1 /* SPDX-License-Identifier: BSD-3-Clause */ 2 /* Copyright (c) 2022, Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the Intel Corporation nor the names of its 16 * contributors may be used to endorse or promote products derived from 17 * this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /*$FreeBSD$*/ 32 33 #ifndef _VIRTCHNL_H_ 34 #define _VIRTCHNL_H_ 35 36 /* Description: 37 * This header file describes the Virtual Function (VF) - Physical Function 38 * (PF) communication protocol used by the drivers for all devices starting 39 * from our 40G product line 40 * 41 * Admin queue buffer usage: 42 * desc->opcode is always aqc_opc_send_msg_to_pf 43 * flags, retval, datalen, and data addr are all used normally. 44 * The Firmware copies the cookie fields when sending messages between the 45 * PF and VF, but uses all other fields internally. Due to this limitation, 46 * we must send all messages as "indirect", i.e. using an external buffer. 47 * 48 * All the VSI indexes are relative to the VF. Each VF can have maximum of 49 * three VSIs. All the queue indexes are relative to the VSI. Each VF can 50 * have a maximum of sixteen queues for all of its VSIs. 51 * 52 * The PF is required to return a status code in v_retval for all messages 53 * except RESET_VF, which does not require any response. The returned value 54 * is of virtchnl_status_code type, defined here. 55 * 56 * In general, VF driver initialization should roughly follow the order of 57 * these opcodes. The VF driver must first validate the API version of the 58 * PF driver, then request a reset, then get resources, then configure 59 * queues and interrupts. After these operations are complete, the VF 60 * driver may start its queues, optionally add MAC and VLAN filters, and 61 * process traffic. 62 */ 63 64 /* START GENERIC DEFINES 65 * Need to ensure the following enums and defines hold the same meaning and 66 * value in current and future projects 67 */ 68 69 #define VIRTCHNL_ETH_LENGTH_OF_ADDRESS 6 70 71 /* These macros are used to generate compilation errors if a structure/union 72 * is not exactly the correct length. It gives a divide by zero error if the 73 * structure/union is not of the correct size, otherwise it creates an enum 74 * that is never used. 75 */ 76 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \ 77 { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) } 78 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \ 79 { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) } 80 81 /* Error Codes 82 * Note that many older versions of various iAVF drivers convert the reported 83 * status code directly into an iavf_status enumeration. For this reason, it 84 * is important that the values of these enumerations line up. 85 */ 86 enum virtchnl_status_code { 87 VIRTCHNL_STATUS_SUCCESS = 0, 88 VIRTCHNL_STATUS_ERR_PARAM = -5, 89 VIRTCHNL_STATUS_ERR_NO_MEMORY = -18, 90 VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38, 91 VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39, 92 VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40, 93 VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53, 94 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64, 95 }; 96 97 /* Backward compatibility */ 98 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM 99 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED 100 101 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0 102 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1 103 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2 104 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3 105 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4 106 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5 107 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6 108 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7 109 110 enum virtchnl_link_speed { 111 VIRTCHNL_LINK_SPEED_UNKNOWN = 0, 112 VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT), 113 VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT), 114 VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT), 115 VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT), 116 VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT), 117 VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT), 118 VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT), 119 VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT), 120 }; 121 122 /* for hsplit_0 field of Rx HMC context */ 123 /* deprecated with AVF 1.0 */ 124 enum virtchnl_rx_hsplit { 125 VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0, 126 VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1, 127 VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2, 128 VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4, 129 VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8, 130 }; 131 132 enum virtchnl_bw_limit_type { 133 VIRTCHNL_BW_SHAPER = 0, 134 }; 135 /* END GENERIC DEFINES */ 136 137 /* Opcodes for VF-PF communication. These are placed in the v_opcode field 138 * of the virtchnl_msg structure. 139 */ 140 enum virtchnl_ops { 141 /* The PF sends status change events to VFs using 142 * the VIRTCHNL_OP_EVENT opcode. 143 * VFs send requests to the PF using the other ops. 144 * Use of "advanced opcode" features must be negotiated as part of capabilities 145 * exchange and are not considered part of base mode feature set. 146 * 147 */ 148 VIRTCHNL_OP_UNKNOWN = 0, 149 VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */ 150 VIRTCHNL_OP_RESET_VF = 2, 151 VIRTCHNL_OP_GET_VF_RESOURCES = 3, 152 VIRTCHNL_OP_CONFIG_TX_QUEUE = 4, 153 VIRTCHNL_OP_CONFIG_RX_QUEUE = 5, 154 VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6, 155 VIRTCHNL_OP_CONFIG_IRQ_MAP = 7, 156 VIRTCHNL_OP_ENABLE_QUEUES = 8, 157 VIRTCHNL_OP_DISABLE_QUEUES = 9, 158 VIRTCHNL_OP_ADD_ETH_ADDR = 10, 159 VIRTCHNL_OP_DEL_ETH_ADDR = 11, 160 VIRTCHNL_OP_ADD_VLAN = 12, 161 VIRTCHNL_OP_DEL_VLAN = 13, 162 VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14, 163 VIRTCHNL_OP_GET_STATS = 15, 164 VIRTCHNL_OP_RSVD = 16, 165 VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */ 166 /* opcode 19 is reserved */ 167 /* opcodes 20, 21, and 22 are reserved */ 168 VIRTCHNL_OP_CONFIG_RSS_KEY = 23, 169 VIRTCHNL_OP_CONFIG_RSS_LUT = 24, 170 VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25, 171 VIRTCHNL_OP_SET_RSS_HENA = 26, 172 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27, 173 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28, 174 VIRTCHNL_OP_REQUEST_QUEUES = 29, 175 VIRTCHNL_OP_ENABLE_CHANNELS = 30, 176 VIRTCHNL_OP_DISABLE_CHANNELS = 31, 177 VIRTCHNL_OP_ADD_CLOUD_FILTER = 32, 178 VIRTCHNL_OP_DEL_CLOUD_FILTER = 33, 179 /* opcode 34 is reserved */ 180 /* opcodes 38, 39, 40, 41, 42 and 43 are reserved */ 181 /* opcode 44 is reserved */ 182 VIRTCHNL_OP_ADD_RSS_CFG = 45, 183 VIRTCHNL_OP_DEL_RSS_CFG = 46, 184 VIRTCHNL_OP_ADD_FDIR_FILTER = 47, 185 VIRTCHNL_OP_DEL_FDIR_FILTER = 48, 186 VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50, 187 VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51, 188 VIRTCHNL_OP_ADD_VLAN_V2 = 52, 189 VIRTCHNL_OP_DEL_VLAN_V2 = 53, 190 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54, 191 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55, 192 VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56, 193 VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57, 194 VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58, 195 VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59, 196 /* opcodes 60 through 65 are reserved */ 197 VIRTCHNL_OP_GET_QOS_CAPS = 66, 198 VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP = 67, 199 /* opcode 68 through 70 are reserved */ 200 VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107, 201 VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108, 202 VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111, 203 VIRTCHNL_OP_CONFIG_QUEUE_BW = 112, 204 VIRTCHNL_OP_CONFIG_QUANTA = 113, 205 VIRTCHNL_OP_MAX, 206 }; 207 208 static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode) 209 { 210 switch (v_opcode) { 211 case VIRTCHNL_OP_UNKNOWN: 212 return "VIRTCHNL_OP_UNKNOWN"; 213 case VIRTCHNL_OP_VERSION: 214 return "VIRTCHNL_OP_VERSION"; 215 case VIRTCHNL_OP_RESET_VF: 216 return "VIRTCHNL_OP_RESET_VF"; 217 case VIRTCHNL_OP_GET_VF_RESOURCES: 218 return "VIRTCHNL_OP_GET_VF_RESOURCES"; 219 case VIRTCHNL_OP_CONFIG_TX_QUEUE: 220 return "VIRTCHNL_OP_CONFIG_TX_QUEUE"; 221 case VIRTCHNL_OP_CONFIG_RX_QUEUE: 222 return "VIRTCHNL_OP_CONFIG_RX_QUEUE"; 223 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 224 return "VIRTCHNL_OP_CONFIG_VSI_QUEUES"; 225 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 226 return "VIRTCHNL_OP_CONFIG_IRQ_MAP"; 227 case VIRTCHNL_OP_ENABLE_QUEUES: 228 return "VIRTCHNL_OP_ENABLE_QUEUES"; 229 case VIRTCHNL_OP_DISABLE_QUEUES: 230 return "VIRTCHNL_OP_DISABLE_QUEUES"; 231 case VIRTCHNL_OP_ADD_ETH_ADDR: 232 return "VIRTCHNL_OP_ADD_ETH_ADDR"; 233 case VIRTCHNL_OP_DEL_ETH_ADDR: 234 return "VIRTCHNL_OP_DEL_ETH_ADDR"; 235 case VIRTCHNL_OP_ADD_VLAN: 236 return "VIRTCHNL_OP_ADD_VLAN"; 237 case VIRTCHNL_OP_DEL_VLAN: 238 return "VIRTCHNL_OP_DEL_VLAN"; 239 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 240 return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE"; 241 case VIRTCHNL_OP_GET_STATS: 242 return "VIRTCHNL_OP_GET_STATS"; 243 case VIRTCHNL_OP_RSVD: 244 return "VIRTCHNL_OP_RSVD"; 245 case VIRTCHNL_OP_EVENT: 246 return "VIRTCHNL_OP_EVENT"; 247 case VIRTCHNL_OP_CONFIG_RSS_KEY: 248 return "VIRTCHNL_OP_CONFIG_RSS_KEY"; 249 case VIRTCHNL_OP_CONFIG_RSS_LUT: 250 return "VIRTCHNL_OP_CONFIG_RSS_LUT"; 251 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 252 return "VIRTCHNL_OP_GET_RSS_HENA_CAPS"; 253 case VIRTCHNL_OP_SET_RSS_HENA: 254 return "VIRTCHNL_OP_SET_RSS_HENA"; 255 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 256 return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING"; 257 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 258 return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING"; 259 case VIRTCHNL_OP_REQUEST_QUEUES: 260 return "VIRTCHNL_OP_REQUEST_QUEUES"; 261 case VIRTCHNL_OP_ENABLE_CHANNELS: 262 return "VIRTCHNL_OP_ENABLE_CHANNELS"; 263 case VIRTCHNL_OP_DISABLE_CHANNELS: 264 return "VIRTCHNL_OP_DISABLE_CHANNELS"; 265 case VIRTCHNL_OP_ADD_CLOUD_FILTER: 266 return "VIRTCHNL_OP_ADD_CLOUD_FILTER"; 267 case VIRTCHNL_OP_DEL_CLOUD_FILTER: 268 return "VIRTCHNL_OP_DEL_CLOUD_FILTER"; 269 case VIRTCHNL_OP_ADD_RSS_CFG: 270 return "VIRTCHNL_OP_ADD_RSS_CFG"; 271 case VIRTCHNL_OP_DEL_RSS_CFG: 272 return "VIRTCHNL_OP_DEL_RSS_CFG"; 273 case VIRTCHNL_OP_ADD_FDIR_FILTER: 274 return "VIRTCHNL_OP_ADD_FDIR_FILTER"; 275 case VIRTCHNL_OP_DEL_FDIR_FILTER: 276 return "VIRTCHNL_OP_DEL_FDIR_FILTER"; 277 case