1 /* SPDX-License-Identifier: BSD-3-Clause */ 2 /* Copyright (c) 2021, Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the Intel Corporation nor the names of its 16 * contributors may be used to endorse or promote products derived from 17 * this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /*$FreeBSD$*/ 32 33 #ifndef _VIRTCHNL_H_ 34 #define _VIRTCHNL_H_ 35 36 /* Description: 37 * This header file describes the Virtual Function (VF) - Physical Function 38 * (PF) communication protocol used by the drivers for all devices starting 39 * from our 40G product line 40 * 41 * Admin queue buffer usage: 42 * desc->opcode is always aqc_opc_send_msg_to_pf 43 * flags, retval, datalen, and data addr are all used normally. 44 * The Firmware copies the cookie fields when sending messages between the 45 * PF and VF, but uses all other fields internally. Due to this limitation, 46 * we must send all messages as "indirect", i.e. using an external buffer. 47 * 48 * All the VSI indexes are relative to the VF. Each VF can have maximum of 49 * three VSIs. All the queue indexes are relative to the VSI. Each VF can 50 * have a maximum of sixteen queues for all of its VSIs. 51 * 52 * The PF is required to return a status code in v_retval for all messages 53 * except RESET_VF, which does not require any response. The returned value 54 * is of virtchnl_status_code type, defined here. 55 * 56 * In general, VF driver initialization should roughly follow the order of 57 * these opcodes. The VF driver must first validate the API version of the 58 * PF driver, then request a reset, then get resources, then configure 59 * queues and interrupts. After these operations are complete, the VF 60 * driver may start its queues, optionally add MAC and VLAN filters, and 61 * process traffic. 62 */ 63 64 /* START GENERIC DEFINES 65 * Need to ensure the following enums and defines hold the same meaning and 66 * value in current and future projects 67 */ 68 69 #define VIRTCHNL_ETH_LENGTH_OF_ADDRESS 6 70 71 /* These macros are used to generate compilation errors if a structure/union 72 * is not exactly the correct length. It gives a divide by zero error if the 73 * structure/union is not of the correct size, otherwise it creates an enum 74 * that is never used. 75 */ 76 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \ 77 { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) } 78 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \ 79 { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) } 80 81 /* Error Codes 82 * Note that many older versions of various iAVF drivers convert the reported 83 * status code directly into an iavf_status enumeration. For this reason, it 84 * is important that the values of these enumerations line up. 85 */ 86 enum virtchnl_status_code { 87 VIRTCHNL_STATUS_SUCCESS = 0, 88 VIRTCHNL_STATUS_ERR_PARAM = -5, 89 VIRTCHNL_STATUS_ERR_NO_MEMORY = -18, 90 VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38, 91 VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39, 92 VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40, 93 VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53, 94 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64, 95 }; 96 97 /* Backward compatibility */ 98 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM 99 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED 100 101 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0 102 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1 103 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2 104 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3 105 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4 106 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5 107 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6 108 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7 109 110 enum virtchnl_link_speed { 111 VIRTCHNL_LINK_SPEED_UNKNOWN = 0, 112 VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT), 113 VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT), 114 VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT), 115 VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT), 116 VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT), 117 VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT), 118 VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT), 119 VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT), 120 }; 121 122 /* for hsplit_0 field of Rx HMC context */ 123 /* deprecated with AVF 1.0 */ 124 enum virtchnl_rx_hsplit { 125 VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0, 126 VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1, 127 VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2, 128 VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4, 129 VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8, 130 }; 131 132 enum virtchnl_bw_limit_type { 133 VIRTCHNL_BW_SHAPER = 0, 134 }; 135 /* END GENERIC DEFINES */ 136 137 /* Opcodes for VF-PF communication. These are placed in the v_opcode field 138 * of the virtchnl_msg structure. 139 */ 140 enum virtchnl_ops { 141 /* The PF sends status change events to VFs using 142 * the VIRTCHNL_OP_EVENT opcode. 143 * VFs send requests to the PF using the other ops. 144 * Use of "advanced opcode" features must be negotiated as part of capabilities 145 * exchange and are not considered part of base mode feature set. 146 * 147 */ 148 VIRTCHNL_OP_UNKNOWN = 0, 149 VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */ 150 VIRTCHNL_OP_RESET_VF = 2, 151 VIRTCHNL_OP_GET_VF_RESOURCES = 3, 152 VIRTCHNL_OP_CONFIG_TX_QUEUE = 4, 153 VIRTCHNL_OP_CONFIG_RX_QUEUE = 5, 154 VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6, 155 VIRTCHNL_OP_CONFIG_IRQ_MAP = 7, 156 VIRTCHNL_OP_ENABLE_QUEUES = 8, 157 VIRTCHNL_OP_DISABLE_QUEUES = 9, 158 VIRTCHNL_OP_ADD_ETH_ADDR = 10, 159 VIRTCHNL_OP_DEL_ETH_ADDR = 11, 160 VIRTCHNL_OP_ADD_VLAN = 12, 161 VIRTCHNL_OP_DEL_VLAN = 13, 162 VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14, 163 VIRTCHNL_OP_GET_STATS = 15, 164 VIRTCHNL_OP_RSVD = 16, 165 VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */ 166 /* opcode 19 is reserved */ 167 /* opcodes 20, 21, and 22 are reserved */ 168 VIRTCHNL_OP_CONFIG_RSS_KEY = 23, 169 VIRTCHNL_OP_CONFIG_RSS_LUT = 24, 170 VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25, 171 VIRTCHNL_OP_SET_RSS_HENA = 26, 172 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27, 173 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28, 174 VIRTCHNL_OP_REQUEST_QUEUES = 29, 175 VIRTCHNL_OP_ENABLE_CHANNELS = 30, 176 VIRTCHNL_OP_DISABLE_CHANNELS = 31, 177 VIRTCHNL_OP_ADD_CLOUD_FILTER = 32, 178 VIRTCHNL_OP_DEL_CLOUD_FILTER = 33, 179 /* opcode 34 is reserved */ 180 /* opcodes 38, 39, 40, 41, 42 and 43 are reserved */ 181 /* opcode 44 is reserved */ 182 VIRTCHNL_OP_ADD_RSS_CFG = 45, 183 VIRTCHNL_OP_DEL_RSS_CFG = 46, 184 VIRTCHNL_OP_ADD_FDIR_FILTER = 47, 185 VIRTCHNL_OP_DEL_FDIR_FILTER = 48, 186 VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50, 187 VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51, 188 VIRTCHNL_OP_ADD_VLAN_V2 = 52, 189 VIRTCHNL_OP_DEL_VLAN_V2 = 53, 190 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54, 191 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55, 192 VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56, 193 VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57, 194 VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58, 195 VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59, 196 /* opcodes 60 through 65 are reserved */ 197 VIRTCHNL_OP_GET_QOS_CAPS = 66, 198 VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP = 67, 199 /* opcode 68, 69 are reserved */ 200 VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107, 201 VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108, 202 VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111, 203 VIRTCHNL_OP_MAX, 204 }; 205 206 static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode) 207 { 208 switch (v_opcode) { 209 case VIRTCHNL_OP_UNKNOWN: 210 return "VIRTCHNL_OP_UNKNOWN"; 211 case VIRTCHNL_OP_VERSION: 212 return "VIRTCHNL_OP_VERSION"; 213 case VIRTCHNL_OP_RESET_VF: 214 return "VIRTCHNL_OP_RESET_VF"; 215 case VIRTCHNL_OP_GET_VF_RESOURCES: 216 return "VIRTCHNL_OP_GET_VF_RESOURCES"; 217 case VIRTCHNL_OP_CONFIG_TX_QUEUE: 218 return "VIRTCHNL_OP_CONFIG_TX_QUEUE"; 219 case VIRTCHNL_OP_CONFIG_RX_QUEUE: 220 return "VIRTCHNL_OP_CONFIG_RX_QUEUE"; 221 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 222 return "VIRTCHNL_OP_CONFIG_VSI_QUEUES"; 223 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 224 return "VIRTCHNL_OP_CONFIG_IRQ_MAP"; 225 case VIRTCHNL_OP_ENABLE_QUEUES: 226 return "VIRTCHNL_OP_ENABLE_QUEUES"; 227 case VIRTCHNL_OP_DISABLE_QUEUES: 228 return "VIRTCHNL_OP_DISABLE_QUEUES"; 229 case VIRTCHNL_OP_ADD_ETH_ADDR: 230 return "VIRTCHNL_OP_ADD_ETH_ADDR"; 231 case VIRTCHNL_OP_DEL_ETH_ADDR: 232 return "VIRTCHNL_OP_DEL_ETH_ADDR"; 233 case VIRTCHNL_OP_ADD_VLAN: 234 return "VIRTCHNL_OP_ADD_VLAN"; 235 case VIRTCHNL_OP_DEL_VLAN: 236 return "VIRTCHNL_OP_DEL_VLAN"; 237 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 238 return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE"; 239 case VIRTCHNL_OP_GET_STATS: 240 return "VIRTCHNL_OP_GET_STATS"; 241 case VIRTCHNL_OP_RSVD: 242 return "VIRTCHNL_OP_RSVD"; 243 case VIRTCHNL_OP_EVENT: 244 return "VIRTCHNL_OP_EVENT"; 245 case VIRTCHNL_OP_CONFIG_RSS_KEY: 246 return "VIRTCHNL_OP_CONFIG_RSS_KEY"; 247 case VIRTCHNL_OP_CONFIG_RSS_LUT: 248 return "VIRTCHNL_OP_CONFIG_RSS_LUT"; 249 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 250 return "VIRTCHNL_OP_GET_RSS_HENA_CAPS"; 251 case VIRTCHNL_OP_SET_RSS_HENA: 252 return "VIRTCHNL_OP_SET_RSS_HENA"; 253 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 254 return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING"; 255 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 256 return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING"; 257 case VIRTCHNL_OP_REQUEST_QUEUES: 258 return "VIRTCHNL_OP_REQUEST_QUEUES"; 259 case VIRTCHNL_OP_ENABLE_CHANNELS: 260 return "VIRTCHNL_OP_ENABLE_CHANNELS"; 261 case VIRTCHNL_OP_DISABLE_CHANNELS: 262 return "VIRTCHNL_OP_DISABLE_CHANNELS"; 263 case VIRTCHNL_OP_ADD_CLOUD_FILTER: 264 return "VIRTCHNL_OP_ADD_CLOUD_FILTER"; 265 case VIRTCHNL_OP_DEL_CLOUD_FILTER: 266 return "VIRTCHNL_OP_DEL_CLOUD_FILTER"; 267 case VIRTCHNL_OP_ADD_RSS_CFG: 268 return "VIRTCHNL_OP_ADD_RSS_CFG"; 269 case