xref: /freebsd/sys/dev/igc/if_igc.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001-2024, Intel Corporation
5  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
6  * Copyright (c) 2021-2024 Rubicon Communications, LLC (Netgate)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include "if_igc.h"
32 #include <sys/sbuf.h>
33 #include <machine/_inttypes.h>
34 
35 #ifdef RSS
36 #include <net/rss_config.h>
37 #include <netinet/in_rss.h>
38 #endif
39 
40 /*********************************************************************
41  *  PCI Device ID Table
42  *
43  *  Used by probe to select devices to load on
44  *  Last entry must be all 0s
45  *
46  *  { Vendor ID, Device ID, String }
47  *********************************************************************/
48 
49 static const pci_vendor_info_t igc_vendor_info_array[] =
50 {
51 	/* Intel(R) PRO/1000 Network Connection - igc */
52 	PVID(0x8086, IGC_DEV_ID_I225_LM,
53 	    "Intel(R) Ethernet Controller I225-LM"),
54 	PVID(0x8086, IGC_DEV_ID_I225_V,
55 	    "Intel(R) Ethernet Controller I225-V"),
56 	PVID(0x8086, IGC_DEV_ID_I225_K,
57 	    "Intel(R) Ethernet Controller I225-K"),
58 	PVID(0x8086, IGC_DEV_ID_I225_I,
59 	    "Intel(R) Ethernet Controller I225-IT"),
60 	PVID(0x8086, IGC_DEV_ID_I220_V,
61 	    "Intel(R) Ethernet Controller I220-V"),
62 	PVID(0x8086, IGC_DEV_ID_I225_K2,
63 	    "Intel(R) Ethernet Controller I225-K(2)"),
64 	PVID(0x8086, IGC_DEV_ID_I225_LMVP,
65 	    "Intel(R) Ethernet Controller I225-LMvP(2)"),
66 	PVID(0x8086, IGC_DEV_ID_I226_K,
67 	    "Intel(R) Ethernet Controller I226-K"),
68 	PVID(0x8086, IGC_DEV_ID_I226_LMVP,
69 	    "Intel(R) Ethernet Controller I226-LMvP"),
70 	PVID(0x8086, IGC_DEV_ID_I225_IT,
71 	    "Intel(R) Ethernet Controller I225-IT(2)"),
72 	PVID(0x8086, IGC_DEV_ID_I226_LM,
73 	    "Intel(R) Ethernet Controller I226-LM"),
74 	PVID(0x8086, IGC_DEV_ID_I226_V,
75 	    "Intel(R) Ethernet Controller I226-V"),
76 	PVID(0x8086, IGC_DEV_ID_I226_IT,
77 	    "Intel(R) Ethernet Controller I226-IT"),
78 	PVID(0x8086, IGC_DEV_ID_I221_V,
79 	    "Intel(R) Ethernet Controller I221-V"),
80 	PVID(0x8086, IGC_DEV_ID_I226_BLANK_NVM,
81 	    "Intel(R) Ethernet Controller I226(blankNVM)"),
82 	PVID(0x8086, IGC_DEV_ID_I225_BLANK_NVM,
83 	    "Intel(R) Ethernet Controller I225(blankNVM)"),
84 	/* required last entry */
85 	PVID_END
86 };
87 
88 /*********************************************************************
89  *  Function prototypes
90  *********************************************************************/
91 static void	*igc_register(device_t);
92 static int	igc_if_attach_pre(if_ctx_t);
93 static int	igc_if_attach_post(if_ctx_t);
94 static int	igc_if_detach(if_ctx_t);
95 static int	igc_if_shutdown(if_ctx_t);
96 static int	igc_if_suspend(if_ctx_t);
97 static int	igc_if_resume(if_ctx_t);
98 
99 static int	igc_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
100     int);
101 static int	igc_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
102     int);
103 static void	igc_if_queues_free(if_ctx_t);
104 
105 static uint64_t	igc_if_get_counter(if_ctx_t, ift_counter);
106 static void	igc_if_init(if_ctx_t);
107 static void	igc_if_stop(if_ctx_t);
108 static void	igc_if_media_status(if_ctx_t, struct ifmediareq *);
109 static int	igc_if_media_change(if_ctx_t);
110 static int	igc_if_mtu_set(if_ctx_t, uint32_t);
111 static void	igc_if_timer(if_ctx_t, uint16_t);
112 static void	igc_if_watchdog_reset(if_ctx_t);
113 static bool	igc_if_needs_restart(if_ctx_t, enum iflib_restart_event);
114 
115 static void	igc_identify_hardware(if_ctx_t);
116 static int	igc_allocate_pci_resources(if_ctx_t);
117 static void	igc_free_pci_resources(if_ctx_t);
118 static void	igc_reset(if_ctx_t);
119 static int	igc_setup_interface(if_ctx_t);
120 static int	igc_setup_msix(if_ctx_t);
121 
122 static void	igc_initialize_transmit_unit(if_ctx_t);
123 static void	igc_initialize_receive_unit(if_ctx_t);
124 
125 static void	igc_if_intr_enable(if_ctx_t);
126 static void	igc_if_intr_disable(if_ctx_t);
127 static int	igc_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
128 static int	igc_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
129 static void	igc_if_multi_set(if_ctx_t);
130 static void	igc_if_update_admin_status(if_ctx_t);
131 static void	igc_if_debug(if_ctx_t);
132 static void	igc_update_stats_counters(struct igc_softc *);
133 static void	igc_add_hw_stats(struct igc_softc *);
134 static int	igc_if_set_promisc(if_ctx_t, int);
135 static void	igc_setup_vlan_hw_support(if_ctx_t);
136 static void	igc_fw_version(struct igc_softc *);
137 static void	igc_sbuf_fw_version(struct igc_fw_version *, struct sbuf *);
138 static void	igc_print_fw_version(struct igc_softc *);
139 static int	igc_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
140 static int	igc_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
141 static void	igc_print_nvm_info(struct igc_softc *);
142 static int	igc_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
143 static int	igc_get_rs(SYSCTL_HANDLER_ARGS);
144 static void	igc_print_debug_info(struct igc_softc *);
145 static int 	igc_is_valid_ether_addr(u8 *);
146 static void	igc_neweitr(struct igc_softc *, struct igc_rx_queue *,
147     struct tx_ring *, struct rx_ring *);
148 static int	igc_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS);
149 /* Management and WOL Support */
150 static void	igc_get_hw_control(struct igc_softc *);
151 static void	igc_release_hw_control(struct igc_softc *);
152 static void	igc_get_wakeup(if_ctx_t);
153 static void	igc_enable_wakeup(if_ctx_t);
154 
155 int		igc_intr(void *);
156 
157 /* MSI-X handlers */
158 static int	igc_if_msix_intr_assign(if_ctx_t, int);
159 static int	igc_msix_link(void *);
160 static void	igc_handle_link(void *context);
161 
162 static int	igc_set_flowcntl(SYSCTL_HANDLER_ARGS);
163 static int	igc_sysctl_dmac(SYSCTL_HANDLER_ARGS);
164 static int	igc_sysctl_eee(SYSCTL_HANDLER_ARGS);
165 
166 static int	igc_get_regs(SYSCTL_HANDLER_ARGS);
167 
168 static void	igc_configure_queues(struct igc_softc *);
169 
170 
171 /*********************************************************************
172  *  FreeBSD Device Interface Entry Points
173  *********************************************************************/
174 static device_method_t igc_methods[] = {
175 	/* Device interface */
176 	DEVMETHOD(device_register, igc_register),
177 	DEVMETHOD(device_probe, iflib_device_probe),
178 	DEVMETHOD(device_attach, iflib_device_attach),
179 	DEVMETHOD(device_detach, iflib_device_detach),
180 	DEVMETHOD(device_shutdown, iflib_device_shutdown),
181 	DEVMETHOD(device_suspend, iflib_device_suspend),
182 	DEVMETHOD(device_resume, iflib_device_resume),
183 	DEVMETHOD_END
184 };
185 
186 static driver_t igc_driver = {
187 	"igc", igc_methods, sizeof(struct igc_softc),
188 };
189 
190 DRIVER_MODULE(igc, pci, igc_driver, 0, 0);
191 
192 MODULE_DEPEND(igc, pci, 1, 1, 1);
193 MODULE_DEPEND(igc, ether, 1, 1, 1);
194 MODULE_DEPEND(igc, iflib, 1, 1, 1);
195 
196 IFLIB_PNP_INFO(pci, igc, igc_vendor_info_array);
197 
198 static device_method_t igc_if_methods[] = {
199 	DEVMETHOD(ifdi_attach_pre, igc_if_attach_pre),
200 	DEVMETHOD(ifdi_attach_post, igc_if_attach_post),
201 	DEVMETHOD(ifdi_detach, igc_if_detach),
202 	DEVMETHOD(ifdi_shutdown, igc_if_shutdown),
203 	DEVMETHOD(ifdi_suspend, igc_if_suspend),
204 	DEVMETHOD(ifdi_resume, igc_if_resume),
205 	DEVMETHOD(ifdi_init, igc_if_init),
206 	DEVMETHOD(ifdi_stop, igc_if_stop),
207 	DEVMETHOD(ifdi_msix_intr_assign, igc_if_msix_intr_assign),
208 	DEVMETHOD(ifdi_intr_enable, igc_if_intr_enable),
209 	DEVMETHOD(ifdi_intr_disable, igc_if_intr_disable),
210 	DEVMETHOD(ifdi_tx_queues_alloc, igc_if_tx_queues_alloc),
211 	DEVMETHOD(ifdi_rx_queues_alloc, igc_if_rx_queues_alloc),
212 	DEVMETHOD(ifdi_queues_free, igc_if_queues_free),
213 	DEVMETHOD(ifdi_update_admin_status, igc_if_update_admin_status),
214 	DEVMETHOD(ifdi_multi_set, igc_if_multi_set),
215 	DEVMETHOD(ifdi_media_status, igc_if_media_status),
216 	DEVMETHOD(ifdi_media_change, igc_if_media_change),
217 	DEVMETHOD(ifdi_mtu_set, igc_if_mtu_set),
218 	DEVMETHOD(ifdi_promisc_set, igc_if_set_promisc),
219 	DEVMETHOD(ifdi_timer, igc_if_timer),
220 	DEVMETHOD(ifdi_watchdog_reset, igc_if_watchdog_reset),
221 	DEVMETHOD(ifdi_get_counter, igc_if_get_counter),
222 	DEVMETHOD(ifdi_rx_queue_intr_enable, igc_if_rx_queue_intr_enable),
223 	DEVMETHOD(ifdi_tx_queue_intr_enable, igc_if_tx_queue_intr_enable),
224 	DEVMETHOD(ifdi_debug, igc_if_debug),
225 	DEVMETHOD(ifdi_needs_restart, igc_if_needs_restart),
226 	DEVMETHOD_END
227 };
228 
229 static driver_t igc_if_driver = {
230 	"igc_if", igc_if_methods, sizeof(struct igc_softc)
231 };
232 
233 /*********************************************************************
234  *  Tunable default values.
235  *********************************************************************/
236 
237 /* Allow common code without TSO */
238 #ifndef CSUM_TSO
239 #define CSUM_TSO	0
240 #endif
241 
242 static SYSCTL_NODE(_hw, OID_AUTO, igc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
243     "igc driver parameters");
244 
245 static int igc_disable_crc_stripping = 0;
246 SYSCTL_INT(_hw_igc, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
247     &igc_disable_crc_stripping, 0, "Disable CRC Stripping");
248 
249 static int igc_smart_pwr_down = false;
250 SYSCTL_INT(_hw_igc, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN,
251     &igc_smart_pwr_down,
252     0, "Set to true to leave smart power down enabled on newer adapters");
253 
254 /* Controls whether promiscuous also shows bad packets */
255 static int igc_debug_sbp = false;
256 SYSCTL_INT(_hw_igc, OID_AUTO, sbp, CTLFLAG_RDTUN, &igc_debug_sbp, 0,
257     "Show bad packets in promiscuous mode");
258 
259 /* Energy efficient ethernet - default to OFF */
260 static int igc_eee_setting = 1;
261 SYSCTL_INT(_hw_igc, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &igc_eee_setting, 0,
262     "Enable Energy Efficient Ethernet");
263 
264 /*
265  * AIM: Adaptive Interrupt Moderation
266  * which means that the interrupt rate is varied over time based on the
267  * traffic for that interrupt vector
268  */
269 static int igc_enable_aim = 1;
270 SYSCTL_INT(_hw_igc, OID_AUTO, enable_aim, CTLFLAG_RWTUN, &igc_enable_aim,
271     0, "Enable adaptive interrupt moderation (1=normal, 2=lowlatency)");
272 
273 /*
274 ** Tuneable Interrupt rate
275 */
276 static int igc_max_interrupt_rate = IGC_INTS_DEFAULT;
277 SYSCTL_INT(_hw_igc, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
278     &igc_max_interrupt_rate, 0, "Maximum interrupts per second");
279 
280 extern struct if_txrx igc_txrx;
281 
282 static struct if_shared_ctx igc_sctx_init = {
283 	.isc_magic = IFLIB_MAGIC,
284 	.isc_q_align = PAGE_SIZE,
285 	.isc_tx_maxsize = IGC_TSO_SIZE + sizeof(struct ether_vlan_header),
286 	.isc_tx_maxsegsize = PAGE_SIZE,
287 	.isc_tso_maxsize = IGC_TSO_SIZE + sizeof(struct ether_vlan_header),
288 	.isc_tso_maxsegsize = IGC_TSO_SEG_SIZE,
289 	.isc_rx_maxsize = MAX_JUMBO_FRAME_SIZE,
290 	.isc_rx_nsegments = 1,
291 	.isc_rx_maxsegsize = MJUM9BYTES,
292 	.isc_nfl = 1,
293 	.isc_nrxqs = 1,
294 	.isc_ntxqs = 1,
295 	.isc_admin_intrcnt = 1,
296 	.isc_vendor_info = igc_vendor_info_array,
297 	.isc_driver_version = "1",
298 	.isc_driver = &igc_if_driver,
299 	.isc_flags =
300 	    IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
301 
302 	.isc_nrxd_min = {IGC_MIN_RXD},
303 	.isc_ntxd_min = {IGC_MIN_TXD},
304 	.isc_nrxd_max = {IGC_MAX_RXD},
305 	.isc_ntxd_max = {IGC_MAX_TXD},
306 	.isc_nrxd_default = {IGC_DEFAULT_RXD},
307 	.isc_ntxd_default = {IGC_DEFAULT_TXD},
308 };
309 
310 /*****************************************************************
311  *
312  * Dump Registers
313  *
314  ****************************************************************/
315 #define IGC_REGS_LEN 739
316 
317 static int igc_get_regs(SYSCTL_HANDLER_ARGS)
318 {
319 	struct igc_softc *sc = (struct igc_softc *)arg1;
320 	struct igc_hw *hw = &sc->hw;
321 	struct sbuf *sb;
322 	u32 *regs_buff;
323 	int rc;
324 
325 	regs_buff = malloc(sizeof(u32) * IGC_REGS_LEN, M_DEVBUF, M_WAITOK);
326 	memset(regs_buff, 0, IGC_REGS_LEN * sizeof(u32));
327 
328 	rc = sysctl_wire_old_buffer(req, 0);
329 	MPASS(rc == 0);
330 	if (rc != 0) {
331 		free(regs_buff, M_DEVBUF);
332 		return (rc);
333 	}
334 
335 	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
336 	MPASS(sb != NULL);
337 	if (sb == NULL) {
338 		free(regs_buff, M_DEVBUF);
339 		return (ENOMEM);
340 	}
341 
342 	/* General Registers */
343 	regs_buff[0] = IGC_READ_REG(hw, IGC_CTRL);
344 	regs_buff[1] = IGC_READ_REG(hw, IGC_STATUS);
345 	regs_buff[2] = IGC_READ_REG(hw, IGC_CTRL_EXT);
346 	regs_buff[3] = IGC_READ_REG(hw, IGC_ICR);
347 	regs_buff[4] = IGC_READ_REG(hw, IGC_RCTL);
348 	regs_buff[5] = IGC_READ_REG(hw, IGC_RDLEN(0));
349 	regs_buff[6] = IGC_READ_REG(hw, IGC_RDH(0));
350 	regs_buff[7] = IGC_READ_REG(hw, IGC_RDT(0));
351 	regs_buff[8] = IGC_READ_REG(hw, IGC_RXDCTL(0));
352 	regs_buff[9] = IGC_READ_REG(hw, IGC_RDBAL(0));
353 	regs_buff[10] = IGC_READ_REG(hw, IGC_RDBAH(0));
354 	regs_buff[11] = IGC_READ_REG(hw, IGC_TCTL);
355 	regs_buff[12] = IGC_READ_REG(hw, IGC_TDBAL(0));
356 	regs_buff[13] = IGC_READ_REG(hw, IGC_TDBAH(0));
357 	regs_buff[14] = IGC_READ_REG(hw, IGC_TDLEN(0));
358 	regs_buff[15] = IGC_READ_REG(hw, IGC_TDH(0));
359 	regs_buff[16] = IGC_READ_REG(hw, IGC_TDT(0));
360 	regs_buff[17] = IGC_READ_REG(hw, IGC_TXDCTL(0));
361 
362 	sbuf_printf(sb, "General Registers\n");
363 	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
364 	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
365 	sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
366 
367 	sbuf_printf(sb, "Interrupt Registers\n");
368 	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
369 
370 	sbuf_printf(sb, "RX Registers\n");
371 	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
372 	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
373 	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
374 	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
375 	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
376 	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
377 	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
378 
379 	sbuf_printf(sb, "TX Registers\n");
380 	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
381 	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
382 	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
383 	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
384 	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
385 	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
386 	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
387 	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
388 	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
389 	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
390 	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
391 
392 	free(regs_buff, M_DEVBUF);
393 
394 #ifdef DUMP_DESCS
395 	{
396 		if_softc_ctx_t scctx = sc->shared;
397 		struct rx_ring *rxr = &rx_que->rxr;
398 		struct tx_ring *txr = &tx_que->txr;
399 		int ntxd = scctx->isc_ntxd[0];
400 		int nrxd = scctx->isc_nrxd[0];
401 		int j;
402 
403 	for (j = 0; j < nrxd; j++) {
404 		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
405 		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
406 		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08"
407 		    PRIx64 "  Error:%d  Length:%d\n",
408 		    j, rxr->rx_base[j].read.buffer_addr, staterr, length);
409 	}
410 
411 	for (j = 0; j < min(ntxd, 256); j++) {
412 		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
413 
414 		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x"
415 		    "[3]: %08x  eop: %d DD=%d\n",
416 		    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
417 		    buf->eop != -1 ?
