
244 
245 	ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
246 
247 	return ret_val;
248 }
249 
250 /* igc_release_nvm_i225 - Release exclusive access to EEPROM
251  * @hw: pointer to the HW structure
252  *
253  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
254  * then release the semaphores acquired.
255  */
256 static void igc_release_nvm_i225(struct igc_hw *hw)
257 {
258 	DEBUGFUNC("igc_release_nvm_i225");
259 
260 	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
261 }
262 
263 /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
264  * @hw: pointer to the HW structure
265  * @mask: specifies which semaphore to acquire
266  *
267  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
268  * will also specify which port we're acquiring the lock for.
269  */
270 s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
271 {
272 	u32 swfw_sync;
273 	u32 swmask = mask;
274 	u32 fwmask = mask << 16;
275 	s32 ret_val = IGC_SUCCESS;
276 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
277 
278 	DEBUGFUNC("igc_acquire_swfw_sync_i225");
279 
280 	while (i < timeout) {
281 		if (igc_get_hw_semaphore_i225(hw)) {
282 			ret_val = -IGC_ERR_SWFW_SYNC;
283 			goto out;
284 		}
285 
286 		swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
287 		if (!(swfw_sync & (fwmask | swmask)))
288 			break;
289 
290 		/* Firmware currently using resource (fwmask)
291 		 * or other software thread using resource (swmask)
292 		 */
293 		igc_put_hw_semaphore_generic(hw);
294 		msec_delay_irq(5);
295 		i++;
296 	}
297 
298 	if (i == timeout) {
299 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
300 		ret_val = -IGC_ERR_SWFW_SYNC;
301 		goto out;
302 	}
303 
304 	swfw_sync |= swmask;
305 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
306 
307 	igc_put_hw_semaphore_generic(hw);
308 
309 out:
310 	return ret_val;
311 }
312 
313 /* igc_release_swfw_sync_i225 - Release SW/FW semaphore
314  * @hw: pointer to the HW structure
315  * @mask: specifies which semaphore to acquire
316  *
317  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
318  * will also specify which port we're releasing the lock for.
319  */
320 void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
321 {
322 	u32 swfw_sync;
323 
324 	DEBUGFUNC("igc_release_swfw_sync_i225");
325 
326 	while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS)
327 		; /* Empty */
328 
329 	swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
330 	swfw_sync &= ~mask;
331 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
332 
333 	igc_put_hw_semaphore_generic(hw);
334 }
335 
336 /*
337  * igc_setup_copper_link_i225 - Configure copper link settings
338  * @hw: pointer to the HW structure
339  *
340  * Configures the link for auto-neg or forced speed and duplex.  Then we check
341  * for link, once link is established calls to configure collision distance
342  * and flow control are called.
343  */
344 s32 igc_setup_copper_link_i225(struct igc_hw *hw)
345 {
346 	u32 phpm_reg;
347 	s32 ret_val;
348 	u32 ctrl;
349 
350 	DEBUGFUNC("igc_setup_copper_link_i225");
351 
352 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
353 	ctrl |= IGC_CTRL_SLU;
354 	ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
355 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
356 
357 	phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM);
358 	phpm_reg &= ~IGC_I225_PHPM_GO_LINKD;
359 	IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg);
360 
361 	ret_val = igc_setup_copper_link_generic(hw);
362 
363 	return ret_val;
364 }
365 
366 /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
367  * @hw: pointer to the HW structure
368  *
369  * Acquire the HW semaphore to access the PHY or NVM
370  */
371 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
372 {
373 	u32 swsm;
374 	s32 timeout = hw->nvm.word_size + 1;
375 	s32 i = 0;
376 
377 	DEBUGFUNC("igc_get_hw_semaphore_i225");
378 
379 	/* Get the SW semaphore */
380 	while (i < timeout) {
381 		swsm = IGC_READ_REG(hw, IGC_SWSM);
382 		if (!(swsm & IGC_SWSM_SMBI))
383 			break;
384 
385 		usec_delay(50);
386 		i++;
387 	}
388 
389 	if (i == timeout) {
390 		/* In rare circumstances, the SW semaphore may already be held
391 		 * unintentionally. Clear the semaphore once before giving up.