VIRTCHNL_OP_DEL_RSS_CFG: 270 return "VIRTCHNL_OP_DEL_RSS_CFG"; 271 case VIRTCHNL_OP_ADD_FDIR_FILTER: 272 return "VIRTCHNL_OP_ADD_FDIR_FILTER"; 273 case VIRTCHNL_OP_DEL_FDIR_FILTER: 274 return "VIRTCHNL_OP_DEL_FDIR_FILTER"; 275 case VIRTCHNL_OP_GET_MAX_RSS_QREGION: 276 return "VIRTCHNL_OP_GET_MAX_RSS_QREGION"; 277 case VIRTCHNL_OP_ENABLE_QUEUES_V2: 278 return "VIRTCHNL_OP_ENABLE_QUEUES_V2"; 279 case VIRTCHNL_OP_DISABLE_QUEUES_V2: 280 return "VIRTCHNL_OP_DISABLE_QUEUES_V2"; 281 case VIRTCHNL_OP_MAP_QUEUE_VECTOR: 282 return "VIRTCHNL_OP_MAP_QUEUE_VECTOR"; 283 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 284 return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS"; 285 case VIRTCHNL_OP_ADD_VLAN_V2: 286 return "VIRTCHNL_OP_ADD_VLAN_V2"; 287 case VIRTCHNL_OP_DEL_VLAN_V2: 288 return "VIRTCHNL_OP_DEL_VLAN_V2"; 289 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 290 return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2"; 291 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 292 return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2"; 293 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 294 return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2"; 295 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 296 return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2"; 297 case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2: 298 return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2"; 299 case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2: 300 return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2"; 301 case VIRTCHNL_OP_MAX: 302 return "VIRTCHNL_OP_MAX"; 303 default: 304 return "Unsupported (update virtchnl.h)"; 305 } 306 } 307 308 static inline const char *virtchnl_stat_str(enum virtchnl_status_code v_status) 309 { 310 switch (v_status) { 311 case VIRTCHNL_STATUS_SUCCESS: 312 return "VIRTCHNL_STATUS_SUCCESS"; 313 case VIRTCHNL_STATUS_ERR_PARAM: 314 return "VIRTCHNL_STATUS_ERR_PARAM"; 315 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 316 return "VIRTCHNL_STATUS_ERR_NO_MEMORY"; 317 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 318 return "VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH"; 319 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 320 return "VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR"; 321 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 322 return "VIRTCHNL_STATUS_ERR_INVALID_VF_ID"; 323 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 324 return "VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR"; 325 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 326 return "VIRTCHNL_STATUS_ERR_NOT_SUPPORTED"; 327 default: 328 return "Unknown status code (update virtchnl.h)"; 329 } 330 } 331 332 /* Virtual channel message descriptor. This overlays the admin queue 333 * descriptor. All other data is passed in external buffers. 334 */ 335 336 struct virtchnl_msg { 337 u8 pad[8]; /* AQ flags/opcode/len/retval fields */ 338 339 /* avoid confusion with desc->opcode */ 340 enum virtchnl_ops v_opcode; 341 342 /* ditto for desc->retval */ 343 enum virtchnl_status_code v_retval; 344 u32 vfid; /* used by PF when sending to VF */ 345 }; 346 347 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg); 348 349 /* Message descriptions and data structures. */ 350 351 /* VIRTCHNL_OP_VERSION 352 * VF posts its version number to the PF. PF responds with its version number 353 * in the same format, along with a return code. 354 * Reply from PF has its major/minor versions also in param0 and param1. 355 * If there is a major version mismatch, then the VF cannot operate. 356 * If there is a minor version mismatch, then the VF can operate but should 357 * add a warning to the system log. 358 * 359 * This enum element MUST always be specified as == 1, regardless of other 360 * changes in the API. The PF must always respond to this message without 361 * error regardless of version mismatch. 362 */ 363 #define VIRTCHNL_VERSION_MAJOR 1 364 #define VIRTCHNL_VERSION_MINOR 1 365 #define VIRTCHNL_VERSION_MAJOR_2 2 366 #define VIRTCHNL_VERSION_MINOR_0 0 367 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0 368 369 struct virtchnl_version_info { 370 u32 major; 371 u32 minor; 372 }; 373 374 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info); 375 376 #define VF_IS_V10(_ver) (((_ver)->major == 1) && ((_ver)->minor == 0)) 377 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1)) 378 #define VF_IS_V20(_ver) (((_ver)->major == 2) && ((_ver)->minor == 0)) 379 380 /* VIRTCHNL_OP_RESET_VF 381 * VF sends this request to PF with no parameters 382 * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register 383 * until reset completion is indicated. The admin queue must be reinitialized 384 * after this operation. 385 * 386 * When reset is complete, PF must ensure that all queues in all VSIs associated 387 * with the VF are stopped, all queue configurations in the HMC are set to 0, 388 * and all MAC and VLAN filters (except the default MAC address) on all VSIs 389 * are cleared. 390 */ 391 392 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV 393 * vsi_type should always be 6 for backward compatibility. Add other fields 394 * as needed. 395 */ 396 enum virtchnl_vsi_type { 397 VIRTCHNL_VSI_TYPE_INVALID = 0, 398 VIRTCHNL_VSI_SRIOV = 6, 399 }; 400 401 /* VIRTCHNL_OP_GET_VF_RESOURCES 402 * Version 1.0 VF sends this request to PF with no parameters 403 * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities 404 * PF responds with an indirect message containing 405 * virtchnl_vf_resource and one or more 406 * virtchnl_vsi_resource structures. 407 */ 408 409 struct virtchnl_vsi_resource { 410 u16 vsi_id; 411 u16 num_queue_pairs; 412 413 /* see enum virtchnl_vsi_type */ 414 s32 vsi_type; 415 u16 qset_handle; 416 u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; 417 }; 418 419 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource); 420 421 /* VF capability flags 422 * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including 423 * TX/RX Checksum offloading and TSO for non-tunnelled packets. 424 */ 425 #define VIRTCHNL_VF_OFFLOAD_L2 BIT(0) 426 #define VIRTCHNL_VF_OFFLOAD_IWARP BIT(1) 427 #define VIRTCHNL_VF_CAP_RDMA VIRTCHNL_VF_OFFLOAD_IWARP 428 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3) 429 #define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4) 430 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5) 431 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6) 432 /* used to negotiate communicating link speeds in Mbps */ 433 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7) 434 /* BIT(8) is reserved */ 435 #define VIRTCHNL_VF_LARGE_NUM_QPAIRS BIT(9) 436 #define VIRTCHNL_VF_OFFLOAD_CRC BIT(10) 437 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15) 438 #define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16) 439 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17) 440 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18) 441 #define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19) 442 #define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20) 443 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21) 444 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22) 445 #define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23) 446 #define VIRTCHNL_VF_OFFLOAD_ADQ_V2 BIT(24) 447 #define VIRTCHNL_VF_OFFLOAD_USO BIT(25) 448 /* BIT(26) is reserved */ 449 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27) 450 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28) 451 #define VIRTCHNL_VF_OFFLOAD_QOS BIT(29) 452 /* BIT(30) is reserved */ 453 /* BIT(31) is reserved */ 454 455 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \ 456 VIRTCHNL_VF_OFFLOAD_VLAN | \ 457 VIRTCHNL_VF_OFFLOAD_RSS_PF) 458 459 struct virtchnl_vf_resource { 460 u16 num_vsis; 461 u16 num_queue_pairs; 462 u16 max_vectors; 463 u16 max_mtu; 464 465 u32 vf_cap_flags; 466 u32 rss_key_size; 467 u32 rss_lut_size; 468 469 struct virtchnl_vsi_resource vsi_res[1]; 470 }; 471 472 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource); 473 474 /* VIRTCHNL_OP_CONFIG_TX_QUEUE 475 * VF sends this message to set up parameters for one TX queue. 476 * External data buffer contains one instance of virtchnl_txq_info. 477 * PF configures requested queue and returns a status code. 478 */ 479 480 /* Tx queue config info */ 481 struct virtchnl_txq_info { 482 u16 vsi_id; 483 u16 queue_id; 484 u16 ring_len; /* number of descriptors, multiple of 8 */ 485 u16 headwb_enabled; /* deprecated with AVF 1.0 */ 486 u64 dma_ring_addr; 487 u64 dma_headwb_addr; /* deprecated with AVF 1.0 */ 488 }; 489 490 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info); 491 492 /* RX descriptor IDs (range from 0 to 63) */ 493 enum virtchnl_rx_desc_ids { 494 VIRTCHNL_RXDID_0_16B_BASE = 0, 495 /* 32B_BASE and FLEX_SPLITQ share desc ids as default descriptors 496 * because they can be differentiated based on queue model; e.g. single 497 * queue model can only use 32B_BASE and split queue model can only use 498 * FLEX_SPLITQ. Having these as 1 allows them to be used as default 499 * descriptors without negotiation. 500 */ 501 VIRTCHNL_RXDID_1_32B_BASE = 1, 502 VIRTCHNL_RXDID_1_FLEX_SPLITQ = 1, 503 VIRTCHNL_RXDID_2_FLEX_SQ_NIC = 2, 504 VIRTCHNL_RXDID_3_FLEX_SQ_SW = 3, 505 VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB = 4, 506 VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL = 5, 507 VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2 = 6, 508 VIRTCHNL_RXDID_7_HW_RSVD = 7, 509 /* 9 through 15 are reserved */ 510 VIRTCHNL_RXDID_16_COMMS_GENERIC = 16, 511 VIRTCHNL_RXDID_17_COMMS_AUX_VLAN = 17, 512 VIRTCHNL_RXDID_18_COMMS_AUX_IPV4 = 18, 513 VIRTCHNL_RXDID_19_COMMS_AUX_IPV6 = 19, 514 VIRTCHNL_RXDID_20_COMMS_AUX_FLOW = 20, 515 VIRTCHNL_RXDID_21_COMMS_AUX_TCP = 21, 516 /* 22 through 63 are reserved */ 517 }; 518 519 /* RX descriptor ID bitmasks */ 520 enum virtchnl_rx_desc_id_bitmasks { 521 VIRTCHNL_RXDID_0_16B_BASE_M = BIT(VIRTCHNL_RXDID_0_16B_BASE), 522 VIRTCHNL_RXDID_1_32B_BASE_M = BIT(VIRTCHNL_RXDID_1_32B_BASE), 523 VIRTCHNL_RXDID_1_FLEX_SPLITQ_M = BIT(VIRTCHNL_RXDID_1_FLEX_SPLITQ), 524 VIRTCHNL_RXDID_2_FLEX_SQ_NIC_M = BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC), 525 VIRTCHNL_RXDID_3_FLEX_SQ_SW_M = BIT(VIRTCHNL_RXDID_3_FLEX_SQ_SW), 526 VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB_M = BIT(VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB), 527 VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL_M = BIT(VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL), 528 VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2_M = BIT(VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2), 529 VIRTCHNL_RXDID_7_HW_RSVD_M = BIT(VIRTCHNL_RXDID_7_HW_RSVD), 530 /* 9 through 15 are reserved */ 531 VIRTCHNL_RXDID_16_COMMS_GENERIC_M = BIT(VIRTCHNL_RXDID_16_COMMS_GENERIC), 532 VIRTCHNL_RXDID_17_COMMS_AUX_VLAN_M = BIT(VIRTCHNL_RXDID_17_COMMS_AUX_VLAN), 533 VIRTCHNL_RXDID_18_COMMS_AUX_IPV4_M = BIT(VIRTCHNL_RXDID_18_COMMS_AUX_IPV4), 534 VIRTCHNL_RXDID_19_COMMS_AUX_IPV6_M = BIT(VIRTCHNL_RXDID_19_COMMS_AUX_IPV6), 535 VIRTCHNL_RXDID_20_COMMS_AUX_FLOW_M = BIT(VIRTCHNL_RXDID_20_COMMS_AUX_FLOW), 536 VIRTCHNL_RXDID_21_COMMS_AUX_TCP_M = BIT(VIRTCHNL_RXDID_21_COMMS_AUX_TCP), 537 /* 22 through 63 are reserved */ 538 }; 539 540 /* VIRTCHNL_OP_CONFIG_RX_QUEUE 541 * VF sends this message to set up parameters for one RX queue. 