VIRTCHNL_OP_GET_MAX_RSS_QREGION: 278 return "VIRTCHNL_OP_GET_MAX_RSS_QREGION"; 279 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 280 return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS"; 281 case VIRTCHNL_OP_ADD_VLAN_V2: 282 return "VIRTCHNL_OP_ADD_VLAN_V2"; 283 case VIRTCHNL_OP_DEL_VLAN_V2: 284 return "VIRTCHNL_OP_DEL_VLAN_V2"; 285 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 286 return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2"; 287 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 288 return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2"; 289 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 290 return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2"; 291 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 292 return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2"; 293 case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2: 294 return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2"; 295 case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2: 296 return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2"; 297 case VIRTCHNL_OP_ENABLE_QUEUES_V2: 298 return "VIRTCHNL_OP_ENABLE_QUEUES_V2"; 299 case VIRTCHNL_OP_DISABLE_QUEUES_V2: 300 return "VIRTCHNL_OP_DISABLE_QUEUES_V2"; 301 case VIRTCHNL_OP_MAP_QUEUE_VECTOR: 302 return "VIRTCHNL_OP_MAP_QUEUE_VECTOR"; 303 case VIRTCHNL_OP_MAX: 304 return "VIRTCHNL_OP_MAX"; 305 default: 306 return "Unsupported (update virtchnl.h)"; 307 } 308 } 309 310 static inline const char *virtchnl_stat_str(enum virtchnl_status_code v_status) 311 { 312 switch (v_status) { 313 case VIRTCHNL_STATUS_SUCCESS: 314 return "VIRTCHNL_STATUS_SUCCESS"; 315 case VIRTCHNL_STATUS_ERR_PARAM: 316 return "VIRTCHNL_STATUS_ERR_PARAM"; 317 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 318 return "VIRTCHNL_STATUS_ERR_NO_MEMORY"; 319 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 320 return "VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH"; 321 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 322 return "VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR"; 323 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 324 return "VIRTCHNL_STATUS_ERR_INVALID_VF_ID"; 325 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 326 return "VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR"; 327 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 328 return "VIRTCHNL_STATUS_ERR_NOT_SUPPORTED"; 329 default: 330 return "Unknown status code (update virtchnl.h)"; 331 } 332 } 333 334 /* Virtual channel message descriptor. This overlays the admin queue 335 * descriptor. All other data is passed in external buffers. 336 */ 337 338 struct virtchnl_msg { 339 u8 pad[8]; /* AQ flags/opcode/len/retval fields */ 340 341 /* avoid confusion with desc->opcode */ 342 enum virtchnl_ops v_opcode; 343 344 /* ditto for desc->retval */ 345 enum virtchnl_status_code v_retval; 346 u32 vfid; /* used by PF when sending to VF */ 347 }; 348 349 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg); 350 351 /* Message descriptions and data structures. */ 352 353 /* VIRTCHNL_OP_VERSION 354 * VF posts its version number to the PF. PF responds with its version number 355 * in the same format, along with a return code. 356 * Reply from PF has its major/minor versions also in param0 and param1. 357 * If there is a major version mismatch, then the VF cannot operate. 358 * If there is a minor version mismatch, then the VF can operate but should 359 * add a warning to the system log. 360 * 361 * This enum element MUST always be specified as == 1, regardless of other 362 * changes in the API. The PF must always respond to this message without 363 * error regardless of version mismatch. 364 */ 365 #define VIRTCHNL_VERSION_MAJOR 1 366 #define VIRTCHNL_VERSION_MINOR 1 367 #define VIRTCHNL_VERSION_MAJOR_2 2 368 #define VIRTCHNL_VERSION_MINOR_0 0 369 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0 370 371 struct virtchnl_version_info { 372 u32 major; 373 u32 minor; 374 }; 375 376 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info); 377 378 #define VF_IS_V10(_ver) (((_ver)->major == 1) && ((_ver)->minor == 0)) 379 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1)) 380 #define VF_IS_V20(_ver) (((_ver)->major == 2) && ((_ver)->minor == 0)) 381 382 /* VIRTCHNL_OP_RESET_VF 383 * VF sends this request to PF with no parameters 384 * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register 385 * until reset completion is indicated. The admin queue must be reinitialized 386 * after this operation. 387 * 388 * When reset is complete, PF must ensure that all queues in all VSIs associated 389 * with the VF are stopped, all queue configurations in the HMC are set to 0, 390 * and all MAC and VLAN filters (except the default MAC address) on all VSIs 391 * are cleared. 392 */ 393 394 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV 395 * vsi_type should always be 6 for backward compatibility. Add other fields 396 * as needed. 397 */ 398 enum virtchnl_vsi_type { 399 VIRTCHNL_VSI_TYPE_INVALID = 0, 400 VIRTCHNL_VSI_SRIOV = 6, 401 }; 402 403 /* VIRTCHNL_OP_GET_VF_RESOURCES 404 * Version 1.0 VF sends this request to PF with no parameters 405 * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities 406 * PF responds with an indirect message containing 407 * virtchnl_vf_resource and one or more 408 * virtchnl_vsi_resource structures. 409 */ 410 411 struct virtchnl_vsi_resource { 412 u16 vsi_id; 413 u16 num_queue_pairs; 414 415 /* see enum virtchnl_vsi_type */ 416 s32 vsi_type; 417 u16 qset_handle; 418 u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; 419 }; 420 421 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource); 422 423 /* VF capability flags 424 * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including 425 * TX/RX Checksum offloading and TSO for non-tunnelled packets. 426 */ 427 #define VIRTCHNL_VF_OFFLOAD_L2 BIT(0) 428 #define VIRTCHNL_VF_OFFLOAD_IWARP BIT(1) 429 #define VIRTCHNL_VF_CAP_RDMA VIRTCHNL_VF_OFFLOAD_IWARP 430 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3) 431 #define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4) 432 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5) 433 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6) 434 /* used to negotiate communicating link speeds in Mbps */ 435 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7) 436 /* BIT(8) is reserved */ 437 #define VIRTCHNL_VF_LARGE_NUM_QPAIRS BIT(9) 438 #define VIRTCHNL_VF_OFFLOAD_CRC BIT(10) 439 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15) 440 #define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16) 441 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17) 442 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18) 443 #define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19) 444 #define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20) 445 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21) 446 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22) 447 #define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23) 448 #define VIRTCHNL_VF_OFFLOAD_ADQ_V2 BIT(24) 449 #define VIRTCHNL_VF_OFFLOAD_USO BIT(25) 450 /* BIT(26) is reserved */ 451 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27) 452 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28) 453 #define VIRTCHNL_VF_OFFLOAD_QOS BIT(29) 454 /* BIT(30) is reserved */ 455 /* BIT(31) is reserved */ 456 457 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \ 458 VIRTCHNL_VF_OFFLOAD_VLAN | \ 459 VIRTCHNL_VF_OFFLOAD_RSS_PF) 460 461 struct virtchnl_vf_resource { 462 u16 num_vsis; 463 u16 num_queue_pairs; 464 u16 max_vectors; 465 u16 max_mtu; 466 467 u32 vf_cap_flags; 468 u32 rss_key_size; 469 u32 rss_lut_size; 470 471 struct virtchnl_vsi_resource vsi_res[1]; 472 }; 473 474 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource); 475 476 /* VIRTCHNL_OP_CONFIG_TX_QUEUE 477 * VF sends this message to set up parameters for one TX queue. 478 * External data buffer contains one instance of virtchnl_txq_info. 479 * PF configures requested queue and returns a status code. 480 */ 481 482 /* Tx queue config info */ 483 struct virtchnl_txq_info { 484 u16 vsi_id; 485 u16 queue_id; 486 u16 ring_len; /* number of descriptors, multiple of 8 */ 487 u16 headwb_enabled; /* deprecated with AVF 1.0 */ 488 u64 dma_ring_addr; 489 u64 dma_headwb_addr; /* deprecated with AVF 1.0 */ 490 }; 491 492 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info); 493 494 /* RX descriptor IDs (range from 0 to 63) */ 495 enum virtchnl_rx_desc_ids { 496 VIRTCHNL_RXDID_0_16B_BASE = 0, 497 VIRTCHNL_RXDID_1_32B_BASE = 1, 498 VIRTCHNL_RXDID_2_FLEX_SQ_NIC = 2, 499 VIRTCHNL_RXDID_3_FLEX_SQ_SW = 3, 500 VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB = 4, 501 VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL = 5, 502 VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2 = 6, 503 VIRTCHNL_RXDID_7_HW_RSVD = 7, 504 /* 8 through 15 are reserved */ 505 VIRTCHNL_RXDID_16_COMMS_GENERIC = 16, 506 VIRTCHNL_RXDID_17_COMMS_AUX_VLAN = 17, 507 VIRTCHNL_RXDID_18_COMMS_AUX_IPV4 = 18, 508 VIRTCHNL_RXDID_19_COMMS_AUX_IPV6 = 19, 509 VIRTCHNL_RXDID_20_COMMS_AUX_FLOW = 20, 510 VIRTCHNL_RXDID_21_COMMS_AUX_TCP = 21, 511 /* 22 through 63 are reserved */ 512 }; 513 514 /* RX descriptor ID bitmasks */ 515 enum virtchnl_rx_desc_id_bitmasks { 516 VIRTCHNL_RXDID_0_16B_BASE_M = BIT(VIRTCHNL_RXDID_0_16B_BASE), 517 VIRTCHNL_RXDID_1_32B_BASE_M = BIT(VIRTCHNL_RXDID_1_32B_BASE), 518 VIRTCHNL_RXDID_2_FLEX_SQ_NIC_M = BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC), 519 VIRTCHNL_RXDID_3_FLEX_SQ_SW_M = BIT(VIRTCHNL_RXDID_3_FLEX_SQ_SW), 520 VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB_M = BIT(VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB), 521 VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL_M = BIT(VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL), 522 VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2_M = BIT(VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2), 523 VIRTCHNL_RXDID_7_HW_RSVD_M = BIT(VIRTCHNL_RXDID_7_HW_RSVD), 524 /* 9 through 15 are reserved */ 525 VIRTCHNL_RXDID_16_COMMS_GENERIC_M = BIT(VIRTCHNL_RXDID_16_COMMS_GENERIC), 526 VIRTCHNL_RXDID_17_COMMS_AUX_VLAN_M = BIT(VIRTCHNL_RXDID_17_COMMS_AUX_VLAN), 527 VIRTCHNL_RXDID_18_COMMS_AUX_IPV4_M = BIT(VIRTCHNL_RXDID_18_COMMS_AUX_IPV4), 528 VIRTCHNL_RXDID_19_COMMS_AUX_IPV6_M = BIT(VIRTCHNL_RXDID_19_COMMS_AUX_IPV6), 529 VIRTCHNL_RXDID_20_COMMS_AUX_FLOW_M = BIT(VIRTCHNL_RXDID_20_COMMS_AUX_FLOW), 530 VIRTCHNL_RXDID_21_COMMS_AUX_TCP_M = BIT(VIRTCHNL_RXDID_21_COMMS_AUX_TCP), 531 /* 22 through 63 are reserved */ 532 }; 533 534 /* VIRTCHNL_OP_CONFIG_RX_QUEUE 535 * VF sends this message to set up parameters for one RX queue. 