392 		 */
393 		if (hw->dev_spec._i225.clear_semaphore_once) {
394 			hw->dev_spec._i225.clear_semaphore_once = false;
395 			igc_put_hw_semaphore_generic(hw);
396 			for (i = 0; i < timeout; i++) {
397 				swsm = IGC_READ_REG(hw, IGC_SWSM);
398 				if (!(swsm & IGC_SWSM_SMBI))
399 					break;
400 
401 				usec_delay(50);
402 			}
403 		}
404 
405 		/* If we do not have the semaphore here, we have to give up. */
406 		if (i == timeout) {
407 			DEBUGOUT("Driver can't access device -\n");
408 			DEBUGOUT("SMBI bit is set.\n");
409 			return -IGC_ERR_NVM;
410 		}
411 	}
412 
413 	/* Get the FW semaphore. */
414 	for (i = 0; i < timeout; i++) {
415 		swsm = IGC_READ_REG(hw, IGC_SWSM);
416 		IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
417 
418 		/* Semaphore acquired if bit latched */
419 		if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
420 			break;
421 
422 		usec_delay(50);
423 	}
424 
425 	if (i == timeout) {
426 		/* Release semaphores */
427 		igc_put_hw_semaphore_generic(hw);
428 		DEBUGOUT("Driver can't access the NVM\n");
429 		return -IGC_ERR_NVM;
430 	}
431 
432 	return IGC_SUCCESS;
433 }
434 
435 /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
436  * @hw: pointer to the HW structure
437  * @offset: offset of word in the Shadow Ram to read
438  * @words: number of words to read
439  * @data: word read from the Shadow Ram
440  *
441  * Reads a 16 bit word from the Shadow Ram using the EERD register.
442  * Uses necessary synchronization semaphores.
443  */
444 s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
445 			     u16 *data)
446 {
447 	s32 status = IGC_SUCCESS;
448 	u16 i, count;
449 
450 	DEBUGFUNC("igc_read_nvm_srrd_i225");
451 
452 	/* We cannot hold synchronization semaphores for too long,
453 	 * because of forceful takeover procedure. However it is more efficient
454 	 * to read in bursts than synchronizing access for each word.
455 	 */
456 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
457 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
458 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
459 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
460 			status = igc_read_nvm_eerd(hw, offset, count,
461 						     data + i);
462 			hw->nvm.ops.release(hw);
463 		} else {
464 			status = IGC_ERR_SWFW_SYNC;
465 		}
466 
467 		if (status != IGC_SUCCESS)
468 			break;
469 	}
470 
471 	return status;
472 }
473 
474 /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
475  * @hw: pointer to the HW structure
476  * @offset: offset within the Shadow RAM to be written to
477  * @words: number of words to write
478  * @data: 16 bit word(s) to be written to the Shadow RAM
479  *
480  * Writes data to Shadow RAM at offset using EEWR register.
481  *
482  * If igc_update_nvm_checksum is not called after this function , the
483  * data will not be committed to FLASH and also Shadow RAM will most likely
484  * contain an invalid checksum.
485  *
486  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
487  * partially written.
488  */
489 s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
490 			      u16 *data)
491 {
492 	s32 status = IGC_SUCCESS;
493 	u16 i, count;
494 
495 	DEBUGFUNC("igc_write_nvm_srwr_i225");
496 
497 	/* We cannot hold synchronization semaphores for too long,
498 	 * because of forceful takeover procedure. However it is more efficient
499 	 * to write in bursts than synchronizing access for each word.