542 * External data buffer contains one instance of virtchnl_rxq_info. 543 * PF configures requested queue and returns a status code. The 544 * crc_disable flag disables CRC stripping on the VF. Setting 545 * the crc_disable flag to 1 will disable CRC stripping for each 546 * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC 547 * offload must have been set prior to sending this info or the PF 548 * will ignore the request. This flag should be set the same for 549 * all of the queues for a VF. 550 */ 551 552 /* Rx queue config info */ 553 struct virtchnl_rxq_info { 554 u16 vsi_id; 555 u16 queue_id; 556 u32 ring_len; /* number of descriptors, multiple of 32 */ 557 u16 hdr_size; 558 u16 splithdr_enabled; /* deprecated with AVF 1.0 */ 559 u32 databuffer_size; 560 u32 max_pkt_size; 561 u8 crc_disable; 562 u8 pad1[3]; 563 u64 dma_ring_addr; 564 565 /* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */ 566 s32 rx_split_pos; 567 u32 pad2; 568 }; 569 570 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info); 571 572 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES 573 * VF sends this message to set parameters for active TX and RX queues 574 * associated with the specified VSI. 575 * PF configures queues and returns status. 576 * If the number of queues specified is greater than the number of queues 577 * associated with the VSI, an error is returned and no queues are configured. 578 * NOTE: The VF is not required to configure all queues in a single request. 579 * It may send multiple messages. PF drivers must correctly handle all VF 580 * requests. 581 */ 582 struct virtchnl_queue_pair_info { 583 /* NOTE: vsi_id and queue_id should be identical for both queues. */ 584 struct virtchnl_txq_info txq; 585 struct virtchnl_rxq_info rxq; 586 }; 587 588 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info); 589 590 struct virtchnl_vsi_queue_config_info { 591 u16 vsi_id; 592 u16 num_queue_pairs; 593 u32 pad; 594 struct virtchnl_queue_pair_info qpair[1]; 595 }; 596 597 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info); 598 599 /* VIRTCHNL_OP_REQUEST_QUEUES 600 * VF sends this message to request the PF to allocate additional queues to 601 * this VF. Each VF gets a guaranteed number of queues on init but asking for 602 * additional queues must be negotiated. This is a best effort request as it 603 * is possible the PF does not have enough queues left to support the request. 604 * If the PF cannot support the number requested it will respond with the 605 * maximum number it is able to support. If the request is successful, PF will 606 * then reset the VF to institute required changes. 607 */ 608 609 /* VF resource request */ 610 struct virtchnl_vf_res_request { 611 u16 num_queue_pairs; 612 }; 613 614 /* VIRTCHNL_OP_CONFIG_IRQ_MAP 615 * VF uses this message to map vectors to queues. 616 * The rxq_map and txq_map fields are bitmaps used to indicate which queues 617 * are to be associated with the specified vector. 618 * The "other" causes are always mapped to vector 0. The VF may not request 619 * that vector 0 be used for traffic. 620 * PF configures interrupt mapping and returns status. 621 * NOTE: due to hardware requirements, all active queues (both TX and RX) 622 * should be mapped to interrupts, even if the driver intends to operate 623 * only in polling mode. In this case the interrupt may be disabled, but 624 * the ITR timer will still run to trigger writebacks. 625 */ 626 struct virtchnl_vector_map { 627 u16 vsi_id; 628 u16 vector_id; 629 u16 rxq_map; 630 u16 txq_map; 631 u16 rxitr_idx; 632 u16 txitr_idx; 633 }; 634 635 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map); 636 637 struct virtchnl_irq_map_info { 638 u16 num_vectors; 639 struct virtchnl_vector_map vecmap[1]; 640 }; 641 642 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info); 643 644 /* VIRTCHNL_OP_ENABLE_QUEUES 645 * VIRTCHNL_OP_DISABLE_QUEUES 646 * VF sends these message to enable or disable TX/RX queue pairs. 647 * The queues fields are bitmaps indicating which queues to act upon. 648 * (Currently, we only support 16 queues per VF, but we make the field 649 * u32 to allow for expansion.) 650 * PF performs requested action and returns status. 651 * NOTE: The VF is not required to enable/disable all queues in a single 652 * request. It may send multiple messages. 653 * PF drivers must correctly handle all VF requests. 654 */ 655 struct virtchnl_queue_select { 656 u16 vsi_id; 657 u16 pad; 658 u32 rx_queues; 659 u32 tx_queues; 660 }; 661 662 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select); 663 664 /* VIRTCHNL_OP_GET_MAX_RSS_QREGION 665 * 666 * if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES 667 * then this op must be supported. 668 * 669 * VF sends this message in order to query the max RSS queue region 670 * size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled. 671 * This information should be used when configuring the RSS LUT and/or 672 * configuring queue region based filters. 673 * 674 * The maximum RSS queue region is 2^qregion_width. So, a qregion_width 675 * of 6 would inform the VF that the PF supports a maximum RSS queue region 676 * of 64. 677 * 678 * A queue region represents a range of queues that can be used to configure 679 * a RSS LUT. For example, if a VF is given 64 queues, but only a max queue 680 * region size of 16 (i.e. 2^qregion_width = 16) then it will only be able 681 * to configure the RSS LUT with queue indices from 0 to 15. However, other 682 * filters can be used to direct packets to queues >15 via specifying a queue 683 * base/offset and queue region width. 684 */ 685 struct virtchnl_max_rss_qregion { 686 u16 vport_id; 687 u16 qregion_width; 688 u8 pad[4]; 689 }; 690 691 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion); 692 693 /* VIRTCHNL_OP_ADD_ETH_ADDR 694 * VF sends this message in order to add one or more unicast or multicast 695 * address filters for the specified VSI. 696 * PF adds the filters and returns status. 697 */ 698 699 /* VIRTCHNL_OP_DEL_ETH_ADDR 700 * VF sends this message in order to remove one or more unicast or multicast 701 * filters for the specified VSI. 702 * PF removes the filters and returns status. 703 */ 704 705 /* VIRTCHNL_ETHER_ADDR_LEGACY 706 * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad 707 * bytes. Moving forward all VF drivers should not set type to 708 * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy 709 * behavior. The control plane function (i.e. PF) can use a best effort method 710 * of tracking the primary/device unicast in this case, but there is no 711 * guarantee and functionality depends on the implementation of the PF. 712 */ 713 714 /* VIRTCHNL_ETHER_ADDR_PRIMARY 715 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the 716 * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and 717 * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane 718 * function (i.e. PF) to accurately track and use this MAC address for 719 * displaying on the host and for VM/function reset. 720 */ 721 722 /* VIRTCHNL_ETHER_ADDR_EXTRA 723 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra 724 * unicast and/or multicast filters that are being added/deleted via 725 * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively. 726 */ 727 struct virtchnl_ether_addr { 728 u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; 729 u8 type; 730 #define VIRTCHNL_ETHER_ADDR_LEGACY 0 731 #define VIRTCHNL_ETHER_ADDR_PRIMARY 1 732 #define VIRTCHNL_ETHER_ADDR_EXTRA 2 733 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */ 734 u8 pad; 735 }; 736 737 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr); 738 739 struct virtchnl_ether_addr_list { 740 u16 vsi_id; 741 u16 num_elements; 742 struct virtchnl_ether_addr list[1]; 743 }; 744 745 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list); 746 747 /* VIRTCHNL_OP_ADD_VLAN 748 * VF sends this message to add one or more VLAN tag filters for receives. 749 * PF adds the filters and returns status. 750 * If a port VLAN is configured by the PF, this operation will return an 751 * error to the VF. 752 */ 753 754 /* VIRTCHNL_OP_DEL_VLAN 755 * VF sends this message to remove one or more VLAN tag filters for receives. 756 * PF removes the filters and returns status. 757 * If a port VLAN is configured by the PF, this operation will return an 758 * error to the VF. 759 */ 760 761 struct virtchnl_vlan_filter_list { 762 u16 vsi_id; 763 u16 num_elements; 764 u16 vlan_id[1]; 765 }; 766 767 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list); 768 769 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related 770 * structures and opcodes. 771 * 772 * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver 773 * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED. 774 * 775 * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype. 776 * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype. 777 * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype. 778 * 779 * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported 780 * by the PF concurrently. For example, if the PF can support 781 * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it 782 * would OR the following bits: 783 * 784 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 785 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 786 * VIRTCHNL_VLAN_ETHERTYPE_AND; 787 * 788 * The VF would interpret this as VLAN filtering can be supported on both 0x8100 789 * and 0x88A8 VLAN ethertypes. 