418 		    txr->tx_base[buf->eop].upper.fields.status &
419 		    IGC_TXD_STAT_DD : 0);
420 
421 	}
422 	}
423 #endif
424 
425 	rc = sbuf_finish(sb);
426 	sbuf_delete(sb);
427 	return(rc);
428 }
429 
430 static void *
431 igc_register(device_t dev)
432 {
433 	return (&igc_sctx_init);
434 }
435 
436 static int
437 igc_set_num_queues(if_ctx_t ctx)
438 {
439 	int maxqueues;
440 
441 	maxqueues = 4;
442 
443 	return (maxqueues);
444 }
445 
446 #define	IGC_CAPS							\
447     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |		\
448     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_TSO4 | IFCAP_LRO |		\
449     IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | IFCAP_TSO6
450 
451 /*********************************************************************
452  *  Device initialization routine
453  *
454  *  The attach entry point is called when the driver is being loaded.
455  *  This routine identifies the type of hardware, allocates all resources
456  *  and initializes the hardware.
457  *
458  *  return 0 on success, positive on failure
459  *********************************************************************/
460 static int
461 igc_if_attach_pre(if_ctx_t ctx)
462 {
463 	struct igc_softc *sc;
464 	if_softc_ctx_t scctx;
465 	device_t dev;
466 	struct igc_hw *hw;
467 	int error = 0;
468 
469 	INIT_DEBUGOUT("igc_if_attach_pre: begin");
470 	dev = iflib_get_dev(ctx);
471 	sc = iflib_get_softc(ctx);
472 
473 	sc->ctx = sc->osdep.ctx = ctx;
474 	sc->dev = sc->osdep.dev = dev;
475 	scctx = sc->shared = iflib_get_softc_ctx(ctx);
476 	sc->media = iflib_get_media(ctx);
477 	hw = &sc->hw;
478 
479 	/* SYSCTL stuff */
480 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
481 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
482 	    OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
483 	    sc, 0, igc_sysctl_nvm_info, "I", "NVM Information");
484 
485 	sc->enable_aim = igc_enable_aim;
486 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
487 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
488 	    OID_AUTO, "enable_aim", CTLFLAG_RW,
489 	    &sc->enable_aim, 0,
490 	    "Interrupt Moderation (1=normal, 2=lowlatency)");
491 
492 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
493 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
494 	    OID_AUTO, "fw_version", CTLTYPE_STRING | CTLFLAG_RD,
495 	    sc, 0, igc_sysctl_print_fw_version, "A",
496 	    "Prints FW/NVM Versions");
497 
498 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
499 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
500 	    OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
501 	    sc, 0, igc_sysctl_debug_info, "I", "Debug Information");
502 
503 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
504 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
505 	    OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
506 	    sc, 0, igc_set_flowcntl, "I", "Flow Control");
507 
508 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
509 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
510 	    OID_AUTO, "reg_dump",
511 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
512 	    igc_get_regs, "A", "Dump Registers");
513 
514 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
515 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
516 	    OID_AUTO, "rs_dump",
517 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
518 	    igc_get_rs, "I", "Dump RS indexes");
519 
520 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
521 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
522 	    OID_AUTO, "dmac",
523 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0,
524 	    igc_sysctl_dmac, "I", "DMA Coalesce");
525 
526 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
527 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
528 	    OID_AUTO, "tso_tcp_flags_mask_first_segment",
529 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
530 	    sc, 0, igc_sysctl_tso_tcp_flags_mask, "IU",
531 	    "TSO TCP flags mask for first segment");
532 
533 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
534 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
535 	    OID_AUTO, "tso_tcp_flags_mask_middle_segment",
536 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
537 	    sc, 1, igc_sysctl_tso_tcp_flags_mask, "IU",
538 	    "TSO TCP flags mask for middle segment");
539 
540 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
541 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
542 	    OID_AUTO, "tso_tcp_flags_mask_last_segment",
543 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
544 	    sc, 2, igc_sysctl_tso_tcp_flags_mask, "IU",
545 	    "TSO TCP flags mask for last segment");
546 
547 	/* Determine hardware and mac info */
548 	igc_identify_hardware(ctx);
549 
550 	scctx->isc_tx_nsegments = IGC_MAX_SCATTER;
551 	scctx->isc_nrxqsets_max =
552 	    scctx->isc_ntxqsets_max = igc_set_num_queues(ctx);
553 	if (bootverbose)
554 		device_printf(dev, "attach_pre capping queues at %d\n",
555 		    scctx->isc_ntxqsets_max);
556 
557 	scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
558 	    sizeof(union igc_adv_tx_desc), IGC_DBA_ALIGN);
559 	scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
560 	    sizeof(union igc_adv_rx_desc), IGC_DBA_ALIGN);
561 	scctx->isc_txd_size[0] = sizeof(union igc_adv_tx_desc);
562 	scctx->isc_rxd_size[0] = sizeof(union igc_adv_rx_desc);
563 	scctx->isc_txrx = &igc_txrx;
564 	scctx->isc_tx_tso_segments_max = IGC_MAX_SCATTER;
565 	scctx->isc_tx_tso_size_max = IGC_TSO_SIZE;
566 	scctx->isc_tx_tso_segsize_max = IGC_TSO_SEG_SIZE;
567 	scctx->isc_capabilities = scctx->isc_capenable = IGC_CAPS;
568 	scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
569 		CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_SCTP | CSUM_IP6_SCTP;
570 
571 	/*
572 	** Some new devices, as with ixgbe, now may
573 	** use a different BAR, so we need to keep
574 	** track of which is used.
575 	*/
576 	scctx->isc_msix_bar = PCIR_BAR(IGC_MSIX_BAR);
577 	if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0)
578 		scctx->isc_msix_bar += 4;
579 
580 	/* Setup PCI resources */
581 	if (igc_allocate_pci_resources(ctx)) {
582 		device_printf(dev, "Allocation of PCI resources failed\n");
583 		error = ENXIO;
584 		goto err_pci;
585 	}
586 
587 	/* Do Shared Code initialization */
588 	error = igc_setup_init_funcs(hw, true);
589 	if (error) {
590 		device_printf(dev, "Setup of Shared code failed, error %d\n",
591 		    error);
592 		error = ENXIO;
593 		goto err_pci;
594 	}
595 
596 	igc_setup_msix(ctx);
597 	igc_get_bus_info(hw);
598 
599 	hw->mac.autoneg = DO_AUTO_NEG;
600 	hw->phy.autoneg_wait_to_complete = false;
601 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
602 
603 	/* Copper options */
604 	if (hw->phy.media_type == igc_media_type_copper) {
605 		hw->phy.mdix = AUTO_ALL_MODES;
606 	}
607 
608 	/*
609 	 * Set the frame limits assuming
610 	 * standard ethernet sized frames.
611 	 */
612 	scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
613 	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
614 
615 	/* Allocate multicast array memory. */
616 	sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
617 	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
618 	if (sc->mta == NULL) {
619 		device_printf(dev,
620 		    "Can not allocate multicast setup array\n");
621 		error = ENOMEM;
622 		goto err_late;
623 	}
624 
625 	/* Check SOL/IDER usage */
626 	if (igc_check_reset_block(hw))
627 		device_printf(dev, "PHY reset is blocked"
628 			      " due to SOL/IDER session.\n");
629 
630 	/* Sysctl for setting Energy Efficient Ethernet */
631 	sc->hw.dev_spec._i225.eee_disable = igc_eee_setting;
632 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
633 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
634 	    OID_AUTO, "eee_control",
635 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
636 	    sc, 0, igc_sysctl_eee, "I",
637 	    "Disable Energy Efficient Ethernet");
638 
639 	/*
640 	** Start from a known state, this is
641 	** important in reading the nvm and
642 	** mac from that.
643 	*/
644 	igc_reset_hw(hw);
645 
646 	/* Make sure we have a good EEPROM before we read from it */
647 	if (igc_validate_nvm_checksum(hw) < 0) {
648 		/*
649 		** Some PCI-E parts fail the first check due to
650 		** the link being in sleep state, call it again,
651 		** if it fails a second time its a real issue.
652 		*/
653 		if (igc_validate_nvm_checksum(hw) < 0) {
654 			device_printf(dev,
655 			    "The EEPROM Checksum Is Not Valid\n");
656 			error = EIO;
657 			goto err_late;
658 		}
659 	}
660 
661 	/* Copy the permanent MAC address out of the EEPROM */
662 	if (igc_read_mac_addr(hw) < 0) {
663 		device_printf(dev, "EEPROM read error while reading MAC"
664 		    " address\n");
665 		error = EIO;
666 		goto err_late;
667 	}
668 
669 	if (!igc_is_valid_ether_addr(hw->mac.addr)) {
670 		device_printf(dev, "Invalid MAC address\n");
671 		error = EIO;
672 		goto err_late;
673 	}
674 
675 	/* Save the EEPROM/NVM versions */
676 	igc_fw_version(sc);
677 
678 	igc_print_fw_version(sc);
679 
680 	/*
681 	 * Get Wake-on-Lan and Management info for later use
682 	 */
683 	igc_get_wakeup(ctx);
684 
685 	/* Enable only WOL MAGIC by default */
686 	scctx->isc_capenable &= ~IFCAP_WOL;
687 	if (sc->wol != 0)
688 		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
689 
690 	iflib_set_mac(ctx, hw->mac.addr);
691 
692 	return (0);
693 
694 err_late:
695 	igc_release_hw_control(sc);
696 err_pci:
697 	igc_free_pci_resources(ctx);
698 	free(sc->mta, M_DEVBUF);
699 
700 	return (error);
701 }
702 
703 static int
704 igc_if_attach_post(if_ctx_t ctx)
705 {
706 	struct igc_softc *sc = iflib_get_softc(ctx);
707 	struct igc_hw *hw = &sc->hw;
708 	int error = 0;
709 
710 	/* Setup OS specific network interface */
711 	error = igc_setup_interface(ctx);
712 	if (error != 0) {
713 		goto err_late;
714 	}
715 
716 	igc_reset(ctx);
717 
718 	/* Initialize statistics */
719 	igc_update_stats_counters(sc);
720 	hw->mac.get_link_status = true;
721 	igc_if_update_admin_status(ctx);
722 	igc_add_hw_stats(sc);
723 
724 	/* the driver can now take control from firmware */
725 	igc_get_hw_control(sc);
726 
727 	INIT_DEBUGOUT("igc_if_attach_post: end");
728 
729 	return (error);
730 
731 err_late:
732 	igc_release_hw_control(sc);
733 	igc_free_pci_resources(ctx);
734 	igc_if_queues_free(ctx);
735 	free(sc->mta, M_DEVBUF);
736 
737 	return (error);
738 }
739 
740 /*********************************************************************
741  *  Device removal routine
742  *
743  *  The detach entry point is called when the driver is being removed.
744  *  This routine stops the adapter and deallocates all the resources
745  *  that were allocated for driver operation.
746  *
747  *  return 0 on success, positive on failure
748  *********************************************************************/
749 static int
750 igc_if_detach(if_ctx_t ctx)
751 {
752 	struct igc_softc	*sc = iflib_get_softc(ctx);
753 
754 	INIT_DEBUGOUT("igc_if_detach: begin");
755 
756 	igc_phy_hw_reset(&sc->hw);
757 
758 	igc_release_hw_control(sc);
759 	igc_free_pci_resources(ctx);
760 
761 	return (0);
762 }
763 
764 /*********************************************************************
765  *
766  *  Shutdown entry point
767  *
768  **********************************************************************/
769 
770 static int
771 igc_if_shutdown(if_ctx_t ctx)
772 {
773 	return igc_if_suspend(ctx);
774 }
775 
776 /*
777  * Suspend/resume device methods.
778  */
779 static int
780 igc_if_suspend(if_ctx_t ctx)
781 {
782 	struct igc_softc *sc = iflib_get_softc(ctx);
783 
784 	igc_release_hw_control(sc);
785 	igc_enable_wakeup(ctx);
786 	return (0);
787 }
788 
789 static int
790 igc_if_resume(if_ctx_t ctx)
791 {
792 	igc_if_init(ctx);
793 
794 	return(0);
795 }
796 
797 static int
798 igc_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
799 {
800 	int max_frame_size;
801 	struct igc_softc *sc = iflib_get_softc(ctx);
802 	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
803 
804 	IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
805 
806 	 /* 9K Jumbo Frame size */
807 	 max_frame_size = 9234;
808 
809 	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
810 		return (EINVAL);
811 	}
812 
813 	scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
814 	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
815 	return (0);
816 }
817 
818 /*********************************************************************
819  *  Init entry point
820  *
821  *  This routine is used in two ways. It is used by the stack as
822  *  init entry point in network interface structure. It is also used
823  *  by the driver as a hw/sw initialization routine to get to a
824  *  consistent state.