536 * External data buffer contains one instance of virtchnl_rxq_info. 537 * PF configures requested queue and returns a status code. The 538 * crc_disable flag disables CRC stripping on the VF. Setting 539 * the crc_disable flag to 1 will disable CRC stripping for each 540 * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC 541 * offload must have been set prior to sending this info or the PF 542 * will ignore the request. This flag should be set the same for 543 * all of the queues for a VF. 544 */ 545 546 /* Rx queue config info */ 547 struct virtchnl_rxq_info { 548 u16 vsi_id; 549 u16 queue_id; 550 u32 ring_len; /* number of descriptors, multiple of 32 */ 551 u16 hdr_size; 552 u16 splithdr_enabled; /* deprecated with AVF 1.0 */ 553 u32 databuffer_size; 554 u32 max_pkt_size; 555 u8 crc_disable; 556 u8 pad1[3]; 557 u64 dma_ring_addr; 558 559 /* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */ 560 s32 rx_split_pos; 561 u32 pad2; 562 }; 563 564 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info); 565 566 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES 567 * VF sends this message to set parameters for active TX and RX queues 568 * associated with the specified VSI. 569 * PF configures queues and returns status. 570 * If the number of queues specified is greater than the number of queues 571 * associated with the VSI, an error is returned and no queues are configured. 572 * NOTE: The VF is not required to configure all queues in a single request. 573 * It may send multiple messages. PF drivers must correctly handle all VF 574 * requests. 575 */ 576 struct virtchnl_queue_pair_info { 577 /* NOTE: vsi_id and queue_id should be identical for both queues. */ 578 struct virtchnl_txq_info txq; 579 struct virtchnl_rxq_info rxq; 580 }; 581 582 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info); 583 584 struct virtchnl_vsi_queue_config_info { 585 u16 vsi_id; 586 u16 num_queue_pairs; 587 u32 pad; 588 struct virtchnl_queue_pair_info qpair[1]; 589 }; 590 591 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info); 592 593 /* VIRTCHNL_OP_REQUEST_QUEUES 594 * VF sends this message to request the PF to allocate additional queues to 595 * this VF. Each VF gets a guaranteed number of queues on init but asking for 596 * additional queues must be negotiated. This is a best effort request as it 597 * is possible the PF does not have enough queues left to support the request. 598 * If the PF cannot support the number requested it will respond with the 599 * maximum number it is able to support. If the request is successful, PF will 600 * then reset the VF to institute required changes. 601 */ 602 603 /* VF resource request */ 604 struct virtchnl_vf_res_request { 605 u16 num_queue_pairs; 606 }; 607 608 /* VIRTCHNL_OP_CONFIG_IRQ_MAP 609 * VF uses this message to map vectors to queues. 610 * The rxq_map and txq_map fields are bitmaps used to indicate which queues 611 * are to be associated with the specified vector. 612 * The "other" causes are always mapped to vector 0. The VF may not request 613 * that vector 0 be used for traffic. 614 * PF configures interrupt mapping and returns status. 615 * NOTE: due to hardware requirements, all active queues (both TX and RX) 616 * should be mapped to interrupts, even if the driver intends to operate 617 * only in polling mode. In this case the interrupt may be disabled, but 618 * the ITR timer will still run to trigger writebacks. 619 */ 620 struct virtchnl_vector_map { 621 u16 vsi_id; 622 u16 vector_id; 623 u16 rxq_map; 624 u16 txq_map; 625 u16 rxitr_idx; 626 u16 txitr_idx; 627 }; 628 629 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map); 630 631 struct virtchnl_irq_map_info { 632 u16 num_vectors; 633 struct virtchnl_vector_map vecmap[1]; 634 }; 635 636 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info); 637 638 /* VIRTCHNL_OP_ENABLE_QUEUES 639 * VIRTCHNL_OP_DISABLE_QUEUES 640 * VF sends these message to enable or disable TX/RX queue pairs. 641 * The queues fields are bitmaps indicating which queues to act upon. 642 * (Currently, we only support 16 queues per VF, but we make the field 643 * u32 to allow for expansion.) 644 * PF performs requested action and returns status. 645 * NOTE: The VF is not required to enable/disable all queues in a single 646 * request. It may send multiple messages. 647 * PF drivers must correctly handle all VF requests. 648 */ 649 struct virtchnl_queue_select { 650 u16 vsi_id; 651 u16 pad; 652 u32 rx_queues; 653 u32 tx_queues; 654 }; 655 656 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select); 657 658 /* VIRTCHNL_OP_GET_MAX_RSS_QREGION 659 * 660 * if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES 661 * then this op must be supported. 662 * 663 * VF sends this message in order to query the max RSS queue region 664 * size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled. 665 * This information should be used when configuring the RSS LUT and/or 666 * configuring queue region based filters. 667 * 668 * The maximum RSS queue region is 2^qregion_width. So, a qregion_width 669 * of 6 would inform the VF that the PF supports a maximum RSS queue region 670 * of 64. 671 * 672 * A queue region represents a range of queues that can be used to configure 673 * a RSS LUT. For example, if a VF is given 64 queues, but only a max queue 674 * region size of 16 (i.e. 2^qregion_width = 16) then it will only be able 675 * to configure the RSS LUT with queue indices from 0 to 15. However, other 676 * filters can be used to direct packets to queues >15 via specifying a queue 677 * base/offset and queue region width. 678 */ 679 struct virtchnl_max_rss_qregion { 680 u16 vport_id; 681 u16 qregion_width; 682 u8 pad[4]; 683 }; 684 685 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion); 686 687 /* VIRTCHNL_OP_ADD_ETH_ADDR 688 * VF sends this message in order to add one or more unicast or multicast 689 * address filters for the specified VSI. 690 * PF adds the filters and returns status. 691 */ 692 693 /* VIRTCHNL_OP_DEL_ETH_ADDR 694 * VF sends this message in order to remove one or more unicast or multicast 695 * filters for the specified VSI. 696 * PF removes the filters and returns status. 697 */ 698 699 /* VIRTCHNL_ETHER_ADDR_LEGACY 700 * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad 701 * bytes. Moving forward all VF drivers should not set type to 702 * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy 703 * behavior. The control plane function (i.e. PF) can use a best effort method 704 * of tracking the primary/device unicast in this case, but there is no 705 * guarantee and functionality depends on the implementation of the PF. 706 */ 707 708 /* VIRTCHNL_ETHER_ADDR_PRIMARY 709 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the 710 * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and 711 * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane 712 * function (i.e. PF) to accurately track and use this MAC address for 713 * displaying on the host and for VM/function reset. 714 */ 715 716 /* VIRTCHNL_ETHER_ADDR_EXTRA 717 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra 718 * unicast and/or multicast filters that are being added/deleted via 719 * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively. 720 */ 721 struct virtchnl_ether_addr { 722 u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; 723 u8 type; 724 #define VIRTCHNL_ETHER_ADDR_LEGACY 0 725 #define VIRTCHNL_ETHER_ADDR_PRIMARY 1 726 #define VIRTCHNL_ETHER_ADDR_EXTRA 2 727 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */ 728 u8 pad; 729 }; 730 731 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr); 732 733 struct virtchnl_ether_addr_list { 734 u16 vsi_id; 735 u16 num_elements; 736 struct virtchnl_ether_addr list[1]; 737 }; 738 739 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list); 740 741 /* VIRTCHNL_OP_ADD_VLAN 742 * VF sends this message to add one or more VLAN tag filters for receives. 743 * PF adds the filters and returns status. 744 * If a port VLAN is configured by the PF, this operation will return an 745 * error to the VF. 746 */ 747 748 /* VIRTCHNL_OP_DEL_VLAN 749 * VF sends this message to remove one or more VLAN tag filters for receives. 750 * PF removes the filters and returns status. 751 * If a port VLAN is configured by the PF, this operation will return an 752 * error to the VF. 753 */ 754 755 struct virtchnl_vlan_filter_list { 756 u16 vsi_id; 757 u16 num_elements; 758 u16 vlan_id[1]; 759 }; 760 761 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list); 762 763 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related 764 * structures and opcodes. 765 * 766 * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver 767 * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED. 768 * 769 * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype. 770 * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype. 771 * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype. 772 * 773 * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported 774 * by the PF concurrently. For example, if the PF can support 775 * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it 776 * would OR the following bits: 777 * 778 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 779 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 780 * VIRTCHNL_VLAN_ETHERTYPE_AND; 781 * 782 * The VF would interpret this as VLAN filtering can be supported on both 0x8100 783 * and 0x88A8 VLAN ethertypes. 784 * 785 * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported 786 * by the PF concurrently. For example if the PF can support 787 * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping 788 * offload it would OR the following bits: 789 * 790 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 791 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 792 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 793 * 794 * The VF would interpret this as VLAN stripping can be supported on either 795 * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via 796 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override 797 * the previously set value. 798 * 799 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or 800 * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors. 801 * 802 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware 803 * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor. 804 * 805 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware 806 * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor. 807 * 808 * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for 809 * VLAN filtering if the underlying PF supports it. 810 * 811 * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a 812 * certain VLAN capability can be toggled. For example if the underlying PF/CP 813 * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should 814 * set this bit along with the supported ethertypes. 