500 	 */
501 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
502 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
503 			IGC_EERD_EEWR_MAX_COUNT : (words - i);
504 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
505 			status = __igc_write_nvm_srwr(hw, offset, count,
506 							data + i);
507 			hw->nvm.ops.release(hw);
508 		} else {
509 			status = IGC_ERR_SWFW_SYNC;
510 		}
511 
512 		if (status != IGC_SUCCESS)
513 			break;
514 	}
515 
516 	return status;
517 }
518 
519 /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR
520  * @hw: pointer to the HW structure
521  * @offset: offset within the Shadow Ram to be written to
522  * @words: number of words to write
523  * @data: 16 bit word(s) to be written to the Shadow Ram
524  *
525  * Writes data to Shadow Ram at offset using EEWR register.
526  *
527  * If igc_update_nvm_checksum is not called after this function , the
528  * Shadow Ram will most likely contain an invalid checksum.
529  */
530 static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
531 				  u16 *data)
532 {
533 	struct igc_nvm_info *nvm = &hw->nvm;
534 	u32 i, k, eewr = 0;
535 	u32 attempts = 100000;
536 	s32 ret_val = IGC_SUCCESS;
537 
538 	DEBUGFUNC("__igc_write_nvm_srwr");
539 
540 	/* A check for invalid values:  offset too large, too many words,
541 	 * too many words for the offset, and not enough words.
542 	 */
543 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
544 	    (words == 0)) {
545 		DEBUGOUT("nvm parameter(s) out of bounds\n");
546 		ret_val = -IGC_ERR_NVM;
547 		goto out;
548 	}
549 
550 	for (i = 0; i < words; i++) {
551 		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
552 			(data[i] << IGC_NVM_RW_REG_DATA) |
553 			IGC_NVM_RW_REG_START;
554 
555 		IGC_WRITE_REG(hw, IGC_SRWR, eewr);
556 
557 		for (k = 0; k < attempts; k++) {
558 			if (IGC_NVM_RW_REG_DONE &
559 			    IGC_READ_REG(hw, IGC_SRWR)) {
560 				ret_val = IGC_SUCCESS;
561 				break;
562 			}
563 			usec_delay(5);
564 		}
565 
566 		if (ret_val != IGC_SUCCESS) {
567 			DEBUGOUT("Shadow RAM write EEWR timed out\n");
568 			break;
569 		}
570 	}
571 
572 out:
573 	return ret_val;
574 }
575 
576 /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
577  * @hw: pointer to the HW structure
578  *
579  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
580  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
581  */
582 s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
583 {
584 	s32 status = IGC_SUCCESS;
585 	s32 (*read_op_ptr)(struct igc_hw *, u16, u16, u16 *);
586 
587 	DEBUGFUNC("igc_validate_nvm_checksum_i225");
588 
589 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
590 		/* Replace the read function with semaphore grabbing with
591 		 * the one that skips this for a while.
592 		 * We have semaphore taken already here.
593 		 */
594 		read_op_ptr = hw->nvm.ops.read;
595 		hw->nvm.ops.read = igc_read_nvm_eerd;
596 
597 		status = igc_validate_nvm_checksum_generic(hw);
598 
599 		/* Revert original read operation. */
600 		hw->nvm.ops.read = read_op_ptr;
601 
602 		hw->nvm.ops.release(hw);
603 	} else {
604 		status = IGC_ERR_SWFW_SYNC;
605 	}
606 
607 	return status;
608 }
609 
610 /* igc_update_nvm_checksum_i225 - Update EEPROM checksum
611  * @hw: pointer to the HW structure
612  *
613  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
614  * up to the checksum.  Then calculates the EEPROM checksum and writes the
615  * value to the EEPROM. Next commit EEPROM data onto the Flash.
616  */
617 s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
618 {
619 	s32 ret_val;
620 	u16 checksum = 0;
621 	u16 i, nvm_data;
622 
623 	DEBUGFUNC("igc_update_nvm_checksum_i225");
624 
625 	/* Read the first word from the EEPROM. If this times out or fails, do
626 	 * not continue or we could be in for a very long wait while every
627 	 * EEPROM read fails
628 	 */
629 	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
630 	if (ret_val != IGC_SUCCESS) {
631 		DEBUGOUT("EEPROM read failed\n");
632 		goto out;
633 	}
634 
635 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
636 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
637 		 * because we do not want to take the synchronization
638 		 * semaphores twice here.