790 * 791 * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported 792 * by the PF concurrently. For example if the PF can support 793 * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping 794 * offload it would OR the following bits: 795 * 796 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 797 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 798 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 799 * 800 * The VF would interpret this as VLAN stripping can be supported on either 801 * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via 802 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override 803 * the previously set value. 804 * 805 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or 806 * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors. 807 * 808 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware 809 * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor. 810 * 811 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware 812 * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor. 813 * 814 * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for 815 * VLAN filtering if the underlying PF supports it. 816 * 817 * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a 818 * certain VLAN capability can be toggled. For example if the underlying PF/CP 819 * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should 820 * set this bit along with the supported ethertypes. 821 */ 822 enum virtchnl_vlan_support { 823 VIRTCHNL_VLAN_UNSUPPORTED = 0, 824 VIRTCHNL_VLAN_ETHERTYPE_8100 = 0x00000001, 825 VIRTCHNL_VLAN_ETHERTYPE_88A8 = 0x00000002, 826 VIRTCHNL_VLAN_ETHERTYPE_9100 = 0x00000004, 827 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = 0x00000100, 828 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = 0x00000200, 829 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = 0x00000400, 830 VIRTCHNL_VLAN_PRIO = 0x01000000, 831 VIRTCHNL_VLAN_FILTER_MASK = 0x10000000, 832 VIRTCHNL_VLAN_ETHERTYPE_AND = 0x20000000, 833 VIRTCHNL_VLAN_ETHERTYPE_XOR = 0x40000000, 834 VIRTCHNL_VLAN_TOGGLE = 0x80000000 835 }; 836 837 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 838 * for filtering, insertion, and stripping capabilities. 839 * 840 * If only outer capabilities are supported (for filtering, insertion, and/or 841 * stripping) then this refers to the outer most or single VLAN from the VF's 842 * perspective. 843 * 844 * If only inner capabilities are supported (for filtering, insertion, and/or 845 * stripping) then this refers to the outer most or single VLAN from the VF's 846 * perspective. Functionally this is the same as if only outer capabilities are 847 * supported. The VF driver is just forced to use the inner fields when 848 * adding/deleting filters and enabling/disabling offloads (if supported). 849 * 850 * If both outer and inner capabilities are supported (for filtering, insertion, 851 * and/or stripping) then outer refers to the outer most or single VLAN and 852 * inner refers to the second VLAN, if it exists, in the packet. 853 * 854 * There is no support for tunneled VLAN offloads, so outer or inner are never 855 * referring to a tunneled packet from the VF's perspective. 856 */ 857 struct virtchnl_vlan_supported_caps { 858 u32 outer; 859 u32 inner; 860 }; 861 862 /* The PF populates these fields based on the supported VLAN filtering. If a 863 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 864 * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using 865 * the unsupported fields. 866 * 867 * Also, a VF is only allowed to toggle its VLAN filtering setting if the 868 * VIRTCHNL_VLAN_TOGGLE bit is set. 869 * 870 * The ethertype(s) specified in the ethertype_init field are the ethertypes 871 * enabled for VLAN filtering. VLAN filtering in this case refers to the outer 872 * most VLAN from the VF's perspective. If both inner and outer filtering are 873 * allowed then ethertype_init only refers to the outer most VLAN as only 874 * VLAN ethertype supported for inner VLAN filtering is 875 * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled 876 * when both inner and outer filtering are allowed. 877 * 878 * The max_filters field tells the VF how many VLAN filters it's allowed to have 879 * at any one time. If it exceeds this amount and tries to add another filter, 880 * then the request will be rejected by the PF. To prevent failures, the VF 881 * should keep track of how many VLAN filters it has added and not attempt to 882 * add more than max_filters. 883 */ 884 struct virtchnl_vlan_filtering_caps { 885 struct virtchnl_vlan_supported_caps filtering_support; 886 u32 ethertype_init; 887 u16 max_filters; 888 u8 pad[2]; 889 }; 890 891 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps); 892 893 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify 894 * if the PF supports a different ethertype for stripping and insertion. 895 * 896 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified 897 * for stripping affect the ethertype(s) specified for insertion and visa versa 898 * as well. If the VF tries to configure VLAN stripping via 899 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then 900 * that will be the ethertype for both stripping and insertion. 901 * 902 * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for 903 * stripping do not affect the ethertype(s) specified for insertion and visa 904 * versa. 905 */ 906 enum virtchnl_vlan_ethertype_match { 907 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0, 908 VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1, 909 }; 910 911 /* The PF populates these fields based on the supported VLAN offloads. If a 912 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 913 * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or 914 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields. 915 * 916 * Also, a VF is only allowed to toggle its VLAN offload setting if the 917 * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set. 918 * 919 * The VF driver needs to be aware of how the tags are stripped by hardware and 920 * inserted by the VF driver based on the level of offload support. The PF will 921 * populate these fields based on where the VLAN tags are expected to be 922 * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to 923 * interpret these fields. See the definition of the 924 * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support 925 * enumeration. 926 */ 927 struct virtchnl_vlan_offload_caps { 928 struct virtchnl_vlan_supported_caps stripping_support; 929 struct virtchnl_vlan_supported_caps insertion_support; 930 u32 ethertype_init; 931 u8 ethertype_match; 932 u8 pad[3]; 933 }; 934 935 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps); 936 937 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 938 * VF sends this message to determine its VLAN capabilities. 939 * 940 * PF will mark which capabilities it supports based on hardware support and 941 * current configuration. For example, if a port VLAN is configured the PF will 942 * not allow outer VLAN filtering, stripping, or insertion to be configured so 943 * it will block these features from the VF. 944 * 945 * The VF will need to cross reference its capabilities with the PFs 946 * capabilities in the response message from the PF to determine the VLAN 947 * support. 948 */ 949 struct virtchnl_vlan_caps { 950 struct virtchnl_vlan_filtering_caps filtering; 951 struct virtchnl_vlan_offload_caps offloads; 952 }; 953 954 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps); 955 956 struct virtchnl_vlan { 957 u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */ 958 u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in 959 * filtering caps 960 */ 961 u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in 962 * filtering caps. Note that tpid here does not refer to 963 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the 964 * actual 2-byte VLAN TPID 965 */ 966 u8 pad[2]; 967 }; 968 969 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan); 970 971 struct virtchnl_vlan_filter { 972 struct virtchnl_vlan inner; 973 struct virtchnl_vlan outer; 974 u8 pad[16]; 975 }; 976 977 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter); 978 979 /* VIRTCHNL_OP_ADD_VLAN_V2 980 * VIRTCHNL_OP_DEL_VLAN_V2 981 * 982 * VF sends these messages to add/del one or more VLAN tag filters for Rx 983 * traffic. 984 * 985 * The PF attempts to add the filters and returns status. 986 * 987 * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the 988 * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS. 989 */ 990 struct virtchnl_vlan_filter_list_v2 { 991 u16 vport_id; 992 u16 num_elements; 993 u8 pad[4]; 994 struct virtchnl_vlan_filter filters[1]; 995 }; 996 997 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2); 998 999 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 1000 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 1001 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 1002 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 1003 * 1004 * VF sends this message to enable or disable VLAN stripping or insertion. It 1005 * also needs to specify an ethertype. The VF knows which VLAN ethertypes are 1006 * allowed and whether or not it's allowed to enable/disable the specific 1007 * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to 1008 * parse the virtchnl_vlan_caps.offloads fields to determine which offload 1009 * messages are allowed. 1010 * 1011 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 1012 * following manner the VF will be allowed to enable and/or disable 0x8100 inner 1013 * VLAN insertion and/or stripping via the opcodes listed above. Inner in this 1014 * case means the outer most or single VLAN from the VF's perspective. This is 1015 * because no outer offloads are supported. See the comments above the 1016 * virtchnl_vlan_supported_caps structure for more details. 1017 * 1018 * virtchnl_vlan_caps.offloads.stripping_support.inner = 1019 * VIRTCHNL_VLAN_TOGGLE | 1020 * VIRTCHNL_VLAN_ETHERTYPE_8100; 1021 * 1022 * virtchnl_vlan_caps.offloads.insertion_support.inner = 1023 * VIRTCHNL_VLAN_TOGGLE | 1024 * VIRTCHNL_VLAN_ETHERTYPE_8100; 1025 * 1026 * In order to enable inner (again note that in this case inner is the outer 1027 * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100 1028 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the 1029 * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 1030 * 1031 * virtchnl_vlan_setting.inner_ethertype_setting = 1032 * VIRTCHNL_VLAN_ETHERTYPE_8100; 1033 * 1034 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 1035 * initialization. 