825  *
826  **********************************************************************/
827 static void
828 igc_if_init(if_ctx_t ctx)
829 {
830 	struct igc_softc *sc = iflib_get_softc(ctx);
831 	if_softc_ctx_t scctx = sc->shared;
832 	if_t ifp = iflib_get_ifp(ctx);
833 	struct igc_tx_queue *tx_que;
834 	int i;
835 
836 	INIT_DEBUGOUT("igc_if_init: begin");
837 
838 	/* Get the latest mac address, User can use a LAA */
839 	bcopy(if_getlladdr(ifp), sc->hw.mac.addr,
840 	    ETHER_ADDR_LEN);
841 
842 	/* Put the address into the Receive Address Array */
843 	igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
844 
845 	/* Initialize the hardware */
846 	igc_reset(ctx);
847 	igc_if_update_admin_status(ctx);
848 
849 	for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues;
850 	    i++, tx_que++) {
851 		struct tx_ring *txr = &tx_que->txr;
852 
853 		txr->tx_rs_cidx = txr->tx_rs_pidx;
854 
855 		/* Initialize the last processed descriptor to be the end of
856 		 * the ring, rather than the start, so that we avoid an
857 		 * off-by-one error when calculating how many descriptors are
858 		 * done in the credits_update function.
859 		 */
860 		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
861 	}
862 
863 	/* Setup VLAN support, basic and offload if available */
864 	IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
865 
866 	/* Prepare transmit descriptors and buffers */
867 	igc_initialize_transmit_unit(ctx);
868 
869 	/* Setup Multicast table */
870 	igc_if_multi_set(ctx);
871 
872 	sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
873 	igc_initialize_receive_unit(ctx);
874 
875 	/* Set up VLAN support */
876 	igc_setup_vlan_hw_support(ctx);
877 
878 	/* Don't lose promiscuous settings */
879 	igc_if_set_promisc(ctx, if_getflags(ifp));
880 	igc_clear_hw_cntrs_base_generic(&sc->hw);
881 
882 	if (sc->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
883 		igc_configure_queues(sc);
884 
885 	/* this clears any pending interrupts */
886 	IGC_READ_REG(&sc->hw, IGC_ICR);
887 	IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
888 
889 	/* the driver can now take control from firmware */
890 	igc_get_hw_control(sc);
891 
892 	/* Set Energy Efficient Ethernet */
893 	igc_set_eee_i225(&sc->hw, true, true, true);
894 }
895 
896 enum eitr_latency_target {
897 	eitr_latency_disabled = 0,
898 	eitr_latency_lowest = 1,
899 	eitr_latency_low = 2,
900 	eitr_latency_bulk = 3
901 };
902 /*********************************************************************
903  *
904  *  Helper to calculate next EITR value for AIM
905  *
906  *********************************************************************/
907 static void
908 igc_neweitr(struct igc_softc *sc, struct igc_rx_queue *que,
909     struct tx_ring *txr, struct rx_ring *rxr)
910 {
911 	struct igc_hw *hw = &sc->hw;
912 	u32 neweitr;
913 	u32 bytes;
914 	u32 bytes_packets;
915 	u32 packets;
916 	u8 nextlatency;
917 
918 	/* Idle, do nothing */
919 	if ((txr->tx_bytes == 0) && (rxr->rx_bytes == 0))
920 		return;
921 
922 	neweitr = 0;
923 
924 	if (sc->enable_aim) {
925 		nextlatency = rxr->rx_nextlatency;
926 
927 		/* Use half default (4K) ITR if sub-gig */
928 		if (sc->link_speed < 1000) {
929 			neweitr = IGC_INTS_4K;
930 			goto igc_set_next_eitr;
931 		}
932 		/* Want at least enough packet buffer for two frames to AIM */
933 		if (sc->shared->isc_max_frame_size * 2 > (sc->pba << 10)) {
934 			neweitr = igc_max_interrupt_rate;
935 			sc->enable_aim = 0;
936 			goto igc_set_next_eitr;
937 		}
938 
939 		/* Get largest values from the associated tx and rx ring */
940 		if (txr->tx_bytes && txr->tx_packets) {
941 			bytes = txr->tx_bytes;
942 			bytes_packets = txr->tx_bytes/txr->tx_packets;
943 			packets = txr->tx_packets;
944 		}
945 		if (rxr->rx_bytes && rxr->rx_packets) {
946 			bytes = max(bytes, rxr->rx_bytes);
947 			bytes_packets = max(bytes_packets,
948 			    rxr->rx_bytes/rxr->rx_packets);
949 			packets = max(packets, rxr->rx_packets);
950 		}
951 
952 		/* Latency state machine */
953 		switch (nextlatency) {
954 		case eitr_latency_disabled: /* Bootstrapping */
955 			nextlatency = eitr_latency_low;
956 			break;
957 		case eitr_latency_lowest: /* 70k ints/s */
958 			/* TSO and jumbo frames */
959 			if (bytes_packets > 8000)
960 				nextlatency = eitr_latency_bulk;
961 			else if ((packets < 5) && (bytes > 512))
962 				nextlatency = eitr_latency_low;
963 			break;
964 		case eitr_latency_low: /* 20k ints/s */
965 			if (bytes > 10000) {
966 				/* Handle TSO */
967 				if (bytes_packets > 8000)
968 					nextlatency = eitr_latency_bulk;
969 				else if ((packets < 10) ||
970 				    (bytes_packets > 1200))
971 					nextlatency = eitr_latency_bulk;
972 				else if (packets > 35)
973 					nextlatency = eitr_latency_lowest;
974 			} else if (bytes_packets > 2000) {
975 				nextlatency = eitr_latency_bulk;
976 			} else if (packets < 3 && bytes < 512) {
977 				nextlatency = eitr_latency_lowest;
978 			}
979 			break;
980 		case eitr_latency_bulk: /* 4k ints/s */
981 			if (bytes > 25000) {
982 				if (packets > 35)
983 					nextlatency = eitr_latency_low;
984 			} else if (bytes < 1500)
985 				nextlatency = eitr_latency_low;
986 			break;
987 		default:
988 			nextlatency = eitr_latency_low;
989 			device_printf(sc->dev,
990 			    "Unexpected neweitr transition %d\n",
991 			    nextlatency);
992 			break;
993 		}
994 
995 		/* Trim itr_latency_lowest for default AIM setting */
996 		if (sc->enable_aim == 1 && nextlatency == eitr_latency_lowest)
997 			nextlatency = eitr_latency_low;
998 
999 		/* Request new latency */
1000 		rxr->rx_nextlatency = nextlatency;
1001 	} else {
1002 		/* We may have toggled to AIM disabled */
1003 		nextlatency = eitr_latency_disabled;
1004 		rxr->rx_nextlatency = nextlatency;
1005 	}
1006 
1007 	/* ITR state machine */
1008 	switch(nextlatency) {
1009 	case eitr_latency_lowest:
1010 		neweitr = IGC_INTS_70K;
1011 		break;
1012 	case eitr_latency_low:
1013 		neweitr = IGC_INTS_20K;
1014 		break;
1015 	case eitr_latency_bulk:
1016 		neweitr = IGC_INTS_4K;
1017 		break;
1018 	case eitr_latency_disabled:
1019 	default:
1020 		neweitr = igc_max_interrupt_rate;
1021 		break;
1022 	}
1023 
1024 igc_set_next_eitr:
1025 	neweitr = IGC_INTS_TO_EITR(neweitr);
1026 
1027 	neweitr |= IGC_EITR_CNT_IGNR;
1028 
1029 	if (neweitr != que->eitr_setting) {
1030 		que->eitr_setting = neweitr;
1031 		IGC_WRITE_REG(hw, IGC_EITR(que->msix), que->eitr_setting);
1032 	}
1033 }
1034 
1035 /*********************************************************************
1036  *
1037  *  Fast Legacy/MSI Combined Interrupt Service routine
1038  *
1039  *********************************************************************/
1040 int
1041 igc_intr(void *arg)
1042 {
1043 	struct igc_softc *sc = arg;
1044 	struct igc_hw *hw = &sc->hw;
1045 	struct igc_rx_queue *que = &sc->rx_queues[0];
1046 	struct tx_ring *txr = &sc->tx_queues[0].txr;
1047 	struct rx_ring *rxr = &que->rxr;
1048 	if_ctx_t ctx = sc->ctx;
1049 	u32 reg_icr;
1050 
1051 	reg_icr = IGC_READ_REG(hw, IGC_ICR);
1052 
1053 	/* Hot eject? */
1054 	if (reg_icr == 0xffffffff)
1055 		return FILTER_STRAY;
1056 
1057 	/* Definitely not our interrupt. */
1058 	if (reg_icr == 0x0)
1059 		return FILTER_STRAY;
1060 
1061 	if ((reg_icr & IGC_ICR_INT_ASSERTED) == 0)
1062 		return FILTER_STRAY;
1063 
1064 	/*
1065 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1066 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1067 	 * also works around the MSI message reordering errata on certain
1068 	 * systems.
1069 	 */
1070 	IFDI_INTR_DISABLE(ctx);
1071 
1072 	/* Link status change */
1073 	if (reg_icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC))
1074 		igc_handle_link(ctx);
1075 
1076 	if (reg_icr & IGC_ICR_RXO)
1077 		sc->rx_overruns++;
1078 
1079 	igc_neweitr(sc, que, txr, rxr);
1080 
1081 	/* Reset state */
1082 	txr->tx_bytes = 0;
1083 	txr->tx_packets = 0;
1084 	rxr->rx_bytes = 0;
1085 	rxr->rx_packets = 0;
1086 
1087 	return (FILTER_SCHEDULE_THREAD);
1088 }
1089 
1090 static int
1091 igc_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1092 {
1093 	struct igc_softc *sc = iflib_get_softc(ctx);
1094 	struct igc_rx_queue *rxq = &sc->rx_queues[rxqid];
1095 
1096 	IGC_WRITE_REG(&sc->hw, IGC_EIMS, rxq->eims);
1097 	return (0);
1098 }
1099 
1100 static int
1101 igc_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1102 {
1103 	struct igc_softc *sc = iflib_get_softc(ctx);
1104 	struct igc_tx_queue *txq = &sc->tx_queues[txqid];
1105 
1106 	IGC_WRITE_REG(&sc->hw, IGC_EIMS, txq->eims);
1107 	return (0);
1108 }
1109 
1110 /*********************************************************************
1111  *
1112  *  MSI-X RX Interrupt Service routine
1113  *
1114  **********************************************************************/
1115 static int
1116 igc_msix_que(void *arg)
1117 {
1118 	struct igc_rx_queue *que = arg;
1119 	struct igc_softc *sc = que->sc;
1120 	struct tx_ring *txr = &sc->tx_queues[que->msix].txr;
1121 	struct rx_ring *rxr = &que->rxr;
1122 
1123 	++que->irqs;
1124 
1125 	igc_neweitr(sc, que, txr, rxr);
1126 
1127 	/* Reset state */
1128 	txr->tx_bytes = 0;
1129 	txr->tx_packets = 0;
1130 	rxr->rx_bytes = 0;
1131 	rxr->rx_packets = 0;
1132 
1133 	return (FILTER_SCHEDULE_THREAD);
1134 }
1135 
1136 /*********************************************************************
1137  *
1138  *  MSI-X Link Fast Interrupt Service routine
1139  *
1140  **********************************************************************/
1141 static int
1142 igc_msix_link(void *arg)
1143 {
1144 	struct igc_softc *sc = arg;
1145 	u32 reg_icr;
1146 
1147 	++sc->link_irq;
1148 	MPASS(sc->hw.back != NULL);
1149 	reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
1150 
1151 	if (reg_icr & IGC_ICR_RXO)
1152 		sc->rx_overruns++;
1153 
1154 	if (reg_icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
1155 		igc_handle_link(sc->ctx);
1156 	}
1157 
1158 	IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
1159 	IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->link_mask);
1160 
1161 	return (FILTER_HANDLED);
1162 }
1163 
1164 static void
1165 igc_handle_link(void *context)
1166 {
1167 	if_ctx_t ctx = context;
1168 	struct igc_softc *sc = iflib_get_softc(ctx);
1169 
1170 	sc->hw.mac.get_link_status = true;
1171 	iflib_admin_intr_deferred(ctx);
1172 }
1173 
1174 /*********************************************************************
1175  *
1176  *  Media Ioctl callback
1177  *
1178  *  This routine is called whenever the user queries the status of
1179  *  the interface using ifconfig.
1180  *
1181  **********************************************************************/
1182 static void
1183 igc_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1184 {
1185 	struct igc_softc *sc = iflib_get_softc(ctx);
1186 
1187 	INIT_DEBUGOUT("igc_if_media_status: begin");
1188 
1189 	iflib_admin_intr_deferred(ctx);
1190 
1191 	ifmr->ifm_status = IFM_AVALID;
1192 	ifmr->ifm_active = IFM_ETHER;
1193 
1194 	if (!sc->link_active) {
1195 		return;
1196 	}
1197 
1198 	ifmr->ifm_status |= IFM_ACTIVE;
1199 
1200 	switch (sc->link_speed) {
1201 	case 10:
1202 		ifmr->ifm_active |= IFM_10_T;
1203 		break;
1204 	case 100:
1205 		ifmr->ifm_active |= IFM_100_TX;
1206 		break;
1207 	case 1000:
1208 		ifmr->ifm_active |= IFM_1000_T;
1209 		break;
1210 	case 2500:
1211 		ifmr->ifm_active |= IFM_2500_T;
1212 		break;
1213 	}
1214 
1215 	if (sc->link_duplex == FULL_DUPLEX)
1216 		ifmr->ifm_active |= IFM_FDX;
1217 	else
1218 		ifmr->ifm_active |= IFM_HDX;
1219 }
1220 
1221 /*********************************************************************
1222  *
1223  *  Media Ioctl callback
1224  *
1225  *  This routine is called when the user changes speed/duplex using
1226  *  media/mediopt option with ifconfig.