639 		 */
640 
641 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
642 			ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
643 			if (ret_val) {
644 				hw->nvm.ops.release(hw);
645 				DEBUGOUT("NVM Read Error while updating\n");
646 				DEBUGOUT("checksum.\n");
647 				goto out;
648 			}
649 			checksum += nvm_data;
650 		}
651 		checksum = (u16)NVM_SUM - checksum;
652 		ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
653 						 &checksum);
654 		if (ret_val != IGC_SUCCESS) {
655 			hw->nvm.ops.release(hw);
656 			DEBUGOUT("NVM Write Error while updating checksum.\n");
657 			goto out;
658 		}
659 
660 		hw->nvm.ops.release(hw);
661 
662 		ret_val = igc_update_flash_i225(hw);
663 	} else {
664 		ret_val = IGC_ERR_SWFW_SYNC;
665 	}
666 out:
667 	return ret_val;
668 }
669 
670 /* igc_get_flash_presence_i225 - Check if flash device is detected.
671  * @hw: pointer to the HW structure
672  */
673 bool igc_get_flash_presence_i225(struct igc_hw *hw)
674 {
675 	u32 eec = 0;
676 	bool ret_val = false;
677 
678 	DEBUGFUNC("igc_get_flash_presence_i225");
679 
680 	eec = IGC_READ_REG(hw, IGC_EECD);
681 
682 	if (eec & IGC_EECD_FLASH_DETECTED_I225)
683 		ret_val = true;
684 
685 	return ret_val;
686 }
687 
688 /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst
689  * Counter in FLSWCNT register.
690  *
691  * @hw: pointer to the HW structure
692  * @burst_counter: size in bytes of the Flash burst to read or write
693  */
694 s32 igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw,
695 					    u32 burst_counter)
696 {
697 	s32 ret_val = IGC_SUCCESS;
698 
699 	DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225");
700 
701 	/* Validate input data */
702 	if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) {
703 		/* Write FLSWCNT - burst counter */
704 		IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter);
705 	} else {
706 		ret_val = IGC_ERR_INVALID_ARGUMENT;
707 	}
708 
709 	return ret_val;
710 }
711 
712 /* igc_write_erase_flash_command_i225 - write/erase to a sector
713  * region on a given address.
714  *
715  * @hw: pointer to the HW structure
716  * @opcode: opcode to be used for the write command
717  * @address: the offset to write into the FLASH image
718  */
719 s32 igc_write_erase_flash_command_i225(struct igc_hw *hw, u32 opcode,
720 					 u32 address)
721 {
722 	u32 flswctl = 0;
723 	s32 timeout = IGC_NVM_GRANT_ATTEMPTS;
724 	s32 ret_val = IGC_SUCCESS;
725 
726 	DEBUGFUNC("igc_write_erase_flash_command_i225");
727 
728 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
729 	/* Polling done bit on FLSWCTL register */
730 	while (timeout) {
731 		if (flswctl & IGC_FLSWCTL_DONE)
732 			break;
733 		usec_delay(5);
734 		flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
735 		timeout--;
736 	}
737 
738 	if (!timeout) {
739 		DEBUGOUT("Flash transaction was not done\n");
740 		return -IGC_ERR_NVM;
741 	}
742 
743 	/* Build and issue command on FLSWCTL register */
744 	flswctl = address | opcode;
745 	IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl);
746 
747 	/* Check if issued command is valid on FLSWCTL register */
748 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
749 	if (!(flswctl & IGC_FLSWCTL_CMDV)) {
750 		DEBUGOUT("Write flash command failed\n");
751 		ret_val = IGC_ERR_INVALID_ARGUMENT;
752 	}
753 
754 	return ret_val;
755 }
756 
757 /* igc_update_flash_i225 - Commit EEPROM to the flash
758  * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC
759  * register makes the FW load the internal shadow RAM into the flash.
760  * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0
761  * then FW is not active so the SW is responsible shadow RAM dump.