1036 * 1037 * The reason that VLAN TPID(s) are not being used for the 1038 * outer_ethertype_setting and inner_ethertype_setting fields is because it's 1039 * possible a device could support VLAN insertion and/or stripping offload on 1040 * multiple ethertypes concurrently, so this method allows a VF to request 1041 * multiple ethertypes in one message using the virtchnl_vlan_support 1042 * enumeration. 1043 * 1044 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 1045 * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer 1046 * VLAN insertion and stripping simultaneously. The 1047 * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be 1048 * populated based on what the PF can support. 1049 * 1050 * virtchnl_vlan_caps.offloads.stripping_support.outer = 1051 * VIRTCHNL_VLAN_TOGGLE | 1052 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1053 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 1054 * VIRTCHNL_VLAN_ETHERTYPE_AND; 1055 * 1056 * virtchnl_vlan_caps.offloads.insertion_support.outer = 1057 * VIRTCHNL_VLAN_TOGGLE | 1058 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1059 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 1060 * VIRTCHNL_VLAN_ETHERTYPE_AND; 1061 * 1062 * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF 1063 * would populate the virthcnl_vlan_offload_structure in the following manner 1064 * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 1065 * 1066 * virtchnl_vlan_setting.outer_ethertype_setting = 1067 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 1068 * VIRTHCNL_VLAN_ETHERTYPE_88A8; 1069 * 1070 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 1071 * initialization. 1072 * 1073 * There is also the case where a PF and the underlying hardware can support 1074 * VLAN offloads on multiple ethertypes, but not concurrently. For example, if 1075 * the PF populates the virtchnl_vlan_caps.offloads in the following manner the 1076 * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN 1077 * offloads. The ethertypes must match for stripping and insertion. 1078 * 1079 * virtchnl_vlan_caps.offloads.stripping_support.outer = 1080 * VIRTCHNL_VLAN_TOGGLE | 1081 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1082 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 1083 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 1084 * 1085 * virtchnl_vlan_caps.offloads.insertion_support.outer = 1086 * VIRTCHNL_VLAN_TOGGLE | 1087 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1088 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 1089 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 1090 * 1091 * virtchnl_vlan_caps.offloads.ethertype_match = 1092 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 1093 * 1094 * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would 1095 * populate the virtchnl_vlan_setting structure in the following manner and send 1096 * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the 1097 * ethertype for VLAN insertion if it's enabled. So, for completeness, a 1098 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent. 1099 * 1100 * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8; 1101 * 1102 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 1103 * initialization. 1104 * 1105 * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 1106 * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 1107 * 1108 * VF sends this message to enable or disable VLAN filtering. It also needs to 1109 * specify an ethertype. The VF knows which VLAN ethertypes are allowed and 1110 * whether or not it's allowed to enable/disable filtering via the 1111 * VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to 1112 * parse the virtchnl_vlan_caps.filtering fields to determine which, if any, 1113 * filtering messages are allowed. 1114 * 1115 * For example, if the PF populates the virtchnl_vlan_caps.filtering in the 1116 * following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8 1117 * outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND 1118 * means that all filtering ethertypes will to be enabled and disabled together 1119 * regardless of the request from the VF. This means that the underlying 1120 * hardware only supports VLAN filtering for all VLAN the specified ethertypes 1121 * or none of them. 1122 * 1123 * virtchnl_vlan_caps.filtering.filtering_support.outer = 1124 * VIRTCHNL_VLAN_TOGGLE | 1125 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1126 * VIRTHCNL_VLAN_ETHERTYPE_88A8 | 1127 * VIRTCHNL_VLAN_ETHERTYPE_9100 | 1128 * VIRTCHNL_VLAN_ETHERTYPE_AND; 1129 * 1130 * In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100 1131 * VLANs aren't supported by the VF driver), the VF would populate the 1132 * virtchnl_vlan_setting structure in the following manner and send the 1133 * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used 1134 * to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the 1135 * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used. 1136 * 1137 * virtchnl_vlan_setting.outer_ethertype_setting = 1138 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 1139 * VIRTCHNL_VLAN_ETHERTYPE_88A8; 1140 * 1141 */ 1142 struct virtchnl_vlan_setting { 1143 u32 outer_ethertype_setting; 1144 u32 inner_ethertype_setting; 1145 u16 vport_id; 1146 u8 pad[6]; 1147 }; 1148 1149 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting); 1150 1151 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE 1152 * VF sends VSI id and flags. 1153 * PF returns status code in retval. 1154 * Note: we assume that broadcast accept mode is always enabled. 1155 */ 1156 struct virtchnl_promisc_info { 1157 u16 vsi_id; 1158 u16 flags; 1159 }; 1160 1161 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info); 1162 1163 #define FLAG_VF_UNICAST_PROMISC 0x00000001 1164 #define FLAG_VF_MULTICAST_PROMISC 0x00000002 1165 1166 /* VIRTCHNL_OP_GET_STATS 1167 * VF sends this message to request stats for the selected VSI. VF uses 1168 * the virtchnl_queue_select struct to specify the VSI. The queue_id 1169 * field is ignored by the PF. 1170 * 1171 * PF replies with struct virtchnl_eth_stats in an external buffer. 1172 */ 1173 1174 struct virtchnl_eth_stats { 1175 u64 rx_bytes; /* received bytes */ 1176 u64 rx_unicast; /* received unicast pkts */ 1177 u64 rx_multicast; /* received multicast pkts */ 1178 u64 rx_broadcast; /* received broadcast pkts */ 1179 u64 rx_discards; 1180 u64 rx_unknown_protocol; 1181 u64 tx_bytes; /* transmitted bytes */ 1182 u64 tx_unicast; /* transmitted unicast pkts */ 1183 u64 tx_multicast; /* transmitted multicast pkts */ 1184 u64 tx_broadcast; /* transmitted broadcast pkts */ 1185 u64 tx_discards; 1186 u64 tx_errors; 1187 }; 1188 1189 /* VIRTCHNL_OP_CONFIG_RSS_KEY 1190 * VIRTCHNL_OP_CONFIG_RSS_LUT 1191 * VF sends these messages to configure RSS. Only supported if both PF 1192 * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during 1193 * configuration negotiation. If this is the case, then the RSS fields in 1194 * the VF resource struct are valid. 1195 * Both the key and LUT are initialized to 0 by the PF, meaning that 1196 * RSS is effectively disabled until set up by the VF. 1197 */ 1198 struct virtchnl_rss_key { 1199 u16 vsi_id; 1200 u16 key_len; 1201 u8 key[1]; /* RSS hash key, packed bytes */ 1202 }; 1203 1204 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key); 1205 1206 struct virtchnl_rss_lut { 1207 u16 vsi_id; 1208 u16 lut_entries; 1209 u8 lut[1]; /* RSS lookup table */ 1210 }; 1211 1212 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut); 1213 1214 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS 1215 * VIRTCHNL_OP_SET_RSS_HENA 1216 * VF sends these messages to get and set the hash filter enable bits for RSS. 1217 * By default, the PF sets these to all possible traffic types that the 1218 * hardware supports. The VF can query this value if it wants to change the 1219 * traffic types that are hashed by the hardware. 1220 */ 1221 struct virtchnl_rss_hena { 1222 u64 hena; 1223 }; 1224 1225 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena); 1226 1227 /* Type of RSS algorithm */ 1228 enum virtchnl_rss_algorithm { 1229 VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0, 1230 VIRTCHNL_RSS_ALG_R_ASYMMETRIC = 1, 1231 VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2, 1232 VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3, 1233 }; 1234 1235 /* This is used by PF driver to enforce how many channels can be supported. 1236 * When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise 1237 * PF driver will allow only max 4 channels 1238 */ 1239 #define VIRTCHNL_MAX_ADQ_CHANNELS 4 1240 #define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16 1241 1242 /* VIRTCHNL_OP_ENABLE_CHANNELS 1243 * VIRTCHNL_OP_DISABLE_CHANNELS 1244 * VF sends these messages to enable or disable channels based on 1245 * the user specified queue count and queue offset for each traffic class. 1246 * This struct encompasses all the information that the PF needs from 1247 * VF to create a channel. 1248 */ 1249 struct virtchnl_channel_info { 1250 u16 count; /* number of queues in a channel */ 1251 u16 offset; /* queues in a channel start from 'offset' */ 1252 u32 pad; 1253 u64 max_tx_rate; 1254 }; 1255 1256 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info); 1257 1258 struct virtchnl_tc_info { 1259 u32 num_tc; 1260 u32 pad; 1261 struct virtchnl_channel_info list[1]; 1262 }; 1263 1264 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info); 1265 1266 /* VIRTCHNL_ADD_CLOUD_FILTER 1267 * VIRTCHNL_DEL_CLOUD_FILTER 1268 * VF sends these messages to add or delete a cloud filter based on the 1269 * user specified match and action filters. These structures encompass 1270 * all the information that the PF needs from the VF to add/delete a 1271 * cloud filter. 