815 */ 816 enum virtchnl_vlan_support { 817 VIRTCHNL_VLAN_UNSUPPORTED = 0, 818 VIRTCHNL_VLAN_ETHERTYPE_8100 = 0x00000001, 819 VIRTCHNL_VLAN_ETHERTYPE_88A8 = 0x00000002, 820 VIRTCHNL_VLAN_ETHERTYPE_9100 = 0x00000004, 821 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = 0x00000100, 822 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = 0x00000200, 823 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = 0x00000400, 824 VIRTCHNL_VLAN_PRIO = 0x01000000, 825 VIRTCHNL_VLAN_FILTER_MASK = 0x10000000, 826 VIRTCHNL_VLAN_ETHERTYPE_AND = 0x20000000, 827 VIRTCHNL_VLAN_ETHERTYPE_XOR = 0x40000000, 828 VIRTCHNL_VLAN_TOGGLE = 0x80000000 829 }; 830 831 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 832 * for filtering, insertion, and stripping capabilities. 833 * 834 * If only outer capabilities are supported (for filtering, insertion, and/or 835 * stripping) then this refers to the outer most or single VLAN from the VF's 836 * perspective. 837 * 838 * If only inner capabilities are supported (for filtering, insertion, and/or 839 * stripping) then this refers to the outer most or single VLAN from the VF's 840 * perspective. Functionally this is the same as if only outer capabilities are 841 * supported. The VF driver is just forced to use the inner fields when 842 * adding/deleting filters and enabling/disabling offloads (if supported). 843 * 844 * If both outer and inner capabilities are supported (for filtering, insertion, 845 * and/or stripping) then outer refers to the outer most or single VLAN and 846 * inner refers to the second VLAN, if it exists, in the packet. 847 * 848 * There is no support for tunneled VLAN offloads, so outer or inner are never 849 * referring to a tunneled packet from the VF's perspective. 850 */ 851 struct virtchnl_vlan_supported_caps { 852 u32 outer; 853 u32 inner; 854 }; 855 856 /* The PF populates these fields based on the supported VLAN filtering. If a 857 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 858 * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using 859 * the unsupported fields. 860 * 861 * Also, a VF is only allowed to toggle its VLAN filtering setting if the 862 * VIRTCHNL_VLAN_TOGGLE bit is set. 863 * 864 * The ethertype(s) specified in the ethertype_init field are the ethertypes 865 * enabled for VLAN filtering. VLAN filtering in this case refers to the outer 866 * most VLAN from the VF's perspective. If both inner and outer filtering are 867 * allowed then ethertype_init only refers to the outer most VLAN as only 868 * VLAN ethertype supported for inner VLAN filtering is 869 * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled 870 * when both inner and outer filtering are allowed. 871 * 872 * The max_filters field tells the VF how many VLAN filters it's allowed to have 873 * at any one time. If it exceeds this amount and tries to add another filter, 874 * then the request will be rejected by the PF. To prevent failures, the VF 875 * should keep track of how many VLAN filters it has added and not attempt to 876 * add more than max_filters. 877 */ 878 struct virtchnl_vlan_filtering_caps { 879 struct virtchnl_vlan_supported_caps filtering_support; 880 u32 ethertype_init; 881 u16 max_filters; 882 u8 pad[2]; 883 }; 884 885 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps); 886 887 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify 888 * if the PF supports a different ethertype for stripping and insertion. 889 * 890 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified 891 * for stripping affect the ethertype(s) specified for insertion and visa versa 892 * as well. If the VF tries to configure VLAN stripping via 893 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then 894 * that will be the ethertype for both stripping and insertion. 895 * 896 * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for 897 * stripping do not affect the ethertype(s) specified for insertion and visa 898 * versa. 899 */ 900 enum virtchnl_vlan_ethertype_match { 901 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0, 902 VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1, 903 }; 904 905 /* The PF populates these fields based on the supported VLAN offloads. If a 906 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 907 * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or 908 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields. 909 * 910 * Also, a VF is only allowed to toggle its VLAN offload setting if the 911 * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set. 912 * 913 * The VF driver needs to be aware of how the tags are stripped by hardware and 914 * inserted by the VF driver based on the level of offload support. The PF will 915 * populate these fields based on where the VLAN tags are expected to be 916 * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to 917 * interpret these fields. See the definition of the 918 * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support 919 * enumeration. 920 */ 921 struct virtchnl_vlan_offload_caps { 922 struct virtchnl_vlan_supported_caps stripping_support; 923 struct virtchnl_vlan_supported_caps insertion_support; 924 u32 ethertype_init; 925 u8 ethertype_match; 926 u8 pad[3]; 927 }; 928 929 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps); 930 931 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 932 * VF sends this message to determine its VLAN capabilities. 933 * 934 * PF will mark which capabilities it supports based on hardware support and 935 * current configuration. For example, if a port VLAN is configured the PF will 936 * not allow outer VLAN filtering, stripping, or insertion to be configured so 937 * it will block these features from the VF. 938 * 939 * The VF will need to cross reference its capabilities with the PFs 940 * capabilities in the response message from the PF to determine the VLAN 941 * support. 942 */ 943 struct virtchnl_vlan_caps { 944 struct virtchnl_vlan_filtering_caps filtering; 945 struct virtchnl_vlan_offload_caps offloads; 946 }; 947 948 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps); 949 950 struct virtchnl_vlan { 951 u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */ 952 u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in 953 * filtering caps 954 */ 955 u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in 956 * filtering caps. Note that tpid here does not refer to 957 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the 958 * actual 2-byte VLAN TPID 959 */ 960 u8 pad[2]; 961 }; 962 963 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan); 964 965 struct virtchnl_vlan_filter { 966 struct virtchnl_vlan inner; 967 struct virtchnl_vlan outer; 968 u8 pad[16]; 969 }; 970 971 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter); 972 973 /* VIRTCHNL_OP_ADD_VLAN_V2 974 * VIRTCHNL_OP_DEL_VLAN_V2 975 * 976 * VF sends these messages to add/del one or more VLAN tag filters for Rx 977 * traffic. 978 * 979 * The PF attempts to add the filters and returns status. 980 * 981 * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the 982 * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS. 983 */ 984 struct virtchnl_vlan_filter_list_v2 { 985 u16 vport_id; 986 u16 num_elements; 987 u8 pad[4]; 988 struct virtchnl_vlan_filter filters[1]; 989 }; 990 991 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2); 992 993 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 994 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 995 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 996 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 997 * 998 * VF sends this message to enable or disable VLAN stripping or insertion. It 999 * also needs to specify an ethertype. The VF knows which VLAN ethertypes are 1000 * allowed and whether or not it's allowed to enable/disable the specific 1001 * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to 1002 * parse the virtchnl_vlan_caps.offloads fields to determine which offload 1003 * messages are allowed. 1004 * 1005 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 1006 * following manner the VF will be allowed to enable and/or disable 0x8100 inner 1007 * VLAN insertion and/or stripping via the opcodes listed above. Inner in this 1008 * case means the outer most or single VLAN from the VF's perspective. This is 1009 * because no outer offloads are supported. See the comments above the 1010 * virtchnl_vlan_supported_caps structure for more details. 1011 * 1012 * virtchnl_vlan_caps.offloads.stripping_support.inner = 1013 * VIRTCHNL_VLAN_TOGGLE | 1014 * VIRTCHNL_VLAN_ETHERTYPE_8100; 1015 * 1016 * virtchnl_vlan_caps.offloads.insertion_support.inner = 1017 * VIRTCHNL_VLAN_TOGGLE | 1018 * VIRTCHNL_VLAN_ETHERTYPE_8100; 1019 * 1020 * In order to enable inner (again note that in this case inner is the outer 1021 * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100 1022 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the 1023 * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 1024 * 1025 * virtchnl_vlan_setting.inner_ethertype_setting = 1026 * VIRTCHNL_VLAN_ETHERTYPE_8100; 1027 * 1028 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 1029 * initialization. 1030 * 1031 * The reason that VLAN TPID(s) are not being used for the 1032 * outer_ethertype_setting and inner_ethertype_setting fields is because it's 1033 * possible a device could support VLAN insertion and/or stripping offload on 1034 * multiple ethertypes concurrently, so this method allows a VF to request 1035 * multiple ethertypes in one message using the virtchnl_vlan_support 1036 * enumeration. 1037 * 1038 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 1039 * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer 1040 * VLAN insertion and stripping simultaneously. The 1041 * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be 1042 * populated based on what the PF can support. 1043 * 1044 * virtchnl_vlan_caps.offloads.stripping_support.outer = 1045 * VIRTCHNL_VLAN_TOGGLE | 1046 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1047 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 1048 * VIRTCHNL_VLAN_ETHERTYPE_AND; 1049 * 1050 * virtchnl_vlan_caps.offloads.insertion_support.outer = 1051 * VIRTCHNL_VLAN_TOGGLE | 1052 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1053 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 1054 * VIRTCHNL_VLAN_ETHERTYPE_AND; 1055 * 1056 * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF 1057 * would populate the virthcnl_vlan_offload_structure in the following manner 1058 * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 1059 * 1060 * virtchnl_vlan_setting.outer_ethertype_setting = 1061 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 1062 * VIRTHCNL_VLAN_ETHERTYPE_88A8; 1063 * 1064 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 1065 * initialization. 