762  *
763  * @hw: pointer to the HW structure
764  */
765 s32 igc_update_flash_i225(struct igc_hw *hw)
766 {
767 	u16 current_offset_data = 0;
768 	u32 block_sw_protect = 1;
769 	u16 base_address = 0x0;
770 	u32 i, fw_valid_bit;
771 	u16 current_offset;
772 	s32 ret_val = 0;
773 	u32 flup;
774 
775 	DEBUGFUNC("igc_update_flash_i225");
776 
777 	block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) &
778 					  IGC_FLSECU_BLK_SW_ACCESS_I225;
779 	fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) &
780 				      IGC_FWSM_FW_VALID_I225;
781 	if (fw_valid_bit) {
782 		ret_val = igc_pool_flash_update_done_i225(hw);
783 		if (ret_val == -IGC_ERR_NVM) {
784 			DEBUGOUT("Flash update time out\n");
785 			goto out;
786 		}
787 
788 		flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225;
789 		IGC_WRITE_REG(hw, IGC_EECD, flup);
790 
791 		ret_val = igc_pool_flash_update_done_i225(hw);
792 		if (ret_val == IGC_SUCCESS)
793 			DEBUGOUT("Flash update complete\n");
794 		else
795 			DEBUGOUT("Flash update time out\n");
796 	} else if (!block_sw_protect) {
797 		/* FW is not active and security protection is disabled.
798 		 * therefore, SW is in charge of shadow RAM dump.
799 		 * Check which sector is valid. if sector 0 is valid,
800 		 * base address remains 0x0. otherwise, sector 1 is
801 		 * valid and it's base address is 0x1000
802 		 */
803 		if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225)
804 			base_address = 0x1000;
805 
806 		/* Valid sector erase */
807 		ret_val = igc_write_erase_flash_command_i225(hw,
808 						  IGC_I225_ERASE_CMD_OPCODE,
809 						  base_address);
810 		if (!ret_val) {
811 			DEBUGOUT("Sector erase failed\n");
812 			goto out;
813 		}
814 
815 		current_offset = base_address;
816 
817 		/* Write */
818 		for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) {
819 			/* Set burst write length */
820 			ret_val = igc_set_flsw_flash_burst_counter_i225(hw,
821 									  0x2);
822 			if (ret_val != IGC_SUCCESS)
823 				break;
824 
825 			/* Set address and opcode */
826 			ret_val = igc_write_erase_flash_command_i225(hw,
827 						IGC_I225_WRITE_CMD_OPCODE,
828 						2 * current_offset);
829 			if (ret_val != IGC_SUCCESS)
830 				break;
831 
832 			ret_val = igc_read_nvm_eerd(hw, current_offset,
833 						      1, &current_offset_data);
834 			if (ret_val) {
835 				DEBUGOUT("Failed to read from EEPROM\n");
836 				goto out;
837 			}
838 
839 			/* Write CurrentOffseData to FLSWDATA register */
840 			IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,
841 					current_offset_data);
842 			current_offset++;
843 
844 			/* Wait till operation has finished */
845 			ret_val = igc_poll_eerd_eewr_done(hw,
846 						IGC_NVM_POLL_READ);
847 			if (ret_val)
848 				break;
849 
850 			usec_delay(1000);
851 		}
852 	}
853 out:
854 	return ret_val;
855 }
856 
857 /* igc_pool_flash_update_done_i225 - Pool FLUDONE status.
858  * @hw: pointer to the HW structure
859  */
860 s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
861 {
862 	s32 ret_val = -IGC_ERR_NVM;
863 	u32 i, reg;
864 
865 	DEBUGFUNC("igc_pool_flash_update_done_i225");
866 
867 	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
868 		reg = IGC_READ_REG(hw, IGC_EECD);
869 		if (reg & IGC_EECD_FLUDONE_I225) {
870 			ret_val = IGC_SUCCESS;
871 			break;
872 		}
873 		usec_delay(5);
874 	}
875 
876 	return ret_val;
877 }
878 
879 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds.