1227  *
1228  **********************************************************************/
1229 static int
1230 igc_if_media_change(if_ctx_t ctx)
1231 {
1232 	struct igc_softc *sc = iflib_get_softc(ctx);
1233 	struct ifmedia *ifm = iflib_get_media(ctx);
1234 
1235 	INIT_DEBUGOUT("igc_if_media_change: begin");
1236 
1237 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1238 		return (EINVAL);
1239 
1240 	sc->hw.mac.autoneg = DO_AUTO_NEG;
1241 
1242 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1243 	case IFM_AUTO:
1244 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1245 		break;
1246 	case IFM_2500_T:
1247 		sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
1248 		break;
1249 	case IFM_1000_T:
1250 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1251 		break;
1252 	case IFM_100_TX:
1253 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1254 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
1255 		else
1256 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
1257 		break;
1258 	case IFM_10_T:
1259 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1260 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
1261 		else
1262 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
1263 		break;
1264 	default:
1265 		device_printf(sc->dev, "Unsupported media type\n");
1266 	}
1267 
1268 	igc_if_init(ctx);
1269 
1270 	return (0);
1271 }
1272 
1273 static int
1274 igc_if_set_promisc(if_ctx_t ctx, int flags)
1275 {
1276 	struct igc_softc *sc = iflib_get_softc(ctx);
1277 	if_t ifp = iflib_get_ifp(ctx);
1278 	u32 reg_rctl;
1279 	int mcnt = 0;
1280 
1281 	reg_rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
1282 	reg_rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_UPE);
1283 	if (flags & IFF_ALLMULTI)
1284 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1285 	else
1286 		mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES);
1287 
1288 	/* Don't disable if in MAX groups */
1289 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1290 		reg_rctl &=  (~IGC_RCTL_MPE);
1291 	IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
1292 
1293 	if (flags & IFF_PROMISC) {
1294 		reg_rctl |= (IGC_RCTL_UPE | IGC_RCTL_MPE);
1295 		/* Turn this on if you want to see bad packets */
1296 		if (igc_debug_sbp)
1297 			reg_rctl |= IGC_RCTL_SBP;
1298 		IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
1299 	} else if (flags & IFF_ALLMULTI) {
1300 		reg_rctl |= IGC_RCTL_MPE;
1301 		reg_rctl &= ~IGC_RCTL_UPE;
1302 		IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
1303 	}
1304 	return (0);
1305 }
1306 
1307 static u_int
1308 igc_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
1309 {
1310 	u8 *mta = arg;
1311 
1312 	if (idx == MAX_NUM_MULTICAST_ADDRESSES)
1313 		return (0);
1314 
1315 	bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1316 
1317 	return (1);
1318 }
1319 
1320 /*********************************************************************
1321  *  Multicast Update
1322  *
1323  *  This routine is called whenever multicast address list is updated.
1324  *
1325  **********************************************************************/
1326 
1327 static void
1328 igc_if_multi_set(if_ctx_t ctx)
1329 {
1330 	struct igc_softc *sc = iflib_get_softc(ctx);
1331 	if_t ifp = iflib_get_ifp(ctx);
1332 	u8 *mta; /* Multicast array memory */
1333 	u32 reg_rctl = 0;
1334 	int mcnt = 0;
1335 
1336 	IOCTL_DEBUGOUT("igc_set_multi: begin");
1337 
1338 	mta = sc->mta;
1339 	bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1340 
1341 	mcnt = if_foreach_llmaddr(ifp, igc_copy_maddr, mta);
1342 
1343 	reg_rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
1344 
1345 	if (if_getflags(ifp) & IFF_PROMISC) {
1346 		reg_rctl |= (IGC_RCTL_UPE | IGC_RCTL_MPE);
1347 		/* Turn this on if you want to see bad packets */
1348 		if (igc_debug_sbp)
1349 			reg_rctl |= IGC_RCTL_SBP;
1350 	} else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
1351 		    if_getflags(ifp) & IFF_ALLMULTI) {
1352 		reg_rctl |= IGC_RCTL_MPE;
1353 		reg_rctl &= ~IGC_RCTL_UPE;
1354 	} else
1355 		reg_rctl &= ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
1356 
1357 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1358 		igc_update_mc_addr_list(&sc->hw, mta, mcnt);
1359 
1360 	IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
1361 }
1362 
1363 /*********************************************************************
1364  *  Timer routine
1365  *
1366  *  This routine schedules igc_if_update_admin_status() to check for
1367  *  link status and to gather statistics as well as to perform some
1368  *  controller-specific hardware patting.
1369  *
1370  **********************************************************************/
1371 static void
1372 igc_if_timer(if_ctx_t ctx, uint16_t qid)
1373 {
1374 
1375 	if (qid != 0)
1376 		return;
1377 
1378 	iflib_admin_intr_deferred(ctx);
1379 }
1380 
1381 static void
1382 igc_if_update_admin_status(if_ctx_t ctx)
1383 {
1384 	struct igc_softc *sc = iflib_get_softc(ctx);
1385 	struct igc_hw *hw = &sc->hw;
1386 	device_t dev = iflib_get_dev(ctx);
1387 	u32 link_check, thstat, ctrl;
1388 
1389 	link_check = thstat = ctrl = 0;
1390 	/* Get the cached link value or read phy for real */
1391 	switch (hw->phy.media_type) {
1392 	case igc_media_type_copper:
1393 		if (hw->mac.get_link_status == true) {
1394 			/* Do the work to read phy */
1395 			igc_check_for_link(hw);
1396 			link_check = !hw->mac.get_link_status;
1397 		} else
1398 			link_check = true;
1399 		break;
1400 	case igc_media_type_unknown:
1401 		igc_check_for_link(hw);
1402 		link_check = !hw->mac.get_link_status;
1403 		/* FALLTHROUGH */
1404 	default:
1405 		break;
1406 	}
1407 
1408 	/* Now check for a transition */
1409 	if (link_check && (sc->link_active == 0)) {
1410 		igc_get_speed_and_duplex(hw, &sc->link_speed,
1411 		    &sc->link_duplex);
1412 		if (bootverbose)
1413 			device_printf(dev, "Link is up %d Mbps %s\n",
1414 			    sc->link_speed,
1415 			    ((sc->link_duplex == FULL_DUPLEX) ?
1416 			    "Full Duplex" : "Half Duplex"));
1417 		sc->link_active = 1;
1418 		iflib_link_state_change(ctx, LINK_STATE_UP,
1419 		    IF_Mbps(sc->link_speed));
1420 	} else if (!link_check && (sc->link_active == 1)) {
1421 		sc->link_speed = 0;
1422 		sc->link_duplex = 0;
1423 		sc->link_active = 0;
1424 		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1425 	}
1426 	igc_update_stats_counters(sc);
1427 }
1428 
1429 static void
1430 igc_if_watchdog_reset(if_ctx_t ctx)
1431 {
1432 	struct igc_softc *sc = iflib_get_softc(ctx);
1433 
1434 	/*
1435 	 * Just count the event; iflib(4) will already trigger a
1436 	 * sufficient reset of the controller.
1437 	 */
1438 	sc->watchdog_events++;
1439 }
1440 
1441 /*********************************************************************
1442  *
1443  *  This routine disables all traffic on the adapter by issuing a
1444  *  global reset on the MAC.
1445  *
1446  **********************************************************************/
1447 static void
1448 igc_if_stop(if_ctx_t ctx)
1449 {
1450 	struct igc_softc *sc = iflib_get_softc(ctx);
1451 
1452 	INIT_DEBUGOUT("igc_if_stop: begin");
1453 
1454 	igc_reset_hw(&sc->hw);
1455 	IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
1456 }
1457 
1458 /*********************************************************************
1459  *
1460  *  Determine hardware revision.
1461  *
1462  **********************************************************************/
1463 static void
1464 igc_identify_hardware(if_ctx_t ctx)
1465 {
1466 	device_t dev = iflib_get_dev(ctx);
1467 	struct igc_softc *sc = iflib_get_softc(ctx);
1468 
1469 	/* Make sure our PCI config space has the necessary stuff set */
1470 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1471 
1472 	/* Save off the information about this board */
1473 	sc->hw.vendor_id = pci_get_vendor(dev);
1474 	sc->hw.device_id = pci_get_device(dev);
1475 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1476 	sc->hw.subsystem_vendor_id =
1477 	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1478 	sc->hw.subsystem_device_id =
1479 	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1480 
1481 	/* Do Shared Code Init and Setup */
1482 	if (igc_set_mac_type(&sc->hw)) {
1483 		device_printf(dev, "Setup init failure\n");
1484 		return;
1485 	}
1486 }
1487 
1488 static int
1489 igc_allocate_pci_resources(if_ctx_t ctx)
1490 {
1491 	struct igc_softc *sc = iflib_get_softc(ctx);
1492 	device_t dev = iflib_get_dev(ctx);
1493 	int rid;
1494 
1495 	rid = PCIR_BAR(0);
1496 	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1497 	    &rid, RF_ACTIVE);
1498 	if (sc->memory == NULL) {
1499 		device_printf(dev,
1500 		    "Unable to allocate bus resource: memory\n");
1501 		return (ENXIO);
1502 	}
1503 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
1504 	sc->osdep.mem_bus_space_handle =
1505 	    rman_get_bushandle(sc->memory);
1506 	sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
1507 
1508 	sc->hw.back = &sc->osdep;
1509 
1510 	return (0);
1511 }
1512 
1513 /*********************************************************************
1514  *
1515  *  Set up the MSI-X Interrupt handlers
1516  *
1517  **********************************************************************/
1518 static int
1519 igc_if_msix_intr_assign(if_ctx_t ctx, int msix)
1520 {
1521 	struct igc_softc *sc = iflib_get_softc(ctx);
1522 	struct igc_rx_queue *rx_que = sc->rx_queues;
1523 	struct igc_tx_queue *tx_que = sc->tx_queues;
1524 	int error, rid, i, vector = 0, rx_vectors;
1525 	char buf[16];
1526 
1527 	/* First set up ring resources */
1528 	for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
1529 		rid = vector + 1;
1530 		snprintf(buf, sizeof(buf), "rxq%d", i);
1531 		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid,
1532 		    IFLIB_INTR_RXTX, igc_msix_que, rx_que, rx_que->me, buf);
1533 		if (error) {
1534 			device_printf(iflib_get_dev(ctx),
1535 			    "Failed to allocate que int %d err: %d",
1536 			    i, error);
1537 			sc->rx_num_queues = i + 1;
1538 			goto fail;
1539 		}
1540 
1541 		rx_que->msix =  vector;
1542 
1543 		/*
1544 		 * Set the bit to enable interrupt
1545 		 * in IGC_IMS -- bits 20 and 21
1546 		 * are for RX0 and RX1, note this has
1547 		 * NOTHING to do with the MSI-X vector
1548 		 */
1549 		rx_que->eims = 1 << vector;
1550 	}
1551 	rx_vectors = vector;
1552 
1553 	vector = 0;
1554 	for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
1555 		snprintf(buf, sizeof(buf), "txq%d", i);
1556 		tx_que = &sc->tx_queues[i];
1557 		iflib_softirq_alloc_generic(ctx,
1558 		    &sc->rx_queues[i % sc->rx_num_queues].que_irq,
1559 		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
1560 
1561 		tx_que->msix = (vector % sc->rx_num_queues);
1562 
1563 		/*
1564 		 * Set the bit to enable interrupt
1565 		 * in IGC_IMS -- bits 22 and 23
1566 		 * are for TX0 and TX1, note this has
1567 		 * NOTHING to do with the MSI-X vector
1568 		 */
1569 		tx_que->eims = 1 << i;
1570 	}
1571 
1572 	/* Link interrupt */
1573 	rid = rx_vectors + 1;
1574 	error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN,
1575 	    igc_msix_link, sc, 0, "aq");
1576 
1577 	if (error) {
1578 		device_printf(iflib_get_dev(ctx),
1579 		    "Failed to register admin handler");
1580 		goto fail;
1581 	}
1582 	sc->linkvec = rx_vectors;
1583 	return (0);
1584 fail:
1585 	iflib_irq_free(ctx, &sc->irq);
1586 	rx_que = sc->rx_queues;
1587 	for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
1588 		iflib_irq_free(ctx, &rx_que->que_irq);
1589 	return (error);
1590 }
1591 
1592 static void
1593 igc_configure_queues(struct igc_softc *sc)
1594 {
1595 	struct igc_hw *hw = &sc->hw;
1596 	struct igc_rx_queue *rx_que;
1597 	struct igc_tx_queue *tx_que;
1598 	u32 ivar = 0, newitr = 0;
1599 
1600 	/* First turn on RSS capability */
1601 	IGC_WRITE_REG(hw, IGC_GPIE,
1602 	    IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME | IGC_GPIE_PBA |
1603 	    IGC_GPIE_NSICR);
1604 
1605 	/* Turn on MSI-X */
1606 	/* RX entries */
1607 	for (int i = 0; i < sc->rx_num_queues; i++) {
1608 		u32 index = i >> 1;
1609 		ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
1610 		rx_que = &sc->rx_queues[i];
1611 		if (i & 1) {
1612 			ivar &= 0xFF00FFFF;
1613 			ivar |= (rx_que->msix | IGC_IVAR_VALID) << 16;
1614 		} else {
1615 			ivar &= 0xFFFFFF00;
1616 			ivar |= rx_que->msix | IGC_IVAR_VALID;
1617 		}
1618 		IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
1619 	}
1620 	/* TX entries */
1621 	for (int i = 0; i < sc->tx_num_queues; i++) {
1622 		u32 index = i >> 1;
1623 		ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
1624 		tx_que = &sc->tx_queues[i];
1625 		if (i & 1) {
1626 			ivar &= 0x00FFFFFF;
1627 			ivar |= (tx_que->msix | IGC_IVAR_VALID) << 24;
1628 		} else {
1629 			ivar &= 0xFFFF00FF;
1630 			ivar |= (tx_que->msix | IGC_IVAR_VALID) << 8;
1631 		}
1632 		IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
1633 		sc->que_mask |= tx_que->eims;
1634 	}
1635 
1636 	/* And for the link interrupt */
1637 	ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
1638 	sc->link_mask = 1 << sc->linkvec;
1639 	IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
1640 
1641 	/* Set the starting interrupt rate */
1642 	if (igc_max_interrupt_rate > 0)
1643 		newitr = IGC_INTS_TO_EITR(igc_max_interrupt_rate);
1644 
1645 	newitr |= IGC_EITR_CNT_IGNR;
1646 
1647 	for (int i = 0; i < sc->rx_num_queues; i++) {
1648 		rx_que = &sc->rx_queues[i];
1649 		IGC_WRITE_REG(hw, IGC_EITR(rx_que->msix), newitr);
1650 	}
1651 
1652 	return;
1653 }
1654 
1655 static void
1656 igc_free_pci_resources(if_ctx_t ctx)
1657 {
1658 	struct igc_softc *sc = iflib_get_softc(ctx);
1659 	struct igc_rx_queue *que = sc->rx_queues;
1660 	device_t dev = iflib_get_dev(ctx);
1661 
1662 	/* Release all MSI-X queue resources */
1663 	if (sc->intr_type == IFLIB_INTR_MSIX)
1664 		iflib_irq_free(ctx, &sc->irq);
1665 
1666 	for (int i = 0; i < sc->rx_num_queues; i++, que++) {
1667 		iflib_irq_free(ctx, &que->que_irq);
1668 	}
1669 
1670 	if (sc->memory != NULL) {
1671 		bus_release_resource(dev, SYS_RES_MEMORY,
1672 		    rman_get_rid(sc->memory), sc->memory);
1673 		sc->memory = NULL;
1674 	}
1675 
1676 	if (sc->flash != NULL) {
1677 		bus_release_resource(dev, SYS_RES_MEMORY,
1678 		    rman_get_rid(sc->flash), sc->flash);
1679 		sc->flash = NULL;
1680 	}
1681 
1682 	if (sc->ioport != NULL) {
1683 		bus_release_resource(dev, SYS_RES_IOPORT,
1684 		    rman_get_rid(sc->ioport), sc->ioport);
1685 		sc->ioport = NULL;
1686 	}
1687 }
1688 
1689 /* Set up MSI or MSI-X */
1690 static int
1691 igc_setup_msix(if_ctx_t ctx)
1692 {
1693 	return (0);
1694 }
1695 
1696 /*********************************************************************
1697  *
1698  *  Initialize the DMA Coalescing feature
1699  *
1700  **********************************************************************/
1701 static void
1702 igc_init_dmac(struct igc_softc *sc, u32 pba)
1703 {
1704 	device_t dev = sc->dev;
1705 	struct igc_hw *hw = &sc->hw;
1706 	u32 dmac, reg = ~IGC_DMACR_DMAC_EN;
1707 	u16 hwm;
1708 	u16 max_frame_size;
1709 	int status;
1710 
1711 	max_frame_size = sc->shared->isc_max_frame_size;
1712 
1713 	if (sc->dmac == 0) { /* Disabling it */
1714 		IGC_WRITE_REG(hw, IGC_DMACR, reg);
1715 		return;
1716 	} else
1717 		device_printf(dev, "DMA Coalescing enabled\n");
1718 
1719 	/* Set starting threshold */
1720 	IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
1721 
1722 	hwm = 64 * pba - max_frame_size / 16;
1723 	if (hwm < 64 * (pba - 6))
1724 		hwm = 64 * (pba - 6);
1725 	reg = IGC_READ_REG(hw, IGC_FCRTC);
1726 	reg &= ~IGC_FCRTC_RTH_COAL_MASK;
1727 	reg |= ((hwm << IGC_FCRTC_RTH_COAL_SHIFT)
1728 		& IGC_FCRTC_RTH_COAL_MASK);
1729 	IGC_WRITE_REG(hw, IGC_FCRTC, reg);
1730 
1731 	dmac = pba - max_frame_size / 512;
1732 	if (dmac < pba - 10)
1733 		dmac = pba - 10;
1734 	reg = IGC_READ_REG(hw, IGC_DMACR);
1735 	reg &= ~IGC_DMACR_DMACTHR_MASK;
1736 	reg |= ((dmac << IGC_DMACR_DMACTHR_SHIFT)
1737 		& IGC_DMACR_DMACTHR_MASK);
1738 
1739 	/* transition to L0x or L1 if available..*/
1740 	reg |= (IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK);
1741 
1742 	/* Check if status is 2.5Gb backplane connection
1743 	 * before configuration of watchdog timer, which is
1744 	 * in msec values in 12.8usec intervals
1745 	 * watchdog timer= msec values in 32usec intervals
1746 	 * for non 2.5Gb connection
1747 	 */
1748 	status = IGC_READ_REG(hw, IGC_STATUS);
1749 	if ((status & IGC_STATUS_2P5_SKU) &&
1750 	    (!(status & IGC_STATUS_2P5_SKU_OVER)))
1751 		reg |= ((sc->dmac * 5) >> 6);
1752 	else
1753 		reg |= (sc->dmac >> 5);
1754 
1755 	IGC_WRITE_REG(hw, IGC_DMACR, reg);
1756 
1757 	IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
1758 
1759 	/* Set the interval before transition */
1760 	reg = IGC_READ_REG(hw, IGC_DMCTLX);
1761 	reg |= IGC_DMCTLX_DCFLUSH_DIS;
1762 
1763 	/*
1764 	** in 2.5Gb connection, TTLX unit is 0.4 usec
1765 	** which is 0x4*2 = 0xA. But delay is still 4 usec
1766 	*/
1767 	status = IGC_READ_REG(hw, IGC_STATUS);
1768 	if ((status & IGC_STATUS_2P5_SKU) &&
1769 	    (!(status & IGC_STATUS_2P5_SKU_OVER)))
1770 		reg |= 0xA;
1771 	else
1772 		reg |= 0x4;
1773 
1774 	IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
1775 
1776 	/* free space in tx packet buffer to wake from DMA coal */
1777 	IGC_WRITE_REG(hw, IGC_DMCTXTH, (IGC_TXPBSIZE -
1778 	    (2 * max_frame_size)) >> 6);
1779 
1780 	/* make low power state decision controlled by DMA coal */
1781 	reg = IGC_READ_REG(hw, IGC_PCIEMISC);
1782 	reg &= ~IGC_PCIEMISC_LX_DECISION;
1783 	IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
1784 }
1785 
1786 /*********************************************************************
1787  *
1788  *  Initialize the hardware to a configuration as specified by the
1789  *  softc structure.