1272 */ 1273 1274 struct virtchnl_l4_spec { 1275 u8 src_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; 1276 u8 dst_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; 1277 /* vlan_prio is part of this 16 bit field even from OS perspective 1278 * vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio 1279 * in future, when decided to offload vlan_prio, pass that information 1280 * as part of the "vlan_id" field, Bit14..12 1281 */ 1282 __be16 vlan_id; 1283 __be16 pad; /* reserved for future use */ 1284 __be32 src_ip[4]; 1285 __be32 dst_ip[4]; 1286 __be16 src_port; 1287 __be16 dst_port; 1288 }; 1289 1290 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec); 1291 1292 union virtchnl_flow_spec { 1293 struct virtchnl_l4_spec tcp_spec; 1294 u8 buffer[128]; /* reserved for future use */ 1295 }; 1296 1297 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec); 1298 1299 enum virtchnl_action { 1300 /* action types */ 1301 VIRTCHNL_ACTION_DROP = 0, 1302 VIRTCHNL_ACTION_TC_REDIRECT, 1303 VIRTCHNL_ACTION_PASSTHRU, 1304 VIRTCHNL_ACTION_QUEUE, 1305 VIRTCHNL_ACTION_Q_REGION, 1306 VIRTCHNL_ACTION_MARK, 1307 VIRTCHNL_ACTION_COUNT, 1308 }; 1309 1310 enum virtchnl_flow_type { 1311 /* flow types */ 1312 VIRTCHNL_TCP_V4_FLOW = 0, 1313 VIRTCHNL_TCP_V6_FLOW, 1314 VIRTCHNL_UDP_V4_FLOW, 1315 VIRTCHNL_UDP_V6_FLOW, 1316 }; 1317 1318 struct virtchnl_filter { 1319 union virtchnl_flow_spec data; 1320 union virtchnl_flow_spec mask; 1321 1322 /* see enum virtchnl_flow_type */ 1323 s32 flow_type; 1324 1325 /* see enum virtchnl_action */ 1326 s32 action; 1327 u32 action_meta; 1328 u8 field_flags; 1329 }; 1330 1331 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter); 1332 1333 struct virtchnl_shaper_bw { 1334 /* Unit is Kbps */ 1335 u32 committed; 1336 u32 peak; 1337 }; 1338 1339 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_shaper_bw); 1340 1341 /* VIRTCHNL_OP_EVENT 1342 * PF sends this message to inform the VF driver of events that may affect it. 1343 * No direct response is expected from the VF, though it may generate other 1344 * messages in response to this one. 1345 */ 1346 enum virtchnl_event_codes { 1347 VIRTCHNL_EVENT_UNKNOWN = 0, 1348 VIRTCHNL_EVENT_LINK_CHANGE, 1349 VIRTCHNL_EVENT_RESET_IMPENDING, 1350 VIRTCHNL_EVENT_PF_DRIVER_CLOSE, 1351 }; 1352 1353 #define PF_EVENT_SEVERITY_INFO 0 1354 #define PF_EVENT_SEVERITY_ATTENTION 1 1355 #define PF_EVENT_SEVERITY_ACTION_REQUIRED 2 1356 #define PF_EVENT_SEVERITY_CERTAIN_DOOM 255 1357 1358 struct virtchnl_pf_event { 1359 /* see enum virtchnl_event_codes */ 1360 s32 event; 1361 union { 1362 /* If the PF driver does not support the new speed reporting 1363 * capabilities then use link_event else use link_event_adv to 1364 * get the speed and link information. The ability to understand 1365 * new speeds is indicated by setting the capability flag 1366 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter 1367 * in virtchnl_vf_resource struct and can be used to determine 1368 * which link event struct to use below. 1369 */ 1370 struct { 1371 enum virtchnl_link_speed link_speed; 1372 bool link_status; 1373 u8 pad[3]; 1374 } link_event; 1375 struct { 1376 /* link_speed provided in Mbps */ 1377 u32 link_speed; 1378 u8 link_status; 1379 u8 pad[3]; 1380 } link_event_adv; 1381 struct { 1382 /* link_speed provided in Mbps */ 1383 u32 link_speed; 1384 u16 vport_id; 1385 u8 link_status; 1386 u8 pad; 1387 } link_event_adv_vport; 1388 } event_data; 1389 1390 s32 severity; 1391 }; 1392 1393 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event); 1394 1395 /* VF reset states - these are written into the RSTAT register: 1396 * VFGEN_RSTAT on the VF 1397 * When the PF initiates a reset, it writes 0 1398 * When the reset is complete, it writes 1 1399 * When the PF detects that the VF has recovered, it writes 2 1400 * VF checks this register periodically to determine if a reset has occurred, 1401 * then polls it to know when the reset is complete. 1402 * If either the PF or VF reads the register while the hardware 1403 * is in a reset state, it will return DEADBEEF, which, when masked 1404 * will result in 3. 1405 */ 1406 enum virtchnl_vfr_states { 1407 VIRTCHNL_VFR_INPROGRESS = 0, 1408 VIRTCHNL_VFR_COMPLETED, 1409 VIRTCHNL_VFR_VFACTIVE, 1410 }; 1411 1412 #define VIRTCHNL_MAX_NUM_PROTO_HDRS 32 1413 #define PROTO_HDR_SHIFT 5 1414 #define PROTO_HDR_FIELD_START(proto_hdr_type) \ 1415 (proto_hdr_type << PROTO_HDR_SHIFT) 1416 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1) 1417 1418 /* VF use these macros to configure each protocol header. 1419 * Specify which protocol headers and protocol header fields base on 1420 * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field. 1421 * @param hdr: a struct of virtchnl_proto_hdr 1422 * @param hdr_type: ETH/IPV4/TCP, etc 1423 * @param field: SRC/DST/TEID/SPI, etc 1424 */ 1425 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \ 1426 ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK)) 1427 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \ 1428 ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK)) 1429 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \ 1430 ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK)) 1431 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector) 1432 1433 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1434 (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \ 1435 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1436 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1437 (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \ 1438 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1439 1440 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \ 1441 ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type) 1442 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \ 1443 (((hdr)->type) >> PROTO_HDR_SHIFT) 1444 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \ 1445 ((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT))) 1446 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \ 1447 (VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \ 1448 VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val)) 1449 1450 /* Protocol header type within a packet segment. A segment consists of one or 1451 * more protocol headers that make up a logical group of protocol headers. Each 1452 * logical group of protocol headers encapsulates or is encapsulated using/by 1453 * tunneling or encapsulation protocols for network virtualization. 1454 */ 1455 enum virtchnl_proto_hdr_type { 1456 VIRTCHNL_PROTO_HDR_NONE, 1457 VIRTCHNL_PROTO_HDR_ETH, 1458 VIRTCHNL_PROTO_HDR_S_VLAN, 1459 VIRTCHNL_PROTO_HDR_C_VLAN, 1460 VIRTCHNL_PROTO_HDR_IPV4, 1461 VIRTCHNL_PROTO_HDR_IPV6, 1462 VIRTCHNL_PROTO_HDR_TCP, 1463 VIRTCHNL_PROTO_HDR_UDP, 1464 VIRTCHNL_PROTO_HDR_SCTP, 1465 VIRTCHNL_PROTO_HDR_GTPU_IP, 1466 VIRTCHNL_PROTO_HDR_GTPU_EH, 1467 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 1468 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 1469 VIRTCHNL_PROTO_HDR_PPPOE, 1470 VIRTCHNL_PROTO_HDR_L2TPV3, 1471 VIRTCHNL_PROTO_HDR_ESP, 1472 VIRTCHNL_PROTO_HDR_AH, 1473 VIRTCHNL_PROTO_HDR_PFCP, 1474 VIRTCHNL_PROTO_HDR_GTPC, 1475 VIRTCHNL_PROTO_HDR_ECPRI, 1476 VIRTCHNL_PROTO_HDR_L2TPV2, 1477 VIRTCHNL_PROTO_HDR_PPP, 1478 /* IPv4 and IPv6 Fragment header types are only associated to 1479 * VIRTCHNL_PROTO_HDR_IPV4 and VIRTCHNL_PROTO_HDR_IPV6 respectively, 1480 * cannot be used independently. 1481 */ 1482 VIRTCHNL_PROTO_HDR_IPV4_FRAG, 1483 VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG, 1484 VIRTCHNL_PROTO_HDR_GRE, 1485 }; 1486 1487 /* Protocol header field within a protocol header. */ 1488 enum virtchnl_proto_hdr_field { 1489 /* ETHER */ 1490 VIRTCHNL_PROTO_HDR_ETH_SRC = 1491 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH), 1492 VIRTCHNL_PROTO_HDR_ETH_DST, 1493 VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE, 1494 /* S-VLAN */ 1495 VIRTCHNL_PROTO_HDR_S_VLAN_ID = 1496 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN), 1497 /* C-VLAN */ 1498 VIRTCHNL_PROTO_HDR_C_VLAN_ID = 1499 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN), 1500 /* IPV4 */ 1501 VIRTCHNL_PROTO_HDR_IPV4_SRC = 1502 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4), 1503 VIRTCHNL_PROTO_HDR_IPV4_DST, 1504 VIRTCHNL_PROTO_HDR_IPV4_DSCP, 1505 VIRTCHNL_PROTO_HDR_IPV4_TTL, 1506 VIRTCHNL_PROTO_HDR_IPV4_PROT, 1507 VIRTCHNL_PROTO_HDR_IPV4_CHKSUM, 1508 /* IPV6 */ 1509 VIRTCHNL_PROTO_HDR_IPV6_SRC = 1510 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6), 1511 VIRTCHNL_PROTO_HDR_IPV6_DST, 1512 VIRTCHNL_PROTO_HDR_IPV6_TC, 1513 VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT, 1514 VIRTCHNL_PROTO_HDR_IPV6_PROT, 1515 /* IPV6 Prefix */ 1516 VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC, 1517 VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST, 1518 VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC, 1519 VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST, 1520 VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC, 1521 VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST, 1522 VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC, 1523 VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST, 1524 VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC, 1525 VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST, 1526 VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC, 1527 VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST, 1528 /* TCP */ 1529 VIRTCHNL_PROTO_HDR_TCP_SRC_PORT = 1530 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP), 1531 VIRTCHNL_PROTO_HDR_TCP_DST_PORT, 1532 VIRTCHNL_PROTO_HDR_TCP_CHKSUM, 1533 /* UDP */ 1534 VIRTCHNL_PROTO_HDR_UDP_SRC_PORT = 1535 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP), 1536 VIRTCHNL_PROTO_HDR_UDP_DST_PORT, 1537 VIRTCHNL_PROTO_HDR_UDP_CHKSUM, 1538 /* SCTP */ 1539 VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT = 1540 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP), 1541 VIRTCHNL_PROTO_HDR_SCTP_DST_PORT, 1542 VIRTCHNL_PROTO_HDR_SCTP_CHKSUM, 1543 /* GTPU_IP */ 1544 VIRTCHNL_PROTO_HDR_GTPU_IP_TEID = 1545 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP), 1546 /* GTPU_EH */ 1547 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU = 1548 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH), 1549 VIRTCHNL_PROTO_HDR_GTPU_EH_QFI, 1550 /* PPPOE */ 1551 VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID = 1552 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE), 1553 /* L2TPV3 */ 1554 VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID = 1555 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3), 1556 /* ESP */ 1557 VIRTCHNL_PROTO_HDR_ESP_SPI = 1558 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP), 1559 /* AH */ 1560 VIRTCHNL_PROTO_HDR_AH_SPI = 1561 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH), 1562 /* PFCP */ 1563 VIRTCHNL_PROTO_HDR_PFCP_S_FIELD = 1564 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP), 1565 VIRTCHNL_PROTO_HDR_PFCP_SEID, 1566 /* GTPC */ 1567 VIRTCHNL_PROTO_HDR_GTPC_TEID = 1568 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC), 1569 /* ECPRI */ 1570 VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE = 1571 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI), 1572 VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID, 1573 /* IPv4 Dummy Fragment */ 1574 VIRTCHNL_PROTO_HDR_IPV4_FRAG_PKID = 1575 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4_FRAG), 1576 /* IPv6 Extension Fragment */ 1577 VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG_PKID = 1578 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG), 1579 /* GTPU_DWN/UP */ 1580 VIRTCHNL_PROTO_HDR_GTPU_DWN_QFI = 1581 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN), 1582 VIRTCHNL_PROTO_HDR_GTPU_UP_QFI = 1583 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP), 1584 }; 1585 1586 struct virtchnl_proto_hdr { 1587 /* see enum virtchnl_proto_hdr_type */ 1588 s32 type; 1589 u32 field_selector; /* a bit mask to select field for header type */ 1590 u8 buffer[64]; 1591 /** 1592 * binary buffer in network order for specific header type. 1593 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4 1594 * header is expected to be copied into the buffer. 