880  * @hw: pointer to the HW structure
881  * @link: bool indicating link status
882  *
883  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
884  * settings, otherwise specify that there is no LTR requirement.
885  */
886 static s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
887 {
888 	u16 speed, duplex;
889 	u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
890 	s32 size;
891 
892 	DEBUGFUNC("igc_set_ltr_i225");
893 
894 	/* If we do not have link, LTR thresholds are zero. */
895 	if (link) {
896 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
897 
898 		/* Check if using copper interface with EEE enabled or if the
899 		 * link speed is 10 Mbps.
900 		 */
901 		if ((hw->phy.media_type == igc_media_type_copper) &&
902 		    !(hw->dev_spec._i225.eee_disable) &&
903 		     (speed != SPEED_10)) {
904 			/* EEE enabled, so send LTRMAX threshold. */
905 			ltrc = IGC_READ_REG(hw, IGC_LTRC) |
906 				IGC_LTRC_EEEMS_EN;
907 			IGC_WRITE_REG(hw, IGC_LTRC, ltrc);
908 
909 			/* Calculate tw_system (nsec). */
910 			if (speed == SPEED_100) {
911 				tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) &
912 					     IGC_TW_SYSTEM_100_MASK) >>
913 					     IGC_TW_SYSTEM_100_SHIFT) * 500;
914 			} else {
915 				tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) &
916 					     IGC_TW_SYSTEM_1000_MASK) * 500;
917 				}
918 		} else {
919 			tw_system = 0;
920 			}
921 
922 		/* Get the Rx packet buffer size. */
923 		size = IGC_READ_REG(hw, IGC_RXPBS) &
924 			IGC_RXPBS_SIZE_I225_MASK;
925 
926 		/* Calculations vary based on DMAC settings. */
927 		if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) {
928 			size -= (IGC_READ_REG(hw, IGC_DMACR) &
929 				 IGC_DMACR_DMACTHR_MASK) >>
930 				 IGC_DMACR_DMACTHR_SHIFT;
931 			/* Convert size to bits. */
932 			size *= 1024 * 8;
933 		} else {
934 			/* Convert size to bytes, subtract the MTU, and then
935 			 * convert the size to bits.
936 			 */
937 			size *= 1024;
938 			size -= hw->dev_spec._i225.mtu;
939 			size *= 8;
940 		}
941 
942 		if (size < 0) {
943 			DEBUGOUT1("Invalid effective Rx buffer size %d\n",
944 				  size);
945 			return -IGC_ERR_CONFIG;
946 		}
947 
948 		/* Calculate the thresholds. Since speed is in Mbps, simplify
949 		 * the calculation by multiplying size/speed by 1000 for result
950 		 * to be in nsec before dividing by the scale in nsec. Set the
951 		 * scale such that the LTR threshold fits in the register.
952 		 */
953 		ltr_min = (1000 * size) / speed;
954 		ltr_max = ltr_min + tw_system;
955 		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
956 			    IGC_LTRMINV_SCALE_32768;
957 		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
958 			    IGC_LTRMAXV_SCALE_32768;
959 		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
960 		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
961 
962 		/* Only write the LTR thresholds if they differ from before. */
963 		ltrv = IGC_READ_REG(hw, IGC_LTRMINV);
964 		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
965 			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
966 			      (scale_min << IGC_LTRMINV_SCALE_SHIFT);
967 			IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv);
968 		}
969 
970 		ltrv = IGC_READ_REG(hw, IGC_LTRMAXV);
971 		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
972 			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
973 			      (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
974 			IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv);
975 		}
976 	}
977 
978 	return IGC_SUCCESS;
979 }
980 
981 /* igc_check_for_link_i225 - Check for link
982  * @hw: pointer to the HW structure
983  *
984  * Checks to see of the link status of the hardware has changed.  If a
985  * change in link status has been detected, then we read the PHY registers
986  * to get the current speed/duplex if link exists.