1790  *
1791  **********************************************************************/
1792 static void
1793 igc_reset(if_ctx_t ctx)
1794 {
1795 	device_t dev = iflib_get_dev(ctx);
1796 	struct igc_softc *sc = iflib_get_softc(ctx);
1797 	struct igc_hw *hw = &sc->hw;
1798 	u32 rx_buffer_size;
1799 	u32 pba;
1800 
1801 	INIT_DEBUGOUT("igc_reset: begin");
1802 	/* Let the firmware know the OS is in control */
1803 	igc_get_hw_control(sc);
1804 
1805 	/*
1806 	 * Packet Buffer Allocation (PBA)
1807 	 * Writing PBA sets the receive portion of the buffer
1808 	 * the remainder is used for the transmit buffer.
1809 	 */
1810 	pba = IGC_PBA_34K;
1811 
1812 	INIT_DEBUGOUT1("igc_reset: pba=%dK",pba);
1813 
1814 	/*
1815 	 * These parameters control the automatic generation (Tx) and
1816 	 * response (Rx) to Ethernet PAUSE frames.
1817 	 * - High water mark should allow for at least two frames to be
1818 	 *   received after sending an XOFF.
1819 	 * - Low water mark works best when it is very near the high water
1820 	 *   mark.
1821 	 *   This allows the receiver to restart by sending XON when it has
1822 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
1823 	 *   restart after one full frame is pulled from the buffer. There
1824 	 *   could be several smaller frames in the buffer and if so they will
1825 	 *   not trigger the XON until their total number reduces the buffer
1826 	 *   by 1500.
1827 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1828 	 */
1829 	rx_buffer_size = (pba & 0xffff) << 10;
1830 	hw->fc.high_water = rx_buffer_size -
1831 	    roundup2(sc->hw.mac.max_frame_size, 1024);
1832 	/* 16-byte granularity */
1833 	hw->fc.low_water = hw->fc.high_water - 16;
1834 
1835 	if (sc->fc) /* locally set flow control value? */
1836 		hw->fc.requested_mode = sc->fc;
1837 	else
1838 		hw->fc.requested_mode = igc_fc_full;
1839 
1840 	hw->fc.pause_time = IGC_FC_PAUSE_TIME;
1841 
1842 	hw->fc.send_xon = true;
1843 
1844 	/* Issue a global reset */
1845 	igc_reset_hw(hw);
1846 	IGC_WRITE_REG(hw, IGC_WUC, 0);
1847 
1848 	/* and a re-init */
1849 	if (igc_init_hw(hw) < 0) {
1850 		device_printf(dev, "Hardware Initialization Failed\n");
1851 		return;
1852 	}
1853 
1854 	/* Setup DMA Coalescing */
1855 	igc_init_dmac(sc, pba);
1856 
1857 	/* Save the final PBA off if it needs to be used elsewhere i.e. AIM */
1858 	sc->pba = pba;
1859 
1860 	IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
1861 	igc_get_phy_info(hw);
1862 	igc_check_for_link(hw);
1863 }
1864 
1865 /*
1866  * Initialise the RSS mapping for NICs that support multiple transmit/
1867  * receive rings.
1868  */
1869 
1870 #define RSSKEYLEN 10
1871 static void
1872 igc_initialize_rss_mapping(struct igc_softc *sc)
1873 {
1874 	struct igc_hw *hw = &sc->hw;
1875 	int i;
1876 	int queue_id;
1877 	u32 reta;
1878 	u32 rss_key[RSSKEYLEN], mrqc, shift = 0;
1879 
1880 	/*
1881 	 * The redirection table controls which destination
1882 	 * queue each bucket redirects traffic to.
1883 	 * Each DWORD represents four queues, with the LSB
1884 	 * being the first queue in the DWORD.
1885 	 *
1886 	 * This just allocates buckets to queues using round-robin
1887 	 * allocation.
1888 	 *
1889 	 * NOTE: It Just Happens to line up with the default
1890 	 * RSS allocation method.
1891 	 */
1892 
1893 	/* Warning FM follows */
1894 	reta = 0;
1895 	for (i = 0; i < 128; i++) {
1896 #ifdef RSS
1897 		queue_id = rss_get_indirection_to_bucket(i);
1898 		/*
1899 		 * If we have more queues than buckets, we'll
1900 		 * end up mapping buckets to a subset of the
1901 		 * queues.
1902 		 *
1903 		 * If we have more buckets than queues, we'll
1904 		 * end up instead assigning multiple buckets
1905 		 * to queues.
1906 		 *
1907 		 * Both are suboptimal, but we need to handle
1908 		 * the case so we don't go out of bounds
1909 		 * indexing arrays and such.
1910 		 */
1911 		queue_id = queue_id % sc->rx_num_queues;
1912 #else
1913 		queue_id = (i % sc->rx_num_queues);
1914 #endif
1915 		/* Adjust if required */
1916 		queue_id = queue_id << shift;
1917 
1918 		/*
1919 		 * The low 8 bits are for hash value (n+0);
1920 		 * The next 8 bits are for hash value (n+1), etc.
1921 		 */
1922 		reta = reta >> 8;
1923 		reta = reta | ( ((uint32_t) queue_id) << 24);
1924 		if ((i & 3) == 3) {
1925 			IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
1926 			reta = 0;
1927 		}
1928 	}
1929 
1930 	/* Now fill in hash table */
1931 
1932 	/*
1933 	 * MRQC: Multiple Receive Queues Command
1934 	 * Set queuing to RSS control, number depends on the device.
1935 	 */
1936 	mrqc = IGC_MRQC_ENABLE_RSS_4Q;
1937 
1938 #ifdef RSS
1939 	/* XXX ew typecasting */
1940 	rss_getkey((uint8_t *) &rss_key);
1941 #else
1942 	arc4rand(&rss_key, sizeof(rss_key), 0);
1943 #endif
1944 	for (i = 0; i < RSSKEYLEN; i++)
1945 		IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
1946 
1947 	/*
1948 	 * Configure the RSS fields to hash upon.
1949 	 */
1950 	mrqc |= (IGC_MRQC_RSS_FIELD_IPV4 |
1951 	    IGC_MRQC_RSS_FIELD_IPV4_TCP);
1952 	mrqc |= (IGC_MRQC_RSS_FIELD_IPV6 |
1953 	    IGC_MRQC_RSS_FIELD_IPV6_TCP);
1954 	mrqc |=( IGC_MRQC_RSS_FIELD_IPV4_UDP |
1955 	    IGC_MRQC_RSS_FIELD_IPV6_UDP);
1956 	mrqc |=( IGC_MRQC_RSS_FIELD_IPV6_UDP_EX |
1957 	    IGC_MRQC_RSS_FIELD_IPV6_TCP_EX);
1958 
1959 	IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
1960 }
1961 
1962 /*********************************************************************
1963  *
1964  *  Setup networking device structure and register interface media.
1965  *
1966  **********************************************************************/
1967 static int
1968 igc_setup_interface(if_ctx_t ctx)
1969 {
1970 	if_t ifp = iflib_get_ifp(ctx);
1971 	struct igc_softc *sc = iflib_get_softc(ctx);
1972 	if_softc_ctx_t scctx = sc->shared;
1973 
1974 	INIT_DEBUGOUT("igc_setup_interface: begin");
1975 
1976 	/* Single Queue */
1977 	if (sc->tx_num_queues == 1) {
1978 		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
1979 		if_setsendqready(ifp);
1980 	}
1981 
1982 	/*
1983 	 * Specify the media types supported by this adapter and register
1984 	 * callbacks to update media and link information
1985 	 */
1986 	ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1987 	ifmedia_add(sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1988 	ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1989 	ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1990 	ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1991 	ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
1992 	ifmedia_add(sc->media, IFM_ETHER | IFM_2500_T, 0, NULL);
1993 
1994 	ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1995 	ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
1996 	return (0);
1997 }
1998 
1999 static int
2000 igc_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
2001     int ntxqs, int ntxqsets)
2002 {
2003 	struct igc_softc *sc = iflib_get_softc(ctx);
2004 	if_softc_ctx_t scctx = sc->shared;
2005 	int error = IGC_SUCCESS;
2006 	struct igc_tx_queue *que;
2007 	int i, j;
2008 
2009 	MPASS(sc->tx_num_queues > 0);
2010 	MPASS(sc->tx_num_queues == ntxqsets);
2011 
2012 	/* First allocate the top level queue structs */
2013 	if (!(sc->tx_queues =
2014 	    (struct igc_tx_queue *) malloc(sizeof(struct igc_tx_queue) *
2015 	    sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2016 		device_printf(iflib_get_dev(ctx),
2017 		    "Unable to allocate queue memory\n");
2018 		return(ENOMEM);
2019 	}
2020 
2021 	for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
2022 		/* Set up some basics */
2023 
2024 		struct tx_ring *txr = &que->txr;
2025 		txr->sc = que->sc = sc;
2026 		que->me = txr->me =  i;
2027 
2028 		/* Allocate report status array */
2029 		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) *
2030 		    scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2031 			device_printf(iflib_get_dev(ctx),
2032 			    "failed to allocate rs_idxs memory\n");
2033 			error = ENOMEM;
2034 			goto fail;
2035 		}
2036 		for (j = 0; j < scctx->isc_ntxd[0]; j++)
2037 			txr->tx_rsq[j] = QIDX_INVALID;
2038 		/* get virtual and physical address of the hardware queues */
2039 		txr->tx_base = (struct igc_tx_desc *)vaddrs[i*ntxqs];
2040 		txr->tx_paddr = paddrs[i*ntxqs];
2041 	}
2042 
2043 	if (bootverbose)
2044 		device_printf(iflib_get_dev(ctx),
2045 		    "allocated for %d tx_queues\n", sc->tx_num_queues);
2046 	return (0);
2047 fail:
2048 	igc_if_queues_free(ctx);
2049 	return (error);
2050 }
2051 
2052 static int
2053 igc_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
2054     int nrxqs, int nrxqsets)
2055 {
2056 	struct igc_softc *sc = iflib_get_softc(ctx);
2057 	int error = IGC_SUCCESS;
2058 	struct igc_rx_queue *que;
2059 	int i;
2060 
2061 	MPASS(sc->rx_num_queues > 0);
2062 	MPASS(sc->rx_num_queues == nrxqsets);
2063 
2064 	/* First allocate the top level queue structs */
2065 	if (!(sc->rx_queues =
2066 	    (struct igc_rx_queue *) malloc(sizeof(struct igc_rx_queue) *
2067 	    sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2068 		device_printf(iflib_get_dev(ctx),
2069 		    "Unable to allocate queue memory\n");
2070 		error = ENOMEM;
2071 		goto fail;
2072 	}
2073 
2074 	for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
2075 		/* Set up some basics */
2076 		struct rx_ring *rxr = &que->rxr;
2077 		rxr->sc = que->sc = sc;
2078 		rxr->que = que;
2079 		que->me = rxr->me =  i;
2080 
2081 		/* get virtual and physical address of the hardware queues */
2082 		rxr->rx_base = (union igc_rx_desc_extended *)vaddrs[i*nrxqs];
2083 		rxr->rx_paddr = paddrs[i*nrxqs];
2084 	}
2085 
2086 	if (bootverbose)
2087 		device_printf(iflib_get_dev(ctx),
2088 		    "allocated for %d rx_queues\n", sc->rx_num_queues);
2089 
2090 	return (0);
2091 fail:
2092 	igc_if_queues_free(ctx);
2093 	return (error);
2094 }
2095 
2096 static void
2097 igc_if_queues_free(if_ctx_t ctx)
2098 {
2099 	struct igc_softc *sc = iflib_get_softc(ctx);
2100 	struct igc_tx_queue *tx_que = sc->tx_queues;
2101 	struct igc_rx_queue *rx_que = sc->rx_queues;
2102 
2103 	if (tx_que != NULL) {
2104 		for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
2105 			struct tx_ring *txr = &tx_que->txr;
2106 			if (txr->tx_rsq == NULL)
2107 				break;
2108 
2109 			free(txr->tx_rsq, M_DEVBUF);
2110 			txr->tx_rsq = NULL;
2111 		}
2112 		free(sc->tx_queues, M_DEVBUF);
2113 		sc->tx_queues = NULL;
2114 	}
2115 
2116 	if (rx_que != NULL) {
2117 		free(sc->rx_queues, M_DEVBUF);
2118 		sc->rx_queues = NULL;
2119 	}
2120 
2121 	if (sc->mta != NULL) {
2122 		free(sc->mta, M_DEVBUF);
2123 	}
2124 }
2125 
2126 /*********************************************************************
2127  *
2128  *  Enable transmit unit.