1595 */ 1596 }; 1597 1598 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr); 1599 1600 struct virtchnl_proto_hdrs { 1601 u8 tunnel_level; 1602 /** 1603 * specify where protocol header start from. 1604 * 0 - from the outer layer 1605 * 1 - from the first inner layer 1606 * 2 - from the second inner layer 1607 * .... 1608 **/ 1609 int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */ 1610 struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS]; 1611 }; 1612 1613 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs); 1614 1615 struct virtchnl_rss_cfg { 1616 struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */ 1617 1618 /* see enum virtchnl_rss_algorithm; rss algorithm type */ 1619 s32 rss_algorithm; 1620 u8 reserved[128]; /* reserve for future */ 1621 }; 1622 1623 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg); 1624 1625 /* action configuration for FDIR */ 1626 struct virtchnl_filter_action { 1627 /* see enum virtchnl_action type */ 1628 s32 type; 1629 union { 1630 /* used for queue and qgroup action */ 1631 struct { 1632 u16 index; 1633 u8 region; 1634 } queue; 1635 /* used for count action */ 1636 struct { 1637 /* share counter ID with other flow rules */ 1638 u8 shared; 1639 u32 id; /* counter ID */ 1640 } count; 1641 /* used for mark action */ 1642 u32 mark_id; 1643 u8 reserve[32]; 1644 } act_conf; 1645 }; 1646 1647 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action); 1648 1649 #define VIRTCHNL_MAX_NUM_ACTIONS 8 1650 1651 struct virtchnl_filter_action_set { 1652 /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */ 1653 int count; 1654 struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS]; 1655 }; 1656 1657 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set); 1658 1659 /* pattern and action for FDIR rule */ 1660 struct virtchnl_fdir_rule { 1661 struct virtchnl_proto_hdrs proto_hdrs; 1662 struct virtchnl_filter_action_set action_set; 1663 }; 1664 1665 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule); 1666 1667 /* Status returned to VF after VF requests FDIR commands 1668 * VIRTCHNL_FDIR_SUCCESS 1669 * VF FDIR related request is successfully done by PF 1670 * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER. 1671 * 1672 * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE 1673 * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource. 1674 * 1675 * VIRTCHNL_FDIR_FAILURE_RULE_EXIST 1676 * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed. 1677 * 1678 * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT 1679 * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule. 1680 * 1681 * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST 1682 * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist. 1683 * 1684 * VIRTCHNL_FDIR_FAILURE_RULE_INVALID 1685 * OP_ADD_FDIR_FILTER request is failed due to parameters validation 1686 * or HW doesn't support. 1687 * 1688 * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT 1689 * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out 1690 * for programming. 1691 * 1692 * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID 1693 * OP_QUERY_FDIR_FILTER request is failed due to parameters validation, 1694 * for example, VF query counter of a rule who has no counter action. 1695 */ 1696 enum virtchnl_fdir_prgm_status { 1697 VIRTCHNL_FDIR_SUCCESS = 0, 1698 VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE, 1699 VIRTCHNL_FDIR_FAILURE_RULE_EXIST, 1700 VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT, 1701 VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST, 1702 VIRTCHNL_FDIR_FAILURE_RULE_INVALID, 1703 VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT, 1704 VIRTCHNL_FDIR_FAILURE_QUERY_INVALID, 1705 }; 1706 1707 /* VIRTCHNL_OP_ADD_FDIR_FILTER 1708 * VF sends this request to PF by filling out vsi_id, 1709 * validate_only and rule_cfg. PF will return flow_id 1710 * if the request is successfully done and return add_status to VF. 1711 */ 1712 struct virtchnl_fdir_add { 1713 u16 vsi_id; /* INPUT */ 1714 /* 1715 * 1 for validating a fdir rule, 0 for creating a fdir rule. 1716 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER. 1717 */ 1718 u16 validate_only; /* INPUT */ 1719 u32 flow_id; /* OUTPUT */ 1720 struct virtchnl_fdir_rule rule_cfg; /* INPUT */ 1721 1722 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1723 s32 status; 1724 }; 1725 1726 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add); 1727 1728 /* VIRTCHNL_OP_DEL_FDIR_FILTER 1729 * VF sends this request to PF by filling out vsi_id 1730 * and flow_id. PF will return del_status to VF. 1731 */ 1732 struct virtchnl_fdir_del { 1733 u16 vsi_id; /* INPUT */ 1734 u16 pad; 1735 u32 flow_id; /* INPUT */ 1736 1737 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1738 s32 status; 1739 }; 1740 1741 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del); 1742 1743 /* VIRTCHNL_OP_GET_QOS_CAPS 1744 * VF sends this message to get its QoS Caps, such as 1745 * TC number, Arbiter and Bandwidth. 1746 */ 1747 struct virtchnl_qos_cap_elem { 1748 u8 tc_num; 1749 u8 tc_prio; 1750 #define VIRTCHNL_ABITER_STRICT 0 1751 #define VIRTCHNL_ABITER_ETS 2 1752 u8 arbiter; 1753 #define VIRTCHNL_STRICT_WEIGHT 1 1754 u8 weight; 1755 enum virtchnl_bw_limit_type type; 1756 union { 1757 struct virtchnl_shaper_bw shaper; 1758 u8 pad2[32]; 1759 }; 1760 }; 1761 1762 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_qos_cap_elem); 1763 1764 struct virtchnl_qos_cap_list { 1765 u16 vsi_id; 1766 u16 num_elem; 1767 struct virtchnl_qos_cap_elem cap[1]; 1768 }; 1769 1770 VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_qos_cap_list); 1771 1772 /* VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP 1773 * VF sends message virtchnl_queue_tc_mapping to set queue to tc 1774 * mapping for all the Tx and Rx queues with a specified VSI, and 1775 * would get response about bitmap of valid user priorities 1776 * associated with queues. 1777 */ 1778 struct virtchnl_queue_tc_mapping { 1779 u16 vsi_id; 1780 u16 num_tc; 1781 u16 num_queue_pairs; 1782 u8 pad[2]; 1783 union { 1784 struct { 1785 u16 start_queue_id; 1786 u16 queue_count; 1787 } req; 1788 struct { 1789 #define VIRTCHNL_USER_PRIO_TYPE_UP 0 1790 #define VIRTCHNL_USER_PRIO_TYPE_DSCP 1 1791 u16 prio_type; 1792 u16 valid_prio_bitmap; 1793 } resp; 1794 } tc[1]; 1795 }; 1796 1797 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_tc_mapping); 1798 1799 /* TX and RX queue types are valid in legacy as well as split queue models. 1800 * With Split Queue model, 2 additional types are introduced - TX_COMPLETION 1801 * and RX_BUFFER. In split queue model, RX corresponds to the queue where HW 1802 * posts completions. 1803 */ 1804 enum virtchnl_queue_type { 1805 VIRTCHNL_QUEUE_TYPE_TX = 0, 1806 VIRTCHNL_QUEUE_TYPE_RX = 1, 1807 VIRTCHNL_QUEUE_TYPE_TX_COMPLETION = 2, 1808 VIRTCHNL_QUEUE_TYPE_RX_BUFFER = 3, 1809 VIRTCHNL_QUEUE_TYPE_CONFIG_TX = 4, 1810 VIRTCHNL_QUEUE_TYPE_CONFIG_RX = 5 1811 }; 1812 1813 /* structure to specify a chunk of contiguous queues */ 1814 struct virtchnl_queue_chunk { 1815 /* see enum virtchnl_queue_type */ 1816 s32 type; 1817 u16 start_queue_id; 1818 u16 num_queues; 1819 }; 1820 1821 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk); 1822 1823 /* structure to specify several chunks of contiguous queues */ 1824 struct virtchnl_queue_chunks { 1825 u16 num_chunks; 1826 u16 rsvd; 1827 struct virtchnl_queue_chunk chunks[1]; 1828 }; 1829 1830 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks); 1831 1832 /* VIRTCHNL_OP_ENABLE_QUEUES_V2 1833 * VIRTCHNL_OP_DISABLE_QUEUES_V2 1834 * VIRTCHNL_OP_DEL_QUEUES 1835 * 1836 * If VIRTCHNL version was negotiated in VIRTCHNL_OP_VERSION as 2.0 1837 * then all of these ops are available. 1838 * 1839 * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES 1840 * then VIRTCHNL_OP_ENABLE_QUEUES_V2 and VIRTCHNL_OP_DISABLE_QUEUES_V2 are 1841 * available. 1842 * 1843 * PF sends these messages to enable, disable or delete queues specified in 1844 * chunks. PF sends virtchnl_del_ena_dis_queues struct to specify the queues 1845 * to be enabled/disabled/deleted. Also applicable to single queue RX or 1846 * TX. CP performs requested action and returns status. 1847 */ 1848 struct virtchnl_del_ena_dis_queues { 1849 u16 vport_id; 1850 u16 pad; 1851 struct virtchnl_queue_chunks chunks; 1852 }; 1853 1854 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues); 1855 1856 /* Virtchannel interrupt throttling rate index */ 1857 enum virtchnl_itr_idx { 1858 VIRTCHNL_ITR_IDX_0 = 0, 1859 VIRTCHNL_ITR_IDX_1 = 1, 1860 VIRTCHNL_ITR_IDX_NO_ITR = 3, 1861 }; 1862 1863 /* Queue to vector mapping */ 1864 struct virtchnl_queue_vector { 1865 u16 queue_id; 1866 u16 vector_id; 1867 u8 pad[4]; 1868 1869 /* see enum virtchnl_itr_idx */ 1870 s32 itr_idx; 1871 1872 /* see enum virtchnl_queue_type */ 1873 s32 queue_type; 1874 }; 1875 1876 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector); 1877 1878 /* VIRTCHNL_OP_MAP_QUEUE_VECTOR 1879 * 1880 * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES 1881 * then only VIRTCHNL_OP_MAP_QUEUE_VECTOR is available. 