1066 * 1067 * There is also the case where a PF and the underlying hardware can support 1068 * VLAN offloads on multiple ethertypes, but not concurrently. For example, if 1069 * the PF populates the virtchnl_vlan_caps.offloads in the following manner the 1070 * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN 1071 * offloads. The ethertypes must match for stripping and insertion. 1072 * 1073 * virtchnl_vlan_caps.offloads.stripping_support.outer = 1074 * VIRTCHNL_VLAN_TOGGLE | 1075 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1076 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 1077 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 1078 * 1079 * virtchnl_vlan_caps.offloads.insertion_support.outer = 1080 * VIRTCHNL_VLAN_TOGGLE | 1081 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1082 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 1083 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 1084 * 1085 * virtchnl_vlan_caps.offloads.ethertype_match = 1086 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 1087 * 1088 * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would 1089 * populate the virtchnl_vlan_setting structure in the following manner and send 1090 * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the 1091 * ethertype for VLAN insertion if it's enabled. So, for completeness, a 1092 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent. 1093 * 1094 * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8; 1095 * 1096 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 1097 * initialization. 1098 * 1099 * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 1100 * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 1101 * 1102 * VF sends this message to enable or disable VLAN filtering. It also needs to 1103 * specify an ethertype. The VF knows which VLAN ethertypes are allowed and 1104 * whether or not it's allowed to enable/disable filtering via the 1105 * VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to 1106 * parse the virtchnl_vlan_caps.filtering fields to determine which, if any, 1107 * filtering messages are allowed. 1108 * 1109 * For example, if the PF populates the virtchnl_vlan_caps.filtering in the 1110 * following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8 1111 * outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND 1112 * means that all filtering ethertypes will to be enabled and disabled together 1113 * regardless of the request from the VF. This means that the underlying 1114 * hardware only supports VLAN filtering for all VLAN the specified ethertypes 1115 * or none of them. 1116 * 1117 * virtchnl_vlan_caps.filtering.filtering_support.outer = 1118 * VIRTCHNL_VLAN_TOGGLE | 1119 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1120 * VIRTHCNL_VLAN_ETHERTYPE_88A8 | 1121 * VIRTCHNL_VLAN_ETHERTYPE_9100 | 1122 * VIRTCHNL_VLAN_ETHERTYPE_AND; 1123 * 1124 * In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100 1125 * VLANs aren't supported by the VF driver), the VF would populate the 1126 * virtchnl_vlan_setting structure in the following manner and send the 1127 * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used 1128 * to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the 1129 * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used. 1130 * 1131 * virtchnl_vlan_setting.outer_ethertype_setting = 1132 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1133 * VIRTCHNL_VLAN_ETHERTYPE_88A8; 1134 * 1135 */ 1136 struct virtchnl_vlan_setting { 1137 u32 outer_ethertype_setting; 1138 u32 inner_ethertype_setting; 1139 u16 vport_id; 1140 u8 pad[6]; 1141 }; 1142 1143 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting); 1144 1145 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE 1146 * VF sends VSI id and flags. 1147 * PF returns status code in retval. 1148 * Note: we assume that broadcast accept mode is always enabled. 1149 */ 1150 struct virtchnl_promisc_info { 1151 u16 vsi_id; 1152 u16 flags; 1153 }; 1154 1155 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info); 1156 1157 #define FLAG_VF_UNICAST_PROMISC 0x00000001 1158 #define FLAG_VF_MULTICAST_PROMISC 0x00000002 1159 1160 /* VIRTCHNL_OP_GET_STATS 1161 * VF sends this message to request stats for the selected VSI. VF uses 1162 * the virtchnl_queue_select struct to specify the VSI. The queue_id 1163 * field is ignored by the PF. 1164 * 1165 * PF replies with struct virtchnl_eth_stats in an external buffer. 1166 */ 1167 1168 struct virtchnl_eth_stats { 1169 u64 rx_bytes; /* received bytes */ 1170 u64 rx_unicast; /* received unicast pkts */ 1171 u64 rx_multicast; /* received multicast pkts */ 1172 u64 rx_broadcast; /* received broadcast pkts */ 1173 u64 rx_discards; 1174 u64 rx_unknown_protocol; 1175 u64 tx_bytes; /* transmitted bytes */ 1176 u64 tx_unicast; /* transmitted unicast pkts */ 1177 u64 tx_multicast; /* transmitted multicast pkts */ 1178 u64 tx_broadcast; /* transmitted broadcast pkts */ 1179 u64 tx_discards; 1180 u64 tx_errors; 1181 }; 1182 1183 /* VIRTCHNL_OP_CONFIG_RSS_KEY 1184 * VIRTCHNL_OP_CONFIG_RSS_LUT 1185 * VF sends these messages to configure RSS. Only supported if both PF 1186 * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during 1187 * configuration negotiation. If this is the case, then the RSS fields in 1188 * the VF resource struct are valid. 1189 * Both the key and LUT are initialized to 0 by the PF, meaning that 1190 * RSS is effectively disabled until set up by the VF. 1191 */ 1192 struct virtchnl_rss_key { 1193 u16 vsi_id; 1194 u16 key_len; 1195 u8 key[1]; /* RSS hash key, packed bytes */ 1196 }; 1197 1198 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key); 1199 1200 struct virtchnl_rss_lut { 1201 u16 vsi_id; 1202 u16 lut_entries; 1203 u8 lut[1]; /* RSS lookup table */ 1204 }; 1205 1206 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut); 1207 1208 /* enum virthcnl_hash_filter 1209 * 1210 * Bits defining the hash filters in the hena field of the virtchnl_rss_hena 1211 * structure. Each bit indicates a specific hash filter for RSS. 1212 * 1213 * Note that not all bits are supported on all hardware. The VF should use 1214 * VIRTCHNL_OP_GET_RSS_HENA_CAPS to determine which bits the PF is capable of 1215 * before using VIRTCHNL_OP_SET_RSS_HENA to enable specific filters. 1216 */ 1217 enum virtchnl_hash_filter { 1218 /* Bits 0 through 28 are reserved for future use */ 1219 /* Bit 29, 30, and 32 are not supported on XL710 a X710 */ 1220 VIRTCHNL_HASH_FILTER_UNICAST_IPV4_UDP = 29, 1221 VIRTCHNL_HASH_FILTER_MULTICAST_IPV4_UDP = 30, 1222 VIRTCHNL_HASH_FILTER_IPV4_UDP = 31, 1223 VIRTCHNL_HASH_FILTER_IPV4_TCP_SYN_NO_ACK = 32, 1224 VIRTCHNL_HASH_FILTER_IPV4_TCP = 33, 1225 VIRTCHNL_HASH_FILTER_IPV4_SCTP = 34, 1226 VIRTCHNL_HASH_FILTER_IPV4_OTHER = 35, 1227 VIRTCHNL_HASH_FILTER_FRAG_IPV4 = 36, 1228 /* Bits 37 and 38 are reserved for future use */ 1229 /* Bit 39, 40, and 42 are not supported on XL710 a X710 */ 1230 VIRTCHNL_HASH_FILTER_UNICAST_IPV6_UDP = 39, 1231 VIRTCHNL_HASH_FILTER_MULTICAST_IPV6_UDP = 40, 1232 VIRTCHNL_HASH_FILTER_IPV6_UDP = 41, 1233 VIRTCHNL_HASH_FILTER_IPV6_TCP_SYN_NO_ACK = 42, 1234 VIRTCHNL_HASH_FILTER_IPV6_TCP = 43, 1235 VIRTCHNL_HASH_FILTER_IPV6_SCTP = 44, 1236 VIRTCHNL_HASH_FILTER_IPV6_OTHER = 45, 1237 VIRTCHNL_HASH_FILTER_FRAG_IPV6 = 46, 1238 /* Bit 37 is reserved for future use */ 1239 VIRTCHNL_HASH_FILTER_FCOE_OX = 48, 1240 VIRTCHNL_HASH_FILTER_FCOE_RX = 49, 1241 VIRTCHNL_HASH_FILTER_FCOE_OTHER = 50, 1242 /* Bits 51 through 62 are reserved for future use */ 1243 VIRTCHNL_HASH_FILTER_L2_PAYLOAD = 63, 1244 }; 1245 1246 #define VIRTCHNL_HASH_FILTER_INVALID (0) 1247 1248 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS 1249 * VIRTCHNL_OP_SET_RSS_HENA 1250 * VF sends these messages to get and set the hash filter enable bits for RSS. 1251 * By default, the PF sets these to all possible traffic types that the 1252 * hardware supports. The VF can query this value if it wants to change the 1253 * traffic types that are hashed by the hardware. 1254 */ 1255 struct virtchnl_rss_hena { 1256 /* see enum virtchnl_hash_filter */ 1257 u64 hena; 1258 }; 1259 1260 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena); 1261 1262 /* Type of RSS algorithm */ 1263 enum virtchnl_rss_algorithm { 1264 VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0, 1265 VIRTCHNL_RSS_ALG_R_ASYMMETRIC = 1, 1266 VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2, 1267 VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3, 1268 }; 1269 1270 /* This is used by PF driver to enforce how many channels can be supported. 1271 * When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise 1272 * PF driver will allow only max 4 channels 1273 */ 1274 #define VIRTCHNL_MAX_ADQ_CHANNELS 4 1275 #define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16 1276 1277 /* VIRTCHNL_OP_ENABLE_CHANNELS 1278 * VIRTCHNL_OP_DISABLE_CHANNELS 1279 * VF sends these messages to enable or disable channels based on 1280 * the user specified queue count and queue offset for each traffic class. 1281 * This struct encompasses all the information that the PF needs from 1282 * VF to create a channel. 1283 */ 1284 struct virtchnl_channel_info { 1285 u16 count; /* number of queues in a channel */ 1286 u16 offset; /* queues in a channel start from 'offset' */ 1287 u32 pad; 1288 u64 max_tx_rate; 1289 }; 1290 1291 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info); 1292 1293 struct virtchnl_tc_info { 1294 u32 num_tc; 1295 u32 pad; 1296 struct virtchnl_channel_info list[1]; 1297 }; 1298 1299 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info); 1300 1301 /* VIRTCHNL_ADD_CLOUD_FILTER 1302 * VIRTCHNL_DEL_CLOUD_FILTER 1303 * VF sends these messages to add or delete a cloud filter based on the 1304 * user specified match and action filters. These structures encompass 1305 * all the information that the PF needs from the VF to add/delete a 1306 * cloud filter. 