987  */
988 s32 igc_check_for_link_i225(struct igc_hw *hw)
989 {
990 	struct igc_mac_info *mac = &hw->mac;
991 	s32 ret_val;
992 	bool link = false;
993 
994 	DEBUGFUNC("igc_check_for_link_i225");
995 
996 	/* We only want to go out to the PHY registers to see if
997 	 * Auto-Neg has completed and/or if our link status has
998 	 * changed.  The get_link_status flag is set upon receiving
999 	 * a Link Status Change or Rx Sequence Error interrupt.
1000 	 */
1001 	if (!mac->get_link_status) {
1002 		ret_val = IGC_SUCCESS;
1003 		goto out;
1004 	}
1005 
1006 	/* First we want to see if the MII Status Register reports
1007 	 * link.  If so, then we want to get the current speed/duplex
1008 	 * of the PHY.
1009 	 */
1010 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1011 	if (ret_val)
1012 		goto out;
1013 
1014 	if (!link)
1015 		goto out; /* No link detected */
1016 
1017 	/* First we want to see if the MII Status Register reports
1018 	 * link.  If so, then we want to get the current speed/duplex
1019 	 * of the PHY.
1020 	 */
1021 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1022 	if (ret_val)
1023 		goto out;
1024 
1025 	if (!link)
1026 		goto out; /* No link detected */
1027 
1028 	mac->get_link_status = false;
1029 
1030 	/* Check if there was DownShift, must be checked
1031 	 * immediately after link-up
1032 	 */
1033 	igc_check_downshift_generic(hw);
1034 
1035 	/* If we are forcing speed/duplex, then we simply return since
1036 	 * we have already determined whether we have link or not.
1037 	 */
1038 	if (!mac->autoneg)
1039 		goto out;
1040 
1041 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1042 	 * of MAC speed/duplex configuration.  So we only need to
1043 	 * configure Collision Distance in the MAC.
1044 	 */
1045 	mac->ops.config_collision_dist(hw);
1046 
1047 	/* Configure Flow Control now that Auto-Neg has completed.
1048 	 * First, we need to restore the desired flow control
1049 	 * settings because we may have had to re-autoneg with a
1050 	 * different link partner.
1051 	 */
1052 	ret_val = igc_config_fc_after_link_up_generic(hw);
1053 	if (ret_val)
1054 		DEBUGOUT("Error configuring flow control\n");
1055 out:
1056 	/* Now that we are aware of our link settings, we can set the LTR
1057 	 * thresholds.
1058 	 */
1059 	ret_val = igc_set_ltr_i225(hw, link);
1060 
1061 	return ret_val;
1062 }
1063 
1064 /* igc_init_function_pointers_i225 - Init func ptrs.
1065  * @hw: pointer to the HW structure
1066  *
1067  * Called to initialize all function pointers and parameters.
1068  */
1069 void igc_init_function_pointers_i225(struct igc_hw *hw)
1070 {
1071 	igc_init_mac_ops_generic(hw);
1072 	igc_init_phy_ops_generic(hw);
1073 	igc_init_nvm_ops_generic(hw);
1074 	hw->mac.ops.init_params = igc_init_mac_params_i225;
1075 	hw->nvm.ops.init_params = igc_init_nvm_params_i225;
1076 	hw->phy.ops.init_params = igc_init_phy_params_i225;
1077 }
1078 
1079 /* igc_init_hw_i225 - Init hw for I225
1080  * @hw: pointer to the HW structure
1081  *
1082  * Called to initialize hw for i225 hw family.
1083  */
1084 s32 igc_init_hw_i225(struct igc_hw *hw)
1085 {
1086 	s32 ret_val;
1087 
1088 	DEBUGFUNC("igc_init_hw_i225");
1089 
1090 	ret_val = igc_init_hw_base(hw);
1091 	return ret_val;
1092 }
1093 
1094 /*
1095  * igc_set_d0_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D0 state
1096  * @hw: pointer to the HW structure
1097  * @active: true to enable LPLU, false to disable
1098  *
1099  * Note: since I225 does not actually support LPLU, this function
1100  * simply enables/disables 1G and 2.5G speeds in D0.