2129  *
2130  **********************************************************************/
2131 static void
2132 igc_initialize_transmit_unit(if_ctx_t ctx)
2133 {
2134 	struct igc_softc *sc = iflib_get_softc(ctx);
2135 	if_softc_ctx_t scctx = sc->shared;
2136 	struct igc_tx_queue *que;
2137 	struct tx_ring	*txr;
2138 	struct igc_hw	*hw = &sc->hw;
2139 	u32 tctl, txdctl = 0;
2140 
2141 	INIT_DEBUGOUT("igc_initialize_transmit_unit: begin");
2142 
2143 	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
2144 		u64 bus_addr;
2145 		caddr_t offp, endp;
2146 
2147 		que = &sc->tx_queues[i];
2148 		txr = &que->txr;
2149 		bus_addr = txr->tx_paddr;
2150 
2151 		/* Clear checksum offload context. */
2152 		offp = (caddr_t)&txr->csum_flags;
2153 		endp = (caddr_t)(txr + 1);
2154 		bzero(offp, endp - offp);
2155 
2156 		/* Base and Len of TX Ring */
2157 		IGC_WRITE_REG(hw, IGC_TDLEN(i),
2158 		    scctx->isc_ntxd[0] * sizeof(struct igc_tx_desc));
2159 		IGC_WRITE_REG(hw, IGC_TDBAH(i),
2160 		    (u32)(bus_addr >> 32));
2161 		IGC_WRITE_REG(hw, IGC_TDBAL(i),
2162 		    (u32)bus_addr);
2163 		/* Init the HEAD/TAIL indices */
2164 		IGC_WRITE_REG(hw, IGC_TDT(i), 0);
2165 		IGC_WRITE_REG(hw, IGC_TDH(i), 0);
2166 
2167 		HW_DEBUGOUT2("Base = %x, Length = %x\n",
2168 		    IGC_READ_REG(&sc->hw, IGC_TDBAL(i)),
2169 		    IGC_READ_REG(&sc->hw, IGC_TDLEN(i)));
2170 
2171 		txdctl = 0; /* clear txdctl */
2172 		txdctl |= 0x1f; /* PTHRESH */
2173 		txdctl |= 1 << 8; /* HTHRESH */
2174 		txdctl |= 1 << 16;/* WTHRESH */
2175 		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
2176 		txdctl |= IGC_TXDCTL_GRAN;
2177 		txdctl |= 1 << 25; /* LWTHRESH */
2178 
2179 		IGC_WRITE_REG(hw, IGC_TXDCTL(i), txdctl);
2180 	}
2181 
2182 	/* Program the Transmit Control Register */
2183 	tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
2184 	tctl &= ~IGC_TCTL_CT;
2185 	tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
2186 	    (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
2187 
2188 	/* This write will effectively turn on the transmit unit. */
2189 	IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
2190 }
2191 
2192 /*********************************************************************
2193  *
2194  *  Enable receive unit.
2195  *
2196  **********************************************************************/
2197 #define BSIZEPKT_ROUNDUP	((1<<IGC_SRRCTL_BSIZEPKT_SHIFT)-1)
2198 
2199 static void
2200 igc_initialize_receive_unit(if_ctx_t ctx)
2201 {
2202 	struct igc_softc *sc = iflib_get_softc(ctx);
2203 	if_softc_ctx_t scctx = sc->shared;
2204 	if_t ifp = iflib_get_ifp(ctx);
2205 	struct igc_hw	*hw = &sc->hw;
2206 	struct igc_rx_queue *que;
2207 	int i;
2208 	u32 psize, rctl, rxcsum, srrctl = 0;
2209 
2210 	INIT_DEBUGOUT("igc_initialize_receive_units: begin");
2211 
2212 	/*
2213 	 * Make sure receives are disabled while setting
2214 	 * up the descriptor ring
2215 	 */
2216 	rctl = IGC_READ_REG(hw, IGC_RCTL);
2217 	IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
2218 
2219 	/* Setup the Receive Control Register */
2220 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
2221 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM |
2222 	    IGC_RCTL_LBM_NO | IGC_RCTL_RDMTS_HALF |
2223 	    (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
2224 
2225 	/* Do not store bad packets */
2226 	rctl &= ~IGC_RCTL_SBP;
2227 
2228 	/* Enable Long Packet receive */
2229 	if (if_getmtu(ifp) > ETHERMTU)
2230 		rctl |= IGC_RCTL_LPE;
2231 	else
2232 		rctl &= ~IGC_RCTL_LPE;
2233 
2234 	/* Strip the CRC */
2235 	if (!igc_disable_crc_stripping)
2236 		rctl |= IGC_RCTL_SECRC;
2237 
2238 	rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
2239 	if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
2240 		rxcsum |= IGC_RXCSUM_CRCOFL;
2241 		if (sc->tx_num_queues > 1)
2242 			rxcsum |= IGC_RXCSUM_PCSD;
2243 		else
2244 			rxcsum |= IGC_RXCSUM_IPPCSE;
2245 	} else {
2246 		if (sc->tx_num_queues > 1)
2247 			rxcsum |= IGC_RXCSUM_PCSD;
2248 		else
2249 			rxcsum &= ~IGC_RXCSUM_TUOFL;
2250 	}
2251 	IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
2252 
2253 	if (sc->rx_num_queues > 1)
2254 		igc_initialize_rss_mapping(sc);
2255 
2256 	if (if_getmtu(ifp) > ETHERMTU) {
2257 		psize = scctx->isc_max_frame_size;
2258 		/* are we on a vlan? */
2259 		if (if_vlantrunkinuse(ifp))
2260 			psize += VLAN_TAG_SIZE;
2261 		IGC_WRITE_REG(&sc->hw, IGC_RLPML, psize);
2262 	}
2263 
2264 	/* Set maximum packet buffer len */
2265 	srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
2266 	    IGC_SRRCTL_BSIZEPKT_SHIFT;
2267 	/* srrctl above overrides this but set the register to a sane value */
2268 	rctl |= IGC_RCTL_SZ_2048;
2269 
2270 	/*
2271 	 * If TX flow control is disabled and there's >1 queue defined,
2272 	 * enable DROP.
2273 	 *
2274 	 * This drops frames rather than hanging the RX MAC for all queues.
2275 	 */
2276 	if ((sc->rx_num_queues > 1) &&
2277 	    (sc->fc == igc_fc_none ||
2278 	     sc->fc == igc_fc_rx_pause)) {
2279 		srrctl |= IGC_SRRCTL_DROP_EN;
2280 	}
2281 
2282 	/* Setup the Base and Length of the Rx Descriptor Rings */
2283 	for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
2284 		struct rx_ring *rxr = &que->rxr;
2285 		u64 bus_addr = rxr->rx_paddr;
2286 		u32 rxdctl;
2287 
2288 #ifdef notyet
2289 		/* Configure for header split? -- ignore for now */
2290 		rxr->hdr_split = igc_header_split;
2291 #else
2292 		srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
2293 #endif
2294 
2295 		IGC_WRITE_REG(hw, IGC_RDLEN(i),
2296 		      scctx->isc_nrxd[0] * sizeof(struct igc_rx_desc));
2297 		IGC_WRITE_REG(hw, IGC_RDBAH(i), (uint32_t)(bus_addr >> 32));
2298 		IGC_WRITE_REG(hw, IGC_RDBAL(i), (uint32_t)bus_addr);
2299 		IGC_WRITE_REG(hw, IGC_SRRCTL(i), srrctl);
2300 		/* Setup the Head and Tail Descriptor Pointers */
2301 		IGC_WRITE_REG(hw, IGC_RDH(i), 0);
2302 		IGC_WRITE_REG(hw, IGC_RDT(i), 0);
2303 		/* Enable this Queue */
2304 		rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(i));
2305 		rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
2306 		rxdctl &= 0xFFF00000;
2307 		rxdctl |= IGC_RX_PTHRESH;
2308 		rxdctl |= IGC_RX_HTHRESH << 8;
2309 		rxdctl |= IGC_RX_WTHRESH << 16;
2310 		IGC_WRITE_REG(hw, IGC_RXDCTL(i), rxdctl);
2311 	}
2312 
2313 	/* Make sure VLAN Filters are off */
2314 	rctl &= ~IGC_RCTL_VFE;
2315 
2316 	/* Write out the settings */
2317 	IGC_WRITE_REG(hw, IGC_RCTL, rctl);
2318 
2319 	return;
2320 }
2321 
2322 static void
2323 igc_setup_vlan_hw_support(if_ctx_t ctx)
2324 {
2325 	struct igc_softc *sc = iflib_get_softc(ctx);
2326 	struct igc_hw *hw = &sc->hw;
2327 	struct ifnet *ifp = iflib_get_ifp(ctx);
2328 	u32 reg;
2329 
2330 	/* igc hardware doesn't seem to implement VFTA for HWFILTER */
2331 
2332 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
2333 	    !igc_disable_crc_stripping) {
2334 		reg = IGC_READ_REG(hw, IGC_CTRL);
2335 		reg |= IGC_CTRL_VME;
2336 		IGC_WRITE_REG(hw, IGC_CTRL, reg);
2337 	} else {
2338 		reg = IGC_READ_REG(hw, IGC_CTRL);
2339 		reg &= ~IGC_CTRL_VME;
2340 		IGC_WRITE_REG(hw, IGC_CTRL, reg);
2341 	}
2342 }
2343 
2344 static void
2345 igc_if_intr_enable(if_ctx_t ctx)
2346 {
2347 	struct igc_softc *sc = iflib_get_softc(ctx);
2348 	struct igc_hw *hw = &sc->hw;
2349 	u32 mask;
2350 
2351 	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
2352 		mask = (sc->que_mask | sc->link_mask);
2353 		IGC_WRITE_REG(hw, IGC_EIAC, mask);
2354 		IGC_WRITE_REG(hw, IGC_EIAM, mask);
2355 		IGC_WRITE_REG(hw, IGC_EIMS, mask);
2356 		IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
2357 	} else
2358 		IGC_WRITE_REG(hw, IGC_IMS, IMS_ENABLE_MASK);
2359 	IGC_WRITE_FLUSH(hw);
2360 }
2361 
2362 static void
2363 igc_if_intr_disable(if_ctx_t ctx)
2364 {
2365 	struct igc_softc *sc = iflib_get_softc(ctx);
2366 	struct igc_hw *hw = &sc->hw;
2367 
2368 	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
2369 		IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
2370 		IGC_WRITE_REG(hw, IGC_EIAC, 0);
2371 	}
2372 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
2373 	IGC_WRITE_FLUSH(hw);
2374 }
2375 
2376 /*
2377  * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
2378  * For ASF and Pass Through versions of f/w this means
2379  * that the driver is loaded. For AMT version type f/w
2380  * this means that the network i/f is open.
2381  */
2382 static void
2383 igc_get_hw_control(struct igc_softc *sc)
2384 {
2385 	u32 ctrl_ext;
2386 
2387 	if (sc->vf_ifp)
2388 		return;
2389 
2390 	ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
2391 	IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT,
2392 	    ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
2393 }
2394 
2395 /*
2396  * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
2397  * For ASF and Pass Through versions of f/w this means that
2398  * the driver is no longer loaded. For AMT versions of the
2399  * f/w this means that the network i/f is closed.
2400  */
2401 static void
2402 igc_release_hw_control(struct igc_softc *sc)
2403 {
2404 	u32 ctrl_ext;
2405 
2406 	ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
2407 	IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT,
2408 	    ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
2409 	return;
2410 }
2411 
2412 static int
2413 igc_is_valid_ether_addr(u8 *addr)
2414 {
2415 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
2416 
2417 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
2418 		return (false);
2419 	}
2420 
2421 	return (true);
2422 }
2423 
2424 /*
2425 ** Parse the interface capabilities with regard
2426 ** to both system management and wake-on-lan for
2427 ** later use.
2428 */
2429 static void
2430 igc_get_wakeup(if_ctx_t ctx)
2431 {
2432 	struct igc_softc *sc = iflib_get_softc(ctx);
2433 	u16 eeprom_data = 0, apme_mask;
2434 
2435 	apme_mask = IGC_WUC_APME;
2436 	eeprom_data = IGC_READ_REG(&sc->hw, IGC_WUC);
2437 
2438 	if (eeprom_data & apme_mask)
2439 		sc->wol = IGC_WUFC_LNKC;
2440 }
2441 
2442 
2443 /*
2444  * Enable PCI Wake On Lan capability
2445  */
2446 static void
2447 igc_enable_wakeup(if_ctx_t ctx)
2448 {
2449 	struct igc_softc *sc = iflib_get_softc(ctx);
2450 	device_t dev = iflib_get_dev(ctx);
2451 	if_t ifp = iflib_get_ifp(ctx);
2452 	int error = 0;
2453 	u32 pmc, ctrl, rctl;
2454 	u16 status;
2455 
2456 	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
2457 		return;
2458 
2459 	/*
2460 	 * Determine type of Wakeup: note that wol
2461 	 * is set with all bits on by default.
2462 	 */
2463 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
2464 		sc->wol &= ~IGC_WUFC_MAG;
2465 
2466 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
2467 		sc->wol &= ~IGC_WUFC_EX;
2468 
2469 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
2470 		sc->wol &= ~IGC_WUFC_MC;
2471 	else {
2472 		rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
2473 		rctl |= IGC_RCTL_MPE;
2474 		IGC_WRITE_REG(&sc->hw, IGC_RCTL, rctl);
2475 	}
2476 
2477 	if (!(sc->wol & (IGC_WUFC_EX | IGC_WUFC_MAG | IGC_WUFC_MC)))
2478 		goto pme;
2479 
2480 	/* Advertise the wakeup capability */
2481 	ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
2482 	ctrl |= IGC_CTRL_ADVD3WUC;
2483 	IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
2484 
2485 	/* Enable wakeup by the MAC */
2486 	IGC_WRITE_REG(&sc->hw, IGC_WUC, IGC_WUC_PME_EN);
2487 	IGC_WRITE_REG(&sc->hw, IGC_WUFC, sc->wol);
2488 
2489 pme:
2490 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
2491 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2492 	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
2493 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2494 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
2495 
2496 	return;
2497 }
2498 
2499 /**********************************************************************
2500  *
2501  *  Update the board statistics counters.