1307 */ 1308 1309 struct virtchnl_l4_spec { 1310 u8 src_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; 1311 u8 dst_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; 1312 /* vlan_prio is part of this 16 bit field even from OS perspective 1313 * vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio 1314 * in future, when decided to offload vlan_prio, pass that information 1315 * as part of the "vlan_id" field, Bit14..12 1316 */ 1317 __be16 vlan_id; 1318 __be16 pad; /* reserved for future use */ 1319 __be32 src_ip[4]; 1320 __be32 dst_ip[4]; 1321 __be16 src_port; 1322 __be16 dst_port; 1323 }; 1324 1325 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec); 1326 1327 union virtchnl_flow_spec { 1328 struct virtchnl_l4_spec tcp_spec; 1329 u8 buffer[128]; /* reserved for future use */ 1330 }; 1331 1332 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec); 1333 1334 enum virtchnl_action { 1335 /* action types */ 1336 VIRTCHNL_ACTION_DROP = 0, 1337 VIRTCHNL_ACTION_TC_REDIRECT, 1338 VIRTCHNL_ACTION_PASSTHRU, 1339 VIRTCHNL_ACTION_QUEUE, 1340 VIRTCHNL_ACTION_Q_REGION, 1341 VIRTCHNL_ACTION_MARK, 1342 VIRTCHNL_ACTION_COUNT, 1343 }; 1344 1345 enum virtchnl_flow_type { 1346 /* flow types */ 1347 VIRTCHNL_TCP_V4_FLOW = 0, 1348 VIRTCHNL_TCP_V6_FLOW, 1349 VIRTCHNL_UDP_V4_FLOW, 1350 VIRTCHNL_UDP_V6_FLOW, 1351 }; 1352 1353 struct virtchnl_filter { 1354 union virtchnl_flow_spec data; 1355 union virtchnl_flow_spec mask; 1356 1357 /* see enum virtchnl_flow_type */ 1358 s32 flow_type; 1359 1360 /* see enum virtchnl_action */ 1361 s32 action; 1362 u32 action_meta; 1363 u8 field_flags; 1364 }; 1365 1366 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter); 1367 1368 struct virtchnl_shaper_bw { 1369 /* Unit is Kbps */ 1370 u32 committed; 1371 u32 peak; 1372 }; 1373 1374 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_shaper_bw); 1375 1376 /* VIRTCHNL_OP_EVENT 1377 * PF sends this message to inform the VF driver of events that may affect it. 1378 * No direct response is expected from the VF, though it may generate other 1379 * messages in response to this one. 1380 */ 1381 enum virtchnl_event_codes { 1382 VIRTCHNL_EVENT_UNKNOWN = 0, 1383 VIRTCHNL_EVENT_LINK_CHANGE, 1384 VIRTCHNL_EVENT_RESET_IMPENDING, 1385 VIRTCHNL_EVENT_PF_DRIVER_CLOSE, 1386 }; 1387 1388 #define PF_EVENT_SEVERITY_INFO 0 1389 #define PF_EVENT_SEVERITY_ATTENTION 1 1390 #define PF_EVENT_SEVERITY_ACTION_REQUIRED 2 1391 #define PF_EVENT_SEVERITY_CERTAIN_DOOM 255 1392 1393 struct virtchnl_pf_event { 1394 /* see enum virtchnl_event_codes */ 1395 s32 event; 1396 union { 1397 /* If the PF driver does not support the new speed reporting 1398 * capabilities then use link_event else use link_event_adv to 1399 * get the speed and link information. The ability to understand 1400 * new speeds is indicated by setting the capability flag 1401 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter 1402 * in virtchnl_vf_resource struct and can be used to determine 1403 * which link event struct to use below. 1404 */ 1405 struct { 1406 enum virtchnl_link_speed link_speed; 1407 bool link_status; 1408 u8 pad[3]; 1409 } link_event; 1410 struct { 1411 /* link_speed provided in Mbps */ 1412 u32 link_speed; 1413 u8 link_status; 1414 u8 pad[3]; 1415 } link_event_adv; 1416 } event_data; 1417 1418 s32 severity; 1419 }; 1420 1421 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event); 1422 1423 /* VF reset states - these are written into the RSTAT register: 1424 * VFGEN_RSTAT on the VF 1425 * When the PF initiates a reset, it writes 0 1426 * When the reset is complete, it writes 1 1427 * When the PF detects that the VF has recovered, it writes 2 1428 * VF checks this register periodically to determine if a reset has occurred, 1429 * then polls it to know when the reset is complete. 1430 * If either the PF or VF reads the register while the hardware 1431 * is in a reset state, it will return DEADBEEF, which, when masked 1432 * will result in 3. 1433 */ 1434 enum virtchnl_vfr_states { 1435 VIRTCHNL_VFR_INPROGRESS = 0, 1436 VIRTCHNL_VFR_COMPLETED, 1437 VIRTCHNL_VFR_VFACTIVE, 1438 }; 1439 1440 #define VIRTCHNL_MAX_NUM_PROTO_HDRS 32 1441 #define VIRTCHNL_MAX_SIZE_RAW_PACKET 1024 1442 #define PROTO_HDR_SHIFT 5 1443 #define PROTO_HDR_FIELD_START(proto_hdr_type) \ 1444 (proto_hdr_type << PROTO_HDR_SHIFT) 1445 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1) 1446 1447 /* VF use these macros to configure each protocol header. 1448 * Specify which protocol headers and protocol header fields base on 1449 * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field. 1450 * @param hdr: a struct of virtchnl_proto_hdr 1451 * @param hdr_type: ETH/IPV4/TCP, etc 1452 * @param field: SRC/DST/TEID/SPI, etc 1453 */ 1454 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \ 1455 ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK)) 1456 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \ 1457 ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK)) 1458 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \ 1459 ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK)) 1460 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector) 1461 1462 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1463 (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \ 1464 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1465 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1466 (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \ 1467 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1468 1469 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \ 1470 ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type) 1471 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \ 1472 (((hdr)->type) >> PROTO_HDR_SHIFT) 1473 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \ 1474 ((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT))) 1475 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \ 1476 (VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \ 1477 VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val)) 1478 1479 /* Protocol header type within a packet segment. A segment consists of one or 1480 * more protocol headers that make up a logical group of protocol headers. Each 1481 * logical group of protocol headers encapsulates or is encapsulated using/by 1482 * tunneling or encapsulation protocols for network virtualization. 1483 */ 1484 enum virtchnl_proto_hdr_type { 1485 VIRTCHNL_PROTO_HDR_NONE, 1486 VIRTCHNL_PROTO_HDR_ETH, 1487 VIRTCHNL_PROTO_HDR_S_VLAN, 1488 VIRTCHNL_PROTO_HDR_C_VLAN, 1489 VIRTCHNL_PROTO_HDR_IPV4, 1490 VIRTCHNL_PROTO_HDR_IPV6, 1491 VIRTCHNL_PROTO_HDR_TCP, 1492 VIRTCHNL_PROTO_HDR_UDP, 1493 VIRTCHNL_PROTO_HDR_SCTP, 1494 VIRTCHNL_PROTO_HDR_GTPU_IP, 1495 VIRTCHNL_PROTO_HDR_GTPU_EH, 1496 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 1497 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 1498 VIRTCHNL_PROTO_HDR_PPPOE, 1499 VIRTCHNL_PROTO_HDR_L2TPV3, 1500 VIRTCHNL_PROTO_HDR_ESP, 1501 VIRTCHNL_PROTO_HDR_AH, 1502 VIRTCHNL_PROTO_HDR_PFCP, 1503 VIRTCHNL_PROTO_HDR_GTPC, 1504 VIRTCHNL_PROTO_HDR_ECPRI, 1505 VIRTCHNL_PROTO_HDR_L2TPV2, 1506 VIRTCHNL_PROTO_HDR_PPP, 1507 /* IPv4 and IPv6 Fragment header types are only associated to 1508 * VIRTCHNL_PROTO_HDR_IPV4 and VIRTCHNL_PROTO_HDR_IPV6 respectively, 1509 * cannot be used independently. 1510 */ 1511 VIRTCHNL_PROTO_HDR_IPV4_FRAG, 1512 VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG, 1513 VIRTCHNL_PROTO_HDR_GRE, 1514 }; 1515 1516 /* Protocol header field within a protocol header. */ 1517 enum virtchnl_proto_hdr_field { 1518 /* ETHER */ 1519 VIRTCHNL_PROTO_HDR_ETH_SRC = 1520 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH), 1521 VIRTCHNL_PROTO_HDR_ETH_DST, 1522 VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE, 1523 /* S-VLAN */ 1524 VIRTCHNL_PROTO_HDR_S_VLAN_ID = 1525 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN), 1526 /* C-VLAN */ 1527 VIRTCHNL_PROTO_HDR_C_VLAN_ID = 1528 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN), 1529 /* IPV4 */ 1530 VIRTCHNL_PROTO_HDR_IPV4_SRC = 1531 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4), 1532 VIRTCHNL_PROTO_HDR_IPV4_DST, 1533 VIRTCHNL_PROTO_HDR_IPV4_DSCP, 1534 VIRTCHNL_PROTO_HDR_IPV4_TTL, 1535 VIRTCHNL_PROTO_HDR_IPV4_PROT, 1536 VIRTCHNL_PROTO_HDR_IPV4_CHKSUM, 1537 /* IPV6 */ 1538 VIRTCHNL_PROTO_HDR_IPV6_SRC = 1539 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6), 1540 VIRTCHNL_PROTO_HDR_IPV6_DST, 1541 VIRTCHNL_PROTO_HDR_IPV6_TC, 1542 VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT, 1543 VIRTCHNL_PROTO_HDR_IPV6_PROT, 1544 /* IPV6 Prefix */ 1545 VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC, 1546 VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST, 1547 VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC, 1548 VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST, 1549 VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC, 1550 VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST, 1551 VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC, 1552 VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST, 1553 VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC, 1554 VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST, 1555 VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC, 1556 VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST, 1557 /* TCP */ 1558 VIRTCHNL_PROTO_HDR_TCP_SRC_PORT = 1559 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP), 1560 VIRTCHNL_PROTO_HDR_TCP_DST_PORT, 1561 VIRTCHNL_PROTO_HDR_TCP_CHKSUM, 1562 /* UDP */ 1563 VIRTCHNL_PROTO_HDR_UDP_SRC_PORT = 1564 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP), 1565 VIRTCHNL_PROTO_HDR_UDP_DST_PORT, 1566 VIRTCHNL_PROTO_HDR_UDP_CHKSUM, 1567 /* SCTP */ 1568 VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT = 1569 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP), 1570 VIRTCHNL_PROTO_HDR_SCTP_DST_PORT, 1571 VIRTCHNL_PROTO_HDR_SCTP_CHKSUM, 1572 /* GTPU_IP */ 1573 VIRTCHNL_PROTO_HDR_GTPU_IP_TEID = 1574 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP), 1575 /* GTPU_EH */ 1576 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU = 1577 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH), 1578 VIRTCHNL_PROTO_HDR_GTPU_EH_QFI, 1579 /* PPPOE */ 1580 VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID = 1581 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE), 1582 /* L2TPV3 */ 1583 VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID = 1584 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3), 1585 /* ESP */ 1586 VIRTCHNL_PROTO_HDR_ESP_SPI = 1587 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP), 1588 /* AH */ 1589 VIRTCHNL_PROTO_HDR_AH_SPI = 1590 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH), 1591 /* PFCP */ 1592 VIRTCHNL_PROTO_HDR_PFCP_S_FIELD = 1593 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP), 1594 VIRTCHNL_PROTO_HDR_PFCP_SEID, 1595 /* GTPC */ 1596 VIRTCHNL_PROTO_HDR_GTPC_TEID = 1597 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC), 1598 /* ECPRI */ 1599 VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE = 1600 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI), 1601 VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID, 1602 /* IPv4 Dummy Fragment */ 1603 VIRTCHNL_PROTO_HDR_IPV4_FRAG_PKID = 1604 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4_FRAG), 1605 /* IPv6 Extension Fragment */ 1606 VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG_PKID = 1607 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG), 1608 /* GTPU_DWN/UP */ 1609 VIRTCHNL_PROTO_HDR_GTPU_DWN_QFI = 1610 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN), 1611 VIRTCHNL_PROTO_HDR_GTPU_UP_QFI = 1612 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP), 1613 /* L2TPv2 */ 1614 VIRTCHNL_PROTO_HDR_L2TPV2_SESS_ID = 1615 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV2), 1616 VIRTCHNL_PROTO_HDR_L2TPV2_LEN_SESS_ID, 1617 }; 1618 1619 struct virtchnl_proto_hdr { 1620 /* see enum virtchnl_proto_hdr_type */ 1621 s32 type; 1622 u32 field_selector; /* a bit mask to select field for header type */ 1623 u8 buffer[64]; 1624 /** 1625 * binary buffer in network order for specific header type. 1626 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4 1627 * header is expected to be copied into the buffer. 