1101  */
1102 s32 igc_set_d0_lplu_state_i225(struct igc_hw *hw, bool active)
1103 {
1104 	u32 data;
1105 
1106 	DEBUGFUNC("igc_set_d0_lplu_state_i225");
1107 
1108 	data = IGC_READ_REG(hw, IGC_I225_PHPM);
1109 
1110 	if (active) {
1111 		data |= IGC_I225_PHPM_DIS_1000;
1112 		data |= IGC_I225_PHPM_DIS_2500;
1113 	} else {
1114 		data &= ~IGC_I225_PHPM_DIS_1000;
1115 		data &= ~IGC_I225_PHPM_DIS_2500;
1116 	}
1117 
1118 	IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
1119 	return IGC_SUCCESS;
1120 }
1121 
1122 /*
1123  * igc_set_d3_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D3 state
1124  * @hw: pointer to the HW structure
1125  * @active: true to enable LPLU, false to disable
1126  *
1127  * Note: since I225 does not actually support LPLU, this function
1128  * simply enables/disables 100M, 1G and 2.5G speeds in D3.
1129  */
1130 s32 igc_set_d3_lplu_state_i225(struct igc_hw *hw, bool active)
1131 {
1132 	u32 data;
1133 
1134 	DEBUGFUNC("igc_set_d3_lplu_state_i225");
1135 
1136 	data = IGC_READ_REG(hw, IGC_I225_PHPM);
1137 
1138 	if (active) {
1139 		data |= IGC_I225_PHPM_DIS_100_D3;
1140 		data |= IGC_I225_PHPM_DIS_1000_D3;
1141 		data |= IGC_I225_PHPM_DIS_2500_D3;
1142 	} else {
1143 		data &= ~IGC_I225_PHPM_DIS_100_D3;
1144 		data &= ~IGC_I225_PHPM_DIS_1000_D3;
1145 		data &= ~IGC_I225_PHPM_DIS_2500_D3;
1146 	}
1147 
1148 	IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
1149 	return IGC_SUCCESS;
1150 }
1151 
1152 /**
1153  *  igc_set_eee_i225 - Enable/disable EEE support
1154  *  @hw: pointer to the HW structure
1155  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
1156  *  @adv1G: boolean flag enabling 1G EEE advertisement
1157  *  @adv100M: boolean flag enabling 100M EEE advertisement
1158  *
1159  *  Enable/disable EEE based on setting in dev_spec structure.
1160  *
1161  **/
1162 s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
1163 		       bool adv100M)
1164 {
1165 	u32 ipcnfg, eeer;
1166 
1167 	DEBUGFUNC("igc_set_eee_i225");
1168 
1169 	if (hw->mac.type != igc_i225 ||
1170 	    hw->phy.media_type != igc_media_type_copper)
1171 		goto out;
1172 	ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG);
1173 	eeer = IGC_READ_REG(hw, IGC_EEER);
1174 
1175 	/* enable or disable per user setting */
1176 	if (!(hw->dev_spec._i225.eee_disable)) {
1177 		u32 eee_su = IGC_READ_REG(hw, IGC_EEE_SU);
1178 
1179 		if (adv100M)
1180 			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
1181 		else
1182 			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
1183 
1184 		if (adv1G)
1185 			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
1186 		else
1187 			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
1188 
1189 		if (adv2p5G)
1190 			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
1191 		else
1192 			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
1193 
1194 		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1195 			IGC_EEER_LPI_FC);
1196 
1197 		/* This bit should not be set in normal operation. */
1198 		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
1199 			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
1200 	} else {
1201 		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
1202 			IGC_IPCNFG_EEE_100M_AN);
1203 		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1204 			IGC_EEER_LPI_FC);
1205 	}
1206 	IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg);
1207 	IGC_WRITE_REG(hw, IGC_EEER, eeer);
1208 	IGC_READ_REG(hw, IGC_IPCNFG);
1209 	IGC_READ_REG(hw, IGC_EEER);
1210 out:
1211 
1212 	return IGC_SUCCESS;
1213 }
1214 
1215