2502  *
2503  **********************************************************************/
2504 static void
2505 igc_update_stats_counters(struct igc_softc *sc)
2506 {
2507 	u64 prev_xoffrxc = sc->stats.xoffrxc;
2508 
2509 	sc->stats.crcerrs += IGC_READ_REG(&sc->hw, IGC_CRCERRS);
2510 	sc->stats.mpc += IGC_READ_REG(&sc->hw, IGC_MPC);
2511 	sc->stats.scc += IGC_READ_REG(&sc->hw, IGC_SCC);
2512 	sc->stats.ecol += IGC_READ_REG(&sc->hw, IGC_ECOL);
2513 
2514 	sc->stats.mcc += IGC_READ_REG(&sc->hw, IGC_MCC);
2515 	sc->stats.latecol += IGC_READ_REG(&sc->hw, IGC_LATECOL);
2516 	sc->stats.colc += IGC_READ_REG(&sc->hw, IGC_COLC);
2517 	sc->stats.colc += IGC_READ_REG(&sc->hw, IGC_RERC);
2518 	sc->stats.dc += IGC_READ_REG(&sc->hw, IGC_DC);
2519 	sc->stats.rlec += IGC_READ_REG(&sc->hw, IGC_RLEC);
2520 	sc->stats.xonrxc += IGC_READ_REG(&sc->hw, IGC_XONRXC);
2521 	sc->stats.xontxc += IGC_READ_REG(&sc->hw, IGC_XONTXC);
2522 	sc->stats.xoffrxc += IGC_READ_REG(&sc->hw, IGC_XOFFRXC);
2523 	/*
2524 	 * For watchdog management we need to know if we have been
2525 	 * paused during the last interval, so capture that here.
2526 	 */
2527 	if (sc->stats.xoffrxc != prev_xoffrxc)
2528 		sc->shared->isc_pause_frames = 1;
2529 	sc->stats.xofftxc += IGC_READ_REG(&sc->hw, IGC_XOFFTXC);
2530 	sc->stats.fcruc += IGC_READ_REG(&sc->hw, IGC_FCRUC);
2531 	sc->stats.prc64 += IGC_READ_REG(&sc->hw, IGC_PRC64);
2532 	sc->stats.prc127 += IGC_READ_REG(&sc->hw, IGC_PRC127);
2533 	sc->stats.prc255 += IGC_READ_REG(&sc->hw, IGC_PRC255);
2534 	sc->stats.prc511 += IGC_READ_REG(&sc->hw, IGC_PRC511);
2535 	sc->stats.prc1023 += IGC_READ_REG(&sc->hw, IGC_PRC1023);
2536 	sc->stats.prc1522 += IGC_READ_REG(&sc->hw, IGC_PRC1522);
2537 	sc->stats.tlpic += IGC_READ_REG(&sc->hw, IGC_TLPIC);
2538 	sc->stats.rlpic += IGC_READ_REG(&sc->hw, IGC_RLPIC);
2539 	sc->stats.gprc += IGC_READ_REG(&sc->hw, IGC_GPRC);
2540 	sc->stats.bprc += IGC_READ_REG(&sc->hw, IGC_BPRC);
2541 	sc->stats.mprc += IGC_READ_REG(&sc->hw, IGC_MPRC);
2542 	sc->stats.gptc += IGC_READ_REG(&sc->hw, IGC_GPTC);
2543 
2544 	/* For the 64-bit byte counters the low dword must be read first. */
2545 	/* Both registers clear on the read of the high dword */
2546 
2547 	sc->stats.gorc += IGC_READ_REG(&sc->hw, IGC_GORCL) +
2548 	    ((u64)IGC_READ_REG(&sc->hw, IGC_GORCH) << 32);
2549 	sc->stats.gotc += IGC_READ_REG(&sc->hw, IGC_GOTCL) +
2550 	    ((u64)IGC_READ_REG(&sc->hw, IGC_GOTCH) << 32);
2551 
2552 	sc->stats.rnbc += IGC_READ_REG(&sc->hw, IGC_RNBC);
2553 	sc->stats.ruc += IGC_READ_REG(&sc->hw, IGC_RUC);
2554 	sc->stats.rfc += IGC_READ_REG(&sc->hw, IGC_RFC);
2555 	sc->stats.roc += IGC_READ_REG(&sc->hw, IGC_ROC);
2556 	sc->stats.rjc += IGC_READ_REG(&sc->hw, IGC_RJC);
2557 
2558 	sc->stats.mgprc += IGC_READ_REG(&sc->hw, IGC_MGTPRC);
2559 	sc->stats.mgpdc += IGC_READ_REG(&sc->hw, IGC_MGTPDC);
2560 	sc->stats.mgptc += IGC_READ_REG(&sc->hw, IGC_MGTPTC);
2561 
2562 	sc->stats.tor += IGC_READ_REG(&sc->hw, IGC_TORH);
2563 	sc->stats.tot += IGC_READ_REG(&sc->hw, IGC_TOTH);
2564 
2565 	sc->stats.tpr += IGC_READ_REG(&sc->hw, IGC_TPR);
2566 	sc->stats.tpt += IGC_READ_REG(&sc->hw, IGC_TPT);
2567 	sc->stats.ptc64 += IGC_READ_REG(&sc->hw, IGC_PTC64);
2568 	sc->stats.ptc127 += IGC_READ_REG(&sc->hw, IGC_PTC127);
2569 	sc->stats.ptc255 += IGC_READ_REG(&sc->hw, IGC_PTC255);
2570 	sc->stats.ptc511 += IGC_READ_REG(&sc->hw, IGC_PTC511);
2571 	sc->stats.ptc1023 += IGC_READ_REG(&sc->hw, IGC_PTC1023);
2572 	sc->stats.ptc1522 += IGC_READ_REG(&sc->hw, IGC_PTC1522);
2573 	sc->stats.mptc += IGC_READ_REG(&sc->hw, IGC_MPTC);
2574 	sc->stats.bptc += IGC_READ_REG(&sc->hw, IGC_BPTC);
2575 
2576 	/* Interrupt Counts */
2577 	sc->stats.iac += IGC_READ_REG(&sc->hw, IGC_IAC);
2578 	sc->stats.rxdmtc += IGC_READ_REG(&sc->hw, IGC_RXDMTC);
2579 
2580 	sc->stats.algnerrc += IGC_READ_REG(&sc->hw, IGC_ALGNERRC);
2581 	sc->stats.tncrs += IGC_READ_REG(&sc->hw, IGC_TNCRS);
2582 	sc->stats.htdpmc += IGC_READ_REG(&sc->hw, IGC_HTDPMC);
2583 	sc->stats.tsctc += IGC_READ_REG(&sc->hw, IGC_TSCTC);
2584 }
2585 
2586 static uint64_t
2587 igc_if_get_counter(if_ctx_t ctx, ift_counter cnt)
2588 {
2589 	struct igc_softc *sc = iflib_get_softc(ctx);
2590 	if_t ifp = iflib_get_ifp(ctx);
2591 
2592 	switch (cnt) {
2593 	case IFCOUNTER_COLLISIONS:
2594 		return (sc->stats.colc);
2595 	case IFCOUNTER_IERRORS:
2596 		return (sc->dropped_pkts + sc->stats.rxerrc +
2597 		    sc->stats.crcerrs + sc->stats.algnerrc +
2598 		    sc->stats.ruc + sc->stats.roc +
2599 		    sc->stats.mpc + sc->stats.htdpmc);
2600 	case IFCOUNTER_OERRORS:
2601 		return (sc->stats.ecol + sc->stats.latecol +
2602 		    sc->watchdog_events);
2603 	default:
2604 		return (if_get_counter_default(ifp, cnt));
2605 	}
2606 }
2607 
2608 /* igc_if_needs_restart - Tell iflib when the driver needs to be reinitialized
2609  * @ctx: iflib context
2610  * @event: event code to check
2611  *
2612  * Defaults to returning false for unknown events.
2613  *
2614  * @returns true if iflib needs to reinit the interface
2615  */
2616 static bool
2617 igc_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
2618 {
2619 	switch (event) {
2620 	case IFLIB_RESTART_VLAN_CONFIG:
2621 	default:
2622 		return (false);
2623 	}
2624 }
2625 
2626 /* Export a single 32-bit register via a read-only sysctl. */
2627 static int
2628 igc_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
2629 {
2630 	struct igc_softc *sc;
2631 	u_int val;
2632 
2633 	sc = oidp->oid_arg1;
2634 	val = IGC_READ_REG(&sc->hw, oidp->oid_arg2);
2635 	return (sysctl_handle_int(oidp, &val, 0, req));
2636 }
2637 
2638 /* Per queue holdoff interrupt rate handler */
2639 static int
2640 igc_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
2641 {
2642 	struct igc_rx_queue *rque;
2643 	struct igc_tx_queue *tque;
2644 	struct igc_hw *hw;
2645 	int error;
2646 	u32 reg, usec, rate;
2647 
2648 	bool tx = oidp->oid_arg2;
2649 
2650 	if (tx) {
2651 		tque = oidp->oid_arg1;
2652 		hw = &tque->sc->hw;
2653 		reg = IGC_READ_REG(hw, IGC_EITR(tque->me));
2654 	} else {
2655 		rque = oidp->oid_arg1;
2656 		hw = &rque->sc->hw;
2657 		reg = IGC_READ_REG(hw, IGC_EITR(rque->msix));
2658 	}
2659 
2660 	usec = (reg & IGC_QVECTOR_MASK);
2661 	if (usec > 0)
2662 		rate = IGC_INTS_TO_EITR(usec);
2663 	else
2664 		rate = 0;
2665 
2666 	error = sysctl_handle_int(oidp, &rate, 0, req);
2667 	if (error || !req->newptr)
2668 		return error;
2669 	return 0;
2670 }
2671 
2672 /*
2673  * Add sysctl variables, one per statistic, to the system.
2674  */
2675 static void
2676 igc_add_hw_stats(struct igc_softc *sc)
2677 {
2678 	device_t dev = iflib_get_dev(sc->ctx);
2679 	struct igc_tx_queue *tx_que = sc->tx_queues;
2680 	struct igc_rx_queue *rx_que = sc->rx_queues;
2681 
2682 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
2683 	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
2684 	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
2685 	struct igc_hw_stats *stats = &sc->stats;
2686 
2687 	struct sysctl_oid *stat_node, *queue_node, *int_node;
2688 	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
2689 
2690 #define QUEUE_NAME_LEN 32
2691 	char namebuf[QUEUE_NAME_LEN];
2692 
2693 	/* Driver Statistics */
2694 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
2695 	    CTLFLAG_RD, &sc->dropped_pkts,
2696 	    "Driver dropped packets");
2697 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
2698 	    CTLFLAG_RD, &sc->link_irq,
2699 	    "Link MSI-X IRQ Handled");
2700 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
2701 	    CTLFLAG_RD, &sc->rx_overruns,
2702 	    "RX overruns");
2703 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
2704 	    CTLFLAG_RD, &sc->watchdog_events,
2705 	    "Watchdog timeouts");
2706 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
2707 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2708 	    sc, IGC_CTRL, igc_sysctl_reg_handler, "IU",
2709 	    "Device Control Register");
2710 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
2711 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2712 	    sc, IGC_RCTL, igc_sysctl_reg_handler, "IU",
2713 	    "Receiver Control Register");
2714 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
2715 	    CTLFLAG_RD, &sc->hw.fc.high_water, 0,
2716 	    "Flow Control High Watermark");
2717 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
2718 	    CTLFLAG_RD, &sc->hw.fc.low_water, 0,
2719 	    "Flow Control Low Watermark");
2720 
2721 	for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
2722 		struct tx_ring *txr = &tx_que->txr;
2723 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
2724 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
2725 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
2726 		queue_list = SYSCTL_CHILDREN(queue_node);
2727 
2728 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
2729 		    CTLTYPE_UINT | CTLFLAG_RD, tx_que,
2730 		    true, igc_sysctl_interrupt_rate_handler, "IU",
2731 		    "Interrupt Rate");
2732 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
2733 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
2734 		    IGC_TDH(txr->me), igc_sysctl_reg_handler, "IU",
2735 		    "Transmit Descriptor Head");
2736 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
2737 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
2738 		    IGC_TDT(txr->me), igc_sysctl_reg_handler, "IU",
2739 		    "Transmit Descriptor Tail");
2740 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
2741 		    CTLFLAG_RD, &txr->tx_irq,
2742 		    "Queue MSI-X Transmit Interrupts");
2743 	}
2744 
2745 	for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
2746 		struct rx_ring *rxr = &rx_que->rxr;
2747 		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
2748 		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
2749 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
2750 		queue_list = SYSCTL_CHILDREN(queue_node);
2751 
2752 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
2753 		    CTLTYPE_UINT | CTLFLAG_RD, rx_que,
2754 		    false, igc_sysctl_interrupt_rate_handler, "IU",
2755 		    "Interrupt Rate");
2756 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
2757 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
2758 		    IGC_RDH(rxr->me), igc_sysctl_reg_handler, "IU",
2759 		    "Receive Descriptor Head");
2760 		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
2761 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
2762 		    IGC_RDT(rxr->me), igc_sysctl_reg_handler, "IU",
2763 		    "Receive Descriptor Tail");
2764 		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
2765 		    CTLFLAG_RD, &rxr->rx_irq,
2766 		    "Queue MSI-X Receive Interrupts");
2767 	}
2768 
2769 	/* MAC stats get their own sub node */
2770 	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
2771 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
2772 	stat_list = SYSCTL_CHILDREN(stat_node);
2773 
2774 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
2775 	    CTLFLAG_RD, &stats->ecol,
2776 	    "Excessive collisions");
2777 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
2778 	    CTLFLAG_RD, &stats->scc,
2779 	    "Single collisions");
2780 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
2781 	    CTLFLAG_RD, &stats->mcc,
2782 	    "Multiple collisions");
2783 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
2784 	    CTLFLAG_RD, &stats->latecol,
2785 	    "Late collisions");
2786 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
2787 	    CTLFLAG_RD, &stats->colc,
2788 	    "Collision Count");
2789 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
2790 	    CTLFLAG_RD, &sc->stats.symerrs,
2791 	    "Symbol Errors");
2792 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
2793 	    CTLFLAG_RD, &sc->stats.sec,
2794 	    "Sequence Errors");
2795 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
2796 	    CTLFLAG_RD, &sc->stats.dc,
2797 	    "Defer Count");
2798 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
2799 	    CTLFLAG_RD, &sc->stats.mpc,
2800 	    "Missed Packets");
2801 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_length_errors",
2802 	    CTLFLAG_RD, &sc->stats.rlec,
2803 	    "Receive Length Errors");
2804 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
2805 	    CTLFLAG_RD, &sc->stats.rnbc,
2806 	    "Receive No Buffers");
2807 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
2808 	    CTLFLAG_RD, &sc->stats.ruc,
2809 	    "Receive Undersize");
2810 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
2811 	    CTLFLAG_RD, &sc->stats.rfc,
2812 	    "Fragmented Packets Received ");
2813 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
2814 	    CTLFLAG_RD, &sc->stats.roc,
2815 	    "Oversized Packets Received");
2816 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
2817 	    CTLFLAG_RD, &sc->stats.rjc,
2818 	    "Recevied Jabber");
2819 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
2820 	    CTLFLAG_RD, &sc->stats.rxerrc,
2821 	    "Receive Errors");
2822 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
2823 	    CTLFLAG_RD, &sc->stats.crcerrs,
2824 	    "CRC errors");
2825 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
2826 	    CTLFLAG_RD, &sc->stats.algnerrc,
2827 	    "Alignment Errors");
2828 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
2829 	    CTLFLAG_RD, &sc->stats.xonrxc,
2830 	    "XON Received");
2831 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
2832 	    CTLFLAG_RD, &sc->stats.xontxc,
2833 	    "XON Transmitted");
2834 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
2835 	    CTLFLAG_RD, &sc->stats.xoffrxc,
2836 	    "XOFF Received");
2837 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
2838 	    CTLFLAG_RD, &sc->stats.xofftxc,
2839 	    "XOFF Transmitted");
2840 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "unsupported_fc_recvd",
2841 	    CTLFLAG_RD, &sc->stats.fcruc,
2842 	    "Unsupported Flow Control Received");