1882 * 1883 * PF sends this message to map or unmap queues to vectors and ITR index 1884 * registers. External data buffer contains virtchnl_queue_vector_maps structure 1885 * that contains num_qv_maps of virtchnl_queue_vector structures. 1886 * CP maps the requested queue vector maps after validating the queue and vector 1887 * ids and returns a status code. 1888 */ 1889 struct virtchnl_queue_vector_maps { 1890 u16 vport_id; 1891 u16 num_qv_maps; 1892 u8 pad[4]; 1893 struct virtchnl_queue_vector qv_maps[1]; 1894 }; 1895 1896 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps); 1897 1898 /* Since VF messages are limited by u16 size, precalculate the maximum possible 1899 * values of nested elements in virtchnl structures that virtual channel can 1900 * possibly handle in a single message. 1901 */ 1902 enum virtchnl_vector_limits { 1903 VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX = 1904 ((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) / 1905 sizeof(struct virtchnl_queue_pair_info), 1906 1907 VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX = 1908 ((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) / 1909 sizeof(struct virtchnl_vector_map), 1910 1911 VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX = 1912 ((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) / 1913 sizeof(struct virtchnl_ether_addr), 1914 1915 VIRTCHNL_OP_ADD_DEL_VLAN_MAX = 1916 ((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) / 1917 sizeof(u16), 1918 1919 VIRTCHNL_OP_ENABLE_CHANNELS_MAX = 1920 ((u16)(~0) - sizeof(struct virtchnl_tc_info)) / 1921 sizeof(struct virtchnl_channel_info), 1922 1923 VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX = 1924 ((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) / 1925 sizeof(struct virtchnl_queue_chunk), 1926 1927 VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX = 1928 ((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) / 1929 sizeof(struct virtchnl_queue_vector), 1930 1931 VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX = 1932 ((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) / 1933 sizeof(struct virtchnl_vlan_filter), 1934 }; 1935 1936 /** 1937 * virtchnl_vc_validate_vf_msg 1938 * @ver: Virtchnl version info 1939 * @v_opcode: Opcode for the message 1940 * @msg: pointer to the msg buffer 1941 * @msglen: msg length 1942 * 1943 * validate msg format against struct for each opcode 1944 */ 1945 static inline int 1946 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode, 1947 u8 *msg, u16 msglen) 1948 { 1949 bool err_msg_format = false; 1950 u32 valid_len = 0; 1951 1952 /* Validate message length. */ 1953 switch (v_opcode) { 1954 case VIRTCHNL_OP_VERSION: 1955 valid_len = sizeof(struct virtchnl_version_info); 1956 break; 1957 case VIRTCHNL_OP_RESET_VF: 1958 break; 1959 case VIRTCHNL_OP_GET_VF_RESOURCES: 1960 if (VF_IS_V11(ver)) 1961 valid_len = sizeof(u32); 1962 break; 1963 case VIRTCHNL_OP_CONFIG_TX_QUEUE: 1964 valid_len = sizeof(struct virtchnl_txq_info); 1965 break; 1966 case VIRTCHNL_OP_CONFIG_RX_QUEUE: 1967 valid_len = sizeof(struct virtchnl_rxq_info); 1968 break; 1969 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 1970 valid_len = sizeof(struct virtchnl_vsi_queue_config_info); 1971 if (msglen >= valid_len) { 1972 struct virtchnl_vsi_queue_config_info *vqc = 1973 (struct virtchnl_vsi_queue_config_info *)msg; 1974 1975 if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs > 1976 VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) { 1977 err_msg_format = true; 1978 break; 1979 } 1980 1981 valid_len += (vqc->num_queue_pairs * 1982 sizeof(struct 1983 virtchnl_queue_pair_info)); 1984 } 1985 break; 1986 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 1987 valid_len = sizeof(struct virtchnl_irq_map_info); 1988 if (msglen >= valid_len) { 1989 struct virtchnl_irq_map_info *vimi = 1990 (struct virtchnl_irq_map_info *)msg; 1991 1992 if (vimi->num_vectors == 0 || vimi->num_vectors > 1993 VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) { 1994 err_msg_format = true; 1995 break; 1996 } 1997 1998 valid_len += (vimi->num_vectors * 1999 sizeof(struct virtchnl_vector_map)); 2000 } 2001 break; 2002 case VIRTCHNL_OP_ENABLE_QUEUES: 2003 case VIRTCHNL_OP_DISABLE_QUEUES: 2004 valid_len = sizeof(struct virtchnl_queue_select); 2005 break; 2006 case VIRTCHNL_OP_GET_MAX_RSS_QREGION: 2007 break; 2008 case VIRTCHNL_OP_ADD_ETH_ADDR: 2009 case VIRTCHNL_OP_DEL_ETH_ADDR: 2010 valid_len = sizeof(struct virtchnl_ether_addr_list); 2011 if (msglen >= valid_len) { 2012 struct virtchnl_ether_addr_list *veal = 2013 (struct virtchnl_ether_addr_list *)msg; 2014 2015 if (veal->num_elements == 0 || veal->num_elements > 2016 VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) { 2017 err_msg_format = true; 2018 break; 2019 } 2020 2021 valid_len += veal->num_elements * 2022 sizeof(struct virtchnl_ether_addr); 2023 } 2024 break; 2025 case VIRTCHNL_OP_ADD_VLAN: 2026 case VIRTCHNL_OP_DEL_VLAN: 2027 valid_len = sizeof(struct virtchnl_vlan_filter_list); 2028 if (msglen >= valid_len) { 2029 struct virtchnl_vlan_filter_list *vfl = 2030 (struct virtchnl_vlan_filter_list *)msg; 2031 2032 if (vfl->num_elements == 0 || vfl->num_elements > 2033 VIRTCHNL_OP_ADD_DEL_VLAN_MAX) { 2034 err_msg_format = true; 2035 break; 2036 } 2037 2038 valid_len += vfl->num_elements * sizeof(u16); 2039 } 2040 break; 2041 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 2042 valid_len = sizeof(struct virtchnl_promisc_info); 2043 break; 2044 case VIRTCHNL_OP_GET_STATS: 2045 valid_len = sizeof(struct virtchnl_queue_select); 2046 break; 2047 case VIRTCHNL_OP_CONFIG_RSS_KEY: 2048 valid_len = sizeof(struct virtchnl_rss_key); 2049 if (msglen >= valid_len) { 2050 struct virtchnl_rss_key *vrk = 2051 (struct virtchnl_rss_key *)msg; 2052 2053 if (vrk->key_len == 0) { 2054 /* zero length is allowed as input */ 2055 break; 2056 } 2057 2058 valid_len += vrk->key_len - 1; 2059 } 2060 break; 2061 case VIRTCHNL_OP_CONFIG_RSS_LUT: 2062 valid_len = sizeof(struct virtchnl_rss_lut); 2063 if (msglen >= valid_len) { 2064 struct virtchnl_rss_lut *vrl = 2065 (struct virtchnl_rss_lut *)msg; 2066 2067 if (vrl->lut_entries == 0) { 2068 /* zero entries is allowed as input */ 2069 break; 2070 } 2071 2072 valid_len += vrl->lut_entries - 1; 2073 } 2074 break; 2075 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 2076 break; 2077 case VIRTCHNL_OP_SET_RSS_HENA: 2078 valid_len = sizeof(struct virtchnl_rss_hena); 2079 break; 2080 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 2081 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 2082 break; 2083 case VIRTCHNL_OP_REQUEST_QUEUES: 2084 valid_len = sizeof(struct virtchnl_vf_res_request); 2085 break; 2086 case VIRTCHNL_OP_ENABLE_CHANNELS: 2087 valid_len = sizeof(struct virtchnl_tc_info); 2088 if (msglen >= valid_len) { 2089 struct virtchnl_tc_info *vti = 2090 (struct virtchnl_tc_info *)msg; 2091 2092 if (vti->num_tc == 0 || vti->num_tc > 2093 VIRTCHNL_OP_ENABLE_CHANNELS_MAX) { 2094 err_msg_format = true; 2095 break; 2096 } 2097 2098 valid_len += (vti->num_tc - 1) * 2099 sizeof(struct virtchnl_channel_info); 2100 } 2101 break; 2102 case VIRTCHNL_OP_DISABLE_CHANNELS: 2103 break; 2104 case VIRTCHNL_OP_ADD_CLOUD_FILTER: 2105 case VIRTCHNL_OP_DEL_CLOUD_FILTER: 2106 valid_len = sizeof(struct virtchnl_filter); 2107 break; 2108 case VIRTCHNL_OP_ADD_RSS_CFG: 2109 case VIRTCHNL_OP_DEL_RSS_CFG: 2110 valid_len = sizeof(struct virtchnl_rss_cfg); 2111 break; 2112 case VIRTCHNL_OP_ADD_FDIR_FILTER: 2113 valid_len = sizeof(struct virtchnl_fdir_add); 2114 break; 2115 case VIRTCHNL_OP_DEL_FDIR_FILTER: 2116 valid_len = sizeof(struct virtchnl_fdir_del); 2117 break; 2118 case VIRTCHNL_OP_GET_QOS_CAPS: 2119 break; 2120 case VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP: 2121 valid_len = sizeof(struct virtchnl_queue_tc_mapping); 2122 if (msglen >= valid_len) { 2123 struct virtchnl_queue_tc_mapping *q_tc = 2124 (struct virtchnl_queue_tc_mapping *)msg; 2125 if (q_tc->num_tc == 0) { 2126 err_msg_format = true; 2127 break; 2128 } 2129 valid_len += (q_tc->num_tc - 1) * 2130 sizeof(q_tc->tc[0]); 2131 } 2132 break; 2133 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 2134 break; 2135 case VIRTCHNL_OP_ADD_VLAN_V2: 2136 case VIRTCHNL_OP_DEL_VLAN_V2: 2137 valid_len = sizeof(struct virtchnl_vlan_filter_list_v2); 2138 if (msglen >= valid_len) { 2139 struct virtchnl_vlan_filter_list_v2 *vfl = 2140 (struct virtchnl_vlan_filter_list_v2 *)msg; 2141 2142 if (vfl->num_elements == 0 || vfl->num_elements > 2143 VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) { 2144 err_msg_format = true; 2145 break; 2146 } 2147 2148 valid_len += (vfl->num_elements - 1) * 2149 sizeof(struct virtchnl_vlan_filter); 2150 } 2151 break; 2152 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 2153 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 2154 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 2155 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 2156 case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2: 2157 case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2: 2158 valid_len = sizeof(struct virtchnl_vlan_setting); 2159 break; 2160 case VIRTCHNL_OP_ENABLE_QUEUES_V2: 2161 case VIRTCHNL_OP_DISABLE_QUEUES_V2: 2162 valid_len = sizeof(struct virtchnl_del_ena_dis_queues); 2163 if (msglen >= valid_len) { 2164 struct virtchnl_del_ena_dis_queues *qs = 2165 (struct virtchnl_del_ena_dis_queues *)msg; 2166 if (qs->chunks.num_chunks == 0 || 2167 qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) { 2168 err_msg_format = true; 2169 break; 2170 } 2171 valid_len += (qs->chunks.num_chunks - 1) * 2172 sizeof(struct virtchnl_queue_chunk); 2173 } 2174 break; 2175 case VIRTCHNL_OP_MAP_QUEUE_VECTOR: 2176 valid_len = sizeof(struct virtchnl_queue_vector_maps); 2177 if (msglen >= valid_len) { 2178 struct virtchnl_queue_vector_maps *v_qp = 2179 (struct virtchnl_queue_vector_maps *)msg; 2180 if (v_qp->num_qv_maps == 0 || 2181 v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) { 2182 err_msg_format = true; 2183 break; 2184 } 2185 valid_len += (v_qp->num_qv_maps - 1) * 2186 sizeof(struct virtchnl_queue_vector); 2187 } 2188 break; 2189 /* These are always errors coming from the VF. */ 2190 case VIRTCHNL_OP_EVENT: 2191 case VIRTCHNL_OP_UNKNOWN: 2192 default: 2193 return VIRTCHNL_STATUS_ERR_PARAM; 2194 } 2195 /* few more checks */ 2196 if (err_msg_format || valid_len != msglen) 2197 return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH; 2198 2199 return 0; 2200 } 2201 #endif /* _VIRTCHNL_H_ */ 2202