1628 */ 1629 }; 1630 1631 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr); 1632 1633 struct virtchnl_proto_hdrs { 1634 u8 tunnel_level; 1635 /** 1636 * specify where protocol header start from. 1637 * must be 0 when sending a raw packet request. 1638 * 0 - from the outer layer 1639 * 1 - from the first inner layer 1640 * 2 - from the second inner layer 1641 * .... 1642 */ 1643 int count; 1644 /** 1645 * number of proto layers, must < VIRTCHNL_MAX_NUM_PROTO_HDRS 1646 * must be 0 for a raw packet request. 1647 */ 1648 union { 1649 struct virtchnl_proto_hdr 1650 proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS]; 1651 struct { 1652 u16 pkt_len; 1653 u8 spec[VIRTCHNL_MAX_SIZE_RAW_PACKET]; 1654 u8 mask[VIRTCHNL_MAX_SIZE_RAW_PACKET]; 1655 } raw; 1656 }; 1657 }; 1658 1659 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs); 1660 1661 struct virtchnl_rss_cfg { 1662 struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */ 1663 1664 /* see enum virtchnl_rss_algorithm; rss algorithm type */ 1665 s32 rss_algorithm; 1666 u8 reserved[128]; /* reserve for future */ 1667 }; 1668 1669 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg); 1670 1671 /* action configuration for FDIR */ 1672 struct virtchnl_filter_action { 1673 /* see enum virtchnl_action type */ 1674 s32 type; 1675 union { 1676 /* used for queue and qgroup action */ 1677 struct { 1678 u16 index; 1679 u8 region; 1680 } queue; 1681 /* used for count action */ 1682 struct { 1683 /* share counter ID with other flow rules */ 1684 u8 shared; 1685 u32 id; /* counter ID */ 1686 } count; 1687 /* used for mark action */ 1688 u32 mark_id; 1689 u8 reserve[32]; 1690 } act_conf; 1691 }; 1692 1693 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action); 1694 1695 #define VIRTCHNL_MAX_NUM_ACTIONS 8 1696 1697 struct virtchnl_filter_action_set { 1698 /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */ 1699 int count; 1700 struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS]; 1701 }; 1702 1703 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set); 1704 1705 /* pattern and action for FDIR rule */ 1706 struct virtchnl_fdir_rule { 1707 struct virtchnl_proto_hdrs proto_hdrs; 1708 struct virtchnl_filter_action_set action_set; 1709 }; 1710 1711 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule); 1712 1713 /* Status returned to VF after VF requests FDIR commands 1714 * VIRTCHNL_FDIR_SUCCESS 1715 * VF FDIR related request is successfully done by PF 1716 * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER. 1717 * 1718 * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE 1719 * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource. 1720 * 1721 * VIRTCHNL_FDIR_FAILURE_RULE_EXIST 1722 * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed. 1723 * 1724 * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT 1725 * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule. 1726 * 1727 * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST 1728 * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist. 1729 * 1730 * VIRTCHNL_FDIR_FAILURE_RULE_INVALID 1731 * OP_ADD_FDIR_FILTER request is failed due to parameters validation 1732 * or HW doesn't support. 1733 * 1734 * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT 1735 * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out 1736 * for programming. 1737 * 1738 * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID 1739 * OP_QUERY_FDIR_FILTER request is failed due to parameters validation, 1740 * for example, VF query counter of a rule who has no counter action. 1741 */ 1742 enum virtchnl_fdir_prgm_status { 1743 VIRTCHNL_FDIR_SUCCESS = 0, 1744 VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE, 1745 VIRTCHNL_FDIR_FAILURE_RULE_EXIST, 1746 VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT, 1747 VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST, 1748 VIRTCHNL_FDIR_FAILURE_RULE_INVALID, 1749 VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT, 1750 VIRTCHNL_FDIR_FAILURE_QUERY_INVALID, 1751 }; 1752 1753 /* VIRTCHNL_OP_ADD_FDIR_FILTER 1754 * VF sends this request to PF by filling out vsi_id, 1755 * validate_only and rule_cfg. PF will return flow_id 1756 * if the request is successfully done and return add_status to VF. 1757 */ 1758 struct virtchnl_fdir_add { 1759 u16 vsi_id; /* INPUT */ 1760 /* 1761 * 1 for validating a fdir rule, 0 for creating a fdir rule. 1762 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER. 1763 */ 1764 u16 validate_only; /* INPUT */ 1765 u32 flow_id; /* OUTPUT */ 1766 struct virtchnl_fdir_rule rule_cfg; /* INPUT */ 1767 1768 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1769 s32 status; 1770 }; 1771 1772 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add); 1773 1774 /* VIRTCHNL_OP_DEL_FDIR_FILTER 1775 * VF sends this request to PF by filling out vsi_id 1776 * and flow_id. PF will return del_status to VF. 1777 */ 1778 struct virtchnl_fdir_del { 1779 u16 vsi_id; /* INPUT */ 1780 u16 pad; 1781 u32 flow_id; /* INPUT */ 1782 1783 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1784 s32 status; 1785 }; 1786 1787 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del); 1788 1789 /* VIRTCHNL_OP_GET_QOS_CAPS 1790 * VF sends this message to get its QoS Caps, such as 1791 * TC number, Arbiter and Bandwidth. 1792 */ 1793 struct virtchnl_qos_cap_elem { 1794 u8 tc_num; 1795 u8 tc_prio; 1796 #define VIRTCHNL_ABITER_STRICT 0 1797 #define VIRTCHNL_ABITER_ETS 2 1798 u8 arbiter; 1799 #define VIRTCHNL_STRICT_WEIGHT 1 1800 u8 weight; 1801 enum virtchnl_bw_limit_type type; 1802 union { 1803 struct virtchnl_shaper_bw shaper; 1804 u8 pad2[32]; 1805 }; 1806 }; 1807 1808 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_qos_cap_elem); 1809 1810 struct virtchnl_qos_cap_list { 1811 u16 vsi_id; 1812 u16 num_elem; 1813 struct virtchnl_qos_cap_elem cap[1]; 1814 }; 1815 1816 VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_qos_cap_list); 1817 1818 /* VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP 1819 * VF sends message virtchnl_queue_tc_mapping to set queue to tc 1820 * mapping for all the Tx and Rx queues with a specified VSI, and 1821 * would get response about bitmap of valid user priorities 1822 * associated with queues. 1823 */ 1824 struct virtchnl_queue_tc_mapping { 1825 u16 vsi_id; 1826 u16 num_tc; 1827 u16 num_queue_pairs; 1828 u8 pad[2]; 1829 union { 1830 struct { 1831 u16 start_queue_id; 1832 u16 queue_count; 1833 } req; 1834 struct { 1835 #define VIRTCHNL_USER_PRIO_TYPE_UP 0 1836 #define VIRTCHNL_USER_PRIO_TYPE_DSCP 1 1837 u16 prio_type; 1838 u16 valid_prio_bitmap; 1839 } resp; 1840 } tc[1]; 1841 }; 1842 1843 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_tc_mapping); 1844 1845 /* VIRTCHNL_OP_CONFIG_QUEUE_BW */ 1846 struct virtchnl_queue_bw { 1847 u16 queue_id; 1848 u8 tc; 1849 u8 pad; 1850 struct virtchnl_shaper_bw shaper; 1851 }; 1852 1853 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_bw); 1854 1855 struct virtchnl_queues_bw_cfg { 1856 u16 vsi_id; 1857 u16 num_queues; 1858 struct virtchnl_queue_bw cfg[1]; 1859 }; 1860 1861 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queues_bw_cfg); 1862 1863 /* queue types */ 1864 enum virtchnl_queue_type { 1865 VIRTCHNL_QUEUE_TYPE_TX = 0, 1866 VIRTCHNL_QUEUE_TYPE_RX = 1, 1867 }; 1868 1869 /* structure to specify a chunk of contiguous queues */ 1870 struct virtchnl_queue_chunk { 1871 /* see enum virtchnl_queue_type */ 1872 s32 type; 1873 u16 start_queue_id; 1874 u16 num_queues; 1875 }; 1876 1877 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk); 1878 1879 /* structure to specify several chunks of contiguous queues */ 1880 struct virtchnl_queue_chunks { 1881 u16 num_chunks; 1882 u16 rsvd; 1883 struct virtchnl_queue_chunk chunks[1]; 1884 }; 1885 1886 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks); 1887 1888 /* VIRTCHNL_OP_ENABLE_QUEUES_V2 1889 * VIRTCHNL_OP_DISABLE_QUEUES_V2 1890 * 1891 * These opcodes can be used if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in 1892 * VIRTCHNL_OP_GET_VF_RESOURCES 1893 * 1894 * VF sends virtchnl_ena_dis_queues struct to specify the queues to be 1895 * enabled/disabled in chunks. Also applicable to single queue RX or 1896 * TX. PF performs requested action and returns status. 1897 */ 1898 struct virtchnl_del_ena_dis_queues { 1899 u16 vport_id; 1900 u16 pad; 1901 struct virtchnl_queue_chunks chunks; 1902 }; 1903 1904 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues); 1905 1906 /* Virtchannel interrupt throttling rate index */ 1907 enum virtchnl_itr_idx { 1908 VIRTCHNL_ITR_IDX_0 = 0, 1909 VIRTCHNL_ITR_IDX_1 = 1, 1910 VIRTCHNL_ITR_IDX_NO_ITR = 3, 1911 }; 1912 1913 /* Queue to vector mapping */ 1914 struct virtchnl_queue_vector { 1915 u16 queue_id; 1916 u16 vector_id; 1917 u8 pad[4]; 1918 1919 /* see enum virtchnl_itr_idx */ 1920 s32 itr_idx; 1921 1922 /* see enum virtchnl_queue_type */ 1923 s32 queue_type; 1924 }; 1925 1926 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector); 1927 1928 /* VIRTCHNL_OP_MAP_QUEUE_VECTOR 1929 * 1930 * This opcode can be used only if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated 1931 * in VIRTCHNL_OP_GET_VF_RESOURCES 1932 * 1933 * VF sends this message to map queues to vectors and ITR index registers. 1934 * External data buffer contains virtchnl_queue_vector_maps structure 1935 * that contains num_qv_maps of virtchnl_queue_vector structures. 1936 * PF maps the requested queue vector maps after validating the queue and vector 1937 * ids and returns a status code. 1938 */ 1939 struct virtchnl_queue_vector_maps { 1940 u16 vport_id; 1941 u16 num_qv_maps; 1942 u8 pad[4]; 1943 struct virtchnl_queue_vector qv_maps[1]; 1944 }; 1945 1946 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps); 1947 1948 struct virtchnl_quanta_cfg { 1949 u16 quanta_size; 1950 struct virtchnl_queue_chunk queue_select; 1951 }; 1952 1953 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_quanta_cfg); 1954 1955 /* Since VF messages are limited by u16 size, precalculate the maximum possible 1956 * values of nested elements in virtchnl structures that virtual channel can 1957 * possibly handle in a single message. 