2843 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_recvd",
2844 	    CTLFLAG_RD, &sc->stats.mgprc,
2845 	    "Management Packets Received");
2846 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_drop",
2847 	    CTLFLAG_RD, &sc->stats.mgpdc,
2848 	    "Management Packets Dropped");
2849 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_txd",
2850 	    CTLFLAG_RD, &sc->stats.mgptc,
2851 	    "Management Packets Transmitted");
2852 
2853 	/* Packet Reception Stats */
2854 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
2855 	    CTLFLAG_RD, &sc->stats.tpr,
2856 	    "Total Packets Received ");
2857 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
2858 	    CTLFLAG_RD, &sc->stats.gprc,
2859 	    "Good Packets Received");
2860 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
2861 	    CTLFLAG_RD, &sc->stats.bprc,
2862 	    "Broadcast Packets Received");
2863 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
2864 	    CTLFLAG_RD, &sc->stats.mprc,
2865 	    "Multicast Packets Received");
2866 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
2867 	    CTLFLAG_RD, &sc->stats.prc64,
2868 	    "64 byte frames received ");
2869 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
2870 	    CTLFLAG_RD, &sc->stats.prc127,
2871 	    "65-127 byte frames received");
2872 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
2873 	    CTLFLAG_RD, &sc->stats.prc255,
2874 	    "128-255 byte frames received");
2875 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
2876 	    CTLFLAG_RD, &sc->stats.prc511,
2877 	    "256-511 byte frames received");
2878 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
2879 	    CTLFLAG_RD, &sc->stats.prc1023,
2880 	    "512-1023 byte frames received");
2881 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
2882 	    CTLFLAG_RD, &sc->stats.prc1522,
2883 	    "1023-1522 byte frames received");
2884 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
2885 	    CTLFLAG_RD, &sc->stats.gorc,
2886 	    "Good Octets Received");
2887 
2888 	/* Packet Transmission Stats */
2889 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
2890 	    CTLFLAG_RD, &sc->stats.gotc,
2891 	    "Good Octets Transmitted");
2892 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
2893 	    CTLFLAG_RD, &sc->stats.tpt,
2894 	    "Total Packets Transmitted");
2895 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
2896 	    CTLFLAG_RD, &sc->stats.gptc,
2897 	    "Good Packets Transmitted");
2898 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
2899 	    CTLFLAG_RD, &sc->stats.bptc,
2900 	    "Broadcast Packets Transmitted");
2901 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
2902 	    CTLFLAG_RD, &sc->stats.mptc,
2903 	    "Multicast Packets Transmitted");
2904 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
2905 	    CTLFLAG_RD, &sc->stats.ptc64,
2906 	    "64 byte frames transmitted ");
2907 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
2908 	    CTLFLAG_RD, &sc->stats.ptc127,
2909 	    "65-127 byte frames transmitted");
2910 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
2911 	    CTLFLAG_RD, &sc->stats.ptc255,
2912 	    "128-255 byte frames transmitted");
2913 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
2914 	    CTLFLAG_RD, &sc->stats.ptc511,
2915 	    "256-511 byte frames transmitted");
2916 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
2917 	    CTLFLAG_RD, &sc->stats.ptc1023,
2918 	    "512-1023 byte frames transmitted");
2919 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
2920 	    CTLFLAG_RD, &sc->stats.ptc1522,
2921 	    "1024-1522 byte frames transmitted");
2922 	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
2923 	    CTLFLAG_RD, &sc->stats.tsctc,
2924 	    "TSO Contexts Transmitted");
2925 
2926 	/* Interrupt Stats */
2927 	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
2928 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
2929 	int_list = SYSCTL_CHILDREN(int_node);
2930 
2931 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
2932 	    CTLFLAG_RD, &sc->stats.iac,
2933 	    "Interrupt Assertion Count");
2934 
2935 	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
2936 	    CTLFLAG_RD, &sc->stats.rxdmtc,
2937 	    "Rx Desc Min Thresh Count");
2938 }
2939 
2940 static void
2941 igc_fw_version(struct igc_softc *sc)
2942 {
2943 	struct igc_hw *hw = &sc->hw;
2944 	struct igc_fw_version *fw_ver = &sc->fw_ver;
2945 
2946 	*fw_ver = (struct igc_fw_version){0};
2947 
2948 	igc_get_fw_version(hw, fw_ver);
2949 }
2950 
2951 static void
2952 igc_sbuf_fw_version(struct igc_fw_version *fw_ver, struct sbuf *buf)
2953 {
2954 	const char *space = "";
2955 
2956 	if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
2957 		sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
2958 		    fw_ver->eep_minor, fw_ver->eep_build);
2959 		space = " ";
2960 	}
2961 
2962 	if (fw_ver->invm_major || fw_ver->invm_minor ||
2963 	    fw_ver->invm_img_type) {
2964 		sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
2965 		    space, fw_ver->invm_major, fw_ver->invm_minor,
2966 		    fw_ver->invm_img_type);
2967 		space = " ";
2968 	}
2969 
2970 	if (fw_ver->or_valid) {
2971 		sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
2972 		    space, fw_ver->or_major, fw_ver->or_build,
2973 		    fw_ver->or_patch);
2974 		space = " ";
2975 	}
2976 
2977 	if (fw_ver->etrack_id)
2978 		sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
2979 }
2980 
2981 static void
2982 igc_print_fw_version(struct igc_softc *sc )
2983 {
2984 	device_t dev = sc->dev;
2985 	struct sbuf *buf;
2986 	int error = 0;
2987 
2988 	buf = sbuf_new_auto();
2989 	if (!buf) {
2990 		device_printf(dev, "Could not allocate sbuf for output.\n");
2991 		return;
2992 	}
2993 
2994 	igc_sbuf_fw_version(&sc->fw_ver, buf);
2995 
2996 	error = sbuf_finish(buf);
2997 	if (error)
2998 		device_printf(dev, "Error finishing sbuf: %d\n", error);
2999 	else if (sbuf_len(buf))
3000 		device_printf(dev, "%s\n", sbuf_data(buf));
3001 
3002 	sbuf_delete(buf);
3003 }
3004 
3005 static int
3006 igc_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
3007 {
3008 	struct igc_softc *sc = (struct igc_softc *)arg1;
3009 	device_t dev = sc->dev;
3010 	struct sbuf *buf;
3011 	int error = 0;
3012 
3013 	buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
3014 	if (!buf) {
3015 		device_printf(dev, "Could not allocate sbuf for output.\n");
3016 		return (ENOMEM);
3017 	}
3018 
3019 	igc_sbuf_fw_version(&sc->fw_ver, buf);
3020 
3021 	error = sbuf_finish(buf);
3022 	if (error)
3023 		device_printf(dev, "Error finishing sbuf: %d\n", error);
3024 
3025 	sbuf_delete(buf);
3026 
3027 	return (0);
3028 }
3029 
3030 /**********************************************************************
3031  *
3032  *  This routine provides a way to dump out the adapter eeprom,
3033  *  often a useful debug/service tool. This only dumps the first
3034  *  32 words, stuff that matters is in that extent.
3035  *
3036  **********************************************************************/
3037 static int
3038 igc_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
3039 {
3040 	struct igc_softc *sc = (struct igc_softc *)arg1;
3041 	int error;
3042 	int result;
3043 
3044 	result = -1;
3045 	error = sysctl_handle_int(oidp, &result, 0, req);
3046 
3047 	if (error || !req->newptr)
3048 		return (error);
3049 
3050 	/*
3051 	 * This value will cause a hex dump of the
3052 	 * first 32 16-bit words of the EEPROM to
3053 	 * the screen.
3054 	 */
3055 	if (result == 1)
3056 		igc_print_nvm_info(sc);
3057 
3058 	return (error);
3059 }
3060 
3061 static void
3062 igc_print_nvm_info(struct igc_softc *sc)
3063 {
3064 	u16 eeprom_data;
3065 	int i, j, row = 0;
3066 
3067 	/* Its a bit crude, but it gets the job done */
3068 	printf("\nInterface EEPROM Dump:\n");
3069 	printf("Offset\n0x0000  ");
3070 	for (i = 0, j = 0; i < 32; i++, j++) {
3071 		if (j == 8) { /* Make the offset block */
3072 			j = 0; ++row;
3073 			printf("\n0x00%x0  ",row);
3074 		}
3075 		igc_read_nvm(&sc->hw, i, 1, &eeprom_data);
3076 		printf("%04x ", eeprom_data);
3077 	}
3078 	printf("\n");
3079 }
3080 
3081 static int
3082 igc_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)
3083 {
3084 	struct igc_softc *sc;
3085 	u32 reg, val, shift;
3086 	int error, mask;
3087 
3088 	sc = oidp->oid_arg1;
3089 	switch (oidp->oid_arg2) {
3090 	case 0:
3091 		reg = IGC_DTXTCPFLGL;
3092 		shift = 0;
3093 		break;
3094 	case 1:
3095 		reg = IGC_DTXTCPFLGL;
3096 		shift = 16;
3097 		break;
3098 	case 2:
3099 		reg = IGC_DTXTCPFLGH;
3100 		shift = 0;
3101 		break;
3102 	default:
3103 		return (EINVAL);
3104 		break;
3105 	}
3106 	val = IGC_READ_REG(&sc->hw, reg);
3107 	mask = (val >> shift) & 0xfff;
3108 	error = sysctl_handle_int(oidp, &mask, 0, req);
3109 	if (error != 0 || req->newptr == NULL)
3110 		return (error);
3111 	if (mask < 0 || mask > 0xfff)
3112 		return (EINVAL);
3113 	val = (val & ~(0xfff << shift)) | (mask << shift);
3114 	IGC_WRITE_REG(&sc->hw, reg, val);
3115 	return (0);
3116 }
3117 
3118 /*
3119  * Set flow control using sysctl:
3120  * Flow control values:
3121  *      0 - off
3122  *      1 - rx pause
3123  *      2 - tx pause
3124  *      3 - full
3125  */
3126 static int
3127 igc_set_flowcntl(SYSCTL_HANDLER_ARGS)
3128 {
3129 	int error;
3130 	static int input = 3; /* default is full */
3131 	struct igc_softc *sc = (struct igc_softc *) arg1;
3132 
3133 	error = sysctl_handle_int(oidp, &input, 0, req);
3134 
3135 	if ((error) || (req->newptr == NULL))
3136 		return (error);
3137 
3138 	if (input == sc->fc) /* no change? */
3139 		return (error);
3140 
3141 	switch (input) {
3142 	case igc_fc_rx_pause:
3143 	case igc_fc_tx_pause:
3144 	case igc_fc_full:
3145 	case igc_fc_none:
3146 		sc->hw.fc.requested_mode = input;
3147 		sc->fc = input;
3148 		break;
3149 	default:
3150 		/* Do nothing */
3151 		return (error);
3152 	}
3153 
3154 	sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
3155 	igc_force_mac_fc(&sc->hw);
3156 	return (error);
3157 }
3158 
3159 /*
3160  * Manage DMA Coalesce:
3161  * Control values:
3162  * 	0/1 - off/on
3163  *	Legal timer values are:
3164  *	250,500,1000-10000 in thousands
3165  */
3166 static int
3167 igc_sysctl_dmac(SYSCTL_HANDLER_ARGS)
3168 {
3169 	struct igc_softc *sc = (struct igc_softc *) arg1;
3170 	int error;
3171 
3172 	error = sysctl_handle_int(oidp, &sc->dmac, 0, req);
3173 
3174 	if ((error) || (req->newptr == NULL))
3175 		return (error);
3176 
3177 	switch (sc->dmac) {
3178 		case 0:
3179 			/* Disabling */
3180 			break;
3181 		case 1: /* Just enable and use default */
3182 			sc->dmac = 1000;
3183 			break;
3184 		case 250:
3185 		case 500:
3186 		case 1000:
3187 		case 2000:
3188 		case 3000:
3189 		case 4000:
3190 		case 5000:
3191 		case 6000:
3192 		case 7000:
3193 		case 8000:
3194 		case 9000:
3195 		case 10000:
3196 			/* Legal values - allow */
3197 			break;
3198 		default:
3199 			/* Do nothing, illegal value */
3200 			sc->dmac = 0;
3201 			return (EINVAL);
3202 	}
3203 	/* Reinit the interface */
3204 	igc_if_init(sc->ctx);
3205 	return (error);
3206 }
3207 
3208 /*
3209  * Manage Energy Efficient Ethernet:
3210  * Control values:
3211  *     0/1 - enabled/disabled
3212  */
3213 static int
3214 igc_sysctl_eee(SYSCTL_HANDLER_ARGS)
3215 {
3216 	struct igc_softc *sc = (struct igc_softc *) arg1;
3217 	int error, value;
3218 
3219 	value = sc->hw.dev_spec._i225.eee_disable;
3220 	error = sysctl_handle_int(oidp, &value, 0, req);
3221 	if (error || req->newptr == NULL)
3222 		return (error);
3223 
3224 	sc->hw.dev_spec._i225.eee_disable = (value != 0);
3225 	igc_if_init(sc->ctx);
3226 
3227 	return (0);
3228 }
3229 
3230 static int
3231 igc_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3232 {
3233 	struct igc_softc *sc;
3234 	int error;
3235 	int result;
3236 
3237 	result = -1;
3238 	error = sysctl_handle_int(oidp, &result, 0, req);
3239 
3240 	if (error || !req->newptr)
3241 		return (error);
3242 
3243 	if (result == 1) {
3244 		sc = (struct igc_softc *) arg1;
3245 		igc_print_debug_info(sc);
3246 	}
3247 
3248 	return (error);
3249 }
3250 
3251 static int
3252 igc_get_rs(SYSCTL_HANDLER_ARGS)
3253 {
3254 	struct igc_softc *sc = (struct igc_softc *) arg1;
3255 	int error;
3256 	int result;
3257 
3258 	result = 0;
3259 	error = sysctl_handle_int(oidp, &result, 0, req);
3260 
3261 	if (error || !req->newptr || result != 1)
3262 		return (error);
3263 	igc_dump_rs(sc);
3264 
3265 	return (error);
3266 }
3267 
3268 static void
3269 igc_if_debug(if_ctx_t ctx)
3270 {
3271 	igc_dump_rs(iflib_get_softc(ctx));
3272 }
3273 
3274 /*
3275  * This routine is meant to be fluid, add whatever is
3276  * needed for debugging a problem.  -jfv
3277  */
3278 static void
3279 igc_print_debug_info(struct igc_softc *sc)
3280 {
3281 	device_t dev = iflib_get_dev(sc->ctx);
3282 	if_t ifp = iflib_get_ifp(sc->ctx);
3283 	struct tx_ring *txr = &sc->tx_queues->txr;
3284 	struct rx_ring *rxr = &sc->rx_queues->rxr;
3285 
3286 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3287 		printf("Interface is RUNNING ");
3288 	else
3289 		printf("Interface is NOT RUNNING\n");
3290 
3291 	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
3292 		printf("and INACTIVE\n");
3293 	else
3294 		printf("and ACTIVE\n");
3295 
3296 	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3297 		device_printf(dev, "TX Queue %d ------\n", i);
3298 		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3299 		    IGC_READ_REG(&sc->hw, IGC_TDH(i)),
3300 		    IGC_READ_REG(&sc->hw, IGC_TDT(i)));
3301 
3302 	}
3303 	for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
3304 		device_printf(dev, "RX Queue %d ------\n", j);
3305 		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3306 		    IGC_READ_REG(&sc->hw, IGC_RDH(j)),
3307 		    IGC_READ_REG(&sc->hw, IGC_RDT(j)));
3308 	}
3309 }
3310