1958 */ 1959 enum virtchnl_vector_limits { 1960 VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX = 1961 ((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) / 1962 sizeof(struct virtchnl_queue_pair_info), 1963 1964 VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX = 1965 ((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) / 1966 sizeof(struct virtchnl_vector_map), 1967 1968 VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX = 1969 ((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) / 1970 sizeof(struct virtchnl_ether_addr), 1971 1972 VIRTCHNL_OP_ADD_DEL_VLAN_MAX = 1973 ((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) / 1974 sizeof(u16), 1975 1976 VIRTCHNL_OP_ENABLE_CHANNELS_MAX = 1977 ((u16)(~0) - sizeof(struct virtchnl_tc_info)) / 1978 sizeof(struct virtchnl_channel_info), 1979 1980 VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX = 1981 ((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) / 1982 sizeof(struct virtchnl_queue_chunk), 1983 1984 VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX = 1985 ((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) / 1986 sizeof(struct virtchnl_queue_vector), 1987 1988 VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX = 1989 ((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) / 1990 sizeof(struct virtchnl_vlan_filter), 1991 }; 1992 1993 /** 1994 * virtchnl_vc_validate_vf_msg 1995 * @ver: Virtchnl version info 1996 * @v_opcode: Opcode for the message 1997 * @msg: pointer to the msg buffer 1998 * @msglen: msg length 1999 * 2000 * validate msg format against struct for each opcode 2001 */ 2002 static inline int 2003 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode, 2004 u8 *msg, u16 msglen) 2005 { 2006 bool err_msg_format = false; 2007 u32 valid_len = 0; 2008 2009 /* Validate message length. */ 2010 switch (v_opcode) { 2011 case VIRTCHNL_OP_VERSION: 2012 valid_len = sizeof(struct virtchnl_version_info); 2013 break; 2014 case VIRTCHNL_OP_RESET_VF: 2015 break; 2016 case VIRTCHNL_OP_GET_VF_RESOURCES: 2017 if (VF_IS_V11(ver)) 2018 valid_len = sizeof(u32); 2019 break; 2020 case VIRTCHNL_OP_CONFIG_TX_QUEUE: 2021 valid_len = sizeof(struct virtchnl_txq_info); 2022 break; 2023 case VIRTCHNL_OP_CONFIG_RX_QUEUE: 2024 valid_len = sizeof(struct virtchnl_rxq_info); 2025 break; 2026 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 2027 valid_len = sizeof(struct virtchnl_vsi_queue_config_info); 2028 if (msglen >= valid_len) { 2029 struct virtchnl_vsi_queue_config_info *vqc = 2030 (struct virtchnl_vsi_queue_config_info *)msg; 2031 2032 if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs > 2033 VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) { 2034 err_msg_format = true; 2035 break; 2036 } 2037 2038 valid_len += (vqc->num_queue_pairs * 2039 sizeof(struct 2040 virtchnl_queue_pair_info)); 2041 } 2042 break; 2043 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 2044 valid_len = sizeof(struct virtchnl_irq_map_info); 2045 if (msglen >= valid_len) { 2046 struct virtchnl_irq_map_info *vimi = 2047 (struct virtchnl_irq_map_info *)msg; 2048 2049 if (vimi->num_vectors == 0 || vimi->num_vectors > 2050 VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) { 2051 err_msg_format = true; 2052 break; 2053 } 2054 2055 valid_len += (vimi->num_vectors * 2056 sizeof(struct virtchnl_vector_map)); 2057 } 2058 break; 2059 case VIRTCHNL_OP_ENABLE_QUEUES: 2060 case VIRTCHNL_OP_DISABLE_QUEUES: 2061 valid_len = sizeof(struct virtchnl_queue_select); 2062 break; 2063 case VIRTCHNL_OP_GET_MAX_RSS_QREGION: 2064 break; 2065 case VIRTCHNL_OP_ADD_ETH_ADDR: 2066 case VIRTCHNL_OP_DEL_ETH_ADDR: 2067 valid_len = sizeof(struct virtchnl_ether_addr_list); 2068 if (msglen >= valid_len) { 2069 struct virtchnl_ether_addr_list *veal = 2070 (struct virtchnl_ether_addr_list *)msg; 2071 2072 if (veal->num_elements == 0 || veal->num_elements > 2073 VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) { 2074 err_msg_format = true; 2075 break; 2076 } 2077 2078 valid_len += veal->num_elements * 2079 sizeof(struct virtchnl_ether_addr); 2080 } 2081 break; 2082 case VIRTCHNL_OP_ADD_VLAN: 2083 case VIRTCHNL_OP_DEL_VLAN: 2084 valid_len = sizeof(struct virtchnl_vlan_filter_list); 2085 if (msglen >= valid_len) { 2086 struct virtchnl_vlan_filter_list *vfl = 2087 (struct virtchnl_vlan_filter_list *)msg; 2088 2089 if (vfl->num_elements == 0 || vfl->num_elements > 2090 VIRTCHNL_OP_ADD_DEL_VLAN_MAX) { 2091 err_msg_format = true; 2092 break; 2093 } 2094 2095 valid_len += vfl->num_elements * sizeof(u16); 2096 } 2097 break; 2098 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 2099 valid_len = sizeof(struct virtchnl_promisc_info); 2100 break; 2101 case VIRTCHNL_OP_GET_STATS: 2102 valid_len = sizeof(struct virtchnl_queue_select); 2103 break; 2104 case VIRTCHNL_OP_CONFIG_RSS_KEY: 2105 valid_len = sizeof(struct virtchnl_rss_key); 2106 if (msglen >= valid_len) { 2107 struct virtchnl_rss_key *vrk = 2108 (struct virtchnl_rss_key *)msg; 2109 2110 if (vrk->key_len == 0) { 2111 /* zero length is allowed as input */ 2112 break; 2113 } 2114 2115 valid_len += vrk->key_len - 1; 2116 } 2117 break; 2118 case VIRTCHNL_OP_CONFIG_RSS_LUT: 2119 valid_len = sizeof(struct virtchnl_rss_lut); 2120 if (msglen >= valid_len) { 2121 struct virtchnl_rss_lut *vrl = 2122 (struct virtchnl_rss_lut *)msg; 2123 2124 if (vrl->lut_entries == 0) { 2125 /* zero entries is allowed as input */ 2126 break; 2127 } 2128 2129 valid_len += vrl->lut_entries - 1; 2130 } 2131 break; 2132 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 2133 break; 2134 case VIRTCHNL_OP_SET_RSS_HENA: 2135 valid_len = sizeof(struct virtchnl_rss_hena); 2136 break; 2137 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 2138 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 2139 break; 2140 case VIRTCHNL_OP_REQUEST_QUEUES: 2141 valid_len = sizeof(struct virtchnl_vf_res_request); 2142 break; 2143 case VIRTCHNL_OP_ENABLE_CHANNELS: 2144 valid_len = sizeof(struct virtchnl_tc_info); 2145 if (msglen >= valid_len) { 2146 struct virtchnl_tc_info *vti = 2147 (struct virtchnl_tc_info *)msg; 2148 2149 if (vti->num_tc == 0 || vti->num_tc > 2150 VIRTCHNL_OP_ENABLE_CHANNELS_MAX) { 2151 err_msg_format = true; 2152 break; 2153 } 2154 2155 valid_len += (vti->num_tc - 1) * 2156 sizeof(struct virtchnl_channel_info); 2157 } 2158 break; 2159 case VIRTCHNL_OP_DISABLE_CHANNELS: 2160 break; 2161 case VIRTCHNL_OP_ADD_CLOUD_FILTER: 2162 case VIRTCHNL_OP_DEL_CLOUD_FILTER: 2163 valid_len = sizeof(struct virtchnl_filter); 2164 break; 2165 case VIRTCHNL_OP_ADD_RSS_CFG: 2166 case VIRTCHNL_OP_DEL_RSS_CFG: 2167 valid_len = sizeof(struct virtchnl_rss_cfg); 2168 break; 2169 case VIRTCHNL_OP_ADD_FDIR_FILTER: 2170 valid_len = sizeof(struct virtchnl_fdir_add); 2171 break; 2172 case VIRTCHNL_OP_DEL_FDIR_FILTER: 2173 valid_len = sizeof(struct virtchnl_fdir_del); 2174 break; 2175 case VIRTCHNL_OP_GET_QOS_CAPS: 2176 break; 2177 case VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP: 2178 valid_len = sizeof(struct virtchnl_queue_tc_mapping); 2179 if (msglen >= valid_len) { 2180 struct virtchnl_queue_tc_mapping *q_tc = 2181 (struct virtchnl_queue_tc_mapping *)msg; 2182 if (q_tc->num_tc == 0) { 2183 err_msg_format = true; 2184 break; 2185 } 2186 valid_len += (q_tc->num_tc - 1) * 2187 sizeof(q_tc->tc[0]); 2188 } 2189 break; 2190 case VIRTCHNL_OP_CONFIG_QUEUE_BW: 2191 valid_len = sizeof(struct virtchnl_queues_bw_cfg); 2192 if (msglen >= valid_len) { 2193 struct virtchnl_queues_bw_cfg *q_bw = 2194 (struct virtchnl_queues_bw_cfg *)msg; 2195 if (q_bw->num_queues == 0) { 2196 err_msg_format = true; 2197 break; 2198 } 2199 valid_len += (q_bw->num_queues - 1) * 2200 sizeof(q_bw->cfg[0]); 2201 } 2202 break; 2203 case VIRTCHNL_OP_CONFIG_QUANTA: 2204 valid_len = sizeof(struct virtchnl_quanta_cfg); 2205 if (msglen >= valid_len) { 2206 struct virtchnl_quanta_cfg *q_quanta = 2207 (struct virtchnl_quanta_cfg *)msg; 2208 if (q_quanta->quanta_size == 0 || 2209 q_quanta->queue_select.num_queues == 0) { 2210 err_msg_format = true; 2211 break; 2212 } 2213 } 2214 break; 2215 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 2216 break; 2217 case VIRTCHNL_OP_ADD_VLAN_V2: 2218 case VIRTCHNL_OP_DEL_VLAN_V2: 2219 valid_len = sizeof(struct virtchnl_vlan_filter_list_v2); 2220 if (msglen >= valid_len) { 2221 struct virtchnl_vlan_filter_list_v2 *vfl = 2222 (struct virtchnl_vlan_filter_list_v2 *)msg; 2223 2224 if (vfl->num_elements == 0 || vfl->num_elements > 2225 VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) { 2226 err_msg_format = true; 2227 break; 2228 } 2229 2230 valid_len += (vfl->num_elements - 1) * 2231 sizeof(struct virtchnl_vlan_filter); 2232 } 2233 break; 2234 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 2235 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 2236 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 2237 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 2238 case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2: 2239 case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2: 2240 valid_len = sizeof(struct virtchnl_vlan_setting); 2241 break; 2242 case VIRTCHNL_OP_ENABLE_QUEUES_V2: 2243 case VIRTCHNL_OP_DISABLE_QUEUES_V2: 2244 valid_len = sizeof(struct virtchnl_del_ena_dis_queues); 2245 if (msglen >= valid_len) { 2246 struct virtchnl_del_ena_dis_queues *qs = 2247 (struct virtchnl_del_ena_dis_queues *)msg; 2248 if (qs->chunks.num_chunks == 0 || 2249 qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) { 2250 err_msg_format = true; 2251 break; 2252 } 2253 valid_len += (qs->chunks.num_chunks - 1) * 2254 sizeof(struct virtchnl_queue_chunk); 2255 } 2256 break; 2257 case VIRTCHNL_OP_MAP_QUEUE_VECTOR: 2258 valid_len = sizeof(struct virtchnl_queue_vector_maps); 2259 if (msglen >= valid_len) { 2260 struct virtchnl_queue_vector_maps *v_qp = 2261 (struct virtchnl_queue_vector_maps *)msg; 2262 if (v_qp->num_qv_maps == 0 || 2263 v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) { 2264 err_msg_format = true; 2265 break; 2266 } 2267 valid_len += (v_qp->num_qv_maps - 1) * 2268 sizeof(struct virtchnl_queue_vector); 2269 } 2270 break; 2271 /* These are always errors coming from the VF. */ 2272 case VIRTCHNL_OP_EVENT: 2273 case VIRTCHNL_OP_UNKNOWN: 2274 default: 2275 return VIRTCHNL_STATUS_ERR_PARAM; 2276 } 2277 /* few more checks */ 2278 if (err_msg_format || valid_len != msglen) 2279 return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH; 2280 2281 return 0; 2282 } 2283 #endif /* _VIRTCHNL_H_ */ 2284